
  

Abstract—A methodology for the analysis and synthesis of 
multiple hysteresis loops in the frequency characteristic of a 
voltage-controlled oscillator (VCO) is presented. This is achieved 
through the coupling of an oscillator inductance to multiple 
external (passive) resonators, with resonant frequencies in the 
tuning range of the VCO. A possible application to the 
implementation of a compact chipless Radio Frequency 
Identification (RFID) system is explored, using the oscillator as a 
reader and placing the external resonators in the tag. The system 
takes advantage of the high sensitivity to the tag resonances in 
the presence of hysteresis, which leads to vertical jumps in 
frequency versus the tuning voltage. A desired bit pattern would 
be encoded in the tag by enabling or disabling passive resonances 
at a sequence of frequencies. In the practical realization, the 
inductors in the oscillator and the external board are 
implemented through spiral inductors so that the resonators in 
the VCO and the tag have strong broadside coupling. The 
coupling effect is modeled through electromagnetic simulations, 
from which a linear admittance, representing the coupled 
subnetwork, is extracted. The multi-hysteresis oscillator 
characteristic can also be obtained experimentally through a new 
methodology able to stabilize the physically unstable sections 
without altering their steady-state values. Different demodulation 
methods for reading the tag are discussed. 
 

Index Terms— Arc-length continuation, hysteresis, oscillator, 
measurement techniques, simplicial decomposition. 

I. INTRODUCTION 

Hysteresis [1]-[4] is often observed in nonlinear circuits 
(both autonomous and driven) such as voltage-controlled 
oscillators, injection-locked oscillators and power amplifiers. 
It is due to the coexistence of stable solutions in a certain 
parameter interval. In a typical hysteresis (between two stable 
solutions of the same kind), the solution curve exhibits three 
coexisting sections and two turning points [1]-[4], as shown in 
the sketch of Fig. 1(a), where a representative variable X (e.g. 
a voltage amplitude or the oscillation frequency, in an 
autonomous circuit) is represented versus the parameter . 
Sections 1 and 3 are stable, whereas section 2 (in a dashed 
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line) is unstable and, thus, cannot be physically observed. 
When increasing (decreasing) the parameter from a low (high) 
value the circuit initially operates in section 1 (section 3) and 
jumps to section 3 (section 1) at the turning point T1 (T2). In 
most cases, the hysteresis is due to an expansion of the circuit 
negative resistance in a certain interval of the excitation 
amplitude [5], which enables the fulfilment of the steady-state 
conditions for three distinct amplitude values. In most 
previous works, hysteresis was undesired, so several 
simulation tools [1]-[3] were proposed for its accurate 
prediction at the design stage.  

In harmonic balance (HB) [1]-[3],[6],[7] the circuit 
variables are represented as a Fourier series, whose 
coefficients constitute the unknowns of a nonlinear algebraic 
system, solved numerically. Unlike standard time-domain 
integration [8], the HB method is insensitive to the physical 
stability properties of the solution, so with the aid of 
complementary techniques [1]-[3], it is able to provide the 
complete solution curve in Fig. 1(a), including the unstable 
section 2. In the absence of these techniques, when just 
sweeping the parameter, one obtains either discontinuous 
jumps or a loss of convergence in the neighborhood of the 
turning points, where the Jacobian matrix of the HB system 
becomes singular [1]-[3]. To circumvent this problem, the 
works [3], [9]-[11] make use of a continuation method, based 
on the introduction of an auxiliary generator (AG) into the 
circuit, which enables a simple implementation of a 
parameter-switching continuation technique [2]. In [12] a 
mathematical condition, fulfilled at the turning points, is 
derived, which enables a direct calculation of these points. The 
works [13]-[14] take a different approach using a contour-
intersection method, applied to an outer-tier admittance 
function extracted from HB. On the other hand, the work [15] 
addresses the experimental characterization of the full 
hysteresis loop in driven circuits. This requires the 
stabilization of section 2 [in the sketch of Fig. 1(a)] without 
altering its steady-state values.   
The recent work [16] describes a hysteresis phenomenon 
obtained through the coupling of a free-running oscillator to 
an external resonator. This behavior had been observed in the 
so called “dip oscillator” [17]-[18], which exhibits an 
amplitude change when weakly coupled to a passive resonant 
circuit, tuned to its free-running frequency. When increasing 
the coupling, hysteresis is obtained versus the tuning 
parameter, which, as shown in this work, is due to a multi-
resonance behavior about the original free-running frequency. 
As also shown here, this kind of hysteresis is easy to control 
and several distinct hysteresis loops can be synthesized in the 
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oscillator frequency characteristic. This can be relevant to 
chipless radiofrequency identification (RFID) [19]-[23] 
because the vertical jumps [Fig. 1(a)] give rise to a distinct 
oscillator response to the external resonators. As another 
example, in a sensor/actuator, the core oscillator would 
contain the sensing capacitance and the hysteresis cycles, 
induced by the coupling to the external resonators, would give 
rise to an upward or downward frequency jump when this 
capacitance exceeds or goes below certain levels. The 
upward/downward jump in a given cycle would provide a 
control signal to turn on or off a particular switch. 

This work extends [16] with an in-depth analysis of the 
oscillator behavior under the effect of several coupled 
resonators. Multiple hysteresis loops are synthesized in a 
controlled fashion, for the first time to our knowledge, and the 
possible application to chipless RFID systems is studied. This 
implementation will be based on the principle described in 
[22], where the impedance of the tag influences the frequency 
of a sweep-tuned oscillator, acting as a reader. Then, the tag 
bit pattern is detected from the subsequent change to the DC 
bias current. Unlike the present approach, no hysteresis is 
involved. In [23] a detailed analysis and simulation of the 
system in [22] is presented, considering chipless tags with 
orthogonally-polarized antennas [21]. A practical limitation 
may be the small impact of the tag resonances on the oscillator 
frequency. Here the possibility to increase the reading 
sensitivity by inducing hysteresis, and hence physical jumps, 
in the oscillator characteristic is explored. The aim will be to 
use hysteresis loops to encode the bit pattern of the tag. As 
will be shown, this procedure enables a much more distinct 
signal for the individual bits encoded by the passive tag than 
the one resulting from ordinary resonances. 
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Fig. 1. Sketch of the hysteresis phenomenon. (a) Typical hysteresis loop 
between two solutions of the same kind. (b) Bit pattern “1111” implemented 
through hysteresis loops. (c) Bit pattern “1010”. 

 
The hysteresis loops are synthesized according to the 

desired bit pattern of the tag, which is encoded by enabling or 
disabling the resonators that give rise to the distinct hysteresis 
loops. For instance, Fig. 1(b) and Fig. 1(c) shows the expected 
responses for “1111” and “1010”, where  is the oscillation 
frequency. Each hysteresis loop occurs in a distinct parameter 

interval, as shown in the sketch of Fig. 1. Otherwise, in the 
same parameter interval there could be more than two stable 
solutions. In the RFID application considered in the paper, this 
would give rise to uncertainty in the tag reading. Different 
methods of detecting the encoded bit pattern ("reading" the 
tag) with different sensitivities and circuit complexities are 
discussed. 

The paper is organized as follows. Section II presents an 
analytical investigation of the multi-hysteresis mechanism. 
Section III describes the analysis of the oscillator coupled to 
the resonators in the external board. Section IV presents the 
experimental characterization of the hysteresis cycles. Section 
V discusses the implementation of the tag reader. 
  

II.  MULTI-HYSTERESIS MECHANISM 

A. Oscillator Equation 

Let us consider an oscillator loaded with a resonant circuit 
composed by of an inductor L and a capacitor Cosc, as shown 
in Fig. 2. Now, the oscillator will be placed near a number N 
of external resonators, each one composed of an inductor, 
capacitor and resistance Ln, Cn and Rn, where n = 1 to N. It is 
assumed that the inductors Ln can be coupled to the oscillator 
inductor L. A periodic solution is assumed and the system will 
be analyzed at the fundamental frequency. The oscillator 
circuit, excluding the coupled inductor L, will be described in 
terms of the admittance function Y(V,), as shown in Fig. 2, 
where V and  are, respectively, the excitation amplitude and 
frequency. Then, the oscillator is governed by the following 
equations: 

( , ) ( , ) 0TY V V Y V V I             (1) 

1 1 2 2+ +  N NV jL I jM I jM I jM I        (2) 

where YT is the total admittance, calculated between the 
terminals of the inductor (L) in the oscillator circuit, as 
indicted in Fig. 2, I is the current circulating through L, In is 
the current through the inductor (Ln) of each of the external 
resonators and Mn (n = 1 to N) are the coupled inductances, 

related with the coupling factors kn as n n nM k L L . The 

currents In through the external resonators are calculated from:  
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Note that the coupling among the external resonators 
themselves has been neglected, which, as demonstrated in 
Section III, constitutes a reasonable approximation. Each of 
the equations in (3) can be solved for the particular current, I1 
to IN, in terms of I. This provides: 
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The above expression relates the current through each 
resonator (Ln, Cn and Rn) to the induced voltage jMnI. 
Replacing (4) for I1 to IN in the expression for V in (2) and 
this, in turn, in the main oscillator equation (1), one obtains: 

( , ) ( , ) ( ) 0T coupY V Y V Y          (5) 

where ( )coupY   is the input admittance seen from the terminals 

of the oscillator inductor L (Fig. 2), in the presence of the 
whole set of coupled resonators: 
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Fig. 2. Sketch of the generic oscillator with an inductance L coupled to 
multiple external resonators. The exemplary case of a Van der Pol oscillator is 
considered, with the parameters a = -0.03 A/V, b = 0.01 A/V2, R = 200 , 
Cosc = 86 pF. The auxiliary generator used for simulation purposes is also 
represented. 

 
For a compact expression of Ycoup it is possible to define the 

following impedance terms ( )nZ  , where n = 1 to N: 
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Then, (5) can be rewritten as: 
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Assuming small values of the coupled inductances M1 to Mn, 
one can perform a Taylor-series expansion of the second term 
in (8) about 1/(jL). This provides the following approximate 
expressions: 
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which can be used to obtain an approximate version of 
equation (8): 
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At this point, it is interesting to note that 2( ) / ( )nZ L   can be 

expressed as: 
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Then, (10) can be rewritten as: 
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Thus, under weak coupling, the oscillator behaves as if it 
were loaded with N series subnetworks, connected in parallel 
between the coupling node and ground. As also gathered from 
(11), there is a scaling effect, due to the constant coefficients 

2 2/nM L .  

If the resonance frequencies n are too closely spaced, 
neighboring resonators may significantly affect one another. 
In this situation, the Taylor series expansion in (9) may not be 
accurate enough, due to the large magnitude excursions of the 
total coupled impedance 1( ) ... ( )NZ Z   . In order to avoid 

this problem, the frequency spacing must be larger than the 
bandwidth of the resonators in (12), depending on their 
individual Q factors /n n nL R . In these conditions, the 

coupled oscillator can be analyzed by splitting (12) into real 
and imaginary parts: 
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where the superscripts “r” and “i” respectively indicate real 
and imaginary part. As gathered from (13) the coupling to the 
external resonators affects both the real and imaginary parts of 
the total admittance function YT. 

B. Multi-Resonance Effects 

To illustrate the multi-resonance effects, a computational 
test has been performed, considering the coupling of an 
inductor L to six external resonators. The inductance values 
are L = Ln = 450 nH. The capacitors C1 to CN are calculated to 
obtain equally spaced resonances going from 30 MHz to 
40 MHz. The coupling factor is the same for all the resonators, 
k = kn  n, and given by: k = 0.025. Initially, the resonator 
resistance is R = Rn = 1 . In Fig. 3(a), the red solid curve 

corresponds to ( )i
coupY   and the blue dashed curve 

corresponds to 1/ L . As gathered from the inspection of 
(13b), for   < 1, the first resonance at 1 tends to shift the 
curve ( )i

coupY   upwards (with respect to 1/ L ), due to the 

positive value of 2
1 11 L C . On the other hand, for   > N, 

the last resonance at N pushes the curve downwards, due to 
the negative value of 21 N NL C  . For the middle resonances, 

2 to 1N  , the two effects are approximately balanced.  
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Fig. 3. Variation of ( )i

acopY  in (13b) for L = Ln = 450 nH under two different 
quality factors. (a) Parasitic resistance R = 1 . The minima and maxima of 
the higher-frequency resonances are overlapped. (b) Parasitic resistance 
R = 2 . Distinct resonances and no overlapping of maxima and minima. 

 
As shown in the next subsection, to avoid the overlapping 

of the hysteresis cycles, the maximum of ( )i
coupY   about each 

resonance n must be smaller than the minimum of ( )i
coupY   

about the next resonance n+1. This non-overlap condition is 
violated in Fig. 3(a), since the maximum of the fifth resonance 
is higher than the minimum of the sixth one. When 

considering the full oscillator circuit [instead of ( )i
coupY   only] 

this will give rise to more than three steady-state solutions 
coexisting for the same parameter values (overlapping of the 
hysteresis cycles). The overlapping in Fig. 3(a) is due to the 
high Q resulting under R = Rn = 1 . On the other hand, for 
excessively low Q, each resonator Ln, Cn and Rn will not give 
rise to a sufficient difference between the maximum and 
minimum induced by this resonator on the susceptance 

( )i
coupY  . As a compromise, Fig. 3(b) presents the results 

obtained for R = 2  (hence lower Q), with clearly 
distinguished extremes (maximum and minimum) about each 
resonance frequency n  of the external resonators. Note that 

there is no overlapping of the full set of maxima and minima. 
  

C. Multiple Hysteresis Cycles 

To get insight into the impact of the coupling effects on the 
oscillator characteristic, only one resonator will be initially 
considered in (13), with the associated impedance term 

( )nZ  . The real and imaginary parts of the total oscillator 

admittance (YT) are given by: 
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As stated, the coupling effects introduce a scaled version of 
the admittance of the series network Rn, Ln, Cn (in parallel 
between the analysis node and ground). For better clarity, the 
simple Van der Pol oscillator in Fig. 2 will be initially 
considered. The oscillator admittance ( , )Y V   (excluding L) 

is 2( , ) 3 / 4 oscY V a bV jC    . Suitable values for the 

parameters a and b are given in the caption of Fig. 2. In these 
conditions, system (14) simplifies to: 
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Now, the oscillator will be tuned by varying Cosc. It is 
assumed that for the particular capacitor value Cosc,n, and in 
the absence of coupling effects (Mn = 0), the oscillation 

frequency is 1/n n nL C  . In the presence of coupling 

effects (Mn ≠ 0), the imaginary part ( )i
TY   will be zero at 

1 /n n nL C  . Hoverer, ( )i
TY   can also be zero at two 



additional frequencies, below and above n , as easily 

gathered from (15). Replacing the three frequencies in 
( , )r

TY V   one obtains three different amplitude values, one for 

each frequency, which explains the hysteresis induced by 
linear coupling effects. Note that, in the general case (14), the 
amplitude dependence of the imaginary part ( , )i

TY V  , will 

give rise to a small deviation from the original free running 
frequency n.   

Now, the Van der Pol oscillator will be analyzed in the 
presence of N coupled resonators. This is done by replacing 

2( , ) 3 / 4 oscY V a bV jC     into (13). Evaluating ( )i
TY   

for distinct values of Cosc (acting as the tuning parameter) one 
obtains the curves in Fig. 4(a). The Cosc values considered are 
36.5 pF, 48.5 pF and 61 pF. Increasing Cosc one basically 
shifts upwards the imaginary part ( )i

TY  . For some intervals 

of Cosc, there will be three crossings through zero of ( )i
TY  , 

as a result of the particular shape of ( )i
coupY  . In Fig. 4(b) an 

expanded view of the curve corresponding to Cosc = 61 pF 
about f1 = 30 MHz is presented. This demonstrates three roots 
of i

TY  about this frequency. Fig. 4(c) presents an expanded 

view of the curve corresponding to Cosc = 36.5 pF about 
f6 = 40 MHz.  
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Fig. 4. Imaginary part of the total oscillator admittance in the presence of six 
external resonators for k = 0.04. (a) Variation of i

TY  for three distinct values 
of Cosc, given by 36.5 pF, 48.5 pF and 61 pF. (a) Cosc = 61 pF. Expanded view. 
There are three solutions of 0i

TY  about 30 MHz. (b) Cosc = 59 pF. Expanded 
view. There are three solutions of 0i

TY   about 40 MHz. 

 

In the presence of the six external resonators, and under 
variations of Cosc, one obtains six hysteresis cycles. This can 

be seen in Fig. 5. For good accuracy the curve has been 
obtained in commercial harmonic balance (Keysight Advanced 
Design System) [1]-[3],[6],[7] with a number (NH) of 
harmonic terms NH = 7, introducing an auxiliary generator 
(AG) into the circuit [3], [9]-[11], as shown in Fig. 2. The AG 
is an independent voltage source in series with an ideal 
bandpass filter, operating at the oscillation frequency AG =  
and amplitude VAG (both must be determined in the analysis 
procedure). The AG is connected in parallel at a sensitive 
circuit node (Fig. 2), such as a device terminal, and must 
fulfill a non-perturbation condition [2]-[3], given by the zero 
value of the ratio between the AG current and voltage 
YAG = IAG/VAG = 0. In commercial harmonic balance [3], [9], 
the condition YAG = 0 is achieved through optimization of the 
AG frequency and amplitude, through it is also possible to 
optimize other quantities.  

The AG allows passing through turning points, which 
cannot be done through a simple parameter sweep, as 
indicated in the introduction. This is achieved by switching the 
analysis parameter to an AG variable (either frequency or 
amplitude) in the multivalued interval. In the case of Fig. 5, 
the AG frequency has been swept (which agrees with the 
oscillation frequency), solving YAG = 0 in terms of the 
oscillation amplitude, VAG, and the physical parameter Cosc. 
With this parameter switch, the infinite-slope points become 
zero-slope points, without any simulation difficulty. 

To emphasize the dependence of the hysteresis cycles on 
the resonance effects induced by the coupling, the value of the 
capacitor Cosc has been represented versus the AG frequency. 
This can be compared with the imaginary part of the total 
admittance, ( )i

TY  , represented on the right axis. In the 

calculation of the oscillator curve, three different values of the 
coupling factor have been considered: k = 0.02, 0.04, 0.06. As 
gathered from the figure, the six multi-valued regions are 
located about the resonance frequencies of the six external 
resonators. The excursions due to the resonance minima and 
maxima increase with the coupling factor and will give rise to 
overlapping for too high k. Fig. 5(b) shows the oscillation 
amplitude versus the tuning capacitor Cosc for the same three k 
values. 

To summarize, hysteresis arises because of the particular 
form of variation of the susceptance about the original 
oscillation frequency n under weak coupling conditions (see 
Fig. 4). If the active device can supply negative conductance 
at the three resonance frequencies, the steady-state oscillation 
conditions, Re(YT) = 0 and Im(YT) = 0, will be fulfilled at three 
distinct solution points. This will generally be the case, since 
the device will exhibit negative conductance in a certain 
frequency band and the two additional resonant frequencies [at 
which Im(YT) = 0] are close to the original one. The condition 
Re(YT) = 0 will be fulfilled for a different amplitude in each 
case, since, due to the coupling, Re(YT) exhibits a frequency 
dependence.  

Regarding the stability properties, as shown in [3], the 
oscillator exhibits a dominant real pole proportional to 

det[ ]TJY  (with a positive scale factor), where det[ ]TJY  is: 



 det det

r r
T T

r i i r
T T T T

T i i
T T

Y Y
Y Y Y YVJY
V VY Y

V


 



  
         

     
   

 (16) 

and [JYT] is the Jacobian matrix of the admittance function YT 
with respect to the two state variables V and . Expression 
(16) formally agrees with the one derived in [24] under a 
fundamental-frequency analysis. Thus, the solution will 
exhibit a negative dominant real pole for det[ ] 0TJY  , 
corresponding to the stability condition derived in [24]. In 
general, the second term of det[ ]TJY  in (16) is much lower 
than the first term. In most cases, the standalone oscillator will 
fulfill: / 0,  / 0r i

T TY V Y       . First condition implies a 
reduction of negative conductance with the excitation 
amplitude, as occurs in all physical devices from a certain 
amplitude value, and second condition implies an increase of 
the susceptance with frequency as in a Foster network. Under 
weak coupling to an external resonator, one will have three 
steady-state solutions, as explained above. Due to the form of 
variation of the susceptance (Fig. 4), one will have 

/ 0i
TY     at the original oscillation. Because the coupled 

resonator is linear and the coupling is weak, this coupling will 
have only a small effect on the total conductance. Thus, the 
coupling will destabilize the original oscillation and will give 
rise to two stable oscillations at a higher and lower frequency, 
having / 0i

TY    . 
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Fig. 5. Oscillator solution curve. (a) The value of the tuning capacitor Cosc has 
been represented versus the AG frequency, agreeing with the oscillation 
frequency. The imaginary part of the total admittance, ( )i

TY  , has been 
represented on the right axis. In the calculation of the oscillator curve, three 
different values of the coupling factor have been considered: k = 0.02, 0.04, 
0.06. (b) Oscillation amplitude versus the tuning capacitor, Cosc, for the three k 
values.  

The edges of the multi-valued regions of the oscillator 
solution curve are determined by a turning-point condition [3], 

[12] at which the Jacobian matrix of the oscillator equations 
becomes singular. In terms of the total admittance function, 
this singularity condition is given by: 

 

( , ) 0

det 0

T

r i i r
T T T T

T

Y V

Y Y Y Y
JY

V V



 



   
  

   

        (17) 

As gathered from the previous study, the sign of the derivative 
/i

TY    will undergo two changes about each resonant 

frequency n. It will change from positive to negative and then 
to positive again (Fig. 4). As stated, in ordinary oscillators, the 
second term in the determinant of (17) is smaller than the first 
term, so the change of sign of  /i

TY    will induce 

determinant zeroes. In the fundamental-frequency analysis of 
the Van der Pol oscillator, the imaginary part of the oscillator 
admittance does not depend on the excitation amplitude. Then, 
condition (17)  simplifies to 0TY   and / 0i

TY    . Thus, 

the boundaries of the hysteresis regions are obtained when the 
minima and maxima of i

TY  are tangent to the zero axis, in 

agreement with the inspection of Fig. 4.  

III. SYNTHESIS OF THE OSCILLATOR MAGNETICALLY 

COUPLED TO THE RESONATORS IN AN EXTERNAL BOARD 

In the proof-of-concept implementation, the Colpitts 
oscillator in Fig. 6, implemented with a bipolar transistor, has 
been considered. Varactor diodes are used for tuning. The 
choice of a Colpitts circuit using a bipolar device is 
convenient for the VHF frequency range (40–50 MHz) of the 
current experimental setup, but other oscillator topologies 
could be used as well. The goal will be to obtain four 
hysteresis cycles in the oscillator tuning range between 
40 MHz and 50 MHz. Note, that as reported in [16], the same 
hysteresis effect has been observed experimentally at a center 
frequency in excess of 600 MHz. The circuit of Fig. 6 could 
be extended to sweep over a larger frequency range (e.g., to 
allow more bits in the tag) with a band-switching arrangement. 

As shown in the following, the coupled subnetwork 
(composed by the oscillator inductor L and the external 
resonators) can be implemented separately from the oscillator 
core. This independent design is possible because of the 
relatively small coupling effects required for a multi-hysteresis 
curve with no overlapped hysteresis cycles. 

A. Implementation of the Resonators 

The coupled resonators will be synthesized using planar 
spiral inductors and lumped capacitors. The planar nature of 
the inductors is well suited for an RFID tag implementation. 
Their moderate quality factor will help prevent an undesired 
overlapping of the maxima and minima of ( )i

coupY   [as in the 

case of Fig. 3(a)]. Here it will be assumed that the inductors in 
all the external resonators are equal, i.e., 
L1 = L2 = … = LN = Lt.  
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Fig. 6. Colpitts oscillator with varactor tuning. (a) Schematic. (b) Separation 
into a coupled network and an oscillator core. The admittance ( )coupY   is 
obtained with the electromagnetic simulations of Subsection III.B. The 
function ( , , )tuneY V V  is calculated with an auxiliary generator. 

 
The spiral geometries required to implement the oscillator 

inductor L and the inductors Lt in the external board have been 
initially estimated from the inductance expression based on 
current sheet approximation [25]-[26]. This depends on the 
spiral number of turns, average diameter, fill ratio and some 
constant coefficients, determined by the spiral shape (square, 
hexagonal, circle…). As stated, four resonances will be 
synthesized in the range 40 MHz to 50 MHz.  

The external inductor value is set to Lt = 474 nH. Fig. 7(a) 
shows the symmetrical layout of a board with four squared-
shaped spiral inductors. These board inductors have nT =7 
turns and external and internal diameters dout = 17.5 mm and 
din = 1 mm, respectively.  

The oscillator inductance is L= 469 nH. Although this value 
is similar to the previous one, it has to be implemented in a 
different manner to enable near-identical coupling effects in 
all the inductors of the external board. This is done by 
reducing the number of turns to nT = 2 and increasing the 
external and internal diameters to dout = 59.25 mm and din = 52 
mm. The whole coupled structure is shown in Fig. 7(b), where 
the oscillator spiral inductor, with a square shape too, placed 
over the board inductors, can be noted. 

As gathered from the inspection of Fig. 7, the central 
orthogonal axis of the spirals Lt in the external board exhibits 
a lateral displacement x = 14.7 mm  with respect to that of the 
spiral L. This will give rise to a reduction in the coupling 
effects that can be compensated, if needed, by approaching the 

inductor L to the external board. The coupling coefficient k of 
each inductor can be easily estimated following the 
expressions in [27]. For x =14.7 mm and a vertical distance of 
1.5 cm, the estimated coupling coefficient k is 0.02, in the 
order of those considered in the resonance analysis of Section 
II. 

B. Electromagnetic Simulation of the Coupling Effects  

For an accurate calculation of the coupling admittance, an 
electromagnetic simulation [28] of the coupling of the four 
spirals in the board and the big-sized spiral is carried out. 
Initially, a 5×5 scattering matrix describing the whole passive 
configuration is obtained, defining Port 1 between the 
terminals of the oscillator spiral and Port 2 to Port 5 at the 
locations where the capacitors should be connected (at a later 
stage) to the board spirals. For a distance d = 22.5 mm 
between the spiral L and the board, the magnitudes of the 
scattering parameters Sj1, where j = 2 to 5, are shown in Fig. 8, 
where they have been represented versus frequency. As can be 
seen, the power transfer is quite similar for all the spirals.  
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Fig. 7. Inductors symmetrically arranged in an external board and coupled to 
the inductor L, corresponding to the oscillator circuit (larger spiral). The board 
inductors have nT =7 turns and external and internal diameters 
dout = 17.5 mm and din = 1 mm. The oscillator inductor has nT = 2 turns and 
external and internal diameters dout = 59.25 mm and din = 52 mm. 
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Fig. 8. Electromagnetic analysis. Scattering parameters when defining five-
ports at the locations where the capacitors should be connected. The resulting 
magnitudes of the parameters Sj1, where j = 2 to 5 have been represented 
versus frequency.  

The spirals are loaded with the capacitors needed to obtain 
resonances at f1 = 41 MHz, f2 = 44 MHz, f3 = 46 MHz, 
f4 = 49 MHz, connected in parallel at the ports 2 to 5. Then, 
one calculates the input admittance Ycoup() seen from Port 1. 
The imaginary part of Ycoup() varies versus frequency as 
shown in Fig. 9. Results are compared with those obtained 
with the theoretical values of L and Lt, and the estimated 
coupling factor k (in dashed line). There are four clear 
resonances, superimposed on an inductive characteristic, in 
full agreement with the theoretical investigation of Section II.  
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Fig. 9. Imaginary part of the input admittance Ycoup() seen when defining a 
single port between the terminals corresponding to Port 5 in Fig. 7(a). The 
results of the electromagnetic simulation are compared with those obtained 
with the theoretical values of L and Lt, and the estimated coupling factor k (in 
dashed line). 
 

C. Oscillator Solution 

The coupled oscillator circuit will be analyzed with an 
original method, which should facilitate as many 
electromagnetic tests as needed, without having to repeat 
demanding harmonic-balance simulations. This is because the 
total admittance function is calculated as: 

( , , ) ( , , ) ( )T tune tune coupY V V Y V V Y           (18) 

where, as shown in Fig. 6, ( )coupY   is the admittance 

obtained from electromagnetic simulations and ( , , )tuneY V V  

is the admittance function of the oscillator core (excluding the 
coupled inductor L), which is calculated only once, through 

harmonic-balance simulations. The function ( , , )tuneY V V  is 

obtained connecting an auxiliary generator [13],[14] in 
parallel at the node RN, as shown in Fig. 6. The high value 
parallel resistor R∞ is used to prevent any convergence 
problems. A triple sweep is carried out in Vtune,  and V, 
performing a harmonic-balance simulation at each sweep step, 
with as many harmonic components as desired. At each 
steady-state solution, both the real and imaginary parts of YT 
must be equal to zero, which, for each Vtune, provides two real 
equations in two unknowns V and . The solutions of this 
equation system can be obtained through the following 
geometrical procedure. 

For each Vtune, the function YT in (18) is calculated versus 
the excitation amplitude V and frequency . The real and 
imaginary parts of YT provide two surfaces in the spaces V, , 
Re(YT) and V, , Im(YT), respectively [14]. As an example, 
Fig. 10(a) and Fig. 10(b) show the two surfaces obtained in the 
Colpitts oscillator for Vtune = 4.5 V, when considering a 
distance d = 22.5 mm between the oscillator and the board. 
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Fig. 10 Contour intersection method. (a) Surface Re[YT(V,)] obtained for the 
particular Vtune = 4.5 V and intersection with the plane Re(YT) = 0, providing 

the contour r
cY . (b) Surface Im[YT(V,)] and intersection with the plane 

Im(YT) = 0, providing the contours i
cY . (c) Intersection of the contours r

cY  

and i
cY  for Vtune = 4.5 V. (d) Expanded view about the region where the 

contours r
cY  and i

cY  intersect. Three distinct solution points are obtained. 

 
Then, one obtains the intersection of the surface 

Re[YT(V,)] with the plane Re(YT) = 0 and the intersection of 
the surface Im[YT(V,)] with the plane Im(YT) = 0 [13],[14]. 
For each Vtune, these intersections provide two contours, r

cY  

and i
cY , in the plane defined by V and  , as shown in Fig. 

10(a) and Fig. 10(b). The two contours r
cY  and i

cY  can be 

compactly defined as: 

  ( ) ,   Re ( , , ) 0r
c tune T tuneY V contour V Y V V       (19) 



  ( ) ,   Im ( , , ) 0  i
c tune T tuneY V contour V Y V V    (20) 

For each Vtune, the solutions ( )tuneS V  of the complex 

equation YT = 0 are the intersections of the two contours in 
(19) and (20), that is, ( ) ( ) ( )r i

Tune c tune c tuneS V Y V Y V  . The 

intersections obtained for Vtune = 4.5 V are shown in Fig. 10(c) 
and Fig. 10(d). The latter presents an expanded view about the 
region where the two contours intersect. 

Note that the method will be valid provided the oscillator 
waveform at the resonator node (RN) has a limited harmonic 
content, since it neglects the coupling effects at higher 
harmonic terms. This condition is valid for reasonably high-Q 
inductor. The same assumption is made in the experimental 
implementation of Section IV. 
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Fig. 11. Oscillator analysis. (a) Intersections of the contours defined in (20) 
when varying Vtune. (b) Oscillation frequency  versus the tuning voltage Vtune. 
Solution curve resulting from these intersections compared with the one 
obtained through a HB analysis of the whole coupled system. 

 
 The whole solution curve is obtained by representing the 

distinct solution points (in terms of either V or ), obtained 
from the sequence of contour intersection, versus Vtune. Fig. 
11(a) shows the contour intersections when varying Vtune. The 
contour ( )r

c tuneY V  is nearly insensitive to Vtune whereas 

( )i
c tuneY V  exhibits significant variations. For some Vtune values, 

in particular intervals, the contours ( )r
c tuneY V  and ( ) 0i

c tuneY V   

intersect at three points (as in the case of Vtune = 4.5 V), which 
provides three steady-state solutions. In Fig. 11(b), the 
solution points obtained through the contour intersection of 
Fig. 11(a) have been represented in terms of  versus Vtune. In 

Fig. 11(b), the solution curve is compared with the one 
obtained through a HB analysis of the whole coupled system 
(with NH = 7 harmonic terms), with excellent results. The 
contour-intersection method enables a straightforward 
calculation of the oscillator solution curve under variations in 
any parameter affecting the electromagnetic simulation, since 
there is no need to recalculate ( , , )tuneY V V . 

Comparing Fig. 9 and Fig. 11(b), one obtains a good 
agreement between the resonances in Ycoup() and the three 
hysteresis cycles in Fig. 11(b). Actually, the observation of the 
hysteresis cycles is quite independent of the particular 
frequency characteristic of the oscillator circuit, due to the 
small coupling effects. 

IV. EXPERIMENTAL CHARACTERIZATION OF THE HYSTERESIS 

CYCLES 

A. Experimental apparatus 

The experimental results presented here have been obtained 
from an updated version of the technique described in [15].  
Specifically: 

1. The previous work treated only the case in which the 
device under test (DUT) was a driven system; here, we 
have extended the idea to the case of an autonomous 
DUT (i.e., an oscillator). 

2. An entirely new numerical method of path-following in 
n-dimensional space has been implemented using 
simplicial decomposition [29],[30] which does not 
require estimating a matrix of partial derivatives, hence 
is more suited to experimental work. A description of the 
implementation of a simplicial decomposition algorithm 
is provided in an appendix. 

Fig. 12 shows the experimental apparatus and its block 
diagram, with the Colpitts oscillator (inside the dotted lines) 
implemented with a bipolar transistor as the autonomous 
DUT; the tuning voltage Vtune is generated by a digital-to-
analog converter, DAC1. A signal is injected into the emitter 
of the Colpitts oscillator from an external VCO whose 
frequency is controlled by DAC3. The output of the injection 
source is buffered to prevent it being pulled by the DUT. This 
is an important practical point. The (buffered) output of the 
reference VCO is applied to the injection port of the DUT 
through a voltage-controlled attenuator driven by DAC2. 
Moreover, the injection current goes through a floating sense 
resistor (Rsense) connected to a differential active scope probe 
with a 50-Ohm output. A portion of the reference VCO output 
is applied to the reference port of an HP8753E network 
analyzer configured in "external source" mode. Finally, the 
output of the differential scope probe is applied to the A 
channel of the VNA, which functions as a phase-sensitive 
detector with large dynamic range. 
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Fig. 12. Experimental apparatus and system diagram; Three DACs are 
controlled by a computer which also interrogates the VNA over GPIB. The 
injection current (ideally zero) is measured across a series sense resistor with a 
high-impedance differential scope probe. The VNA serving as a sensitive null 
detector tracks the frequency of the reference VCO. 
 

B. Numerical method 

The entire measurement setup implements a mapping f from 
R3 into R2. The input of this mapping is (Vtune, Vref, Vampl), 
which are, respectively, the tuning voltage of the DUT 
oscillator, the tuning voltage of the reference VCO and the 
control voltage for the amplitude modulator (a voltage 
controlled attenuator). The amplitude of the reference 
oscillator is fixed but the control voltage Vampl adjusts the 
amplitude of the injection signal to match the voltage 
waveform of the DUT. The output is Re(Iinj), Im(Iinj), where 
Iinj is the complex current circulating through the resistor 
Rsense. The mapping 3 2:f R R  can be compactly expressed 

as: 

1

2

( , , ) Re( )

( , , ) Im( )

tune ref ampl inj

tune ref ampl inj

f V V V I

f V V V I




        (21) 

According to standard theory [29], the zero-set of this 

mapping – i.e., those triples  , ,tune ref amplV Vx V  that drive the 

real and imaginary parts of the injection current to zero – 
forms a one-dimensional manifold (a curve) in the three-
dimensional space. The curve-tracking process starts with 
initial values for Vtune, the tuning voltage of the reference 

VCO, Vref, and the amplitude setting of the reference VCO 
output Vampl to achieve a nulled current (in both real and 
imaginary parts); call this point 0x . Then, a numerical 

algorithm (to be described) advances along the zero-curve 
taking small steps in arc-length along the curve. In other 
words, arc-length is the quantity that advances monotonically 
during the tracing process. Particularly in the case of a fold-
back or hysteresis response, any component of 

 , ,tune vco amV V Vx   can go up or down during the trace, but 

arc-length increases along the zero curve by construction. 
As described in the previous work [15], an application of an 

injection signal with nulled current does not change the state 
of the DUT, but can change its stability properties. In the case 
of an autonomous DUT, the frequency and phase of the 
oscillation of the DUT are determined by the reference 
oscillator (VCO) because the DUT injection-locks to it. In this 
sense, tracing a curve in the autonomous case is easier than in 
the driven case, because the phase of the injection signal does 
not need to be modulated during the tracing process. 
Fortunately, the signal at the emitter of the Colpitts (Fig. 12) is 
close to sinusoidal because of the high-Q tank inductor 
allowing the use of a sinusoidal VCO as the reference source. 
A more advanced implementation would attempt to synthesize 
a VCO waveform that is an exact match to the emitter 
waveform, possibly including higher harmonics. An 
alternative detector for the nulled injection current could 
probably be realized at VHF with a digitizing oscilloscope. 
The digital scope would be triggered from the VCO and the 
digitized waveform passed through a Fourier transform to 
extract real and imaginary parts at various harmonics. 

A high-level description of an algorithm for tracing such 
zero-curves using simplicial decomposition is provided in 
Appendix A.  

 

C. Experimental results 

In Fig. 13, the simulation results are compared with the 
experimental measurements obtained when sweeping over the 
Vtune range 0–10 V for a frequency sweep 40–50 MHz. The 
frequency exhibits hysteresis jumps because of the coupling to 
the passive tag resonators. The controlling computer sweeps 
monotonically Vtune in small steps up and then back down. At 
each step, the frequency of the Colpitts oscillator is monitored 
with a 500  probe on the collector of the transistor driving a 
counter with a General Purpose Interface Bus (GPIB). 
Qualitatively similar results can be obtained with a Colpitts 
circuit in which the tuning is accomplished by varying the 
value of a mechanical capacitor (which is linear at any fixed 
capacitor value) demonstrating that the hysteresis is not a non-
linear effect introduced by the varactor.   

Fig. 14 shows experimental results using passive tags with 
different bit patterns, “1111” in (a), “0101” in (b) and “1101” 
in (c). The results are compared with simulations in the three 
cases. In Fig. 14(a) the same sweep used in Fig. 14(b) was 
repeated with the entire stabilization mechanism of Fig. 12, 
using the arc-length continuation algorithm. The resulting 
traces are shown in red and can, indeed, traverse the unstable 
portions of the hysteresis jumps.  



As shown in Fig. 15, the measured stabilized and un-
stabilized traces do not agree exactly (i.e., even in the 
physically stable portions of the curve). We attribute this 
discrepancy to a parasitic effect at the injection port which has 
not been completely nulled out. Another possibility concerns 
the voltage waveform at the emitter during the open-loop 
sweep. This waveform has clearly some second-harmonic 
content, approximately -17 dBc. As described above, a more 
sophisticated implementation would program an injection 
source to match both the fundamental and second harmonic 
(hence, nulling them) along the zero-curve. We are presently 
investigating such an improved implementation. 
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Fig. 13. Comparison of the simulation results with experimental 
measurements; a controlling computer applied a monotonic sweep up and 
sweep down to a DAC to generate Vtune, then interrogated a frequency counter 
connected to the collector node of the oscillator. For this graphic, Vtune is 
swept up [0,10] then down [10,0] V to generate the hysteresis steps. 

 

V. READING THE TAG 

Several methods of reading the tag have been considered 
and implemented. A simple technique would apply a stepped 
voltage ramp waveform as the tuning voltage of the VCO and 
measure the oscillator frequency at each voltage step. The 
reader would ramp up and down over the same tuning range 
and look for an obvious frequency difference at the 
frequencies assigned to bit positions of the tag for the ramp-up 
versus ramp-down sweep. A significant frequency difference 
would encode a "1" bit and little or no frequency shift would 
encode a "0" bit. The ramp-up and ramp-down frequency 
measurements for a "0" bit might be slightly different due to 
noise, but nowhere near as large as when the passive tag 
resonator induces hysteresis at the bit frequency. The 
experimental results presented here have been obtained with 
such a scheme using an HP5386 counter connected to a 
computer over GPIB. This scheme seems implementable in a 
portable tag reader, but would require a micro-processor 
control and a reasonably accurate frequency counter operating 
at the VCO frequency. This might be too expensive for some 
applications. 
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Fig. 14. Comparison between the experimental and simulation results obtained 
when using passive tags with different bit patterns, “1111” in (a), “0101” in 
(b) and “1101” in (c). For this graphic, the experimental apparatus increases 
arc-length along the curve monotonically; Vtune can go in either direction 
during the arc-length sweep. Arc-length is set to 0 at the lower left-hand point 
of the curve, and increases to a final value at the upper-right hand end. The 
actual value of the final arc-length depends on scaling. Arrows showing arc-
length evolution have been included in (b). 
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Fig. 15. Measurements of the stabilized (solid line) versus un-stabilized 
(dashed line) sweeps of the same passive tag. 

 
We have implemented an alternative technique employing 

dual oscillators as shown in Fig. 16. The tuning voltages of 
two VCOs are driven from the same sawtooth waveform. The 
oscillators track but with a deliberate offset in frequency as 



shown in Fig. 17. The offset is necessary to prevent the two 
oscillators to injection-lock to each other when coupled 
through the mixer. 

Oscillator 1 in Fig. 16 will be coupled to the tag resonators 
while oscillator 2 is designed to have very little coupling. For 
example oscillator 2 could use a toroidal inductor which is 
self-shielding. A mixer and low-pass filter are then used to 
extract the difference in frequency between the two oscillators 
as a function of the common tuning voltage.  
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Frequency 
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Fig. 16. Inexpensive tag reader employing two oscillators. The oscillators 
track in frequency, but with a deliberate offset to avoid injection-locking. The 
tag resonances generate jumps in the difference frequency which can be 
detected by a low-frequency analog circuit. As shown in Table I, a typical 
sensitivity for such a circuit would be 1 V/MHz, resulting in a very distinct 
read signal. 

 
In the absence of a tag, this frequency difference is close to 

a constant value. Our present implementation uses an analog 
linearizer network to achieve some improvement in linearity 
between the tuning voltage and frequency of the VCO but it is 
a very simple circuit. A more sophisticated implementation 
should be able to get the two traces of Fig. 17 very nearly 
straight and parallel. However, when a tag is coupled to 
oscillator 1 there are distinct jumps in the frequency difference 
corresponding to "1" bits in the tag. Fig. 18 shows a read of 
the bit pattern "0101" at distances of 1.5 cm and 2.5 cm. The 
present implementation measures the frequency difference 
with a counter but -- considering that the difference frequency 
is small compared to the tuning frequencies – it should be 
possible to use an analog frequency-to-voltage converter [31] 
to generate a DC voltage proportional to the frequency 
difference for each tuning voltage. Such circuits are simple 
and have a fast response allowing for a small period to the 
sawtooth signal. Table I presents our implementation of the 
RFID system is based on the principle described in [22], 
where the impedance of the tag influences the frequency of a 
sweep-tuned oscillator, acting as a reader.  

Finally, a more sophisticated method would actually 
perform a stabilized sweep with a path-following algorithm. 
This computation should be within the capabilities of a 
modern microprocessor. If such an algorithm could be 
implemented in the tag reader, we believe it would provide a 
robust read process and also allow the bit frequencies of the 
tag to be more closely spaced, possibly even with overlapping 
hysteresis loops. The reader would deduce the encoded bit 
pattern from the tag by looking for the presence or absence of 

a pair of turning points in the path bracketing a bit-encoding 
frequency.  

Our present laboratory implementation of the stabilized 
sweep is slow because a network analyzer is used as a 
coherent detector for the null current. There is also some time 
spent in transferring the data from the network analyzer to the 
computer implementing the path-following algorithm.  
However, we do not believe these limitations to be 
fundamental to the method and an implementation allowing 
faster stabilized sweep is under study. Observe that with a 
stabilized sweep, complete information is obtained with only 
one sweep direction. 

 

0 2 4 6 8 10

Tuning voltage Vtune (V)

35

40

45

50

F
re

q
ue

n
cy

 (
M

H
z)

Osc. 2
Osc. 1

 
Fig. 17. Experimental frequency tracking of two VCOs with deliberate offset. 
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Fig. 18. Tag reading using the setup employing two oscillators shown in Fig. 
16. (a) Frequency characteristic when oscillator 1 is coupled to a tag with two 
enabled resonances. (b) Mixer output. The figure shows a read of the bit 
pattern "0101" at distances of 15mm, and 25 mm. 

 
Table I compares our approach with a recent alternative 

[22] for reading a passive RFID tag, also based on sensing the 
response of an oscillator coupled to the tag. Because the two 
approaches use very different frequency ranges, it is difficult 
to give a side-by-side comparison.  Our approach is probably a 
bit more expensive to implement in the tag reader, but does 



give a much more distinct signal for the individual bits 
encoded by the passive tag. 
 

TABLE I 
COMPARISON WITH PREVIOUS RESULTS USING A SWEEP-TUNED OSCILLATOR 

Criterion [22] Present work 
Frequency range 2.4-3.4 GHz 40-50 MHz 
# Bits 10 4 
Tag size 25 x 40 cm 50 x 50 cm 
Read method DC bias change Output of F/V 

converter 
Delta V per bit < 1 mV > 500 mV* 
Estimated reader cost 1 Eur 2 Eur 

* Using frequency-to-voltage converter with sensitivity of 1 V/MHz 

 
The theoretical analysis presented here has assumed that 

there is no coupling between individual resonators of the tag 
itself – only tag-to-oscillator coupling has been treated. In 
practice, we have observed some coupling between adjacent 
tag resonators as a second-order effect. Enabling or disabling 
an encoding bit causes a slight shift in the resonant frequency  
of adjacent spiral resonators, due to (weak) side-to-side 
coupling. Again, we do not see this as a fundamental 
impediment in practice. A passive tag encodes a fixed bit 
pattern, and a computer optimization could be used to tweak 
the resonator values to compensate for coupling between 
adjacent spirals. 

VI. CONCLUSIONS 

A method for the analysis and synthesis of multiple 
hysteresis loops in the frequency-tuning curve of an oscillator 
coupled to a number of external resonators has been presented. 
The equivalent coupling admittance seen from the core-
oscillator terminals has been derived and its particular form of 
variation has been explained in detail. From the analysis of 
this function, conditions to avoid the overlapping of hysteresis 
cycles in the oscillator tuning curve have been derived. A 
possible application of coupling induced hysteresis in chipless 
RFID, using an oscillator as a compact reader, has been 
explored. This application would take advantage of the 
vertical frequency jumps (associated with the hysteresis 
phenomenon) to increase the sensitivity to the tag resonances. 
A proof of concept based on a Colpitts oscillator, with the 
coupled inductors implemented through planar spirals, has 
been presented. The coupled system is analyzed extracting the 
nonlinear admittance function of the core-oscillator, in 
addition to the coupled admittance, calculated through an 
electromagnetic simulation. A new numerical method for the 
experimental characterization of the hysteresis loops, able to 
pass through their unstable sections, has also been presented, 
including the mathematical algorithm and the detailed 
experimental set-up. This should enable an improvement of 
the shape the hysteresis cycles for an optimum incorporation 
into the RFID system. 
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Appendix A 

This section gives a high-level description of an algorithm 
for tracing a one-dimensional curve. 
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Fig. 19. Geometry of path-following algorithm. The zero-curve, starting from 
x0 and advancing in arc-length, has crossed from simplex 0 into simplex 1 
across the facet common to both simplices. The method to identify such 
transversal facets is described in the text. 

 
Fig. 19 indicates the geometry involved in such a simplicial 

path-following algorithm. Our previous implementation of a 
path-following algorithm [15] required a Jacobian matrix of 
partial derivatives approximated by finite-differencing, which 
was slow and somewhat noisy. The use here of simplicial 
methods (which do not require a Jacobian matrix) seems much 
better suited to experimental work.  Starting at the initial point 

0x  described above, the algorithm attempts to follow said zero 

curve until a specific arc-length goal is reached. The user 
chooses an arc-length goal large enough to include interesting 
features in the zero curve such as a hysteresis fold-back. 

The algorithm constructs a tetrahedron 0, centered on 0x  

with size determined by a user-supplied parameter “grain”. 
For tuning and control voltages in the range [0,10], a typical 
grain value might be 0.05. A small grain value gives fidelity 
along the curve, but at some point goes below the resolution of 
the various DACs. In three-dimensional space a tetrahedron is 
a simplex – roughly speaking the simplest object that has 
volume [32],[33]. A simplex in n-dimensional space is 
determined by n+1 points that do not lie in any sub-space of 
lower dimension. For example, four co-planer points in R3 
would violate this condition and not qualify as a simplex. The 
tetrahedron above has four faces determined by any 
combination of three vertices. In the general case of a simplex, 
such faces are called facets. 

The supporting theory [29] shows that a simplex typically 
intersects the zero curve in two facets of the simplex or not at 
all. In other words, moving along the zero curve in the sense 
of increasing arc-length, the zero curve enters a simplex 
through one facet and exits it through a different facet. In the 
supporting literature this is sometimes called the "in door, out 
door" principle. If the zero curve enters and exits a simplex 
more than one time, then the simplex is too big. Degenerate 
cases in which the zero curve intersects an edge or vertex of a 
simplex are treated in the literature [30] but can largely be 
ignored in practice because they are so rare. 



The computation to determine if a facet of a simplex is 
transversal to the zero curve (i.e., if the zero curve crosses the 
facet) is a simple linear solve. In the case of the map (21) from 
R3 to R2, consider a facet determined by three simplex vertices 
[A, B, C] (all points in R3) with corresponding labels (injection 
current values) [f(A), f(B), f(C)].  

A point x on the facet can be identified uniquely by its 
barycentric coordinates [32], given by three real numbers 
[ 1 2 3 , ,    ], where 1 2 3+ 1    . Then, the point x can be 

expressed as the weighted sum: 

1 2 3     x A B C            (22) 

Moreover, if all three i , where i = 1 to 3, are between 0 

and 1, then the point x is interior to the facet; i.e., inside the 
triangle determined by vertices [A, B, C]. If x is the point 
where the zero curve crosses the facet, then ( ) 0f x   

according to mapping (21) above. Recall that ( )f x  is two-

dimensional. Substitute: 

 1 2 3( )     0f x f A B C         (23) 

If the simplex containing facet [A, B, C] is small enough, 
then we can approximate (23) above with a linear mapping: 

1 2 3( )  ( ) ( ) ( ) 0f x f A f B f C           (24)  

The values  ( ), ( ), ( )f A f B f C  are the vertex labels which 

have already been measured. In order to get a 3×3 matrix 
system, combine (24) with the condition that the i  must sum 

to 1: 

     

1

2

3

1
1 1 1

0

0
f A f B f C





   
                  

    (25) 

Solve this 3×3 system and inspect the values of i  to 

determine if x is interior to the facet. 
Using this matrix solve, the algorithm inspects each facet of 

the initial tetrahedron 0 and determines exactly two facets 
that cross the zero curve (called transversal in the literature). 
The algorithm then reports these two facets to the user along 
with the thee-dimensional coordinates for each point of 
intersection. In a typical case, one of the intersection point 
corresponds to a desired direction of travel along the zero 
curve – for example, to move the tuning voltage in a desired 
direction. The user specifies the desired direction of travel 
along the curve by selecting one the two transversal facets of 
the initial simplex.  

The algorithm then begins tracing the zero curve. From 
tetrahedron 0 (in general, simplex 0) the algorithm performs 
a so-called pivot operation to construct the next adjacent 
tetrahedron (1 in Fig. 19) sharing a unique facet. With 
appropriately chosen tetrahedra (see the discussion in [29], 
[32]), the pivot step is a very simple computation with 
vertices. The algorithm writes the coordinates of the exit point 
of 0 to a file then repeats the computation on 1 to find an 
exit facet different from the entrance facet. This basic iterative 
step is then repeated building a "scaffold" of adjacent 

tetrahedra all hugging the zero curve. Observe that each time a 
new tetrahedron is adjoined to the scaffold, another 
measurement is required to find the label of the newly-added 
vertex. The DACs are stimulated at three voltages given by the 
coordinates of the new vertex and the VNA is interrogated 
over a standard measurement interface, such as GPIB to obtain 
real and imaginary parts of the null current. 

The results presented here are for a mapping  R3 into R2, but 
can be generalized. Imagine a reference VCO that is 
programmed for a waveform more complex than sinusoidal – 
say containing a fundamental and second harmonic. Such 
programming would require four quantities – frequency and 
amplitude of the fundamental, then magnitude of the second 
harmonic and its phase w.r.t. the fundamental. Recall again 
that for the autonomous case, the phase reference is 
determined by the injection signal, hence is not an unknown in 
the algorithm. Combined with the tuning voltage for the DUT, 
there would be 5 input quantities. A null detector would then 
extract real and imaginary parts from the injection current for 
the fundamental and second harmonic. All four of these 
numbers would need to be nulled along the zero curve and 
simplicies along the zero-curve would be labeled with 4 real 
numbers. The final result, then, would be a mapping R5 into 
R4. Again, the supporting theory shows that the zero curve of 
such a mapping is one-dimensional but now moving around in 
a 5-dimensional space. The algorithm sketched above extends 
immediately to this case in which tetrahedra are extended to 
simplices in R5. 
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