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Abstract—Network densification over space and spectrum is expected to be key to enabling the requirements of next generation
mobile systems. The pitfall is that radio resource allocation becomes substantially more complex. In this paper we propose LaSR, a
practical multi-connectivity scheduler for OFDMA-based multi-RAT systems. LaSR makes optimal discrete control actions by solving a
sequence of simple optimization problems that do not require prior information of traffic patterns. In marked contrast to previous work,
the flexibility of our approach allows us to construct scheduling policies that achieve a good balance between system cost and utility
satisfaction, while jointly operate across heterogeneous RATs, accommodate real-system requirements, and guarantee system stability.
Examples of system requirements considered in this paper include (but are not limited to): constraints on how scheduling data can be
encoded onto signaling protocols (e.g. LTE’s DCI), delays when turning on/off radio units, or on/off cycles when using unlicensed
spectrum. We evaluate our scheduler via a thorough simulation campaign in a variety of scenarios with e.g. mobile users, RATs using
unlicensed spectrum (using a duty cycle access mechanism), imperfect queue state information, and constrained signaling protocol.

Index Terms—Radio resource scheduling, multi-connectivity, carrier aggregation
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1 INTRODUCTION

Network densification is well-recognized as a key means
to take on the challenge of supporting a thousand-fold
increase in traffic demand in the next generation of mobile
systems [1]. In turn, network densification involves both
spatial densification (packing more radio access points per
unit area) and spectrum densification (aggregating potentially
non-contiguous radio bands) [2].

A cost-efficient way of accomplishing spatial densifica-
tion is to deploy an “army” of low-power low-cost radio
access technologies (RATs) such as small-cells (see Fig. 1).
The advantages of this approach are well known, namely (i)
distance between users and RATs is shortened, thus increas-
ing the quality of the wireless links; and (ii) (small) RATs can
implement more aggressive energy-saving features, lower-
ing the operational costs of the infrastructure. On the down-
side, however, the load that each individual RAT has to
manage becomes highly volatile and unpredictable.1 Hence,
a cost-efficient dense deployment requires a flexible and
adaptive control of radio resources. For instance, a network
operator may want to distribute low-power load across
fewer RATs and/or use only inexpensive unlicensed bands

• A. Garcia-Saavedra, X. Li and X. Costa-Perez are with NEC Laboratories
Europe, Germany.
E-mail: {andres.garcia.saavedra, xi.li, xavier.costa}@neclab.eu

• V. Valls is with Trinity College Dublin, Ireland.
E-mail: victor.valls@tcd.ie
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1. User traffic is highly variable, as evidenced in a plethora of
literature [3]–[5], but macro-cells compensate this volatility by aggre-
gating multiple flows. This leverage fades in dense contexts because
individual (low-power) RATs handle fewer flows [1].

(a) Macro-cell w/ carrier aggregation (b) Co-located RATs

(c) HetNet (d) Cloud RAN (C-RAN)
Fig. 1. Deployments relevant for 5G and beyond [6].

as long as the demand is satisfied in order to save costs and
cause low interference. However, when the load increases,
the network controller needs to adapt very quickly (e.g.
activating RATs to offload traffic during peak hours).

Regarding spectrum densification, multi-connectivity
between single users and multiple RATs is attracting a lot
of interest to 5G RAN architects, who are in the hunt for
larger chunks of spectrum [7]. With multi-connectivity we
can extend the amount of bandwidth by aggregating non-
contiguous bands, e.g., sub-6GHz, ISM bands, mmWave
or TV white spaces (see Fig. 1)—unified under a common
OFDM-based air interface, namely 3GPP’s 5G New Radio
(NR) [8]. Although multi-connectivity can be implemented
at different layers of the stack (TCP/IP, PDCP or MAC [7])
in this paper we consider MAC layer aggregation because it
allows much finer granularity and it is a natural evolution
of legacy Carrier Aggregation (CA)—introduced by 3GPP in
LTE Release 10 specification [9].

As a consequence of the above, heterogeneity across
RATs and resource demand volatility makes radio resource
scheduling substantially more complex. In this paper we
design LaSR (Lagrange approximation Supple Radio con-
troller), a practical multi-connectivity scheduler that assigns
radio resources to mobile users in an OFDMA-based multi-
RAT system, having the following main features:
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• LaSR operates using instantaneous state informa-
tion of network queues with no assumptions on the
stochastic properties of user traffic or available band-
width, adapts quickly to changing conditions, and
guarantees stability even with imperfect information;

• LaSR stabilizes all network queues (maximizes
throughput) while balancing network cost and a
proportionally-fair allocation of individual utilities;

• The suppleness of LaSR is the main advantage with
respect to state of the art techniques because, dif-
ferently to prior work, LaSR allows us to satisfy
practical real-system constraints, e.g. delays when
switching on/off RATs, discrete and heterogeneous
ranges of modulations and resource blocks, con-
strained encoding of scheduling information into
signaling protocols (e.g. LTE uses a Downlink Con-
trol Indicator (DCI) that trades off granularity with
reduced overhead), channel unavailability due to
coexistence operation in unlicensed bands, etcetera.

The rest of the paper is organized as follows. In §2 we
revise related work and discuss the advantages of LaSR. We
introduce a mathematical model of our system and opti-
mization problem in §3. In §4 we design an algorithm that
iteratively exploits information from the convex relaxation
of our problem so solve it efficiently. In §5 we present a
thorough performance evaluation of the proposed scheme.
Finally, §6 includes some final remarks.

2 RELATED WORK & DISCUSSION

Related Work. Resource allocation in OFDM-based systems
has been widely studied [10], [11]. The assumption of an in-
finitely backlogged model is conventional in the related lit-
erature. Under this assumption, many works study bounds
on the total utility a system can achieve, e.g. [12], [13],
including throughput, delay, energy and fairness consider-
ations. Only recently, a few works consider carrier aggrega-
tion [14]–[18]. In [14], [15], the authors focus on allocating
rates to maximize the network utility as a proportionally
fair allocation of utilities of different traffic classes; the latter
supporting user discrimination. In both, users are allocated
resources sequentially, from a sorted list of carriers, i.e.,
without load balancing. This work was extended in [16]
to minimize user costs (e.g. leasing, energy consumption),
and energy efficiency is considered in [17]. In terms of
complexity, all these works require solving a sequence of
convex programs at every slot (mild complexity). Finally, in
[18], the authors address the rate allocation problem using a
game-theoretic approach, suitable for a distributed setting,
which requires a number of operations that scale exponen-
tially with the number of users and RATs. Although all
these works offer a very valuable theoretical analysis of the
performance boundaries of carrier aggregation technology,
they are not applicable in practice because, in contrast to
ours, they either (i) operate only in the capacity boundary
(very high load), (ii) do not let RATs be deactivated to
reduce costs in low-, mid-load regimes, and/or (iii) do not
consider practical issues of real systems like e.g. how to map
rates to discrete sets of modulations/resource blocks or sig-
naling constraints. Remarkably, as we will show later, LaSR

TABLE 1
Related Work with CA support

LaSR [14] [15] [16] [17] [18] [19] [20] [21]

Performance X X X X X X
guarantees

Network cost X X X X

QoS diff. X X X X X

All load X X X X
regimes

Traffic pattern X X
oblivious

Heterogeneous
RATs

X X‡

Flexibility† X X‡

Complexity M M M M M M L L L
† to accommodate system constraints while preserving optimality M: Mild
‡only partially L: Low

satisfies all these requirements with similar mild complexity,
i.e., by solving a sequence of convex programs.

There exists some research on carrier aggregation relax-
ing channel assumptions. For instance, a simple propor-
tional fair scheduler with no power control is analyzed in
[19] and energy efficiency in [20]. Both approaches have low
complexity (involving simple sorting operations). However,
a Poisson (elastic) traffic model and homogeneity across
RATs is assumed. Finally, the authors of [21] propose a
backlog-based heuristic algorithm, comparable to our work
in its applicability to practical systems, but with no per-
formance guarantees, and assuming homogeneity across
RATs. In comparison, LaSR achieves provably optimal per-
formance without taking assumptions on the traffic model,
accommodating scheduling decisions to system constraints,
such as delays when turning on/off RATs, signaling lim-
itations, heterogeneous resources, or imperfect information
with mild complexity (involving a sequence of convex prob-
lems) and, importantly, allows us to trade-off computational
burden for (slower) reaction time without compromising
optimality. Table 1 summarizes the above comparison.

In a broader context (neglecting carrier aggregation),
much literature addresses the scheduling problem, yet mak-
ing limiting assumptions regarding traffic stochastic prop-
erties (e.g. [22], [23]). A few works relax those assump-
tions, e.g., [24], [25] propose a Markov Decision Problem
(MDP) model, which renders a very practical scheduler
but optimality suffers of the curse-of-dimensionality and the
authors have to settle with approximate solutions. Another
example is [26], which proposes a simple suboptimal greedy
algorithm to solve a binary integer program. There exist
some scheduling policies known to be throughput-optimal,
namely: max-weight [27], exp-rule [28], and log-rule [29].
Max-weight policies select to transmit, at each time slot,
the subset of queues with the maximum weight, typically
defined in OFDM systems as the current backlog or the
product of the maximum feasible service rate (i.e. modu-
lation level) and the backlog. Exp-rule aims to minimize the
exponential decay rate of delay distribution tail of the worst
user. Log-rule uses a Markov chain to obtain the queue
state transition probabilities, which are used to minimize
the average queue lengths (and thus delay). Recently, the
authors of [30] adapted the heavy-ball technique [31] to
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the wireless network utility maximization problem with the
objective of reducing convergence times and user delay.

Discussion. These throughput-optimal techniques, how-
ever, do not provide much flexibility when designing feasi-
ble scheduling policies and they are thus hard to implement
when facing practical constraints. For example:

(i) A desirable feature in multi-RAT systems is the ability
to deactivate secondary RATs as much time as pos-
sible, e.g. during low-load regimes, to reduce opera-
tional costs, and turn them back on as soon as possible
when load builds up. However, real hardware needs
some time to switch back and forth between opera-
tional and sleep states. Therefore, our scheduler needs
to guarantee that resources are not assigned to RATs
while they are in sleep mode or are being activated;

(ii) RATs can be heterogeneous in terms of available
number of physical resource blocks (PRBs) per
time×bandwidth unit, available modulations and/or
duty cycles when using unlicensed bands. A cross-
RAT controller should manage this heterogeneity;

(iii) Operators may be willing to trade off delay perfor-
mance of some (e.g. best effort) users to save opera-
tional costs and/or reduce interference to neighboring
systems. In such cases, an advantageous policy would
be favoring low modulation levels or that extending
the amount of time a RAT is off as long as mean
demand rate is met. Though perhaps counter-intuitive,
the rationale is that low modulation levels let RATs use
lower transmission power and we could thus trade
off local spectral efficiency for higher spatial diversity,
which is of great importance in dense scenarios be-
cause individual RATs manage fewer users;

(iv) Real systems may impose constraints in the way
actions are taken. For instance, LTE uses a Down-
link Control Indicator (DCI) in the PDCCH (Physical
Downlink Control Channel) that carries information
regarding which resource blocks carry data for which
user. Obviously, there is a limitation in the way this
information is encoded in signaling protocols in order
to trade off granularity with reduced overhead. Let
us illustrate this by explaining how a resource allo-
cation can be encoded into LTE’s DCI. As depicted
in Fig. 2, resource allocation in LTE can be done in
3 ways: type 0, 1 and 2. In type 0, consecutive PRBs
are grouped into RBGs (e.g. in a 20 MHz RAT, each
RBG corresponds to 4 PRBs). In this way, a scheduler
is constrained to take the same action for each of the
PRBs in one group. In type 1, RBGs are grouped into
subsets (via a standard modulo relationship) and users
are allocated individual PRBs within one subset. In this
way, a scheduler is constrained to a subset of PRBs
per user. In type 2, we can allocate any number of
virtually continuous PRBs via an offset/length pair.
Then, these PRBs can either be physically continuous
or distributed by a permutation function specified in
the standard. In either case, a scheduler will be also
constrained to assigning PRBs in groups. See [32] for
more details. In summary, a practical scheduler should
guarantee that this type of constraints—which will
always exist in real protocols—are respected in order

(a) Resource allocation type 0

(b) Resource allocation type 1

(c) Resource allocation type 2

Fig. 2. DCI Resource Allocation types in a 20-MHz LTE RAT (100 PRBs
available per allocation period or transmission time interval (TTI)).

to extend stability guarantees to real implementations.
Unfortunately, these practical requirements are inher-

ently hard to meet with the aforementioned approaches.
Like some prior work [33]–[37], we exploit the connection
between queue states and Lagrange multipliers. However,
all these approaches rely on continuous variables and/or
greedily select actions in a myopic manner, i.e., based only
on the current state. As a result, they cannot take into
account that there might be a subset of actions that are not
allowed or are not preferred at some time. Thus, in order
to comply with real-life constraints, the sample trajectory of
actions, rather than simply the average, shall be considered.
There exists some literature that considers “constrained”
actions. For instance, [35] shows that a myopic policy cannot
perform optimally when there are reconfiguration delays,
and proposes a solution for that specific case. However, it is
not clear how this approach can be used to encompass more
complex constraints like the ones considered in this paper.

Recently, [38] showed that the choice of a discrete control
action can be decoupled from a specific choice of sub-
gradient. This is of paramount importance for our work
because it gives us a lot of flexibility to design policies that
accommodate practical constraints of real systems without
compromising the underlying convex updates. Based on
this fundamental idea, in this paper we design LaSR, a
multi-connectivity scheduler for multi-RAT systems that
is sufficiently supple to operate optimally in a variety of
scenarios (like the ones in Fig. 1). Yet, it does not take as-
sumptions on the stochastic properties of the system (arrival
of data, mobility, etc.), nor does it make simplifications on
the constraints of the underlying system (e.g., discrete sets
of modulations and PRBs, signaling overhead, imperfect—
noisy or delayed—backlog information, reconfiguration de-
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lays, etc.) and can balance operator and users preferences.

3 SYSTEM MODEL

We introduce in this section a model based on a system
of queues. Then, based on this model, we formalize the
description of our problem as an optimization problem.

3.1 Notation
We use conventional notation. We let R and Z denote
the set of real and integer numbers. We use R+, Rn, and
Rn×m to represent the sets of non-negative real numbers,
n-dimensional real vectors, and m × n real matrices, re-
spectively. Vectors are usually in column form and written
in bold font. Matrices are in upper-case font. Subscripts
represent an element in a vector and superscripts elements
in a sequence. For instance, 〈x(t)〉 is a sequence of vectors
with x(t) = [x

(t)
1 , . . . , x

(t)
n ]T being a vector from Rn. In

turn, x(t)
i is the i’th component of the t’th vector in the

sequence. Superscript T represents the transpose operator,
we use 1 or 0 to indicate a vector where all elements are
1 or 0, respectively, and x � y indicates that xi ≤ yi,∀i.
‖x‖2 represents the 2-norm or Euclidean norm of x and
‖x‖∞ its maximum norm (maxi |xi|). Finally, [·]+ denotes
the projection of a vector onto the non-negative orthant, i.e.,
[x]

+
= [max{0, x1}, . . . , max{0, xn}] , x ∈ Rn.

3.2 Model
We consider a multi-RAT system comprised of R =
{1, . . . , R} RATs and N = {1, . . . , N} mobile users. RATs
can be co-located or distributed in a C-RAN architecture
(perfect information) or forming a HetNet structure (im-
perfect information). Without loss of generality, we assume
that each user is mapped to one traffic class or QoS class
identifier (QCI). The extension to a general case can be
done by adding virtual users and aggregating traffic of
the same type from multiple users into one virtual user.
All RATs can be deactivated except one (primary RAT),
in order to guarantee an available control channel at all
times. Following 5G New Radio (NR) design, we assume
all RATs are based on OFDM [8] so that we can allocate
physical resource blocks (PRBs) from a pool available at
each RAT. Each PRB can be modulated with a modulation
level from the discrete set Mr,n = {mr,n,1, . . . ,mr,n,M},
∀r ∈ R,∀n ∈ N , where mr,n,M is the highest modulation
level that can be used in the physical link between RAT r
and user n. We can easily compute mr,n,M using standard
models by exploiting channel state information (CSI) of the
wireless channel between each RAT and user (e.g. using
CQI (Channel Quality Indicator) reports fed back by users
readily available in LTE systems). The accuracy of this
information or how to best select mr,n,M based on this
(possibly imperfect and quantized) information is out of
the scope of this paper; we refer the reader to [39] and
references therein to find literature on the topic. Importantly,
however, the algorithm we design in §4 does consider that
(higher) modulation levels could be unavailable at some
times due to fading, i.e., system stability is preserved. Our
goal is to design a network controller that jointly assigns
PRBs, modulation levels and RAT(s) to users such that the

(a) VRB mapping (b) Slotted system
Fig. 3. Three RATs with capacity 32, 8, and 4 PRBs, respec-
tively, per time×bandwidth. RATs have equal number of VRBs per
bandwidth×time unit (left). Our controller operates in slots, each slot
corresponding to 1 VRB per RAT (right).

demand is satisfied (system is stable) while maintaining a
good balance between system cost and QoS satisfaction.

Independently of the (possibly different) physical divi-
sion of spectrum/time resources into PRBs of each RAT, we
divide them into an equal number of virtual resource blocks
(VRB) per bandwidth×time unit, as depicted in Fig. 3a. The
actual number of VRB per unit of resource is an implementa-
tion choice that may depend on the computational capacity
available (more VRBs/resource provides more granularity
but requires faster computational operation). Note that this
may cause that a VRB contains more than one PRB in some
RATs, e.g., if a PRB is “smaller” in time×bandwidth than
the chosen VRB like RAT 1 in Fig. 3a, or even fractions of
PRBs, e.g., if one RAT has more assignable PRBs than VRBs
like RAT 3 in Fig. 3a. However, this approach allows us to
homogenize the resources of potentially heterogeneous RATs,
which substantially simplifies our model. We note that,
though this simplification may render suboptimal decisions
if not handled carefully, our scheduler maps VRBs into
(heterogeneous) per-RAT PRBs with no loss in optimality. This
is explained in in §4.2. Although we focus on the downlink
case hereafter, our model also applies to the uplink case
(in fact we evaluate an uplink scenario—with imperfect
information—later on).

As illustrated in Fig. 4, we model this system as a
network of 2N queues (an incoming queue and outgoing
queue per traffic type) and L =

∑
n∈N

∑
r∈R |Mr,n| links

(different ways of transmitting data between RATs and
users). Our controller operates in slots t = 1, 2, . . . , each
slot containing one VRB per RAT, as shown in Fig. 3b. We
then model the dynamics of the queues as

Q(t+1) =
[
Q(t) + ∆(t)

]+
, t = 1, 2, . . .

where Q(t) ∈ Z2N
+ is a column vector bookkeeping the

state of all queues in the system at slot t, i.e. Q(t) =

[Q
(t)
1 , Q

(t)
2 , . . . , Q

(t)
2N ]T and ∆(t) ∈ Z2N is a column vector

containing the queues net increments/decrements of data
units in slot t. We now let incidence matrix A ∈ Z2N×L

represent the connections between queues, so that element
Ai,j represents the amount of data units per VRB departing
from (if negative) or arriving to (if positive) queue i when
activating link j. Note that the amount of bits transported
on each VRB depends on the modulation scheme used in
link j at one slot. Fig. 5 illustrates an example with 2 users,
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Fig. 4. System model. A network of queues with N incoming queues
and N outgoing queues. Our network controller needs to select a RAT
and a modulation index (i.e. a link connecting queues) to deliver data
between each pair of queues {Qi, QN+i}.

2 RATs and 2 modulation indexes available for each RAT
and user, and the incidence matrix A equal to


l1

(m1,1,1)
l2

(m1,1,2)
l3

(m2,1,1)
l4

(m2,1,2)
l5

(m1,2,1)
l6

(m1,2,2)
l7

(m2,2,1)
l8

(m2,2,2)

Q1 −1 −2 −10 −20 0 0 0 0
Q2 0 0 0 0 −1 −2 −10 −20
Q3 1 2 10 20 0 0 0 0
Q4 0 0 0 0 1 2 10 20

 (1)

represents the connections between queues in this example.
At each slot, the controller makes a scheduling deci-

sion and so it assigns data into VRBs (or not) by acti-
vating/deactivating links in our model. Precisely, let Y ⊆
{0, 1}L collect all possible actions in the system and vector
y(t) ∈ Y represent the action taken at slot t, where the i’th
element of the vector indicates whether link i is active (if
equal to 1) or not (otherwise) in slot t. In this way, in each
slot our controller assigns resources from the available RATs
to users and selects a modulation level for each active pair
of RAT/user. Hence, at each slot we have the update

Q(t+1) =
[
Q(t) +Ay(t) + b(t)

]+
, (2)

where Ay(t) captures the outcome of taking decision y(t) ∈
Y at this time, and b(t) ∈ Z2N is a vector with the net
amount of bits that enter/leave each queue in the system
at one slot. In practice bi = 0, ∀i > N since these queues
are the destination of the data. In our simple example,
y(t) = [1, 0, 0, 1, 0, 0, 0, 0]

T causes the following updates

Q
(t+1)
1 =

[
Q

(t)
1 − 21 + b

(t)
0

]+
Q

(t+1)
2 =

[
Q

(t)
2 + b

(t)
1

]+
Q

(t+1)
3 =

[
Q

(t)
3 + 21

]+
Q

(t+1)
4 =

[
Q

(t)
4

]+
.

That is, in slot t + 1, user 1 is assigned a VRB from RAT
1 modulated with the lowest modulation level, and also a
VRB from RAT 2 modulated with the highest modulation.

3.3 Problem Formulation and Approach
Our goal is to design a scheduling policy (i.e. a sequence of
control actions) that (i) satisfies the queue dynamics given in
Eq. (2), (ii) maximizes throughput, and that (iii) minimizes
a utility function of the average of the actions, while meeting
practical constraints such as discrete modulation sets, RAT
(de)activation delays or signaling limitations.

Let us first introduce the following definitions.

Definition 1 (Scheduling policy). A sequence 〈y(t) | y(t) ∈
Y, t ≥ 0〉 describes a scheduling policy π.

Fig. 5. Example with 2 RATS, 2 users, 2 available modulations per
RAT and user. Queues Q1/Q3 and Q2/Q4 are respectively incom-
ing/outgoing queues for user 1 and 2. Links {l1 . . . l8} connect all
queues in the system according to incidence matrix shown in Eq. (1),
i.e., allowing different amount of bits per slot (different modulation lev-
els), i.e., m1,1,1 = m1,2,1 = 1 bit/slot and m1,1,2 = m1,2,2 = 2 bits/slot
(from RAT 1 to user 1 and 2), and m2,1,1 = m2,2,1 = 10 bits/slot and
m2,1,2 = m2,2,2 = 20 bits/slot (from RAT 2 to user 1 and 2).

Definition 2 (Admissible policy). Let A(t) define a set
containing all the available actions A(t) ⊆ Y at time t (some
actions may not be available at some slot due to e.g. constraints
on the signaling information or RAT unavailability). Then, an
admissible scheduling policy π is such that π = 〈y(t) |
y(t) ∈ A(t), t ≥ 0〉. Finally, let superset Π collect all
admissible scheduling policies.

Then, our optimization problem can be written as

Problem 1 (LaSR Problem).

minimize
π∈Π

f

 1

T

T∑
t=1
y∈π

y(t)

 (3)

subject to lim
T→∞

1

T

T∑
t=1

E
[
Q(t)

]
≺ ∞ (4)

where constraint (4) corresponds to the strong stability
requirement used in max-weight approaches, i.e., the de-
mand for resources will be satisfied asymptotically. Note
that a direct consequence of this constraint is that the delay
experienced by users will be also bounded [40]. Hence, our
problem consists on finding a sequence of discrete actions
〈y(t)〉 (an admissible policy π ∈ Π) that minimizes an
average cost function f(·), subject to the stability constraint.

It is important to emphasize that Problem 1 is non-
convex, since it requires selecting a sequence of actions
from a discrete set Y . There are several approaches in the
literature that consider the minimization of a utility function
subjected to constraint (4). One of the most popular ones
is the drift-plus-penalty algorithm (see for instance [36]).
This is a greedy approach that consists of selecting a control
action in each time slot with update

y(t) ∈ arg min
y∈Y

V U(y) + (Q(t+1))TAy (5)

where U : Rn → R is a utility function, and V ≥ 0 a tuning
parameter that trades-off utility accuracy and delay.2 One
of the drawbacks of this approach is that a control action is
selected in a myopic manner, i.e., based only on the current
state of the system. As a result, it cannot take into account
that there might be a subset of (non-admissible) actions

2. When parameter V is large, the update in Eq. (5) gives preference
to minimizing the utility rather than emptying the queues with more
packets. As a result, queues backlog increases (so the delay) and are not
emptied until they become sufficiently large.
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that are not allowed at a certain instant of time, or are not
preferred because of a metric of interest, for instance, a RAT
may be unavailable at some slot due to the delay it takes
for turning on, or an action may have to be repeated due
to restrictions on the signaling protocol (see LTE DCI in §2).
Thus, in order to comply with real-life constraints, the sample
path or trajectory of actions, rather than simply the average,
shall be considered. There are some approaches in the
literature that consider “constrained” control actions. For
instance, [35] shows that a myopic or greedy policy cannot
solve problems that have the form of Problem 1 when there
are reconfiguration delays, and proposes a solution for that
specific case. However, it is not clear how the approach can
be used to encompass more complex control constraints, like
the ones considered in this paper.

The approach we adopt here is based on [38], which
shows that to obtain an optimal policy it is enough to
find a sequence of discrete actions that remains close to
a “relaxed” or “convex” sequence.3 The key idea is that,
since we are interested in minimizing a function f(·) of an
average, the average policy (or sequence) can be constructed
in multiple ways. Namely, there is no need to select control
actions greedily in each time slot, as long as the average
T−1

∑T
t=1 y

(t) minimizes f(·). This allows us to construct
policies that provably solve Problem 1 and are admissible.

In the sequel, we introduce a relaxed convex formulation
and present the main contribution of our paper: an algo-
rithm that, by solving a sequence of convex problems, makes
scheduling decisions that solve (non-convex) Problem 1
while accommodating practical system constraints.

4 ALGORITHM DESIGN

We first introduce the convex formulation of the problem,
then we show that Lagrange multipliers and queues are
related, and finally we present our main contribution: an
algorithm that obtains a sequence of control actions that
solves Problem 1, while satisfying the system constraints.

4.1 Convex Formulation
Consider the following convex problem.

Problem 2 (Convex Optimization Problem).

minimize
x∈X

f(x) (6)

subject to Ax+ b̄ � 0 (7)

where A is an incidence matrix as described in §3, b̄ ∈ R2N ,
and X is a convex subset from conv(Y ) where Y is the set
of all possible actions. That is, a vector x ∈ X ⊆ conv(Y )
indicates the fraction of time each link should be scheduled
with data by a policy π, and f(x) is a cost derived from
that allocation. Also, note that b̄ represents the (unknown)
mean arrival/departure data rate at each node and so
constraint (7) guarantees that all data arriving into the
system is served (and so it relates to the stability constraint
of Problem 1). We will make the usual assumption that
X∗ := {arg minx∈X f(x) | Ax + b̄ � 0} is nonempty, and
so Problem 2 is feasible.

We are interested in solving Problem 2 efficiently, and
so we need to (i) ensure that objective function selected is

3. Obtained as a result of solving a sequence of convex optimizations.

convex (and so Problem 2); but also (ii) that the algorithm
used does not require perfect knowledge of b̄. The first
point is important because then we can use standard convex
optimization methods, while the second one is because, as
noted in §1, resource demand is hard to predict (if possible
at all) in dense multi-RAT systems. We address these two
points in more detail next.

4.1.1 Lagrange Relaxation and Dual Problem

We can relax the perfect knowledge of the constraints by
applying Lagrange relaxation. In short, Lagrange relaxation
allows us to formulate the dual problem, with which we
can generate a sequence of primal variables 〈x(t)〉 that con-
verges to the optimum or a point nearby without requiring
to be feasible in each iteration. This is in marked contrast to
other iterative methods, such as interior point or projected
gradient, and so provides flexibility to select a sequence of
actions or gradients.4 This will be clear shortly, but we first
introduce the Lagrange dual problem of Problem 2:

Problem 3 (Lagrange Dual Problem).

maximize
λ�0

q(λ) (8)

where q(λ) := infx∈X L(x,λ) with L(x,λ) = f(x) +
λT (Ax+ b̄).

We note that solving Problem 3 is equivalent to solving
Problem 2 when strong duality holds,5 and that q(λ) is
concave [41]. Hence, q(λ) can be maximized using the
standard (sub)gradient ascent method with fixed step, i.e.,

λ(t+1) =
[
λ(t) + α

(
Ax(t) + b̄

)]+
, (9)

where x(t) ∈ arg minx∈X L(x,λ(t)) and α > 0.
Now, observe that update (9) has a queue-like form, and

that if we replace b̄ by a random variable b(t), and x(t) by
y(t) we can write

µ(t+1) =
[
µ(t) + α

(
Ay(t) + b(t)

)]+
. (10)

with λ(1) = µ(1). Further, if we divide µ(t) by α we have

Q(t+1) =
[
Q(t) +Ay(t) + b(t)

]+
, (11)

yielding the queue updates as given in §3. This is equivalent
to having dual subgradient updates with perturbations. In
this case, these perturbations correspond to the noise intro-
duced by using instantaneous data arrivals b(t) instead of
the real mean b̄. The convergence of this method has been
established by Valls et al. in [38, Th. 1].

In this way, the connection between Problem 1 and
Problem 2 comes from Lagrange duality: boundedness of
the dual variables implies feasibility of the primal problem.
To understand this, let us consider the deterministic setting
for simplicity. In this case, the strong stability requirement
( 1
k

∑k
t=1 E(Q(t)) ≺ ∞) corresponds to the queues being

bounded for all k. From the dual subgradient we can write

4. We refer the reader to §2 in [38] for a more detailed explanation.
5. This is always the case when the Slater condition is satisfied, i.e.,

there exists a point x ∈ X such that Ax+ b̄ ≺ 0
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λ(k+1) =
[
λ(k) + α(Ax(k) + b(k))

]+
� λ(k) + α(Ax(k) + b(k)).

Applying the latter recursion from λk to λ(1) we have that

λ(k+1) � λ(1) + α
k∑
i=1

(Ax(i) + b(i))

Next, divide by αk and use the fact that λ(1) = 0 (for
simplicity) to obtain

λ(k+1)

αk
� 1

k

k∑
i=1

(Ax(i) + b(i)) = A
1

k

k∑
i=1

x(i) +
1

k

k∑
i=1

b(i).

Now, as long as the difference ‖λ(k) − µ(k)‖2 = ‖λ(k) −
αQ(k)‖2 is uniformly bounded, we will have bounded
Q(k+1) provided λ(k+1)/α is also bounded. Therefore,
when k → ∞, we have that Ax̄ + b̄ � 0, being b̄ :=
limk→∞

1
k

∑k
i=1 b

(i) and x̄ := limk→∞
1
k

∑k
i=1 x

(i). Hence,
we have the feasibility condition of Problem 2 as a result of
the queues being bounded. For the sake of conciseness, we
omit the details for the stochastic case (we need to show that
E
[
λ(k)

]
increases at most at a rate O(

√
k)) and instead refer

the reader to [38, claim (iii)-(iv), Theorem 1]. Nonetheless,
the rationale is the same as in the deterministic case.

As a result, the solution to Problem 2 provides a real-
valued vector x indicating the fraction of time each link
should be selected to solve Problem 1. Since X ⊆ conv(Y ),
we can always write x as a convex combination of points
in Y and so devise an online algorithm that builds se-
quences satisfying x. Let us illustrate this with an example.
Imagine a BS with a single RAT, two users, and a single
MCS available for both users. Assume that, at each slot,
at least one packet arrives for each user. In this case, the
solution to Problem 2 is obviously x = [0.5, 0.5]T (i.e.
equal share of time to both users). Then, 〈y1,y2,y1,y2, . . . 〉
where y1 = [1, 0]T and y2 = [0, 1]T is evidently the
corresponding solution to Problem 1 (e.g., if T = 4,
x = 1

4 (y1 + y2 + y1 + y2)). If, for instance, y1 is not
admissible in the first two slots, then, the admissible se-
quence 〈y2,y2,y1,y1, . . . 〉 will be a solution to Problem 1.
While these discrete sequences can be found for this simple
example in a trivial manner, it becomes a hard combinatorial
problem to find them in more complex setups.

For all the above to hold, however, we need that (i)
b(t) is an i.i.d. stochastic process with finite variance and
mean b̄ (i.e., limt→∞

1
t

∑t
i=1 b

(i) = b̄), and (ii) the difference
‖
∑t
i=1 x

(i) − y(i)‖2 is uniformly bounded. We will assume
the former requirement is met and focus on designing an
algorithm that satisfies the latter.

4.1.2 Design of the Objective Function
Our goal is to design a objective function f that balances
infrastructure/operator cost and user satisfaction. To this
aim, we map each flow iwith a different utility Ui(ρi) where
ρi is the i’th element of ρ := Ax = [ρ1, . . . , ρ2N ]

T . We
consider three types of utility. The first one is

Ui(x)=gi(ρ) :=
1 + eaibi

eaibi

(
1

1+e−ai(ρ−bi)
− 1

1+eaibi

)
,

(12)

a normalized sigmoidal-like function for delay-sensitive
flows, where ai and bi are parameters. For example, when
ai ≈ bi ≈ ρ this function is a good approximation to a
step function for voice traffic with rate requirement ρ; and
when ai � ρ � bi it can be used to model the utility of
adaptive real-time applications with mean rate ρ [42]. The
second utility function we consider is

Ui(x) = hi(ρ) :=
log (1 + ci · ρ)

log (1 + ci · ρ̂)
, (13)

which is useful for elastic (delay-tolerant) flows. Parameter
ρ̂i is the maximum aggregated throughput achievable in the
system, and ci is the satisfaction growth rate per ρ allocated.
Finally, we also consider

Ui(x) = 1, (14)

which captures the case where flows do not require QoS
guarantees.

In addition, we want to give operators flexibility in the
way their infrastructure is utilized. For instance, an operator
may want to aggregate system load into the minimum
possible subset of RATs in order to save costs. This can be
done by assigning a weight wr,m on each PRB allocated
in RAT r when modulated with index m. Although, we
advocate for a simple linear cost function to accommodate
operator preferences, any convex function can be supported.
The resulting objective function is the following:

f(x) = ηwTx− 1

N

N∑
i=1

log (Ui(x)) (15)

where η ≥ 0 is a parameter that controls the relative
importance of system cost reduction against overall utility
satisfaction. That is, for a given η, a solution x∗ to Prob-
lem 2 corresponds to a point in the Pareto optimal trade-
off between utility satisfaction and cost minimization. For
example, by setting η = 0 we would only consider QoS
satisfaction irrespective of how the infrastructure is used.

The convexity of (15) is proved in the following lemma.

Lemma 1. Function f(x) in Eq. (15) is convex for x � 0.

Proof: We proceed by showing that f is the sum of
two convex functions. The first term, ηwTx, is linear in x
and so convex. We study three cases for the second term:

(i) (Ui(x) is equal to (12)). Let c := (1 + eaibi)(eaibi)−1,
d := eaibi and note that they are both strictly positive
for any ai, bi ∈ R. With these change of variables and
after some manipulations we can write

− log(gi(ρ)) := − log(c)− log

(
eaiρ

eaiρi + d
− 1

1 + d

)
.

The first term on the RHS of the last equation is a
constant, and the second term is the composition of
a convex non-increasing function (i.e. − log) with a
non-negative concave function, and so convex [41].

(ii) (Ui(x) is equal to (13)). This case is immediate since
− log(gi(ρ)) is, again, the composition of a convex
non-increasing function with a concave function [41].

(iii) (Ui(x) = 1). The function does not depend on x and
so it is constant.
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Fig. 6. Three RATs with capacity 32, 8, and 4 PRBs, respectively, per
time×bandwidth, like the example shown in Fig. 3a. One VRB in RAT 1
contains four PRBs with equal allocation. One PRB in RAT 3 contains
two VRBs which must have equal allocation.

4.2 LaSR Scheduling Algorithm

We now present the main contribution of our paper: an
online algorithm that selects optimal discrete actions based
on the previous model. We remark that, while some prior
work on scheduling problems relies on non-trivial approx-
imations of the convex formulation presented earlier, our
algorithm strictly maps fluid actions into optimal discrete
actions preserving stability guarantees.

The goal of our algorithm is to solve Problem 1, i.e., (i)
to make discrete actions y(t) ∈ π that preserve convergence
and stability, and (ii) to include restrictions on how actions
are taken. The latter is required to give us enough flexibility
to make admissible choices that accommodate real-system
constraints including (but not limited to):

(i) Protocols to signal users their resource assignments
may trade off granularity with reduced overhead, im-
posing constraints on how actions can be taken, e.g.,
PRBs may be grouped—see Fig. 2 in §2;

(ii) If we decide to turn off a RAT, we need to guarantee
that subsequent actions do not schedule resources on
the deactivated RAT for at least the amount of time
required to turn it back on again. The same applies
when a specific modulation is not available due to e.g.,
fading, or when a RAT is unavailable due to an off
cycle when operating in unlicensed spectrum;

(iii) Finally, the heterogeneity across RATs in the mapping
between VRBs and PRBs may also require schedul-
ing restrictions.6 This is illustrated in Fig. 6 with an
example depicting 3 RATs with capacity 16, 8, and 4
PRBs, respectively, per time×bandwidth unit. In this
case, one VRB maps exactly one PRB in RAT 2. This
implies that one VRB in RAT 1 contains 2 PRBs with
equal allocation (with some loss in granularity in this
case), and that one PRB in RAT 3 contains 2 VRBs,
which shall have equal allocation, i.e., a sequence π =
〈. . . ,y(t),y(t+1), . . . 〉 that makes a different schedule
choice in two consecutive VRBs t and t + 1 in RAT 3
(containing one PRB) would not be admissible, π /∈ Π.

Classic stochastic control approaches [35]–[37] do not pro-
vide enough flexibility to adapt to this type of real-system
constraints in a trivial manner. We therefore resort to a new

6. This mapping is a design choice that depends on the computational
capacity available, e.g., a VRB may contain several PRBs spanning
longer time slots to alleviate computational burden. Importantly, the
design of our algorithm adapts to this choice with no loss in optimality.

Algorithm 1 LaSR algorithm

1: W :=
[
y1, . . . ,y|Y |

]
. Collection of points in Y

2: E :=
{
e1, . . . , e|Y |

}
. |Y |-dimensional standard basis

3: U := conv(E) . Convex hull of E
4: δ(1) ← 0
5: λ(1) ← 0
6: for each slot t = 1, 2, . . . do
7: SET-STATE

(
t, δ(t)

)
. Activate/deactivate RATs

8: x(t) ← SOLVER
(
λ(t)

)
. Solution to Problem 3

9: u(t) ∈ arg minu∈U ‖x(t) −Wu‖22
10: Ê(t) ⊆ E . Current available set of actions

11: e(t) ∈ arg min
e∈Ê(t)

‖δ(t) + u(t) − e‖∞

12: δ(t+1) ← δ(t) + u(t) − e(t)

13: λ(t+1) =
[
λ(t) + α

(
Ax(t) + b(t)

)]+
14: y(t) ←We(t) . Discrete solution
15: end for

technique based on low-complex convex optimization that
lets us decouple the choice of subgradient from the selection
of a (discrete) control actions [38]. This is important because
we can design scheduling policies that provably converge to
an optimal point without having to specify the nature of the
underlying system constraints. In this way, we can design
a single supple algorithm that jointly handles all aforemen-
tioned practical limitations in a general yet effective manner.

To start, let us define W := [y1, . . . ,y|Y |], E :=
{e1, . . . , e|Y |}, where W is a collection of all points in Y
(as column vectors), and ei is an |Y |-dimensional standard
basis vector, i.e., all elements of vector ei are equal to 0
except element i which is equal to 1. Since we can write
any point x ∈ X as a convex combination of points in Y ,
i.e., x = Wu, u ∈ U , there always exists a vector e ∈ E
such that y = We. Vector u can be obtained by computing
arg minu∈U ‖x −Wu‖22. Then, by [38, Th. 2], for any se-
quence 〈u(t)〉 of points from U , there exists a sequence 〈e(t)〉
of points from E such that ‖

∑t
i=1 u

(i)− e(i)‖2 is uniformly
bounded. With this in mind, our job is to find a method that
constructs sequences of discrete actions 〈e(t)〉 that satisfies
the aforementioned condition while being admissible at the
same time.

We present our approach in Algorithm 1. We use two
auxiliary vectors: λ(t) and δ(t) ∈ R|Y |. λ(t) is used in the
subgradient method solving Problem 3. δ(t) maintains the
aggregate deficit or surplus of fluid actions taken when
mapping x(t) to y(t) and it is the key to accommodate practi-
cal system constraints and the mapping of VRBs into actual
physical resources with no loss in optimality. In step (7),
function SET-STATE() (de)activates one or more RATs if
needed. Different policies can be applied. For instance, if
a RAT is not allocated data between slot t and slot t + T
(i.e., δ is equal to zero on links related to a RAT during
this window of slots) then we can deactivate it. Conversely,
if one or more links related to a RAT in δ(t) at any slot t
become nonzero, this RAT needs to be restarted. This policy
is shown in Algorithm 2. In step (8) we use a standard
solver for Problem 3 with λ = λ(t) to obtain the optimal
(fluid) schedule x(t) at this time. We then map x(t) into a
feasible u(t) such that x(t) = Wu(t) in step (9). This can be
computed by solving a linear system of equations (see [41,
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Algorithm 2 Activation/Deactivation algorithm
1: procedure SET-STATE(t, δ)
2: T ∈ Z+ . Epoch interval to make sleep decisions
3: C ∈ {0, 1}R×L . C maps links to RATs
4: m ∈ {0, 1}L , m̂ ∈ {0, 1}L
5: m← 0L

6: for i ∈ {1, . . . , |δ|} do
7: ε← 0|δ|

8: εi ← δi
/* Function 1(·) returns 1 if (·) is true and 0 otherwise. m is an
L-dimensional vector where the i’th element is 1 if some resources are
debited to link i. */

9: m←m ∨ 1 (Wε � 0) . ∨ is the OR operator
10: end for

/* m̂ is an L-dimensional vector where the i’th element is 1 if link i has
not been used within the current T -interval */

11: m̂← m̂ ∧ (¬m) . ∧/¬ are AND/NOT operators
/* RATs (in sleep state) required for allocation are awaken. */

12: SET-AWAKE(1(Cm � 0))
/* Every epoch, all RATs that have not been required within the T -
interval are sent to sleep. */

13: if t (mod T ) = 0 then
14: SET-SLEEP(1(Cm̂ � 0))
15: m̂← 1L

16: end if
17: end procedure

§6.2]). Now, in step (10), we let Ê(t) := {e1, . . . , e|A(t)|}
be a set containing all basis vectors such that an admissible
action at time t y ∈ A(t) is equal to y = We with e ∈ Ê(t).
As we explained above, the set of available actions A(t)

depends on the RAT and the nature of action unavailability
(e.g., a CQI report indicating a modulation is not currently
available, an unlicensed MAC controller alerting the current
slot corresponds to an off period, a hardware controller
notifying a RAT is not yet activated, or our DCI mapper
indicating of some signaling constraints). Note also that,
based on the previous step, Ê(t) will not contain any action
i that involves the deactivated RAT while the RAT is off or
during the time it takes for the RAT to be fully operational
after the activation process is started. We also use Ê(t) to
support RATs with heterogeneous capacities in terms of
available PRBs per time×bandwidth unit. For instance, in
the example of Fig. 6 (and Fig. 3a), we should not include in
Ê(t), in slots {2, 4, 6, 8}, any action that implies an allocation
on RAT 3 different than the one in slots {1, 3, 5, 7}, respec-
tively. This allows us to apply our homogeneous model
based on VRBs onto a heterogeneous multi-RAT system
based on PRBs, with no loss in optimality. Note that if all
links (all modulation levels and all RATs) are available at
this time, δ̂

(t)
= δ(t) and û(t) = u(t). Then, in step (11), we

select an action out of the currently admissible set of actions
Ê(t) by computing e(t) ∈ arg mine∈Ê(t) ‖δ(t) + u(t) − e‖∞
Finally, steps (12) and (13) maintain the surplus/deficit of
fluid resources by computing δ(t+1) =

∑t
i=1 u

(i)−e(i), and
update the Lagrange multipliers based on current queue
states b(t), respectively. Finally, the current action is selected
in step (14) by computing y(t) = We(t).

4.3 Performance Analysis

As explained above, it is important that Algorithm 1
preserves that ‖

∑t
i=1 u

(t) − e(t)‖2 is uniformly bounded.
We prove this in the next lemma, which is an extension of
[38, Theorem 5] to consider a time-varying action set.

Lemma 2. Let Ê(t) ⊆ E be a set that maps the admissible control
actions at time slot t. Suppose the number of consecutive slots
during which an action is not available in Ê is upper bounded by
σ ≥ 0. Then Algorithm 1 keeps difference ‖

∑t
i=1 u

(i) − e(i)‖2
uniformly bounded for all t.

Proof: We take as a starting point the result of The-
orem 5 in [38]. This lemma says that for two arbitrary se-
quences of actions from U and E we always have ‖δ(t)‖2 ≤
γ(t)

√
|Y |(|Y | − 1), where γ(t) := −minκ∈{1,...,|Y |} δ

(t)
κ .

We want to show that by selecting actions from the con-
strained set Ê(t), we can construct a sequence that keeps
γ(t) bounded.

We first show that a set Ê(t) satisfying the conditions
of the lemma always exists. Observe that for any vectors
u(i) ∈ U and e(i) ∈ E we have that 1Tu(t) = 1Te(t) = 1
with all elements of u(t) and e(t) being nonnegative. Also,
since δ(t) =

∑t
i=1 u

(i)−e(i), then 1T δ(t) = 0, and therefore
δ(t) is either (i) a vector where all components are zero, or
(ii) has at least one element that is strictly positive (and one
strictly negative). That is, δ(t)

κ ≥ 0 ≥ −σ for at least one
κ ∈ {1, . . . , |Y |}, and so it is sufficient for set Ê(t) to contain
an action eκ to satisfy the condition of the lemma.

We are now in position to show that the greedy update
e(t) ∈ arg mine∈Ê(t) ‖δ(t) +u(t)−e‖∞ keeps γ(t) uniformly
bounded. First, observe that if Ê(t) = E then e(t) is chosen
to decrease the largest component of vector (δ(t) + u(t)) by
1, and when Ê(t) is a subset of E we will have the same
behavior but with the restriction of the actions available.
Hence, if δ(τ)

j ≥ −γ(τ) ≥ −(σ + 1) at some τ ∈ N for all
j ∈ {1, . . . , |Y |}, our update will select an action from Ê(τ)

such that δ(τ+1)
j ≥ −γ(τ) ≥ −(σ+1). That is, γ(t) ≤ σ+1 for

all t ≥ τ . To conclude, observe that since δ(t)
j = 0 ≥ −(σ+1)

when t = 1 we will have that γ(t) is bounded for all t ≥ 1.
The above lemma proves that Algorithm 1 guarantees

that ‖
∑t
i=1 u

(t) − e(t)‖2 is uniformly bounded while the
following theorem proves the optimality of our algorithm
to solve Problem 1.

Theorem 1 (Optimality of Algorithm 1). Algorithm 1 pre-
serves

∥∥∥∑t
i=1Ax

(i) −Ay(i)
∥∥∥

2
uniformly bounded.

Proof: Recall that x(t) = Wu(t) and y(t) =
We(t); then the absolute error of data units allocated
to each user is bounded by

∥∥∥∑t
i=1Ax

(i) −Ay(i)
∥∥∥

2
≤

A‖W ‖2
∥∥∥∑t

i=1 u
(i) − e(i)

∥∥∥
2

Then, it is easy to see that, from
Lemma 2, Algorithm 1 guarantees that∥∥∥∥∥

t∑
i=1

Ax(i) −Ay(i)

∥∥∥∥∥
2

≤ Aγ(t)‖W ‖2
√
|Y |(|Y | − 1) (16)

is uniformly bounded.
The above theorem proves that LaSR guarantees a

scheduling policy π = 〈y(t)〉 within a ball around the opti-
mal fluid solution. In this way, Algorithm 1 solves Problem 1
by processing a series of polynomial complex tasks in each
slot, dominated by the complexity of the convex solver of
choice to execute step (8) and (9) (O(

√
Lln(1/ε)) [43] in

case of an interior-point method) plus that of the sorting
algorithm used to execute step (11) (O(L logL)).
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5 PERFORMANCE EVALUATION

In this section we illustrate the most important features
of LaSR via simulations in a plurality of scenarios. As a
benchmark, we will use in some of our experiments an ideal
scheduler that is allowed to make (optimal) unconstrained
fluid scheduling actions, obtained by directly applying the
solution to Problem 3, and the Queue Side Greedy (QSG)
PRB scheduling algorithm proposed in [21] which, to the
best of our knowledge, is the only work with carrier ag-
gregation support comparable, in its applicability to real
systems, to ours (see §2 for related literature and how it
differs to our work). The approach of [21] is however a
heuristic with no performance guarantees. QSG is designed
to minimize head-of-line (HOL) delay, so that it allocates
resources first to those users with longer waiting time.

For simplicity, and unless otherwise stated, we carry out
most of our tests in a scenario with 3 heterogeneous RATs
with fixed bandwidth of 10 MHz (e.g. an LTE macro-cell),
5 MHz (e.g. an LTE small-cell) and 20 MHz (e.g. a mmWave
cell), respectively. Without loss of generality, we assume
LTE numerology for all RATs: PRBs are 180KHz/slot—50,
25, and 100 PRBs/slot, respectively (some subcarriers are
used for control) and one transmission time interval (TTI) is
1 ms. Each VRB contains 1, 0.5 and 2 PRBs, respectively. We
also impose 8 and 1280 ms delay to activate and deactivate,
respectively, a non-primary RAT (see [44]).7 Finally we use
the next cost vector w in most of our simulations:Macro 1

Small 2
mmWave 6

 bit−1. (17)

The rationale behind this choice is to illustrate a hierarchical
preference when activating RATs: we favor the assignment
of resources from the “Macro” first (the primary RAT),
“Small” second, and finally “mmWave”. These costs are
selected for illustration purposes only; they can be tuned
depending on the actual deployment.

Our goal in the sequel is to assess the ability of LaSR to:
1) Stabilize queues (maximize throughput) regardless of

arrival user traffic patterns (§5.1);
2) Find an optimal solution to Problem 1 in heterogeneous

multi-RAT systems (§5.1, §5.2) with QoS guarantees
(§5.3, §5.4) and practical constraints (§5.8);

3) Balance system/operator costs (§5.1, §5.2) and user
preferences (§5.3, §5.4);

4) Converge quickly upon changes on the network (users
joining/leaving the system in §5.2, §5.3 user mobility in
§5.5), and upon imperfect information (§5.6);

5) Accommodate practical considerations such as variable
and uncertain bandwidth (§5.7) and constraints on the
way scheduling actions shall be taken (§5.8, §5.9).

5.1 Heterogeneous static scenario
We start with the simple 3-RAT heterogeneous scenario
introduced above with 5 traffic classes where users are
located such that the average channel conditions between
users and RATs are identical for all users. In addition, in

7. RAT (de)activation involves only its PHY layer as the MAC and
remaining upper layers are common across the multiple RATs of the
BS, i.e., we do not consider (de)activation of the whole BS.
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Fig. 7. Relative PRB utilization in a 10-MHz LTE eNB during 24 hours in
a weekday in an office environment in Heidelberg, Germany.

this example we do not enforce QoS criteria across flows,
that is, Ui(·) = 0 for all flows. For clarity of illustration, we
allow a reduced set of 3 MCS indexes for each RAT:


m0 m1 m3

Macro 0.2344 2.1602 5.5547
Small 0.2344 2.1602 5.5547
mmWave 0.5 2.0 4.875

 bps/Hz.

This limited set allows us to build very simple scenarios
which will help us to better understand the features of our
algorithm. The modulations for the macro and the small-
cell are a subset from LTE’s modulation and coding scheme
(MCS) indexes {0, 14, 28} [45], respectively, and the modu-
lations used for the mmWave RAT, {0, 9, 23}, are obtained
from a subset proposed by EU project MiWEBA [46].

The goal of this test is twofold. First, to validate that
LaSR stabilizes all queues up to reaching the boundary
of the system capacity8 regardless of the traffic pattern
(Fig. 8), i.e., it maximizes throughput. Second, to show that
LaSR performs optimally, according to our cost function,

8. We define capacity as the maximum aggregate bitrate achievable
in the system, i.e. using all RATs at highest modulation schemes.
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Fig. 8. Heterogeneous scenario with different traffic distributions. Delay
experienced by each user.
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1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2876847, IEEE
Transactions on Mobile Computing

J
o

in
in

g

e
ve

ry
 1

0
0

m
s

L
e

a
v
in

g

e
v
e

ry
 1

0
0

m
s

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (ms)

R
A
T

 u
ti
liz

a
ti
o

n

_
LaSR Unconstrained optimal

Macro (10 MHz) Small (5 MHz) mmWave (20 MHz)

(a) Relative usage of PRB resources of each RAT over time.

(b) State and MCS of each PRB and time slot for all RATs.

Fig. 10. Users join and leave every 100 ms. Costs defined in Eq. (17)

in all load regimes (Fig. 9). As an example, we use four
synthetic patterns with mean load b̄i to model the arrival
of user data, namely “normal1” for a normal distribution
b(t) ∼ N (b̄i, 10) bits/TTI, “normal2” for a normal distri-
bution b(t) ∼ N (b̄i, 100) bits/TTI, “poisson” for a Poisson
distribution b(t) ∼ P(b̄i) bits/TTI, and “uniform” for an
uniform distribution b(t) ∼ U(0, 2b̄i) bits/TTI. For com-
pleteness, we have also included a scenario where each user
gets a different share, equal to {10, 15, 20, 25, 30} percent of
the aggregate load each, following a Poisson distribution,
and labelled as “poisson2”. In addition, we collected 24-
hour traces of traffic from a 10-MHz LTE eNB near NEC
premises in Heidelberg, Germany, during a weekday. The
relative PRB utilization of the eNB over time is depicted in
Fig. 7. To this means, we have used owl, an LTE control
channel decoder built on top of srsLTE, an open source
LTE library for software defined radio [47], [48]. For this
experiment, we have selected a 10-min sample with mean
load equal to 13.14% relative to the capacity of our 3-RAT
scenario and use this data as a fifth traffic pattern, labeled
as “Heidelberg”. In order to use this data for different
loads, we have scaled up/down the individual loads with a
proportional factor.

Fig. 8 depicts the mean and median user delay for differ-
ent aggregate mean loads (relative to the system capacity)
and traffic patterns. We can observe that the average delays
are bounded for all load regimes, regardless the traffic pat-
tern, validating our stability guarantees. Note moreover that
the delay performance is very similar across distributions
except for the traces we have collected (“Heidelberg”). The
reason is that, as depicted in Fig. 7, the arrival process is
very bursty, with very low load most of time and very short
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Fig. 11. Users join/leave every 100 ms. Costs defined in Eq. (18)

instances with very high load, leading to an increase in
mean delay, while its median is contained. It is also worth
remarking that we have not specified any QoS criteria across
users in this experiment, which we evaluate later on.

Furthermore, Fig. 9 depicts the mean relative utilization
of each RAT. In this case, we also compare the performance
of LaSR with an ideal scheduler that is allowed to make
(optimal) unconstrained fluid scheduling actions (labelled
“Unconstrained optimal”). The latter has been obtained by
directly applying the solution to Problem 3 (which gives us
a benchmark to compare to). We observe that, according to
our costs, the macro-cell is preferred until the capacity of this
RAT is reached; then, the small-cell is activated. Note that
the capacity of the small-cell is quickly reached and then
the mmWave RAT is activated. This behavior is however
different for “Heidelberg” trace. The reason is that the short
bursts of very high load cause the system to fully use all
RATs during the peak and leave them practically unused
during the rest of the time. Remarkably, the results for LaSR
follow very closely those of the ideal “Unconstrained opti-
mal” scheduler, validating the optimality of our scheduler.
We do not show results for QSG in this experiment because
QSG does not consider RAT deactivation nor does it support
setting preferences on the utilization of RATs.

5.2 Users joining and leaving

Hereafter, for simplicity, we will use the “poisson” model.
The next experiment evaluates how quickly the controller
adapts when users join and leave the system and illustrates
the effect of different operational costs. We deploy the
scenario with the 3 heterogeneous RATs we used earlier; in
this case, however, the users (with the same homogeneous
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Fig. 12. Static setup with a mix of elastic and inelastic flows. Mean delay
for each user type (inelastic vs. elastic) for different loads

channel characteristics as before) join and leave at different
times. From t = 0 without any user present, new users
join the system every 100 ms (very fast) leading to a load
increment of 2.5% of the total capacity. Then, a short time
after the capacity boundary is reached, users start leaving at
the same pace they arrived.

Fig. 10a depicts the mean RAT utilization, i.e., relative
number of PRBs allocated in each RAT, as time evolves (and
users join and leave) for LaSR (with colored lines) and the
ideal benchmark “Unconstrained optimal” used before. We
first note that there is a perfect match between LaSR and the
benchmark and the system timely adapts to load changes
in the system as users join and leave. Secondly, we observe
that, according to the costs defined in Eq. (17), LaSR first
uses resources from “Macro” until it is fully loaded. Then
it begins assigning resources from “Small” which quickly
saturates due to the low bandwidth of this RAT and then
the scheduler starts using “mmWave”. This demonstrates
the flexibility of our approach to set system preferences.

Fig. 10b presents more detailed information of the same
experiment, namely, a grid with the state of each PRB and
RAT (y axis) as time goes on (x axis). Each element of the
grid (each PRB) is colored depending on its assignment:
black if the RAT is off, white if it is not assigned, and a
gradient between pale red if the PRB is modulated with
the lowest level available and bright red if the highest
MCS is used. Similarly to Fig. 10a, Fig. 10b illustrates how
both “Small” and “mmWave” are fully off until they are
really needed. It is worth remarking that in low to mid
load regimes, PRBs alternate between no assignment and
highest MCS (no gradient). This is because the costs defined
in Eq. (17) do not discriminate across MCS levels.

In contrast, Fig. 11 shows results with costs:


m0 m1 m2

Macro 1 5 10

Small 2 10 20

mmWave 6 30 60

 bit−1 (18)

Fig. 11a does not show a gradual increase of RAT utilization
but rather all PRBs are used as soon as the RAT is needed.
However, differently to the previous case, as depicted in
Fig. 11b, although all PRBs are used—even with low- mid-
load ranges—the MCSs (and therefore the transmission
power) used on these PRBs have low to medium levels.
In this way the traffic load is better distributed across all
the bandwidth and therefore the same amount of load is
processed with lower inter-cell interference as compared to
the case of Fig. 10. This illustrates the ability of our controller
to adapt to the preferences of each operator.
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Fig. 13. Dynamic setup with 3 non-QoS flow types until t = 5000 where
2 inelastic flow types join the system. Figure shows delay experienced
by each user as a function of time.

5.3 QoS with inelastic flows

We now evaluate heterogeneous QoS requirements in both
static and dynamic environments. First, in Fig. 12 we illus-
trate the delay of 5 different flows in the static setup of §5.1.
The difference now is that 2 of those flows have a sigmoidal-
like utility function with parameters a = 1 kbps and b
equal to their mean individual load. In addition, we set
η = 10−3 (see Eq. (15)). The results show how LaSR trades
delay off from non-QoS flows to favor QoS flows. Secondly,
we present in Fig. 13 a scenario where 3 non-QoS flow
types share the system until t = 5000 when 2 new QoS
flow types (with the same utility model as in the previous
case) join the system. Each flow demands 19% bitrate of the
overall capacity. The goal of this experiment is to show how
quickly the system adapts to the new environment with two
different traffic classes. We do not present results with QSG
because it does not support QoS differentiation.

5.4 QoS with elastic flows

In the next experiment we set up a scenario with 2 co-
located RATs with capacity 20 MHz each and 20 users
divided into two groups. The first group, with 10 users,
have poor average channel conditions, so they can only use
modulation indexes {11, 12, 13}, whereas the 10 users in the
second group have good average conditions and so can use
modulation indexes {21, 22, 23} [45]. The mean rate of each
flow is 1 Mbps. Our goal is to evaluate short- and long-
term fairness with elastic flows. To this aim we measure the
individual throughput achieved by each user (with equal
long-term mean data rate requirements) in different time
windows, and calculate Jain’s fairness index.9 Computing
a fairness index across short time windows helps us to
understand short-term fairness performance [50]. In Fig. 14

9. Jain’s fairness index is a well known metric to evaluate how
equitable a resource allocation is, spanning from 1 (equal share) to 1/n
where n is the number of users [49].
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Fig. 14. Jain’s Fairness Index [49] for user rates measured along dif-
ferent time windows. Short(long) time windows represent a measure of
short(long)-term fairness.
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Fig. 15. A set of 5 traffic flows jointly moving from RAT 1 to RAT 2. Figure
shows average number of PRBs relative to the bandwidth of each RAT
over time (top) and mean throughput per RAT and aggregate (bottom).

we compare the performance of LaSR when we use loga-
rithmic utilities (with ci = 100) for all flows in the system
(labeled as “log utility”) and when we do not use any utility
(labeled as “no utility”). The results show how we achieve
high index fairness for “log utility” across all time windows,
whereas “no utility” results in very poor short-term fairness.
Note that “no utility” also achieves high long-term fairness
because our algorithm guarantees that the (long-term) mean
demand of all flows is met. We do not show results for QSG
because it does not support elastic flows.

5.5 Users moving
We present next a mobility experiment with two RATs (e.g.
small-cells) with identical bandwidth. Both RATs use non-
interfering and partially overlapping 10-MHz bands and we
set an VRB equal to one PRB. We simulate a scenario with
5 traffic classes where users move together (e.g. a train car)
from the proximity of RAT 1 (t = 0) to the proximity of
RAT 2 (t = 12000) presenting an aggregate traffic demand
of 6.5 Mb/s. In t = 0 users’ best MCS index with RAT 1
is 28 (from LTE specification [45]) and there is no coverage
from RAT 2. Users move such that at t = 12000 we have the
reverse setup (no coverage from RAT 1 and up to MCS index
28 with RAT 2). In t = 6000 the wireless link only allows
users to use MCS index 12 from either RAT to simulate that
the crowd is at cell border, that is, same channel conditions
towards either RAT.

We depict in Fig. 15, for both QSG and LaSR, the mean
RAT utilization (top), the mean rate provisioned per RAT
(bottom, blue and red) and the mean aggregate throughput
demanded by the crowd (bottom, green). Fig. 15b evinces
that both algorithms satisfy the throughput requirements
of the system (around 6.5 Mb/s of aggregate throughput).
However, as revealed by Fig. 15a, QSG achieves this at the
cost of higher RAT utilization due to its greedy nature. In
contrast, LaSR gracefully balances the load between the two
RATs as needed, and minimizes the allocated resources with
no compromise in throughput.
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Fig. 16. Mean user queue size in a static scenario with delayed backlog
information equal to δ.

5.6 Imperfect information
We next assess the robustness of LaSR to imperfect backlog
information. We set up again the same scenario we used
in §5.1, with three heterogeneous RATs and different mean
users loads. In this case, however, the backlog information
provided to the controller suffers from some delay δ, e.g.,
caused by the latency of signaling this information from
distributed RATs to the controller in an uplink environment.
We then plot in Fig. 16 the temporal evolution of the mean
queue size of each user for both LaSR and QSG and different
mean loads. We observe from the figure how performance
worsens as control information gets delayed and mean load
increases. In addition, we can see that QSG is very sensitive
to delayed information regardless of the load in the system.
In contrast, LaSR barely suffers of performance degradation
at low- and mid-load regimes and convergence is very quick
(a few milliseconds) in most cases.

5.7 Variable and uncertain bandwidth
We now set an experiment with two RATs and 10 traffic
types. RAT 1 has a bandwidth that varies every TTI uni-
formly at random between 0-10 MHz. This allows us to
emulate a RAT operating in an unlicensed channel governed
by a duty-cycle access mechanism; see LTE-U CSAT [51].
RAT 2 has fixed bandwidth of 10 MHz (e.g. a macro cell
operating in a licensed band). We set an VRB equal to one
PRB. The aggregate mean traffic demand is 50% of the
capacity of RAT 2 (around 40 Mb/s of aggregate load). In
addition, cost vector w is set so that RAT 1 (illustrating an
unlicensed band) is preferred,(

RAT 1 1
RAT 2 100

)
bit−1.
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Fig. 17. A cell with 2 RATs and 40 users. RAT 1 has variable bandwidth
uniformly distributed between 0 and 10 MHz. RAT 2 has fixed bandwidth
with 10 MHz. Box and whiskers show the relative PRB utilization of each
RAT (left) and aggregate and per-RAT throughput (right). Mean values
are represented with dots.
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Fig. 18. Mean RAT load as a function of ν (groups of PRBs that are
constrained to equal schedule choice).
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Fig. 19. Mean user delay as a function of ν (groups of PRBs that are
constrained to equal schedule choice).

and users are located homogeneously with the highest
modulation index for an LTE RAT (28) for both RATs. We
compare in Fig. 17 the performance of both QSG and LaSR in
one random instance that lasts 10 seconds (RAT 1’s band-
width oscillates every TTI). The left-hand plot depicts box
and whiskers of the relative utilization of each RAT (RAT
1’s results are relative to the maximum bandwidth) and the
right-hand plot shows the throughput provided by each of
the RATs and the aggregate (“Total”). The mean values are
represented with dots. The results illustrate how LaSR is
capable of satisfying the user demands with much fewer
resources from RAT 2 (which simulates a licensed band)
as compared to its benchmark, which, perhaps surprisingly
(given that the load equals half of the capacity of that RAT),
employs 100% of the resources of RAT 2 at all times. The
reason lies upon the greediness of QSG, which assigns data
into PRBs even when there is not enough data to fill up a PRB, i.e.
padding is required. The figure clearly illustrates the penalty
of using such greedy approaches when demand is low. On
the contrary, as shown in Fig. 17a, LaSR achieves a better
balance between the two RATs.

5.8 Scheduling constraints

One of the main advantages of LaSR is its ability to consider
practical scheduling constraints, e.g., the way scheduling
information is propagated to users (see §1). In order to
illustrate this, we analyze the same scenario as in §5.1, upon
different degrees of granularity in the way we can make
scheduling choices (for example due to the utilization of a
constrained signaling protocol). To this aim, we define ν as
the amount of VRBs in our system, so that, depending on the
RAT capacity, it indicates the amount of PRBs that must have
the same assignment and modulation within a TTI. For instance,
ν = 50 indicates that the macro RAT (with 50 PRBs) can
assign each PRB individually (maximum granularity), while
the mmWave-based RAT (with 100 PRBs) is forced to make
identical choices every two consecutive PRBs. On the other
hand, ν = 1 forces LaSR to make the same scheduling choice
for all PRBs within one TTI (lowest granularity).
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Fig. 20. Mean number of simplex iterations per VRB to solve Problem 3
as a function of the number of secondary RATs and mean load.

In Fig. 18 and Fig. 19 we compare, respectively, the
utilization of physical resources and mean delay when using
LaSR and the greedy scheduler, QSG, for different mean
loads and ν values. In particular, the configurations labeled
as “LaSR” and “LaSR2” use costs hundredfold and fourfold
greater than that in Eq. 17, while “LaSR3” keeps the same
configuration as in §5.1. The cost selected for configuration
“LaSR” targets saving RAT resources (at the price of delay)
whereas the others seek to gradually improve delay (at the
price of higher physical resource usage).

The results evince that, while QSG tends to over-utilize
resources for low- and mid-load ranges, “LaSR” matches
better the utilization of physical resources to the mean de-
mand when required. Take, for instance, the case with 20%
of mean load (low load) and ν = 1 (lowest granularity). A
greedy scheduler like QSG uses 100% of physical resources
because its sole goal is to minimize delay and therefore
assigns data into PRBs as soon as possible. This causes that,
in case of ν = 1, padding is added in many PRBs, because they
must be scheduled (due the low granularity imposed in this
case) but there is no real data to be sent. In contrast, “LaSR”
is able to adapt the mean demand to the actual utilization of
resources at the cost of user delay. Note that, if alternatively
a better delay performance is sought, we can reduce the cost
of using physical resources (e.g. “LaSR2”), RAT utilization
can be traded off for lower delay with no resource wastage.

5.9 Scalability
Finally, we assess the scalability of Algorithm 1. The most
important factors in this regard are (i) the convex solver
of Problem 3 (step 8) and (ii) managing the set of actions
(step 10) that grows exponentially with the scenario density.
To evaluate this, we set up a scenario similar to the one in
§5.1, namely there is always one macro cell (primary RAT),
and we vary the number of secondary RATs (small-cells and
mmWave cells) between 1 and 30. This setup allows us to
assess worst-case scenarios with an LTE carrier aggregation
BS, where the maximum number of RATs allowed by the
3GPP specification is 32 [52], although in practice it is far
below.10 Moreover, the upcoming LTE and 5G modems for
user terminals will support up to 8 concurrent RATs (e.g.,
Qualcomm Snapdragon X24 chipset will support 7 RATs for
LTE and Snapdragon X50 will support 8 RATs for 5G).

To assess the first factor, Fig. 20 depicts the average
number of iterations per VRB that are required to solve
Problem 3. In the figure, the x-axis indicates the number
of secondary small-cells (from 1 to 15), the y-axis shows the
number of mmWave secondary RATs (from 1 to 15) and the

10. Moreover, given the larger bandwidth allocated to New Radio,
the maximum number of RATs supported by 5G BSs is 16 [52].
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heatmap color indicates the number of Simplex iterations.
Note that a primary macro-cell is persistently present and
we repeat the experiment for different mean aggregate user
loads. Because our objective function is linear in this case,
here we have adopt the Simplex method to solve Problem 3.
As can be observed, the system load is the main factor
that makes the algorithm complexity increase. In addition,
the density of RATs have also a remarkable impact on the
number of cycles to solve the problem. All in all, the number
of iterations remain rather low, below 30, even in saturation
conditions with the maximum number of RATs. Note that,
for the scenarios considered in this section, one iteration
takes less than 4 µs in a generic laptop with a processor In-
tel Xeon CPU E3-1241 v3 @ 3.50GHz. Regarding the second
factor, the memory required to allocate the (sparse) matrix
of available actions is 54 MB in the largest scenario shown
in the figure, with a total of 31 RATs and maximum load.
We can thus conclude that our approach can accommodate
real-life scenarios with mild complexity.

6 CONCLUSIONS

Network densification, built upon dense and heterogeneous
radio access technologies (multi-RAT systems) and multi-
connectivity technology, is expected to be key to supporting
the stringent requirements of next generation mobile sys-
tems (5G and beyond). The problem is that, with network
densification, radio resource scheduling becomes substan-
tially more complex. In this paper we introduced the design
of LaSR (Lagrange approximation Supple Radio controller),
a practical, yet effective, multi-connectivity scheduler for
multi-RAT systems. LaSR is based on a stochastic subgra-
dient method and a simple online algorithm that makes
optimal discrete control actions with no prior knowledge
on the user traffic patterns. As shown in the paper, the
suppleness of LaSR to accommodate real-system constraints
while guaranteeing system stability, and a good balance be-
tween system cost and individual utility satisfaction are its
main advantages over related work. Examples of constraints
evaluated in this paper include (but are not limited to):
heterogeneous RATs, delays to activate/deactivate RATs,
discrete sets of available modulations, constraints in the way
scheduling choices can be encoded onto signaling protocols
(LTE/NR’s DCI), imperfect available information, or duty
cycles when using unlicensed spectrum.
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