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Abstract—An investigation of coupling-induced hysteresis in 

free-running oscillators is presented, for possible application in 
sensors and RF identification (RFID). In its basic form, the 
phenomenon arises when an inductive element in an oscillator 
circuit gets magnetically coupled to another inductor in an 
external (passive) resonator. For a low mutual inductance or 
coupling, a small dip is observed in the oscillator amplitude curve 
versus a turning parameter. As demonstrated in this work, when 
the mutual inductance increases, the dip evolves into a hysteresis 
cycle. When coupled to several external resonators, the solution 
curve will also exhibit several hysteresis cycles about the 
corresponding resonance frequencies. Due to the complexity of the 
solution curves, a dedicated analysis methodology has been 
developed and tested on a prototype at 600 MHz, obtaining very 
good agreement between simulation and measurements. 
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I. INTRODUCTION 

As has been known for almost one century, an oscillator 
circuit exhibits an amplitude change when approaching a 
resonant circuit tuned to its free-running frequency [1]-[2]. The 
phenomenon arises when an inductive element in the oscillator 
circuit gets magnetically coupled to the inductor in the external 
resonator. This property has been used in so-called "dip" 
oscillators to measure the resonant frequency of passive 
resonators or antennas [1]-[2]. The amplitude curve of the 
oscillator versus a tuning parameter exhibits a dip at the 
frequency of the external resonator. Despite being empirically 
known, there have been few works presenting a detailed 
investigation of the mechanism causing the amplitude dip.  

In this work, the effects of coupling an oscillator circuit to 
an external resonator are theoretically analyzed. As will be 
analytically shown, when the mutual inductance increases, a 
hysteresis phenomenon [3] is induced in the oscillator 
amplitude and frequency versus the tuning parameter. The same 
effect can be achieved when coupling to distributed resonators. 
We believe that the capability to induce hysteresis in the 
response of an oscillator circuit by coupling it to one or more 
resonant networks can be of interest for passive RFID 
application [4], due to the enhanced sensitivity to the tag 
resonances associated with this phenomenon. In fact, the 
coupling to several resonators will give rise to several distinct 
hysteresis cycles, about their corresponding resonance 
frequencies. Additionally, work is in progress on an 
identification method in which jumps are induced to either one 
or another of the coexisting stable solutions of a single 
hysteresis loop, according to an encoded bit sequence of the tag.  

Due to the difficulty involved in the analysis of multivalued 
curves with multiple hysteresis cycles, a novel methodology is 
proposed. This is based on an independent frequency-domain 

simulation of the oscillator core and the coupled passive 
network, both modeled in terms of admittance functions. Then, 
the two models are combined to compose the complete 
oscillator equation, solved through a contour-intersection 
procedure [5]. The analysis and synthesis method has been 
successfully applied to a BJT oscillator at 600 MHz. 

II. COUPLING EFFECTS 

In a first analytical investigation, a simple cubic-
nonlinearity oscillator (Fig. 1), with the passive elements R, L, 
C, is considered. The inductor L is coupled to the inductor L2 of 
an external parallel resonator (with loss) modeled by by G2, L2 
and C2. The equation system governing the coupled-circuit 
behavior is: 
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where M is the mutual inductance, related to the inductor 
coupling factor k and the inductor values as 2M k LL .  

 
Fig. 1. Cubic-nonlinearity oscillator with the passive elements G, L, C, is 
considered. The inductor L is coupled to the inductor L2 of an external parallel 
resonator, composed by G2, L2 and C2.  

Equations (a) and (b) correspond to the oscillator circuit and 
(c) and (d) to the coupled resonator. Solving for I2 in terms of 
I1 from (c) and (d), and for I1 from (b), and replacing in (a), one 
obtains: 
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where GN(V) = I(V) / V. One easily gathers that the coupling 
gives rise to a change of the equivalent load admittance, which 
changes from 1/(jL) to the third term in (2). Splitting (2) into 
real and imaginary parts, one obtains the following system: 
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where GT(V) = GN(V) + G. Using (b), one can solve for 2 in 
terms of GT(V). Then, using (a), one can solve for GT(V) in 
terms of the circuit elements. In particular, the function 
GN(V) = a + 3/4bV2, where a < 0 and b > 0, will be assumed. 
Tracing  and V versus C under variations of the coupling 
factor k, one obtains the curve family in Fig. 2. Results obtained 
with commercial HB (whenever convergence is possible) are 
superimposed with excellent agreement. To understand the 
curve evolution, one should note that at the particular C value 
that fulfills: 2

2 2 21 / ( ) 1 / ( )LC L C   , the oscillation frequency 

of the original (isolated) oscillator agrees with that of the 
external resonator  = 2. In these conditions, system (3) 
always exhibits a solution 2, as can be seen in Fig. 2(a), where 
all the frequency curves intersect at C = 9.78 pF,  f = 681 MHz. 
Using 1 / (LC) = 1 / (L2 C2) and  = 2, and solving for the 
amplitude V, one obtains:  
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Fig. 2. Analytical investigation. Solution curves of system (3) traced versus C 
under variations of the coupling factor k. Results obtained with commercial HB 
(whenever convergence is possible) are superimposed. (a) Oscillation 
frequency. (b) Oscillation amplitude. 

 
Because the third term of (4) is negative (since k < 1), there 

will be a reduction in the oscillation amplitude with respect to 
uncoupled conditions (k = 0), which explains the amplitude dip 
when 1 / (LC) = 1 / (L2 C2). In fact, there is a power transfer 
from the oscillator to the external resonator. The amplitude dip 
will be more pronounced for larger k and smaller for larger G2, 
in agreement with the curves of Fig. 2(b). However, from a 
certain k, system (3), having third order in V, can provide 
multivalued solution curves. Using 1 / (LC) = 1 / (L2 C2) in (3), 
one obtains three solutions: one at 2 and two other solutions 

above and below this frequency, as shown in Fig. 2(a). The 
multivalued sections are bounded by turning points or infinite-
slope points, at which the Jacobian matrix associated with 
system (3) becomes singular. Thus, the turning-point condition 
is the following: 
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which should be fulfilled in combination with Hr = 0 and Hi = 0 
in (3). Note that under some conditions, the multivalued curve 
can split into distinct (isolated) solution curves. A simple way 
to see this is to consider the case G2 = 0, L2 = L and C2 = C. 
Solving for , one obtains two distinct oscillation frequencies: 

1 21 ( ) ;   1 ( )C L M C L M                        (6) 

The two oscillation frequencies converge to a single one when 
M = 0. On the other hand, 2 tends to infinite when L = M, 
which is impossible in practice, since k < 1. 

III. ANALYSIS METHOD 

The analysis method is based on independent modeling of 
the coupled sub-circuit and the oscillator core, obtained at the 
terminals T1-T2, between which the inductor coupled to the 
external resonator is connected [Fig. 3(a)]. The method will be 
valid provided the waveform between T1 and T2 has a limited 
harmonic content, since it neglects the coupling effects at 
higher harmonic terms. To obtain the model of the oscillator 
core, an outer-tier admittance function ( , )Y V   is extracted by 

connecting an auxiliary generator (AG) [6] between T1 and T2, 
as shown in Fig. 3(b). The high value parallel resistor R∞ is used 
to prevent any convergence problems. A double sweep is 
carried out in V and , performing a harmonic-balance (HB) 
simulation at each sweep step, with an many harmonic 
components as desired. As stated, the analysis error will come 
from the fact that coupling effects will only be considered at the 
fundamental frequency. Since the resonator action is dominant 
at this frequency, a small error can be expected. The model of 
the coupled subcircuit is calculated by obtaining its admittance 
function through a simple linear simulation, as shown in Fig. 
3(c). The method is general and can be applied to any kind of 
coupled subcircuit, composed of one or more coupled 
resonators, which can be lumped or distributed. It is fully 
compatible with the use of electromagnetic simulators.  

The method is illustrated with the simple case shown in Fig. 
3(c), though, as stated, it can be generalized to lumped and 
coupled networks of arbitrary complexity. It corresponds to a 
lumped resonator G2 , C2, L2, where L2 is coupled to the 
inductance L of an arbitrary oscillator, modeled with Y(V,). 
Note that the oscillator inductor L is excluded from Y(V,). The 
circuit equations are:  
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And proceeding in a manner similar to (1)-(2), one obtains: 

( , , ) ( , ) ( , ) ( , ) 0T c cY V k Y V G k jB k        (8) 

where ( , ) ( , ) ( , )c c cY k G k jB k     is the admittance term 

that replaces the original oscillator admittance –j / (L). The 
complex equation describing the oscillator coupled to the 
external resonator is: 
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  The solution points are obtained applying the contour 
intersection technique in [4]. This is based on the calculation of 
the intersection points of the two contours Re(YT) = 0 and 
Im(YT) = 0, and simultaneously provides all the coexisting 
periodic solutions. When considering an analysis parameter  
(belonging to the oscillator circuit), for a particular k value, a 
triple sweep must be performed in , V and ,. This way one 
obtains a collection of functions Y(V,), from which, in turn, 
one obtains YT (V,). The solution curve versus  is provided 
by the set of intersection points: 

 ( ) ,  Re[ ( , , )] 0 Im[ ( , , )] 0T TS V Y V Y V         . This 

procedure is very convenient for the calculation of relatively 
complex solution curves, in combination with commercial HB 
simulations, since it avoids multiple manual parameter switches 
and their associated convergence problems [7]. Actually, to 
obtain a hysteresis cycle, three manual parameter changes must 
be performed. In addition, in the case of inductive coupling, HB 
has been found to exhibit convergence difficulties near the 
hysteresis regions.   

 
Fig. 3. Sketch of the analysis method, using the reference terminals T1-T2. The 
oscillator core is modeled in terms of the admittance function Y(V,). The 
coupled subcircuit is modeled with Yc(). (a) Full circuit in the particular case 
of a lumped-element external resonator. (b) Extraction of Y(V,) using an AG. 
(b) Extraction Yc() through a linear analysis. 

IV. COUPLING-INDUCED HYSTERESIS IN COLPITTS OSCILLATOR 

The analysis method has been applied to the Colpitts 
oscillator in Fig. 4. The schematic includes a transmission line 
that is coupled to an external resonator. In the absence of these 
coupling effects (and including the transmission line), the 
oscillation frequency is fo = 600 MHz. The function Y(V,), 
defined between the terminals T1 and T2, shown in Fig. 4(a), is 
calculated replacing the coupled transmission line with a high 
resistor R∞. Fig. 5(a) presents the oscillation frequency 
variation versus the tuning voltage of the varactor diode D1 

when the transmission line is coupled to a distributed resonator 
having the resonant frequency fr1 = 600 MHz. For the distance 
s = 2 mm, one obtains a small hysteresis loop about the varactor 
bias voltage at which the oscillation frequency agrees with fr1. 
For the smaller distance s = 1 mm (stronger coupling), the 
hysteresis (about the same bias voltage) is more pronounced. In 
a second experiment, the oscillator transmission line is coupled 
to two external resonators, having the resonant frequencies fr1 = 
540 MHz and fr2 = 640 MHz. As shown in Fig. 6, the coupling 
gives rise to two hysteresis cycles at the frequencies of the two 
resonators. Note that in this proof-of-concept, the distributed 
resonators are on the same substrate, but there is no conceptual 
difficulty in getting the same effect through air coupling, 
provided suitable antennas are used. At present, we are working 
in this direction. 

 
(a) 

 
(b) 

Fig. 4. Colpitts oscillator at fo = 600 MHz, including a transmission line, 
coupled to one or two external distributed resonators. (a) Schematic, showing 
the plane T1–T2 used in Fig, 3. (b) Photograph. 

 
The circuit of Fig. 4 was implemented as a prototype using 

ground-plane construction, using an MFR911 BJT. The 
resonator shown in the schematic was implemented with a strip 
of double-sided circuit board using a low-loss microwave 
substrate laminated onto the ground plane. See Fig. 4(b) for a 
photograph. Other components were realized with small 
surface-mount parts. This is an effective prototyping technique 
for frequencies up to L-band. Fig. 6 shows a hysteresis curve 
obtained by sweeping the tuning voltage across the varactor 
with another passive micro-strip resonator edge-coupled to the 
main micro-strip resonator of the oscillator. A plastic clamp 
was fabricated to hold the passive resonator at a fixed distance 
from the active resonator. As shown in [7], a varactor diode at 
large signal levels can exhibit self-modulation, which alters the 
effective capacitance, leading to a hysteresis effect. In order to 
demonstrate that such self-modulation was not the reason for 
the hysteresis of Fig. 6 we substituted a mechanical variable 
capacitor for the varactor and swept it over the same 
capacitance range. A qualitatively identical hysteresis curve 
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was obtained demonstrating that the hysteresis is not 
attributable to self-modulation of the varactor diode. 
Alternatively, a different hysteresis curve was obtained by 
positioning a passive resonator implemented with lumped 
elements 4 mm above the varactor end of the active micro-strip 
resonator. Finally, Fig. 6 shows a hysteresis curve obtained by 
coupling two passive resonators to the active resonator of the 
Colpitts oscillator.  

 
Fig. 5. Oscillator frequency curve versus the capacitor C1, when coupled to the 
external distributed resonator. (a) For a coupling distance s = 2 mm. Hysteresis. 
(b) For a coupling distance s = 1 mm. Three distinct oscillation curves. 

 
Although a detailed description is beyond the scope of this 

initial work, we have preliminary experimental results on a 
different encoding mechanism for chipless RFID tags [4], based 
on a single hysteresis loop, as in the case of Fig. 5(a). For tuning 
voltage in the middle (multvalued) section, there are three 
possible steady-states: S1, S2 and U. The states S1 and S2 are 
stable, whereas U is unstable. Extending the techniques of [8] 
to the autonomous case, it is possible to stabilize the oscillator 
in state U. When the stabilization mechanism is turned off, the 
oscillator will jump (randomly) to one of the stable states S1 or 
S2. Suppose, however, that an additional passive tag resonator - 
tuned to the frequency of either S1 or S2 - is air-coupled to the 
oscillator, then the stabilization mechanism is turned off. In our 
experiments, we can make the oscillator then jump reliably to 
the corresponding stable steady state, even with relatively weak 
coupling of the tag resonator. Possibly, such a mechanism could 
be used to encode a binary bit. If the frequencies corresponding 
to S1 and S2 are well separated, we expect the reading process 
to be robust. Further experiments are in progress. 

 
Fig. 6. Oscillator frequency curve versus the capacitor C1, when coupled to two 
external distributed resonators. 

CONCLUSIONS 

An in-depth analysis of the effects of the inductive coupling 
of an oscillator to one or more external resonators has been 
presented. The study includes an analytical formulation for the 
understanding of these effects, which evolve from a dip in the 
amplitude curve traced versus a tuning parameter to a hysteresis 
phenomenon, when increasing the coupling strength. The 
coupling to several external resonators at distinct oscillation 
frequencies gives rise to a dip or hysteresis about the 
corresponding resonance frequencies. A novel analysis 
methodology has been proposed to avoid the difficulties 
associated with the simulation of solution curves containing 
several hysteresis cycles, which involve multiple manual 
parameter switches in commercial HB. This is based on an 
independent frequency-domain simulation of the oscillator core 
and the coupled passive network. The analysis and synthesis 
methods have been applied to a Colpitts oscillator coupled to 
one and two external resonators, obtaining very good 
qualitative agreement between simulation and measurements. 
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