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Abstract

In order to better understand nonlinearity, a substantial number of methods
have been devoted to extract the stiffness and damping functions. Although
most identification methods are based on mathematical models, some promis-
ing methods rely mainly on the use of non-parametric techniques, by plotting
and adjusting the restoring force to displacement and velocity in the time
or frequency domains. However, the identification process in these methods
is limited to amplitude-dependence and the identification of nonlinearities
that depend on both frequency and amplitude is still required. This is the
reason why, in this paper, a nonparametric identification procedure is pro-
posed and an amplitude-frequency-dependent model is developed to predict
the system’s dynamic behavior under different working conditions. The pro-
posed approach is demonstrated and validated through number of numerical
examples with nonlinearities, typically encountered in common engineering
applications. Thereafter, this approach is implemented to determine the un-
known parameters of a metal mesh isolator from transmissibility data. An
application of this technique for identifying the nonlinearity of SDOF system
subjected to multi-harmonic excitation is also illustrated.
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1. Introduction1

In many engineering applications, numerous researches have investigated the2

dynamic properties of nonlinear systems via numerical analysis based on3

mathematical models. The main objective of the mathematical modeling is4

to enable the designers to provide a better understanding and characterisa-5

tion of a real system under different structural and loading conditions. Guo6

(Guo, 2012) evaluated the transmissibility of nonlinear viscously damped vi-7

bration system under harmonic excitation using a new method, based on the8

Ritz-Galerkin method. It has been implemented to investigate the effect of9

the damping characterization parameters on this system. Özer and Özgüven10

(Özer and Özgüven, 2002) used the describing function method to determine11

the nonlinearity location and evaluate the nonlinearity index by using the12

complete FRFs of the system (Özer et al., 2009) or the incomplete FRFs13

(Aykan and Özgüven, 2013). Al-Hadid and Wright (Al-Hadid and Wright,14

1989) proposed a method based on the implementation of force-state map-15

ping approach for the location of nonlinearity in discrete lumped-parameter16

system.17

In fact, there are various proposed system identification techniques in order18

to obtain more accurate mathematical models and correct prediction of dy-19

namic response. Identification methods, based on the linear system theory,20

have been widely applied in the mechanical vibration for many decays. For21

nonlinear systems, it is possible to use the model updating techniques which22

is developed for the linear systems to determine the dynamic characteristics23

of the system. However, the linearity assumption is not very suitable for24

identifying the dynamic characteristics of systems with strong nonlinearities,25

including the friction Coulomb-type. Thus, nonlinear system identification26

becomes crucial for nonlinear system modeling and several methods have27

been proposed to detect, localize, determine and identify the nonlinearity28

(Kerschen et al., 2006).29

Some promising identification methods will be briefly reviewed in this pa-30

per. A comprehensive review of the time domain methods for nonlinear31

identification is widely surveyed in the literature (Lin, 1990; Dittman, 2013).32
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One of the first methodologies of the temporal domain is the restoring force33

surface method developed by Masri et al. (Masri and Caughey, 1979) to34

analyze nonlinear systems in terms of their internal restoring forces. An-35

other time domain technique, the Hilbert transform is a well-known tech-36

nique used in many structural dynamics problems. Feldman showed that it37

can be applied FREEVIB approach (Feldman, 1994a) based on free vibra-38

tion and the FORCEVIB approach (Feldman, 1994b) on forced vibration to39

identify the instantaneous nonlinear model parameters during various types40

of SDOF excitation. Time domain methods are potentially appropriate for41

practical engineering applications, however, they are supported by numerical42

simulation results and still lack the experimental validation. An attempt to43

exploit the frequency-dependent data has been developed through the use44

of the Volterra (Volterra, 2005) and Wiener (Wiener, 1942) functional series45

to address the frequency domain identification of nonlinear systems. Over46

years, the Volterra series was expanded and the application has been rang-47

ing from animal and human biology to electrical and mechanical engineering48

(Schetzen, 1980). The Volterra series enable the direct generalization of the49

concept of linear response function and offer more intuitive system interpre-50

tation. Unfortunately, the analysis and design of the linear system cannot be51

used to achieve the nonlinear system characterization in frequency domain.52

A critical procedure during the implementation of the parametric methods is53

the way to obtain nonlinear response of a real structure. Most of these meth-54

ods are applicable to numerical examples and only a limited number of them55

are suitable for real nonlinear industrial structures with a complicated model.56

For more complex applications, the implementation of non-parametric iden-57

tification methods, where no priori information about the nonlinearity is58

required, is efficient; can accurately predict the real behavior by identifying59

the unknown coefficients through the application of a regression technique.60

The intend of (Carrella and Ewins, 2011) is to develop a frequency domain61

method that attempts to extract the stiffness and damping functions from62

measured data (Carrella, 2012) with no priori knowledge to the type of non-63

linearity. The method is particularly suitable for practical applications and64

implemented to extract the amplitude-dependent parameters of a commercial65

anti-vibration isolator (Mezghani et al., 2017). Nevertheless, this method is66

not free of limitations; it may fail when jump occurs and thus will not be two67

response points measured at the same amplitude of displacement vibration.68

These errors are introduced especially in the estimation of the damping.69

As mentioned previously, the identification methods still require an exten-70
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sion, especially for the non-linearities of damping, depending on both the71

amplitude and the frequency. There is need and scope to develop a simple72

technique that allows the extraction of amplitude-frequency-dependent struc-73

tural nonlinearities from measurements. The Equivalent Dynamic Stiffness74

Mapping technique was recently proposed by Wang et al. (Wang and Zheng,75

2016) and validated numerically and experimentally through examples. This76

technique has the inherent ability to deal with strong nonlinearities own-77

ing complicated frequency response such as jumps and breaks in resonance78

curves. However, this technique has also some limitations. The steady-state79

is pre-assumed as the identification is based on deterministic FRFs. More-80

over, the primary harmonic response is considered dominant, techniques in-81

cluding sub- or super- harmonics still need further investigation.82

Given the fairly limited literature, it can be concluded that there is need83

to develop a simple technique, which allows the extraction of amplitude-84

frequency-dependent parameters as well as the stiffness and damping func-85

tions from measurements. In this paper, a nonparametric identification pro-86

cedure is proposed and a amplitude-frequency-dependent model is developed87

to predict the system’s dynamic behavior under different working conditions.88

The method falls within the category of the single-degree-of-freedom (SDOF)89

modal analysis methods and the sub- or super- harmonics are considered.90

The proposed approach is validated through number of numerical examples91

with nonlinearities, typically encountered in common engineering applica-92

tions. Thereafter, this approach is implemented to determine the unknown93

parameters of a metal mesh isolator from transmissibility data. Finally, the94

assumption considering only the primary harmonic is extended to include the95

super and sub-harmonics, and an application of this technique to identify the96

nonlinearity of SDOF system subjected to multi-harmonic excitation is also97

illustrated.98

2. Identification of nonlinear system99

2.1. Methodology of identification: Formulation100

System identification methods can be classified on the base of their search101

space:102

103

(a) Parametric methods, which are used in parameter space, seek to deter-104

mine the value of parameters in an assumed model of the system to be105

identified.106
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(b) Nonparametric methods, which are used in function space, produce the107

best functional representation of the system without a priori assump-108

tions about the system model.109

The proposed identification method is considered as a nonparametric method.110

The equation of motion of the SDOF system Eq. (1) can be expressed in the111

form of Eq. (2).112

mẍ(t) + f(x, ẋ) = Fe(t) (1)

113

f(x, ẋ) = Fe(t)−mẍ(t) (2)

Since the acceleration and force signals are measured for a particular test114

and the mass is known, the restoring force f(x, ẋ) can be computed. The115

displacement x(t) and velocity ẋ can be found by direct measurements or116

through integration of ẍ(t).117

In the Harmonic Balance Method (HBM), the response of nonlinear system118

can be approximated in a truncated Fourier series, such as:119

120

x (t) = d0 +
N∑
n=1

An cos (nωt) +Bnsin (nωt) (3)

when using only the fundamental harmonic component, the response could121

be expressed as:122

x(t) = Xcos cos(ωt) +Xsin sin(ωt) (4)

with the Fourier coefficient calculated as:123

124

Xcos =
1

π

∫ 2π

0

x(t) cos(ϕ)dϕ

Xsin =
1

π

∫ 2π

0

x(t) sin(ϕ)dϕ

(5)

The Fourier expansion of the first derivation is:125

ẋ(t) = −ωXcos sin(ωt) + ωXsin cos(ωt) (6)

Due to the absence of cross-product terms, the restoring force is simply equal126

to the summation of two terms; displacement-dependent term, and velocity-127

dependent term.128

f(x, ẋ) = Keqx(t) + Ceqẋ(t) (7)
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Therefore, the restoring force can be obtained by Fourier expansion up to129

the first order as:130

131

f(x, ẋ) = Fcos cos(ωt) + Fsin sin(ωt) (8)

Replacing ẋ(t) and x(t) in Eq.(7) by their expressions in Eq. (4) and Eq.(6)132

yields:133

134

f(x, ẋ) = Keq Xcos cos(ωt) + Ceq ω Xsin cos(ωt)

+Keq Xsin sin(ωt)− Ceq ω Xcos sin(ωt)
(9)

Thus (from Eq. (8) and Eq. (9)),135 [
Fcos
Fsin

]
=

[
Xcos ωXsin

Xsin −ωXcos

] [
Keq

Ceq

]
(10)

Once the equivalent stiffness and damping, the excitation frequency and the136

displacement amplitude are obtained, the set of data are plotted as dis-137

crete points in the three-dimensional space. Then, the obtained stiffness and138

damping points are fitted to surface with specific polynomial function over139

the displacement and the frequency and the mathematical modes are defined.140

141

Kfit =

N1∑
i=1

N2∑
j=1

P stiff
ij Bstiff

ij (X,ω) (11)

142

Cfit =

N1∑
i=1

N2∑
j=1

P damp
ij Bdamp

ij (X,ω) (12)

where P stiff
ij and P damp

ij are unknown coefficients for stiffness and damping143

polynomial functions, respectively with N1 and N2 presenting the polynomial144

order. Bstiff
ij (X,ω) and Bdamp

ij (X,ω) are the basic functions, which are power145

expansion of X and ω.146

Bij(X,ω) = X iωj (13)

2.2. Nonlinear equations of motion and their responses to base excitation147

As explained in the previous section, there are several types of nonlinearity148

encountered in the literature and employed to analyze the stiffness and damp-149

ing models and to identify the unknown parameters. In this paper, three150

classical numerical examples chosen by Ajjan et al. (Aykan and Özgüven,151
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2012) and zer et al. (Özer et al., 2009) and one complicated example with152

combined nonlinearities are studied. The single-degree-of freedom system is153

shown in Figure 1 where its parameters are taken from (Carrella, 2012) and154

listed in Table 1.155

Figure 1. SDOF system of a mass suspended on a nonlinear mount with complex stiffness
and under base excitation

156

During the numerical simulation, direct time integration is carried out for the157

dynamic equation using the Matlab solver ODE45 which is the 4th-5th orders158

Runge-Kutta procedure. For each sinusoidal base excitation, responses in 200159

cycles are computed with a fixed time step. Only last 100 cycles are taken160

as the steady-state responses and transformed into the frequency domain in161

order to ensure the transient components can decay completely. Then, the162

transmissibility is determined by computing the ratio between the Fourier163

coefficient of the response and the base excitation amplitude.164

165

2.2.1. Duffing Oscillator166

The motion equation of a nonlinear system, examined herein, is written in167

the form of the Duffing Oscillator as:168

mz̈ + cż + k1z + knlz
3 = ω2mY sin(ωt) (14)

where z = x−y presents the relative displacement between the mass and the169

base and Y represents the amplitude of the base displacement. The response170

displacement is computed by solving the equation of motion of the system171

within the frequency range from 9.6 Hz to 10.6 Hz.172
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Table 1. The nonlinear and underlying linear parameters

Mass m = 1.5 kg, Damping coefficient c = 0.8 Ns/m, k = 6000 N/m

Nonlinearity Damping fc Stiffness fk Values

Duffing Oscillator 0 fk = knl x
3 knl = 7 106 N/m3

Quadratic damping fc = cnlẋ|ẋ| 0 cnl = 8 Ns2m−2

Coulomb damping fc = Ffsgn(ẋ) 0 Ff = 0.85

cubic stiffness + fc = cnlẋ|ẋ| fk = knl x
3 knl = 7 106 N/m3

Quadratic damping cnl = 8 Ns2/m2

Figure 2 depicts the response of the system excited for several levels from173

1.10−2 to 4.10−2 mm with a step of 1.10−2 mm. It is notable that the reso-174

nance frequency shifts up to higher frequencies with the increase of the level175

of excitation. It is clearly observed that the system has a hardening behavior176

and this is consistent with the sign of the cubic coefficient (knl > 0). At177

higher excitations, the jump phenomenon will be clearly visible and hence178

the nonlinearity will be stronger.179

2.2.2. Coulomb damping180

Let’s consider the nonlinear system with coulomb damping specified by the181

equation of motion:182

183

mz̈ + cż + Ffsgn(ż) + kz = ω2mY sin(ωt) (15)

184
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Figure 2. The response of the Duffing Oscillator system for different levels of excitation
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Figure 3. The response of the coulomb damping system for different levels of excitation
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where sgn represents the sign function which is defined as follows:185

186

sgn (x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(16)

The displacement response was obtained by setting the excitation frequency187

from 9.6 Hz to 10.6 Hz and increasing the level of excitation from 2 mm188

to 8 mm. This increase induces the increase of the resonance amplitude189

from 0.2 m up to 0.85 m. Contrary to the previous type of nonlinearity, the190

system behaves nominally linearly at high excitation. In the case of Coulomb191

damping system, the nonlinearity is only visible if the level of excitation is192

low.
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Figure 4. The response of the combined cubic stiffness and quadratic damping system for
different levels of excitation

193

2.2.3. Combined nonlinearities: Cubic stiffness and quadratic damping194

Another system, which is an interesting physical system and most studied in195

the nonlinear engineering, combined cubic stiffness and quadratic damping196

will be studied. In this case, the equation of motion is given by:197

198

mz̈ + c ż + cnlż|ż|+ k z + knlz
3 = ω2mY sin(ωt) (17)
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The presented systems response, under harmonic excitation of the base, for199

different amplitudes are presented in Figure 4. From the figure, it is inter-200

esting to note that the raised excitation level obviously causes the increase201

of the resonance frequency. Meanwhile, the jump phenomenon observed at202

higher level of excitation while no obvious jump phenomenon occurs at lower203

excitation. This means that the system performs as hardening stiffness under204

large deformation and nearly unchanged under small deformation.205

3. Numerical validations206

The third section aims to evaluate the efficiency of the proposed method by207

comparing the identified results with analytical expressions for stiffness and208

damping functions.209

3.1. Analytical stiffness and damping functions210

The analytical stiffness and damping functions have been derived using the211

Harmonic Balance Method to solve the nonlinear equation of motion (Worden212

and Tomlinson, 2000).213

In fact, the analytical expressions correspond to the stiffness and damping214

of a linearized system under the assumption that the system responds at the215

same frequency as the harmonic excitation. This is equivalent to expressions216

determined by applying the first-order expansion using Harmonic Balance217

approximation in the steady state.218

3.1.1. Nonlinear Stiffness219

The analysis will be simplified by considering the motion equation of a simple220

oscillator subjected to a harmonic excitation as:221

222

mÿ + cẏ + fs(y) = x(t) (18)

where fs represents nonlinear stiffness function.223

Assuming that the nonlinear stiffness is equal to the equivalent stiffness:224

225

fs(y) ≈ Keqy (19)

The harmonic balance trial solution Y sin(ωt) yields the nonlinear form fs(Y sin(ωt)).226

This function can be expanded using the Fourier series and only the funda-227

mental term (first harmonic) is considered. So,228

fs(Y sin(ωt)) ≈ b1 sin(ωt) = KeqY sin(ωt) (20)
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where b1 represents the Fourier coefficient of the fundamental term.229

The mathematical model of a cubic stiffness element can be expressed as230

231

fs(y) = ky + knly
3 (21)

The first integration gives the linear part and the contribution from the232

nonlinear stiffness is 3
4
knl Y

2, so:233

234

Keq = k +
3

4
knlY

2 (22)

where k and knl represent the linear parameter and the nonlinear parameter,235

respectively.236

237

3.1.2. Nonlinear Damping238

The formulas presented above are limited to the case of nonlinear stiffness.239

It is possible to extend its application to nonlinear damping. Let’s consider240

the following system.241

242

mÿ + fd(ẏ) + ky = x(t) (23)

where fd denotes the nonlinear damping function.243

Choosing a trial output solution Y sin(ωt) yields a nonlinear function fd(ωY cos(ωt)).244

This function can be rewritten as follow:245

246

fd(ωY cos(ωt)) = a1 cos(ωt) = CeqωY cos(ωt) (24)

where a1 is the Fourier coefficient of the fundamental term.247

The mathematical model of a quadratic damping element can be expressed248

as:249

250

fd(ẏ) = cẏ + cnlẏ|ẏ| (25)

Then, the equivalent damping is given by:251

252

Ceq =
c

ωY π

∫ 2π

0

ωY cos θ cos θdθ+
cnl
ωY π

∫ 2π

0

ωY cos θ|ωY cos θ| cos θdθ (26)

After integration, this becomes:253

254

Ceq = c+
8

3π
cnlωY (27)
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where ω is the natural frequency of the linear system and Y is the amplitude255

of the response at steady state. c and cnl represent the linear and the non-256

linear damping parameters, respectively.257

Similarly, for the case of coulomb damping:258

259

fd(ẏ) = c ẏ + cF
ẏ

|ẏ|
= cẏ + cF sign(ẏ) (28)

The equivalent damping is defined as:260

261

Ceq = c+
4

π

Ff
ωY

(29)

where Ff is the coulomb force.262

3.2. Comparison with analytical equivalent expressions263

In order to validate the proposed method, three classical types of nonlinear264

systems, presented above, are used in this section as examples for the nu-265

merical validation study. The nonlinear stiffness and damping are calculated266

using Eq. (10) and will be identified with special functions by means of267

the curve fitting technique. Tables 2-4 present these polynomial fit functions268

compared to their analytic expressions. The analytical stiffness and damping269

expressions are demonstrated for each case in the previous section.270

3.2.1. Combination of quadratic damping and cubic stiffness271

The first case corresponds to a SDOF system with a combination of cubic272

stiffness and quadratic damping. Results are calculated using the fourth273

order Runge-Kutta method for frequency range between 8 Hz and 12 Hz274

with frequency increments of 0.05 Hz. The stepped-sine base excitations are275

allowed to vary from 2 mm to 5 mm with a step of 1 mm for each frequency.276

From results shown in the Figures (5(a) and 5(b)), a systematic increase in277

the natural frequency clearly depicts a hardening behavior of the nonlinearity278

and therefore the terms of mathematical functions can be identified by mean279

of fitting the corresponding data.280
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Table 2. Identified parameters for a system with combined nonlinearities

Ideal expressions Identified results
Goodness
of fit

Stiffness
Keq = 6 103 +
3
4

7106 X2

Kfit = 6001.6 +
3
4

7.0397 106 X2

0.9999

Damping Ceq = 0.8 + 8
3π

8 ωX
Cfit = 0.82884 +
8
3π

7.9388 ωX

0.9997

As it can be seen from Table 2, the least-squares fitting of the identified non-281

linear results characteristics to a mathematical model returns the nonlinear282

stiffness coefficient that is equal to 3
4

7.0631 106 when the equivalent stiffness283

coefficient is equal to 3
4

7 106. The estimated nonlinear damping coefficient284

is equal to 8
3π

8.0805 when the equivalent damping coefficient is equal to285

8
3π

8. The comparison between the identified and the analytical expression286

clearly shows that the proposed approach reaches a precise estimation as287

indicated by the goodness of fit with values of 0.9999 and 0.9997.288
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Figure 5. Comparison between the estimated stiffness and damping functions and the ana-
lytical equivalent functions: System with combined cubic stiffness and quadratic damping
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3.2.2. Dry friction: Coulomb damping289

Using the transmissibility curves obtained for the frequency range of 8 to 12290

Hz with a step of 0.005 Hz and for several amplitudes of excitation ranging291

between 8 mm and 2 mm with step of 2 mm, the information on the nonlin-292

earities are given in Figures (6(a) and 6(b)). It can be seen that by increasing293

the amplitude, the stiffness remains constant, while the damping decreases294

with hyperbolic trend (due to the Coulomb damping). From results in Ta-295

ble 3, a good agreement is reached between the identified function and the296

appropriated analytical expression. The error is less than 0.4 % between the297

identified coulomb damping and the equivalent coefficients.298

Table 3. Identified parameters for the system with Coulomb friction

Ideal expressions Identified results
Goodness
of fit

Stiffness Keq = 6 103 Kfit = 6.001 103 0.9998

Damping
Ceq = 0.8 +
8
3π

0.85 (ωX)−1

Cfit = 0.8208 +
8
3π

0.8498 (ωX)−0.9991

0.9970

299

0 0.2 0.4 0.6 0.8 1
Displacement [m]

5900

6000

6100

St
if

fn
es

s 
[N

/m
]

8 mm
6 mm
4 mm
2 mm
analytical

(a) Stiffness

0 20 40 50
Velocity [m/s]

1

2

3

4

D
am

pi
ng

 [
N

s/
m

]

8 mm
6 mm
4 mm
2 mm
analytical

(b) Damping

Figure 6. Comparison between the estimated stiffness and damping functions and the
analytical equivalent functions: System with Coulomb damping
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3.2.3. Duffing oscillator: Cubic stiffness300

A SDOF system with Duffing oscillator is now investigated. To estimate the301

stiffness and damping curves, the required response record is generated within302

the frequency excitation range from 8 Hz to 12 Hz. Figure 7 shows the results303

of the analysis of the transmissibility of a system with coulomb damping304

under harmonic base excitations. The amplitude of the base excitation are305

ranging between 1 10−2 mm and 4 10−2 mm with an increment of 1 10−2306

mm. The left hand panel shows that by increasing the amplitude of response,307

there is a consistent increase in natural frequency, due to the hardening308

behavior.309

Table 4. Identified parameters for the Duffing oscillator

Ideal expressions Identified results
Goodness
of fit

Stiffness
Keq = 6 103 +
3
4

7106 X2

Kfit = 6002.5 +
3
4

7.7072 106 X2

0.9988

Damping Ceq = 0.8 Cfit = 0.8206 0.9998

310

Meanwhile, an accurate prediction of the stiffness is achieved by implement-311

ing a successful estimation using the proposed method. The identified stiff-312

ness do not deviate more than 4.7 % from the ideal function, as presented313

in Table 4. It is interesting to note that the right panel of Figure 7 shows314

slight differences when the identified damping is compared to the analytic315

expression.316

Results show a good match between both approaches when estimating the317

stiffness and damping in the case of strong nonlinearities. This reveals the318

effectiveness of the method presented in this paper and offers the possibility319

to implement the approach for real experimental measurements.320
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Figure 7. Comparison between the estimated stiffness and damping functions and the
analytical equivalent functions: System with Duffing oscillator

4. Application of the proposed approach on the metal mesh isolator321

and comparison of the measurements with predictions322

To validate and demonstrate the applicability of the identification procedure323

given above, experimental tests were performed on commercial metal mesh324

isolator. The experimental set up is displayed in Figure 8.325

Figure 8. Experimental set-up

326
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The electro-dynamic shaker, Gearing and Watson V400, was driven by a327

signal generator producing a stepped-sine signal. The accelerometers (EN-328

DEVCO, model 65M100) were rigidly attached to the shaker-table and to the329

mass plate to measure the input-output data, while the Dactron associated330

software was used to observe the system response. The data were recorded331

using a LASERUSB shaker control system connected to a computer. The332

bottom of the damper is connected to the base whereas the top is connected333

to the rigid mass weighed about 30 kg. The test rig is designed to measure the334

transmissibility using four vibration isolators of the same model. The tests335

were repeated three times to ascertain variability of the experimental data336

and only the average curves are considered during the investigation. The337

magnitude and phase of the transmissibility for excitation levels of 2 m/s2338

and 3 m/s2, are depicted in Figures (9(a) and 9(b)). The metal mesh isola-339

tor essentially consists of a cushion of stainless steel, woven using a knitting340

machine, rolled and/or pressed into the required geometric shape via a press341

mold in order to achieve the desired geometric shape, so that different ge-342

ometries can be manufactured depending on the application by changing the343

mold process. It was produced with an relative density of 24.93 %.
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Figure 9. Acceleration responses to stepped-sine excitation of different amplitudes (a)
amplitude responses and (b) phase responses

344
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Figure 10. The spectrum of the response

The spectrum of the response of the isolator at 11 Hz and 16 Hz are shown345

in Figure 10. It is worth noticing that the sub- and super-harmonics of the346

response in each stepped-sine are much less than 5% of the primary harmonic347

component (Figure 10(b)). Thus, the response of the system is dominated by348

the fundamental harmonic component and higher harmonic components can349

be ignored. Therefore, the assumption of the primary harmonic component350

on the solution in Eq.(4) is reasonable and accurate.351

Figure 11. Flowchart of the proposed method
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A flowchart of the proposed method is shown in Figure 11, where the thick352

line denote the comparison between the numerical simulations and experi-353

mental data. Figure 12 presents the stiffness and damping maps of damper-354

model including the calculated points using the proposed identification method355

and the identified surfaces. The least squares polynomial approximation, via356

surface fitting MATLAB toolbox, were used during the identification. In or-357

der to reach a good fit for stiffness and damping, the order and type of the358

basic functions will be chosen by comparing the fitting results of different359

ordinary polynomials. Increasing the polynomial terms order increases the360

complexity of the mathematical model; however, the fit quality is slightly361

improved.362

The basic function of the stiffness is obtained by substituting N1 = 3, N2 = 0363

and i + j < 3 in Eq. (11), however, the damping basic function is obtained364

by choosing N1 = 4, N2 = 2 and i+ j < 4 in Eq. (12):365

366

BStiff
ij (X,ω) = 1, X,X2, X3 (30)

367

BDamp
ij (X,ω) = 1, X, ω,Xω,X3, X2ω,Xω2, X4, X3ω,X2ω2 (31)

368

Therefore, the nonlinear stiffness mathematical model could be written as:369

K(X,ω) = 1.607105 − 2.777108X + 2.5251011X2 − 7.9751013X3 (32)

where the goodness of fit is 0.9661.370

Also, the damping model expressed as:371

C(X,ω) = 1090− 1.191107X + 3.148102ω + 3.095105Xω

−5.0421011X3 − 8.234108X2ω − 2073Xω2 − 1.31161014X4

+1.0861010X3ω + 5.397106X2ω2

(33)

where the goodness of fit is 0.9585.372
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Figure 12. a) Stiffness and b) damping map of metal mesh damper including calculated
points from measured data

With identified coefficients of the stiffness and damping models, the relative373

transmissibility at these two excitation amplitudes (2 m/s2 and 3 m/s2) can374

be predicted by solving iteratively:375

Tr(X,ω) = | ω2

ω2
0(X,ω)− ω2 + jη(X,ω)ω2

0(X,ω)|
(34)

where ω0(X,ω) and η(X,ω) are the nature frequency and loss factor, respec-376

tively and can be calculated from:377

K(X,ω) = ω2
0(X,ω)m

C(X,ω) = η(X,ω)ω2
0(X,ω)m

(35)

Figures (13(a) and 13(b)) show the comparison between the predicted and378

measured transmissibility. Good match of correlation between the predicted379

and measured data is reached. However, the predicted resonant frequency380

and peak marked in Figure 13(a) are a little lower than the measured ones.381

This slight error can be explained by the limitation in the surface fitting tools382

of MATLAB and some other more complicated damping that may appear.383
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Figure 13. Comparison between measured and identified responses

5. Application using multi-harmonic excitation384

The identification of SDOF systems parameters, using mono-harmonic ex-385

citation, is demonstrated by both numerical and experimental examples in386

previous sections. In this part, the proposed identification technique will be387

extended to identify nonlinearity from SDOF systems subjected to multi-388

harmonic excitations. This example is used to demonstrate the efficiency of389

the identification method while employing multi-harmonic excitation in place390

of one-harmonic.391

The equation of motion can be rewritten in the matrix form:392

mẌ + Fnl(X, Ẋ) = Fe (36)

where393

Fnl(X, Ẋ) = CeqẊ +KeqX (37)

As the excitation terms is periodic, it is assumed that the nonlinear dynam-394

ical response and the force vector may be approximated by finite Fourier395
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series with ω as fundamental frequency.396

X(t) =
N∑
n=1

X(n)
cos cos(nωt) +X

(n)
sin sin(nωt)

Fnl(t) =
N∑
n=1

F (n)
cos cos(nωt) + F

(n)
sin sin(nωt)

Fe(t) =
N∑
n=1

F (n)
ecos cos(nωt) + F (n)

esin
sin(nωt)

where (X
(n)
cos , X

(n)
sin ), (F

(n)
cos , F

(n)
sin ) and (F

(n)
cos , F

(n)
sin ) are Fourier coefficients of the397

displacement, restoring force and excitation force, respectively.398

In this work, a two-harmonic input (N=2) is considered for the identification399

(Figure 14) and a comparative study on the success of identication is carried400

out. Let’s consider the system subjected to two harmonic excitations.401

−mω2
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From Eq. (36), the restoring force can be written as:402 
F

(1)
cos

F
(1)
sin

F
(2)
cos

F
(2)
sin

 =


F

(1)
ecos

F
(1)
esin

F
(2)
ecos

F
(2)
esin

+mω2


X

(1)
cos

X
(1)
sin

4X
(2)
cos

4X
(2)
sin

 (39)

Thus, the equivalent stiffness and damping could be obtained by measure-403

ment of the restoring force and displacement responses.404 
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Figure 14. Response of SDOF excited by two harmonic excitations
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Figure 15. Stiffness of the two-harmonic excited system with Duffing oscillator
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Figure 16. Damping of the two-harmonic excited system with Duffing oscillator

The proposed identification technique is used to identify the unknown pa-405

rameters of the SDOF system with Duffing oscillator where the equation of406

motion is given by:407

mẍ+ cẋ+kx+fc(ẋ)+fk(x) = m ω2 Y1 sin(ωt)+m (2ω)2 Y2 sin(2ωt) (41)

Table 5. Two-harmonic excitation: parameter setting for simulation

Mass m = 1 kg, Damping coefficient c = 3.6 Ns/m, k = 300 N/m

Nonlinearity Damping fc Stiffness fk Values

Duffing Oscillator 0 fk = α x3 α = 7.5 105 N/m3

408

The parameters used in the simulation are given in Table 5. The results,409

shown in Figures 15 and 16, give a much correlation in the term of predicted410

results; it could be seen that the estimation of linear stiffness coefficient (less411

than 0.46 % error), cubic stiffness coefficient (less than 1.31 % error) and412

linear damping coefficient (less than 0.44 % error) of the unknown elements413

are accurate compared to the exact values (Table 6). Thus, the Alternating414

Frequency Time Domains identification technique is still efficient for systems415

subjected to multi-harmonic excitations.416
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Table 6. Identified parameters for a system with combined nonlinearities

Ideal expressions Identified results
Goodness
of fit

Stiffness
Keq = 300 +
3
4

7.5 105 X2

Kfit = 298.6 +
3
4

7.5987 105 X2

0.9988

Damping Ceq = 3.6 ω Cfit = 3.616 ω
0.9956

Conclusion417

A nonparametric technique for the identification of nonlinear systems has418

been proposed by alternating between the frequency and time domains. This419

procedure is developed to extract the stiffness and damping that depend on420

the response amplitude and frequency, and thus these points will be plotted421

as discrete points. The mathematical model of the system is obtained and un-422

knowns parameters are identified by surface fitting these points. Numerical423

examples and then real experimental example demonstrate the effectiveness424

and accuracy of the identified results with this technique. Good agreements425

are reached between the predicted and measured results. Finally, an applica-426

tion of the method to SDOF system subjected to multi-harmonic excitations427

is also illustrated.428

The contribution of this paper is the development of a new methodology for429

the characterization of the nonlinear behavior and the identification of un-430

known parameters of a commercial vibration isolator. The objective of this431

method is to define a mathematical model to provide a better understanding432

of the real system characterization. The developed model consists on predict-433

ing the response of the isolator under different excitation amplitudes. In addi-434

tion, the assumption considering only the primary harmonic can be extended435

to include the super- and sub-harmonics. Besides, this technique is applied436

to identify the linear and nonlinear parts using ordinary polynomials and no437

prior information about the nonlinearity is required. Thus, the method can438

provide reliable model of the complex nonlinear system. However, this tech-439

nique has also some limitations. The estimated damping-model, expressed440

in polynomial form, has no physical meaning. So, the physical constrictive441

model must be taken into consideration. That is to say, the combination of442
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different types of nonlinearities, such as viscous damping, coulomb damping443

and quadratic damping, should be reflected in the identification of damping.444
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