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Abstract—An analysis of self-injection locked oscillators using a 

slow-wave structure for phase-noise reduction is presented. This 
structure is the key component of a feedback network, added to an 
existing oscillator and providing a stable self-injection locking sig-
nal. The unit cell of the slow-wave structure is based on a recently 
proposed configuration, made up of an open-ended stub and a 
Schiffman section. A tuning capacitor is introduced as an addi-
tional parameter, enabling an adjustment of the structure re-
sponse at the desired oscillation frequency.  The circuit solutions 
are analyzed by means of a semi-analytical formulation that incor-
porates the results of an electromagnetic simulation of the struc-
ture. The formulation enables a prediction of multivalued param-
eter regions, inherent to the long delay, which are more controlla-
ble than in the case of continuous transmission lines. An analytical 
derivation of the phase-noise spectral density is presented, which 
relates the phase-noise reduction with respect to the original free-
running oscillator to the group delay of the self-injection network. 
The analysis and synthesis method has been applied to an oscilla-
tor at 2.75 GHz.  
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I. INTRODUCTION  

Phase noise is an undesired characteristic of oscillator cir-
cuits, which degrades their spectral purity and can induce de-
modulation errors. The possibility to reduce the phase noise of 
an existing oscillator through self-injection locking with long 
transmission lines has been demonstrated in several previous 
works [1]-[3]. However, this is generally inconvenient [3], 
since the overall system becomes bulky due to the long lengths 
required to achieve a significant phase-noise improvement. As 
shown here, the problem can be circumvented with slow-wave 
structures [4]-[5] implemented on microstrip line. Actually, os-
cillators based on slow-wave resonators with excellent perfor-
mance have been demonstrated in the literature [6]-[7]. Here 
the slow-wave structure is included in the external feedback 
loop of an existing oscillator, in order to reduce its phase noise. 

A complete analytical model of the self-injected oscillator 
is presented, which generalizes the one in [3], derived for a con-
tinuous transmission line, to the more complex case of slow-
wave structures. In particular, a recently proposed configura-
tion, with a unit cell made up of an open-ended stub and a 
Schiffman section, is considered. A tuning capacitor is intro-
duced as an additional parameter to adjust the structure re-
sponse at the desired oscillation frequency.   

Because the external feedback loop should not significantly 
modify the free-running operation point in terms of amplitude 
and frequency, the analysis will be based on a Taylor-series ex-

pansion of the oscillator admittance function about the free-run-
ning solution of the standalone oscillator. The problem of co-
existence of solutions in some parameter intervals, demon-
strated in [3] and inherent to the long delay, will be shown to 
be less critical when using slow-wave structures. An analytical 
derivation of the phase-noise spectral density will be presented, 
relating the phase-noise reduction with respect to the original 
free-running oscillator to the group delay of the self-injection 
network. The analysis and synthesis method will be applied to 
an oscillator at 2.75 GHz, obtaining a phase-noise reduction of 
more than 13 dB.   

II. SOLUTION CURVES WHEN USING A SLOW-WAVE STRUCTURE 

A. Slow-wave structure 

The slow-wave factor SW of a given structure is the ratio be-

tween the wavelength in free space (o) and the wavelength 

when the signal propagates through the structure (s). Initially 
the case of a matched lumped-element transmission line, having 
an inductance Lc and capacitance Cc per unit cell of length lc, is 
considered. The slow-wave factor and group delay are [4]: 
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where fc is the Bragg frequency, given by: 1/ ( )c c cf L C . 

As gathered from (1), to increase the slow-wave factor, lc must 
be small and Lc and Cc must be large. The slow-wave structure 
will be implemented on microstrip, using the configuration pro-
posed [5]. Its unit cell consists of a Schiffman-section [8], 
mainly contributing to the inductor, and an open-circuited stub, 
basically implementing the capacitor [Fig. 1(a)]. The induct-
ance and capacitance per unit cell are [5]: 
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where  = 2f, Zo and Ze are the odd and even mode imped-
ances of the parallel coupled lines [5], W is the transversal 

length, f is the propagation constant of the Schiffman section 

and b and Zb are the propagation constant and characteristic 
impedance of the line with the width lb.  



The slow-wave structure will be applied to an oscillator at 
2.75 GHz. To best fit the response of the structure to the oscil-
lator frequency, a tuning capacitor is added in parallel to one of 
the middle cells [Fig. 1(b)]. From the ideal expressions in (1), 
with the unit cell values Lc = 1.89 nH and Cc = 5 pF and twelve 
cells, one should achieve a group delay of more than 2 ns. The 
Bragg frequency is 3.27 GHz. Fig. 2 presents the comparison 
between the simulated and measured group delay of the struc-
ture in Fig. 1(b), when W = 9.4 mm. The simulated group delay 
is obtained from an electromagnetic analysis of the slow-wave 
structure. Two different values of the tuning capacitor have 
been considered. The length of the structure is 36.2 mm.   

 
Fig. 1. Slow-wave structure consisting of Schiffman section and a stub. (a) Unit 
cell. (b) Complete structure, including a tuning capacitor C. 

 
Fig. 2. Comparison between the simulated and measured group delay of the 
structure in Fig. 1(b), when W = 9.4 mm, for two different C values.   

B. Solution curves 

Initially, self-injection locking through the output port [1]-
[2] will be considered, as shown in Fig. 3(a). This will allow an 
oscillator description in terms of its total admittance function Y 
at the output node, constituting the only observation node [Fig. 

3(b)]. The total admittance function is Y(V, ), where V and  
are the oscillation amplitude and frequency. In free-running 
conditions, that is, when the oscillator is terminated in 

Yo = 1/50 = 0.02 Ω-1, it fulfils: Y(Vo, o) = 0. Now, the output 
50 Ω load will be replaced with the self-injection configuration 
in Fig. 3(a), made up of a circulator, a slow-wave structure and 

an attenuator. The equivalent input admittance of this configu-

ration is YL(). In these conditions, the new steady-state equa-
tion at the fundamental frequency is: 
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where ( )( ) ( ) j
L e       is the reflection coefficient. The 

self-injection network must not significantly alter the free-run-
ning amplitude and frequency, so one can perform a Taylor-

series expansion of ( , )Y V   about Vo, o. This provides: 

( ) ( ) ( ) 0V o o o LE Y V V Y Y Y                     (4) 

where E is the error function and YV and Y are the derivatives 
of the admittance function, extracted from harmonic balance 
with the aid of an auxiliary generator [3]. System (3) particu-
larizes to the one in [3] in the idealized case of a non-dispersive 

delay line. In that case, is constant and  = T. When using, 
as done here, a slow-wave structure, there are no closed-form 

expressions for() and (). The admittance ( )LY  is evalu-

ated through an electromagnetic simulation of the slow-wave 
structure, as done in subsection A. Then the function is imported 
by in-house software, where equation (4) is solved by detecting 
the zeroes of the following function: 

   ( ) ( ) / 0r i i i r r i i r
o V L V o V L V VY Y Y Y Y Y Y Y Y Y            (5) 

where the superscripts r and i indicate real and imaginary parts.  

 
Fig. 3. Self-injection configuration. (a) Block diagram made up of a circulator, 
a slow-wave structure and an attenuator. (b) Oscillator circuit. 

The analysis method has been applied to an oscillator based 
on PHEMT transistor ATF34143 operating at 2.75 GHz [Fig. 
3(b)]. Two sensitive parameters of the self-injected configura-
tion will be the transversal length W and the capacitor C. For a 
global evaluation of the performance, the length W has been 
swept in the interval 9 mm to 11.5 mm, for two values of the 
tuning capacitor C. The results are shown in Fig. 4(a), for 
C = 2 pF, and Fig. 4(b), for C = 1 pF. In the two cases, there are 
both single and multi-valued sections. As shown in Fig. 4(a) 
and (b), the location of the multivalued regions can be modified 
by changing the tuning capacitor.  

To understand the causes of these multi-valued sections, 
one should analyze the impact of the group delay. This is better 
done by applying a Taylor series expansion to ( )LY   about 
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0L  , which provides  ( ) 1 2 ( )L o LY Y    . This expres-

sion will be replaced into (4). At the turning points of the solu-
tion curves, the Jacobian matrix of the complex equation (4), 

calculated with respect to V and , becomes singular. This Ja-
cobian matrix is:  
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where / ( )g       is the group delay associated with the 

input reflection coefficient. The determinant of (6) is:  
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where r i i r
o V Vdet Y Y Y Y    is the determinant of the Jacobian 

matrix associated with the admittance function of the 
standalone free-running oscillator. The determinant odet  does 

not depend on the frequency  resulting from self-injection ef-

fects in system (3), unlike the situation with ( )g  , ( )   and 

( )  . According to [9], if the standalone oscillator is stable, 

one should have 0odet  , so the possible zero values will de-

pend on the second term. For sufficiently large g   and 

/   , the sign of (7) will be sensitive to ( )  . Fig. 4(c) 

shows the variations of ( )det  in (7). The turning points agree 

with the changes of sign in ( )det  . The sign of the dominant 

real pole of the self-injected oscillator is the opposite of that of 

( )det   [10]. Under a high attenuation magnitude, it is unlikely 

to get other dominant poles, so the stable sections should corre-
spond to ( ) 0det   . Nevertheless, it is advisable to verify this 

through a circuit-level stability analysis.  

III. PHASE-NOISE REDUCTION 

In order to get insight into the mechanism for phase-noise 
reduction, noise perturbations will be introduced in equation (3)
, in the form of an equivalent noise current source ( )NI t , cal-

culated by fitting the standalone free-running oscillator spec-
trum, as shown in [10]. This equivalent noise current will in-
clude the upconversion of flicker noise, modelled as proposed 
in [9]. The perturbed system is obtained by performing a Tay-
lor-series expansion about the steady-state solution of (3): 
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Neglecting also the time derivative of the amplitude incre-
ment ( )V t  , splitting (8) into real and imaginary parts and 

solving for ( )t , one obtains: 
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Applying the Fourier transform, one obtains the following 
expression for the phase-noise spectral density: 
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where N is the spectral density of the equivalent current source 
and K accounts for the flicker noise coefficient and its upcon-

version effects. In the original free-running oscillator  and 

/    are zero, so one can easily derive the phase-noise re-

duction due to the self-injection effects. This is approximately 
independent of the offset frequency  , and given by: 
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The phase-noise reduction ( )S dB  potentially increases 
with the group delay g, which also depends on  and . 
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Fig. 4. Variation of the oscillation frequency versus the length W, swept in the 
interval 9 mm to 11.5 mm, for two values of the tuning capacitor C. (a) C = 2 

pF (b) C = 1 pF. (c) Variations of the determinant ( )det  for C = 1 pF.  



Fig. 5(a) presents the phase noise variation versus W, in the 
case of C = 1 pF, at the constant offset frequency 100 kHz. Note 
that, when neglecting ( )V t   in (8), the phase noise tends to in-

finite at the turning points. At 100 kHz, the standalone oscillator 
exhibits a phase noise of -85 dBc/Hz. The chosen operation 
point corresponds to W = 10.9 mm, in a single-valued region of 
the solution curve. The measured result, with S = 13 dB, is 
also shown. Fig. 5(b) presents phase-noise variation versus the 
attenuation in the self-injection loop, with measurements super-
imposed. As can be seen, the phase noise reduction increases 
when reducing the attenuation. For too low attenuation, the 
curve becomes multi-valued. Fig. 6 presents a comparison of 
the phase-noise spectrum of the original free-running oscillator 
with that obtained with the self-injection configuration. Results 
obtained through the analytical formulation and through the 
conversion-matrix approach are validated with the experi-
mental measurements. Note that, with a continuous transmis-
sion line, for deto = 2.32ꞏ10-13 -1s/V and a similar S, a length 
of about 1.3 m would be required.   

 
Fig. 5. Phase noise with a slow-wave structure in Fig. 1. (a) Versus W, in the 
case of C = 1 pF. The chosen operation point corresponds to W = 10.9 mm. (b) 
Versus the attenuation in the loop.  

Finally, a measurement of the phase-noise spectrum when 
introducing the slow-wave structure in an external feedback 
network, connected between the oscillator output and an auxil-
iary input port, is presented in Fig. 7. A reduction of 16 dB with 
respect to the free-running value is achieved.  

IV. CONCLUSION 

The use of a slow-wave structure for the phase-noise reduc-
tion of an existing oscillator through self-injection locking has 
been presented. An expression relating the phase-noise spectral 
density to the group delay has been derived. Using a slow-wave 
structure based on a stub and Schiffman section, a phase-noise 
reduction of 13 dB has been achieved in a HEMT-based oscil-
lator at 2.75 GHz.  
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Fig. 6. Comparison of the phase-noise spectrum of the original free-running 
oscillator with that obtained with the self-injection configuration.  
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Fig. 7. Measurement of the phase-noise reduction when introducing the slow-
wave structure in an external feedback network, connected between the oscil-
lator output and an auxiliary input port. 
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