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PENCIL-BASED ALGORITHMS FOR TENSOR RANK
DECOMPOSITION ARE NOT STABLE∗

CARLOS BELTRÁN† , PAUL BREIDING‡ , AND NICK VANNIEUWENHOVEN§

Abstract. We prove the existence of an open set of n1 × n2 × n3 tensors of rank r for which
popular and efficient algorithms for computing tensor rank decompositions based on a reduction
to a linear matrix pencil, typically followed by a generalized eigendecomposition, are arbitrarily
numerically forward unstable. Our analysis shows that this problem is caused by the fact that the
condition number of tensor rank decomposition can be much larger for n1 × n2 × 2 tensors than for
the n1 × n2 × n3 input tensor. Moreover, we present a lower bound for the limiting distribution of
the condition number of random tensor rank decompositions of third-order tensors. The numerical
experiments illustrate that for random tensor rank decompositions one should anticipate a loss of
precision of a few digits.
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1. Introduction. We study the numerical stability of one of the most popular
and effective class of algorithms for computing the tensor rank decomposition, or cano-
nical polyadic decomposition (CPD), of a tensor. Recall that a rank-1 tensor is repre-
sented by an n1×n2× · · ·×nd multidimensional array B =(bi1,i2,...,id)1≤i1≤n1,...,1≤id≤nd
whose elements satisfy the property

bi1,i2,...,id = b
(1)
i1
b
(2)
i2
. . . b

(d)
id
, where bk = (b

(k)
i )nki=1 ∈ Rnk .

For brevity, one writes B = b1 ⊗ b2 ⊗ · · · ⊗ bd. The CPD of A ∈ Rn1×···×nd was
proposed by Hitchcock [27]. It expresses A as a minimum-length linear combination
of rank-1 tensors:

A = A1 + A2 + · · ·+ Ar, where Ai = a1
i ⊗ a2

i ⊗ · · · ⊗ adi and aki ∈ Rnk(1.1)

for all i = 1, . . . , r and k = 1, . . . , d. The number r in (1.1) is called the rank and d
is the order of A. It is often convenient to consider the factor matrices A1, . . . , Ad,
where Ak := [aki ]ri=1 has the aki ’s as columns.

Mainly due to its simplicity and uniqueness properties [13, 31], the CPD has found
application in a diverse set of scientific fields; see [8, 15, 16, 29, 30, 41, 42]. A rank-r
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tensor A is called r-identifiable if the set of rank-1 tensors {A1,A2, . . . ,Ar} whose sum
is A, as in (1.1), is uniquely determined given A. A classic result on r-identifiability is
Kruskal’s criterion [31]. It is formulated in terms of the Kruskal rank kM of a matrix
M : kM is the largest integer k such that every subset of k columns of M has rank
equal to k.

Lemma 1.1 (Kruskal’s criterion). Let A =
∑r
i=1 ai ⊗ bi ⊗ ci be a tensor with

factor matrices A = [ai]i, B = [bi]i and C = [ci]i. A sufficient condition for the
r-identifiability of A is r ≤ 1

2 (kA + kB + kC − 2) and kA, kB , kC > 1.

Many tensors of low rank admit a unique CPD. For example, if A is an n1×n2×n3

tensor that has a CPD all of whose factor matrices A ∈ Rn1×r, B ∈ Rn2×r, and
C ∈ Rn3×r have linearly independent columns, then it follows from Kruskal’s lemma
that A’s CPD is unique.

The computational problem of recovering the set of rank-1 tensors {A1, . . . ,Ar} of
minimum cardinality whose sum is A is called the tensor rank decomposition problem
(TDP). When the rank of a third-order tensor is sufficiently small, there are efficient,
numerical, direct algorithms for solving the TDP, such as those in [19–21, 34, 35, 39,
40]. Most of these algorithms operate as follows. The crucial idea is to orthogonally
project the given rank-r tensor A ∈ Rn1×n2×n3 with n1 ≥ n2 ≥ r to a tensor of
format r × r × 2, which is essentially a linear matrix pencil. Then a generalized
eigendecomposition (GEVD) of this matrix pencil yields either the first or second
factor matrix of the CPD of A, depending on whether the left or right eigenvectors are
computed. The other factor matrices are then recovered simultaneously by solving a
linear least squares problem. Finally, the rank-1 tensors are computed from the factor
matrices. We will subsequently call an algorithm for solving TDPs that involves such
a reduction to a matrix pencil a pencil-based algorithm (PBA). This will be given a
precise meaning in Definition 5.1 where we rigorously define the class of PBAs.

A prototypical PBA. Before proceeding, we give a concrete example of a PBA and
explain in detail why it is correct. The input n1×n2×n3 tensor A =

∑r
i=1 ai⊗bi⊗ci

with r ≤ min{n1, n2} is assumed to admit a unique rank-r CPD with ‖ai‖ = 1 for
all i = 1, . . . , r. Let Q ∈ Rn3×2 be a matrix with orthonormal columns. Then,
contracting A along the third mode by QT , which is a special type of multilinear
multiplication [18, 29, 32], yields the projected tensor

B := (In1
, In2

, QT ) · A =

r∑
i=1

ai ⊗ bi ⊗ zi ∈ Rn1×n2×2,

where zi = QT ci and Im is the m × m identity matrix. Note that B is thus an
orthogonal projection of A [18]. Let Q1 ∈ Rn1×r, respectively, Q2 ∈ Rn2×r, be a
matrix whose columns form an orthonormal basis for the span of {ai}, respectively,
{bi}. If ei denotes the ith standard basis vector of Rn3 , then it follows from the
properties of multilinear multiplication that for j = 1, 2:

Sj := (QT1 , Q
T
2 , e

T
j ) · B =

r∑
i=1

(QT1 ai)︸ ︷︷ ︸
x′i

⊗ (QT2 bi)︸ ︷︷ ︸
y′i

⊗ (eTj zi)︸ ︷︷ ︸
zj,i

=

r∑
i=1

zj,i · x′i(y′i)T ∈ Rr×r.

We can write this more compactly as the matrix factorization Sj = X diag(λj)Y
T ,

where λj := [zj,i‖x′i‖‖y′i‖]ri=1, X :=
[ x′i
‖x′i‖

]r
i=1
∈ Rr×r, and Y :=

[ y′i
‖y′i‖

]r
i=1
∈ Rr×r.

Whenever S1 and S2 are nonsingular, we have

S1S
−1
2 = X diag(λ1) diag(λ2)−1X−1;
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thus X is the matrix of eigenvectors of the GEVD of the nonsingular matrix pen-
cil (S−1

1 , S−1
2 ). As long as the eigenvalues are distinct, the matrix X is uniquely

determined up to sign and it follows that the first factor matrix A = Q1X. The sec-
ond and third factor matrices can be recovered simultaneously from the 1-flattening
A(1) = A(B � C)T ∈ Rn1×n2n3 , where M � N := [mi ⊗ ni]

r
i=1 ∈ Rmn×r is the

Khatri–Rao product of M ∈ Rm×r and N ∈ Rn×r. Since A is left-invertible,
A†A(1) = (B � C)T , where X† is the Moore–Penrose pseudoinverse of X. Hence,
the (vectorized) rank-1 tensors Ai = ai ⊗ bi ⊗ ci ∈ Rn1×n2×n3 ' Rn1n2n3 are recov-
ered from the following standard computation [29, 41]:

A� (A†A(1))
T = A� (B � C) = A�B � C =

[
A1 A2 · · · Ar

]
∈ Rn1n2n3×r.

This procedure thus solves the TDP.
The above algorithm and those in [19–21, 34, 35, 39, 40] have the major advantage

that the CPD can be computed via a sequence of numerically stable and efficient linear
algebra algorithms for solving classic problems such as linear system solving, linear
least-squares, and generalized eigendecomposition problems. In light of the plentiful
indications that computing a CPD is a difficult problem—the NP-completeness of
tensor rank [28], the ill-posedness of the corresponding approximation problem [18],
and the potential (average) ill-conditioning of the TDP [5, 6]—the existence of afore-
mentioned algorithms is almost too good to be true. We show that there is a price
to be paid in the currency of the achievable precision by establishing the following
result.

Theorem 1.2. Let n1, n2 ≥ r ≥ 2 and n3 ≥ r + 2. For every pencil-based
algorithm, there exists an open set of the rank-r tensors in Rn1×n2×n3 for which it is
unstable.

For the more precise statement that we will prove, see Theorem 6.1. The insta-
bility in the theorem is with respect to the standard model of floating-point arith-
metic [26], namely fl(a) = (1 + δ)(a) and fl(a ◦ b) = (1 + δ)(a ◦ b), |δ| ≤ εu, with
◦ ∈ {+,−, ·, /}, where fl(a) denotes the floating-point representation of a, and εu is
the unit roundoff. In IEEE double-precision floating-point arithmetic εu ≈ 1.11·10−16

[26, Chapter 2].
In practice, Theorem 1.2 covers the algorithms from [21, 34, 35, 39, 40], cpd gevd

from Tensorlab v3.0 [46], [19, Algorithm 2], and the foregoing prototypical PBA.
Algorithm 1 of [19], as well as both algorithms in [20], are likely also unstable because
they use an unstable algorithm in intermediate steps; a more thorough analysis would
be required to show this rigorously.

Remark 1.3. For higher-order tensors A ∈ Rn1×···×nd with d ≥ 4 it is a common
practice to reshape them into a third-order tensor A(j,k,l) ∈ Rm1×m2×m3 by choosing
a partition of the indices {1, . . . , d} = {j1, . . . , js} t {k1, . . . , kt} t {l1, . . . , lu} with
m1 = j1 . . . js, m2 = k1 . . . kt, and m3 = l1 . . . lu. Under the conditions of section 7
of [14], the CPD of A(j,k,l), i.e., the set of rank-1 tensors, can be reshaped back into
a set of order-d tensors in Rn1×···×nd yielding the CPD of A. According to Theorem
1.2 this strategy employs an unstable algorithm as intermediate step, so we should
a priori expect that the resulting algorithm is also unstable. This can be proved
rigorously for u = |l| = 1 by a slight generalization of the argument in section 6. We
leave a general proof as an open question.

It is important to mention that the stabilities of algorithms employed in the
intermediate steps of a PBA are not the reason why PBAs are unstable. In the above
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prototypical PBA, all individual steps can be implemented using numerically stable
algorithms, but the resulting algorithm is nevertheless unstable. The instability in
Theorem 1.2 is caused by a large difference between the condition numbers of the
TDPs in Rn1×n2×n3 and Rn1×n2×2.

The condition number of the TDP was studied in [5].1 Let us denote the set of
n1 × · · · × nd tensors of rank 1 by S. This set is actually a smooth manifold, called
the Segre manifold ; see subsection 4.1. Tensors of rank at most r are obtained as the
image of the addition map

Φr : S×r → Rn1×···×nd , (A1, . . . ,Ar) 7→ A1 + · · ·+ Ar.(1.2)

The condition number of the TDP at a rank-r tensor A with ordered CPD a =
(A1, . . . ,Ar) is

κ(A, (A1, . . . ,Ar)) = lim
ε→0

sup
B has rank r,
‖A−B‖F<ε

‖Φ−1
a (A)− Φ−1

a (B)‖F
‖A − B‖F

,(1.3)

where Φ−1
a is the local inverse function of Φr that satisfies Φ−1

a (A) = (A1, . . . ,Ar);
see [5]. The norms are the Euclidean norms on the ambient spaces of domain and
image of Φr, which is naturally identified with the Frobenius norms of tensors, i.e.,
the square root of the sum of squares of the elements. It follows from the spectral
characterization in [5, Theorem 1.1] that A depends uniquely on the (unordered) CPD
{A1, . . . ,Ar}; therefore we often write κ(A1, . . . ,Ar) for the condition number. If such
a local inverse does not exist, we have κ(A1, . . . ,Ar) := ∞. In subsection 4.1 we
discuss in more detail the existence of this local inverse function; it will be shown in
Proposition 4.7 that “most tensors have a finite condition number.”

While the proof of Theorem 1.2 is not straightforward, the main intuition that led
us to its conception is the observation that there appears to be a gap in the expected
value of the condition number of TDPs in Rn1×n2×2 and other spaces Rn1×n2×n3 ,
n1 ≥ n2 ≥ n3 ≥ 3, as we observed in [6]. Here, we derived a further characterization
of the distribution of the condition number of random CPDs, based on a result of Cai,
Fan, and Jiang [10] about the distribution of the minimum distance between random
points on spheres.

Theorem 1.4. Let n1, n2, n3 ≥ 2 and r ≥ 2. Let a1, . . . ,ar ∈ Rn1 \ {0},
b1, . . . ,br ∈ Rn2 \ {0} be arbitrary and fixed, and let c1, . . . , cr ∈ Rn3 be independent
random vectors with standard normal entries. Consider the random rank-1 tensors
Ai = ai ⊗ bi ⊗ ci ∈ Rn1×n2×n3 . Then, for all α > 0, we have

P
[
κ(A1, . . . ,Ar) ≥ αr

2
n3−1

]
≥ Tr,α, where lim

r→∞
Tr,α = 1− e−Kα

1−n3
;

herein,

K =
2

1
2 (n3−5)

√
π

Γ(n3

2 )

Γ(n3+1
2 )

,

where Γ is the gamma function. In particular, if n3 = 2 we have

P
[
κ(A1, . . . ,Ar) ≥ αr2

]
≥ Tr,α, where

lim
r→∞

Tr,α = 1− e−
1√

2πα ≈ 1√
2πα

.

1A condition number of the different problem of computing the factor matrices was considered
in [44].
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This theorem suggests that as n3 increases, very large condition numbers become
increasingly unlikely. The worst case thus seems to occur for n3 = 2, which is exactly
the space from which PBAs try to recover the CPD. For example, if n3 = 2 and r is
large we can expect that the condition number is greater than 4r2 with probability
at least (around) 5%.

Outline. The next section recalls some preliminary material. As Theorem 1.4
provides some intuition for the main result, we will treat it first in section 3. Before
proving Theorem 1.2, we need a precise definition of a PBA. This definition relies
on the notion of r-nice tensors that we study in section 4; these rank-r tensors have
convenient differential-geometric properties. Then, in section 5 we define the class of
PBAs. Section 6 is dedicated to the proof of Theorem 1.2. Numerical experiments
validating the theory and illustrating typical behavior for random CPDs are presented
in section 7. Finally, section 8 presents our main conclusions.

Notation. The following notational conventions are observed throughout this
paper: scalars are typeset in lower-case letters (a), vectors in bold-face lower-case
letters (a), matrices in upper-case letters (A), tensors in a calligraphic font (A), and
varieties and manifolds in an alternative calligraphic font (A). The unit sphere over
a set V ⊂ Rm is S(V ) := { v

‖v‖ | v ∈ V \ {0}}. The Moore–Penrose pseudoinverse of a

matrix M ∈ Rm×n is denoted by M†. The m×m identity matrix is denoted by Im.
The symmetric group of permutations on r elements is denoted by Sr. Pπ denotes
the r × r permutation matrix representing the permutation π ∈ Sr. The standard
Euclidean inner product on Rm is 〈x,y〉 := xTy for x,y ∈ Rm.

Throughout the manuscript, we exclusively use the integer d ≥ 3 for indicating
the order of a tensor (space), the integers n1, . . . , nd ≥ 2 for indicating the dimensions
of a tensor (space), and the integer r ≥ 1 for indicating the rank of a tensor.

2. Preliminaries.

2.1. Multilinear algebra. The tensor product ⊗ of vector spaces V1, . . . , Vd is
denoted by ⊗; see [22, Chapter 1]. As the tensor product is unique up to isomorphisms
of the vector spaces V1 × · · · × Vd and V1 ⊗ · · · ⊗ Vd, we will be particularly liberal
between the interpretations Rn1 ⊗ · · · ⊗Rnd ' Rn1×···×nd ' Rn1···nd . Elements in the
first space are abstract order-d tensors, in the second space they are d-arrays, while
in the last space they are long vectors. We do not use a “vectorization” operator to
indicate the natural bijection between the last two spaces.

The tensor product of linear maps is also well defined [22, Chapter 1]. We use
this definition in expressions like M1 ⊗ · · · ⊗Md whose columns are m1

i1
⊗ · · · ⊗md

id
,

where Mk = [mk
i ]i ∈ Rmk×nk ; the order will not be relevant wherever it is used. The

multilinear multiplication of a tensor A =
∑
i1,...,id

ai1,...,ide
1
i1
⊗ · · · ⊗ edid ∈ Rn1×···×nd

with the above matrices Mk is

(M1, . . . ,Md) ·A := (M1⊗· · ·⊗Md)(A) =

n1∑
i1=1

· · ·
nd∑
id=1

ai1,...,id(M1e
1
i1)⊗· · ·⊗ (Mde

d
id

).

This also entails the following well-known formula for the inner product between
rank-1 tensors:

〈a1 ⊗ · · · ⊗ ad,b1 ⊗ · · · ⊗ bd〉 =

d∏
k=1

〈ak,bk〉;(2.1)

see, e.g., [23, section 4.5]. The Khatri–Rao product of the matrices Mk = [mk
i ]ri=1 ∈

Rnk×r is
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M1 � · · · �Md := [m1
i ⊗ · · · ⊗md

i ]i ∈ Rn1···nd×r.

Note that its columns are a subset of columns from the tensor product M1⊗· · ·⊗Md.

2.2. Differential geometry. The following elementary definitions are presented
here only for submanifolds of Euclidean spaces; see, e.g., [33] for the general definitions.
By a smooth (C∞) manifold we mean a topological manifold with a smooth structure,
in the sense of [33]. The tangent space at x to an n-dimensional smooth submanifold
M⊂ RN can be defined as

TxM=

{
v ∈ RN | ∃ a smooth curve γ(t) ⊂M with γ(0) = x and v =

d

dt

∣∣∣
t=0

γ(t)

}
.

It is a vector subspace whose dimension coincides with the dimension ofM. Moreover,
at every point x ∈ M, there exist open neighborhoods V ⊂ M and U ⊂ TxM of x,
and a bijective smooth map φ : V → U with smooth inverse. The tuple (V, φ) is a
coordinate chart ofM. A smooth map between manifolds F :M→N is a map such
that for every x ∈M and coordinate chart (V, φ) containing x, and every coordinate
chart (W, ψ) containing F (x), we have that ψ◦F ◦φ−1 : φ(U)→ ψ(F (U)) is a smooth
map. The derivative of F can be defined as the linear map dxF : TxM → TF (x)N
taking the tangent vector v ∈ TxM to d

dt |t=0F (γ(t)) ∈ TF (x)N where γ(t) ⊂M is a
curve with γ(0) = x and γ′(0) = v.

A Riemannian manifold (M, g) is a smooth manifold M equipped with a Rie-
mannian metric g, which is an inner product gx(·, ·) on the tangent space TxM that
varies smoothly with x ∈M. IfM⊂ Rm, then the inherited Riemannian metric from
Rm is gx(x,y) = 〈x,y〉 for every x ∈M. The length of a smooth curve γ : [0, 1]→M
is defined by

lengthM(γ) =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt,

and the distance distM(x, y) between two points x, y ∈M is the infimum of lengthM(γ)
where γ is any C1 curve with endpoints x and y or ∞ if such a curve does not exist.

In section 1, we denoted the Segre manifold of rank-1 tensors in Rn1×···×nd by S.
When emphasizing the format, we write Sn1,...,nd instead. Tensors of rank at most r
are denoted by

σr = σr(Sn1,...,nd) = Φr((Sn1,...,nd)×r) =

{
r∑
i=1

a1
i ⊗ · · · ⊗ adi | aki ∈ Rnk

}
.(2.2)

It is a semialgebraic set by the Tarski–Seidenberg principle [4], because it is the
projection of an algebraic variety, namely the graph of Φr [33]. Recall that this means
that σr can be described as the locus of points that satisfy a system of polynomial
equations and inequalities; see [4]. The dimension of σr equals the dimension of the
smallest R-variety σr containing it [4, Chapter 2].

2.3. Numerical analysis. For a smooth map F :M→N between Riemannian
manifolds (M, g) and (N , h) there is a standard definition of the condition number
[3, 9, 38], which generalizes the classic case of smooth maps between Euclidean spaces,
namely,

κ[F ](x) = max
tx∈TxM

‖(dxF )(tx)‖N ,F (x)

‖tx‖M,x
,(2.3)
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where dxF : TxM→ TF (x)N is the derivative of F , and ‖tx‖M,x :=
√
gx(tx, tx) for

tx ∈ TxM (resp., ‖ty‖N ,y :=
√
hy(ty, ty) for ty ∈ TyN ) is the norm on the tangent

space TxM (resp., TyN ) induced by the Riemannian metric g (resp., h).

3. Estimating the distribution of the condition number. We start by
proving the second main result, Theorem 1.4, because little technical machinery is
required. In the proof, we use the following identification of the condition number
with the inverse of the smallest singular value of an auxiliary matrix: for 1 ≤ i ≤ r let
Ui ∈ Rn1···nd×dimS be a matrix whose columns form an orthonormal basis of TAiS.
Then, by [5, Theorem 1.1],

κ(A1, . . . ,Ar) =
1

ςmin(d(A1,...,Ar)Φr)
=

1

ςmin([ U1 ··· Ur ])
,(3.1)

where ςmin denotes the smallest singular value. The smallest singular value
ςmin(d(A1,...,Ar)Φr) is actually equal to the r(n1+· · ·+nd−d+1)th singular value of the
Jacobian matrix of Φr seen as a C∞ map from Rrn1···nd to Rn1···nd . Moreover, from
(3.1) it follows that the condition number is scale invariant : for all t1, . . . , tr ∈ R\{0}
we have κ(t1A1, . . . , trA) = κ(A1, . . . ,A). Cai, Fan, and Jiang [10] proved tail probabil-
ities for the maximal pairwise angle of an independent sample of uniformly distributed
points on the sphere. The idea for using their results in the proof of Theorem 1.4 is
to lower bound the condition number by such a maximal angle. This we do next.

Lemma 3.1. For i = 1, . . . , r let Ai = ti ai ⊗ bi ⊗ ci ∈ Rn1×n2×n3 be fixed rank-1
tensors with ti ∈ R\{0} and ‖ai‖ = ‖bi‖ = ‖ci‖ = 1 for all i. Then, we have

κ(A1, . . . ,Ar) ≥ max
1≤i 6=j≤r

1√
1− |〈ci, cj〉|

.

Proof. Without restriction we can assume that the maximum is attained for i = 1
and j = 2. By (3.1), the condition number is the inverse of the least singular value of
the matrix T = [Ui]

r
i=1 where Ui is any orthonormal basis for TAiS. In particular, the

following orthonormal bases can be chosen for TA1
S and TA2

S (see, e.g., [5, section
5.1])

U1 =
[
In1
⊗ b1 ⊗ c1 a1 ⊗Q2

1 ⊗ c1 a1 ⊗ b1 ⊗Q3
1

]
and

U2 =
[
Q1

2 ⊗ b2 ⊗ c2 a2 ⊗ In2
⊗ c2 a2 ⊗ b2 ⊗Q3

2

]
for Q1

i , Q
2
i , Q

3
i being orthonormal bases for a⊥i , b⊥i , c⊥i , respectively. Observe that the

column span of U1 contains the tangent vector a2 ⊗ b1 ⊗ c1 and likewise U2 contains
a2 ⊗ b1 ⊗ c2. Then, using the computation rules for inner products from (2.1), we
find that the least singular value of T is smaller than

‖a2 ⊗ b1 ⊗ c1 − a2 ⊗ b1 ⊗ c2‖√
‖a2 ⊗ b1 ⊗ c1‖2 + ‖a2 ⊗ b1 ⊗ c2‖2

=

√
2− 2〈a2 ⊗ b1 ⊗ c1,a2 ⊗ b1 ⊗ c2〉√

2

=
√

1− 〈c1, c2〉.

Repeating the argument for the tangent vector −a2 ⊗ b1 ⊗ c2 in U2 we get

κ(A1, . . . ,Ar) ≥ max
1≤i6=j≤r

max

 1√
1−〈ci, cj〉

,
1√

1+〈ci, cj〉

= max
1≤i 6=j≤r

1√
1−|〈ci, cj〉|

,

concluding the proof.
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Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that for a random vector with identically and inde-
pendently distributed (i.i.d.) standard normal entries x, the normalized vector ‖x‖−1 x
is uniformly distributed in the sphere. From the invariance of the condition number
under scaling, we can assume that the entries of ci, 1 ≤ i ≤ d, are uniformly dis-
tributed in S(Rn3). This and Lemma 3.1 show that

P
[
κ(A1, . . . ,Ar) ≥ αr

2
n3−1

]
≥ P

 max
1≤i6=j≤r

1√
1− |〈ci, cj〉|

≥ αr
2

n3−1


= P

[
r

4
n3−1

(
1− max

1≤i6=j≤r
|〈ci, cj〉|

)
≤ α−2

]
.

From [10, Proposition 17], for every fixed α > 0, this last expression has limit

1− e−Kα1−n3
. This concludes the proof.

Theorem 1.4 is illustrated in Figure 3.1 for 15 × 15 × n tensors of rank 15 for
n = 2, 3, 5, 10, 15. Every solid line represents a limiting complementary cumulative
distribution function (ccdf) limr→∞ Tr,α from Theorem 1.4, which provide asymptotic
lower bounds on the ccdfs of the condition numbers of random rank-r CPDs. The
dashed lines in Figure 3.1 show the empirical ccdfs of the condition number based on
two different Monte Carlo experiments.

Fig. 3.1. The empirical complementary cumulative distribution function of the condition num-
ber for rank-15 tensors of size 15 × 15 × n is shown in dashed lines. The corresponding solid line
shows the lower bound from Theorem 1.4. The tensors A =

∑15
i=1 ai ⊗ bi ⊗ ci were generated by

randomly sampling factor matrices A ∈ R15×15, B ∈ R15×15, and C ∈ Rn×15, as indicated.
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In the first set of experiments, visualized in Figure 3.1(a), we generated 105

random rank-15 tensors A =
∑15
i=1 ai⊗bi⊗ ci by independently sampling the entries

of the factor matrices A = [ai] ∈ R15×15, B = [bi] ∈ R15×15, and C = [ci] ∈ Rn×15

from a standard normal distribution. It is observed that the limiting distribution
of Theorem 1.4 seems to approximate the shape of the distribution of the condition
numbers reasonably well. However, the lower bound seems rather weak for n = 2.
One of the main observations, which is also evident from the formula of the limiting
distribution, is that as n increases the probability of sampling tensors with a high
condition number decreases. As is evident from the empirical ccdf in Figure 3.1(a),
n = 2 admits the worst distribution by far: there is a 10% probability of sampling a
condition number greater than 105 and still a 0.1% chance to encounter a condition
number greater than 108. On the other hand, for n = 15, all sampled tensors had a
condition number less than 10.

In the second set of experiments, shown in Figure 3.1(b), we generated 105 random
rank-15 tensors of size 15× 15× n in a different way in order to illustrate the quality
of the lower bound in Theorem 1.4. This time, after sampling the factor matrices
(A,B,C) as above, we perform Gram–Schmidt orthogonalization of A and B. As
can be seen in Figure 3.1(b), the empirical ccdfs here are close to the corresponding
limiting distributions.

We had one additional reason to treat Theorem 1.4 first: on a fundamental level,
a PBA solves the TDP for n1 × n2 × n3 tensors by transforming it into a TDP for
n1 × n2 × 2 tensors. The above experiments clearly show that the latter problem has
a much worse distribution of condition numbers than the original problem. In other
words, from the viewpoint of sensitivity, PBAs try to solve an easy problem via the
solution of a significantly more difficult problem. This approach is nearly guaranteed
to end in instability.

4. The manifold of r-nice tensors. While the instability of PBAs is already
plausible from Figure 3.1, proving Theorem 1.2 is substantially more complicated. In
order to prove it, we should first formalize what we mean by “solving a TDP.” The goal
of this section is to do precisely this. We will carefully define a tensor decomposition
map τr;n1,...,nd in Definition 4.8 whose computation solves the TDP for a subset of
rank-r tensors. The domain where the smooth map τr;n1,...,nd is well defined deserves
its own definition, namely, Definition 4.2 below; we call it the manifold of r-nice
tensors N ⊂ σr. In Proposition 4.7 we prove that N is a Zariski-open, dense subset
of the set of rank-r tensors, so that “almost all tensors are r-nice.”

The problem of defining what “solving a TDP” means is rife with subtleties. For
example, what should the solution of a TDP be if the input tensor A is the generic
rank-11 tensor in C11×6×3? This tensor has 352, 716 isolated CPDs [25]. Computing
all of them seems computationally infeasible. Nevertheless, all of them are well be-
haved because each one of these will vary smoothly in a small open neighborhood of A
in C11×6×3. On the other hand, the generic rank-6 tensor B in C6×6×6 of multilinear
rank (4, 4, 4) behaves erratically. It has 2 isolated decompositions [12, Theorem 1.3],
but a generic rank-6 tensor close to B has only one decomposition that can be moved
around continuously such that its limit is a decomposition of B. This process works
for both of B’s decompositions, because the rank-6 tensors have two smooth folds
meeting in B [13, Example 4.2]. What should an algorithm compute in this case?

For an r-identifiable tensor A ∈ Rn1×···×nd there is an unambiguous answer to
the above questions: the solution is the unique set of real rank-1 tensors {A1, . . . ,Ar}
whose sum is A. Hence, it seems desirable to restrict ourselves to TDPs with a unique
solution. However, there is one subtlety remaining. The results in [1] entail that the
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subset of σr where real r-identifiability fails can be a proper semialgebraic subset. For
our purpose it is more convenient to exclude only proper Zariski-closed subsets of σr.
This can be accomplished as follows. Since R is not algebraically closed, there can be
additional complex solutions to the TDP. Let SC = {a1

i ⊗ · · · ⊗ adi | aki ∈ Cnk} denote
the complex Segre variety of complex rank-1 tensors. Some real r-identifiable tensors
A ∈ σr ⊂ Rn1×···×nd (i.e., A has only one real CPD) can have one or more additional
complex CPDs A = A1 + · · · + Ar with Ai ∈ SC. Such tensors are not complex r-
identifiable. Complex r-identifiability can fail only on Zariski-closed subsets [11] of
the r-secant variety2 σr(SC) := {A1 + · · ·+ Ar | Ai ∈ SC}, where the line denotes the
closure in the Zariski topology. If complex r-identifiability fails on a proper Zariski-
closed subset of σr(SC), then SC is called generically complex r-identifiable. It was
recently shown [14, 37] that generic complex r-identifiability also implies that there
exists a Zariski-open subset of σr (and so of σr as well) where complex r-identifiability
holds. The real Segre manifold S is called generically complex r-identifiable in this
case. Most SC’s are known to be generically complex r-identifiable; see [13, 14] for
the state of the art. The following standard result will suffice for our purpose.

Lemma 4.1. Let n1 ≥ · · · ≥ nd ≥ 2 and d ≥ 3. If r ≤ n2, then Sn1,...,nd is
generically complex r-identifiable.

Proof. This is follows, for example, from the effectiveness of Kruskal’s criterion;
see [14].

Before defining N , we first need the following two standard definitions. If for
a collection of r vectors p1, . . . ,pr ∈ Rn every subset of min{r, n} many vectors is
linearly independent, then the vectors are said to lie in general linear position (GLP).
We say that a collection of r rank-1 tensors {a1

i ⊗ · · · ⊗ adi }i is in super general linear
position (SGLP) if for every 1 ≤ s ≤ d and every h ⊂ {1, . . . , d} with |h| = s, the set
{ah1

i ⊗ · · · ⊗ ahsi }i is in GLP.
We are now ready to define a valid set of inputs for the TDP.

Definition 4.2 (r-nice tensors). Recall from (2.2) the definition of σr and its
Zariski closure σr. Then, Mr;n1,...,nd ⊂ S×rn1,...,nd

is the set containing all the rank-1
tuples a = (A1, . . . ,Ar) satisfying all of the following properties.

1. Φr(a) is a smooth point of σr;
2. Φr(a) is complex r-identifiable, and, thus, has rank equal to r;
3. a has finite condition number;
4. a is in SGLP; and
5. for all i the (1, 1, . . . , 1)-entry of Ai is not equal to zero.

The set of r-nice tensors Nr;n1,...,nd is defined to be the image of Mr;n1,...,nd under
the addition map Φr from (1.2):

Nr;n1,...,nd := Φr(Mr;n1,...,nd).

Remark 4.3. The reason for requirement 5 is that under this restriction we can
define a parametrization of rank-1 tensors that is a diffeomorphism; see the next
subsection for details.

4.1. Elementary results. Before proceeding, we need a few results related to
the differential geometry of CPDs, which we did not find in the literature but are
certainly well known.

2This is a classic construction in algebraic geometry; see [24] for a general treatment or [32] in
the context of tensor decompositions.
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The rank-1 tensors in Rn1×···×nd , i.e., S = {a1 ⊗ · · · ⊗ ad | ak ∈ Rnk} \ {0}, form
the affine cone over a smooth projective variety (see, e.g., [32]) and, hence, S is an

analytic submanifold of Rn1×···×nd . Its dimension is 1+
∑d
k=1(nk−1) [32]. The map3

Ψn1,...,nd : R \ {0} × S(Rn1)× · · · × S(Rnd)→ S, (λ,u1, . . . ,ud) 7→ λu1 ⊗ · · · ⊗ ud

is a surjective local diffeomorphism: every point in the domain has an open neighbor-
hood such that Ψn1,...,nd restricted to this neighborhood is an open, smooth (C∞),
bijective map with smooth inverse [33, page 79]. Indeed, it can be verified that the
derivative is injective at every point; see, e.g., [5, section 5.1]. Note that the fiber
of Ψn1,...,nd at λu1 ⊗ · · · ⊗ ud is exactly the set {(ω0λ, ω1u1, . . . , ωdud) | ω0 · · ·ωd =
1, ωi ∈ {−1, 1}}, which has 2d elements. Moreover, Ψn1,...,nd is a proper map so that
it is a 2d-sheeted smooth covering map [33, pages 91–95].

Let S+(Rn) = {u ∈ S(Rn) | u1 > 0} be the “upper” half of the unit sphere; it is
a submanifold in the subspace topology on Rn. Let us define the following restriction
of Ψ:

Ψ∗n1,...,nd
: R \ {0} × S+(Rn1)× · · · × S+(Rnd)→ S,(4.1)

(λ,u1, . . . ,ud) 7→ λu1 ⊗ · · · ⊗ ud.

It follows from the foregoing that Ψ∗n1,...,nr is a bijective local diffeomorphism onto its
image, so it is a (global) diffeomorphism onto its image. Let S∗n1,...,nr be the image of
Ψ∗n1,...,nr :

S∗n1,...,nr := Ψ∗n1,...,nr (R \ {0} × S+(Rn1)× · · · × S+(Rnd)).(4.2)

When it is clear from the context we drop the subscripts from Ψn1,...,nd , Ψ∗n1,...,nd
,

and S∗n1,...,nd
. The foregoing explains part 5 in Definition 4.2: we wish to work with

a parametrization of S that is a diffeomorphism, so we restrict ourselves to S∗ and
use Ψ∗. We will show in the proof of Proposition 4.5 that S∗ is open in the Zariski
topology and, hence, open and dense in the Euclidean topology.

Finally, we consider the subset Sr;n ⊂ (S+(Rn))×r defined as

Sr;n =
{

(s1, . . . , sr) ∈ (S+(Rn))×r |
[
s1 · · · sr

]
∈ Rn×r has full rank

}
.(4.3)

Note that Sr;n is an open submanifold because the locus of points not satisfying the
rank condition is closed in the Zariski topology. We also have the following result.

Lemma 4.4. Let Sr be the symmetric group on r elements. Then Ŝr;n = Sr;n/Sr

is a manifold and the projection π : Sr;n → Ŝr;n, (x1, . . . , xr) 7→ {x1, . . . , xr} is a local
diffeomorphism.

Proof. Sr is a discrete Lie group acting smoothly [33, Example 7.22(e)]. The
group action is also free because S ∈ Sr;n can be a fixed point of some permutation
only if si, sj ∈ S with i 6= j are equal. It can be verified that the conditions in [33,
Lemma 21.11] hold, so that the action is proper. The result follows by the quotient
manifold theorem [33, Theorem 21.10].

3The following items are most naturally considered in projective space, but in order to avoid as
much technicalities as is feasible we prefer to present the results concretely as subspaces of Euclidean
spaces.
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4.2. Differential geometry of r-nice tensors. We prove an important prop-
erty of the set Mr;n1,...,nd from Definition 4.2.

Proposition 4.5. Let Sn1,...,nd be generically complex r-identifiable. Then,
Mr;n1,...,nd is a Zariski-open submanifold of S×rn1,...,nd

.

Proof. Let S = Sn1,...,nd and M = Mr;n1,...,nd for brevity. We show that the
set of tuples not satisfying either of the conditions in Definition 4.2 is a union of five
Zariski-closed proper subsets of S; these subsets are denoted by B1,B2,B3,B4, and
B5. Then

M = S×r\ (B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5)

would be the complement of a Zariski-closed set, which proves the assertion.
Recall that generic complex r-identifiability implies nondefectivity of σr; see [32,

Chapter 5], specifically Corollary 5.3.1.3. Hence,

dimσr = dimσr = dimS×r = r dimS.(4.4)

The subvariety Σ ⊂ σr of singular points is proper and closed in the Zariski topology
by definition [24]. This means that in addition to the polynomials that vanish on
the R-variety σr, there are k ≥ 1 additional nontrivial polynomial equations with
coefficients over R such that f1(y) = · · · = fk(y) = 0 for all y ∈ Σ. If y has a
preimage x ∈ S×r under Φr, then f1(Φr(x)) = · · · = fk(Φr(x)) = 0. Hence, the locus
B1 of decompositions not satisfying condition 1 in Definition 4.2 and that map into the
singular locus Σ under Φr is a Zariski-closed set. It is also a proper subset, because
otherwise Φr(S×r) = σr ⊂ Σ, which is a contradiction as dim Σ < dimσr = dimσr.

The set of tensors in σr with several distinct complex CPDs is closed in the
Zariski topology by the assumption of generic complex r-identifiability. We can apply
the same argument as in the previous paragraph to conclude that the variety of
decompositions B2 ⊂ S×r that map to points of σr that are not complex r-identifiable
is a proper Zariski closed subset in S×r.

For brevity, let Π = n1 . . . nd and Σ = dimS. By the spectral characterization of
κ in [5, Theorem 1.1], the subset B3 ⊂ S×r of decompositions with condition number
∞ is

B3 =
{

(A1, . . . ,Ar) ∈ S×r | dim〈TA1
S, . . . ,TArS〉 < rΣ

}
.(4.5)

Let R = R[x1, . . . , xΠ] be a polynomial ring. Let fi ∈ R, i = 1, . . . ,m, be generators of
the ideal generated by the real determinantal equations that define the Segre variety
S ∪ {0} ⊂ RΠ [32, section 4.3.5]. The kernel of the Jacobian matrix of the fi’s is
a finitely-generated submodule of the Noetherian ring RΠ [2, Chapter 6]; let {gi ∈
RΠ}pi=1 denote a minimal set of generators. As S is a nonsingular projective variety,
the span of these generators evaluated at X ∈ S coincides with the Zariski tangent

space TXS [24, chapter 14]. Choose coordinates x
(i)
1 , . . . , x

(i)
Π for the ith copy of RΠ

in the ambient (RΠ)×r of S×r. Then, B3, considered as a subset of the ambient
(RΠ)×r, is precisely given by the simultaneous vanishing of all fi’s and all rΣ × rΣ
minors of the following Π× rp polynomial matrix M whose elements live in the ring

R′ := R[x
(1)
1 , . . . , x

(1)
Π , . . . , x

(r)
1 , . . . , x

(r)
Π ]:

M(x1, . . . ,xr) :=[
g1(x

(1)
1 , . . . , x

(1)
Π ) · · · gp(x(1)

1 , . . . , x
(1)
Π ) · · · g1(x

(r)
1 , . . . , x

(r)
Π ) · · · gp(x(r)

1 , . . . , x
(r)
Π )
]
,
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where xi = (x
(i)
1 , . . . , x

(i)
Π ). Note that if Ai ∈ S ⊂ RΠ, i = 1, . . . , r, are real rank-1

tensors in ambient coordinates, we have by construction that

span(M(A1, . . . ,Ar)) = 〈TA1
S, . . . ,TArS〉.(4.6)

The vanishing of these minors of M thus encodes intersecting tangent spaces. It
follows from the foregoing that B3 is given by the vanishing of a set of polynomial
equations, so it is a Zariski-closed subvariety of S×r. To show that it is proper, we
proceed as follows. The rank of M is a lower-semicontinuous function (relative to the
Zariski topology) in function of its entries (overR′). Hence, there is a value 0 ≤ k ≤ rΣ
such that rank(M) = k on a Zariski-open subset of S×r. The upper bound follows
from (4.6). Let Z be the proper Zariski-closed subset of S×r where rank(M) < k.
Observe that if k = rΣ, then Z = B3. We have that M′ = S×r \ (Z ∪ B2) is an open
submanifold. The restriction Φr|M′ :M′ → RΠ is a map between smooth manifolds.
Moreover, it is of constant rank k by (4.6) and [5, Theorem 1.1] which states that the
matrix of dA1,...,ArΦr with respect to the standard bases is

[
U1 · · · Ur

]
∈ RΠ×rΣ

where Ui ∈ RΠ×Σ contains an orthonormal basis of TAiS. The constant-rank level
set theorem [24, Theorem 5.12] applies, so that every element in the image of Φr|M′
has a fiber that is a smooth manifold of dimension rΣ − k. If k < rΣ, then every
fiber of Φr|M′ has dimension at least 1. This is a contradiction because M′ excludes
B2, which is the Zariski-closed set where the fiber of Φr has more than r! elements.
Therefore, k = rΣ and Z = B3 is a proper Zariski-closed subset of S×r.

The points B4 ⊂ S×r not satisfying condition 4 of Definition 4.2 is Zariski-closed
by [14, Lemma 4.4].

For the last point, observe that condition 5 of Definition 4.2 is equivalent to
a ∈ (S∗)×r. By definition of S∗ in (4.2), the set of points in S \ S∗ is the intersection
of S with the union of the linear varieties Lk = Rn1⊗· · ·⊗Rnk−1⊗Rnk/〈e1〉⊗Rnk+1⊗
· · · ⊗ Rnd , where Rnk/〈e1〉 = 〈e2, . . . , enk〉 and ei is the ith standard basis vector of
Rnk . In fact,

S \ S∗ = S ∩

(
d⋃
k=1

Lk

)
=

d⋃
k=1

(S ∩ Lk) '
d⋃
k=1

Sn1,...,nk−1,nk−1,nk+1,...,nd ,

which is thus a Zariski-closed set because dimSn1,...,nk−1,nk−1,nk+1,...,nd < dimS.

Therefore, taking B5 =
⋃r
i=1 S×(i−1) × (S \ S∗) × S×(r−i) yields the Zariski-closed

variety of points not satisfying condition 5 of Definition 4.2. This concludes the
proof.

The definition ofMr;n1,...,nd is nice in the sense that the addition map Φr from (1.2)
restricted to Mr;n1,...,nd is a local diffeomorphism. However, we wish to work with
global diffeomorphisms and therefore need the following proposition.

Proposition 4.6. If Sn1,...,nd is generically complex r-identifiable, then

M̂r;n1,...,nd =Mr;n1,...,nd/Sr

is a manifold and the projection π̂ :Mr;n1,...,nd → M̂r;n1,...,nd , (A1, . . . ,Ar) 7→ {A1, . . . ,
Ar} is a local diffeomorphism.

Proof. Combine the proof of Lemma 4.4 with the fact that r-identifiability implies
that the rank-1 tensors in a decomposition (A1, . . . ,Ar) ∈ Mr;n1,...,nd are pairwise
distinct.
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It is clear that the addition map Φr is constant on Sr-orbits in Mr;n1,...,nd .

Therefore, Φr is well defined on M̂r;n1,...,nd . Now, we have the following crucial
result.

Proposition 4.7. Let Nr;n1,...,nd ⊂ Sm(σr) be the set of r-nice tensors, where
Sm(σr) ⊂ Rn1×···×nd is the smooth submanifold of smooth points of the R-variety σr.
If Sn1,...,nd is generically complex r-identifiable, then

Φr : M̂r;n1,...,nd → Nr;n1,...,nd , {A1, . . . ,Ar} 7→ A1 + · · ·+ Ar

is a diffeomorphism. Moreover, Nr;n1,...,nd is an open dense subset of σr.

Proof. As before, for brevity, we drop all subscripts. Let a = (A1, . . . ,Ar) ∈
M. By definition, a has a finite condition number. This means, by [5, Theorem
1.1], that the derivative of Φr at a is injective. Hence, Φr is a smooth immersion
[33, page 78]. By the identifiability assumption, it follows that the r-secant vari-
ety σr is not defective so that dimσr = r dimS. Moreover, by Proposition 4.5,
we have r dimS = dimMr;n1,...,nd and, by construction, we have dimMr;n1,...,nd =

dimM̂r;n1,...,nd . As Φr is injective by generic complex r-identifiability and by having
taken the particular quotient in Proposition 4.6, then [33, Proposition 4.22(d)] entails
that Φr is a smooth embedding. The first conclusion follows by [33, Proposition 5.2].

The foregoing already shows that Nr;n1,...,nd ⊂ σr is open. We show that it is
dense. Let A ∈ σr \ Nr;n1,...,nd with A = Φr(a) = A1 + · · ·+ Ar. By Proposition 4.5,
there is a sequence

(A(j)
1 , . . . ,A(j)

r ) ∈Mr;n1,...,nd such that lim
j→∞

(A(j)
1 , . . . ,A(j)

r )→ (A1, . . . ,Ar).

Note that this is convergence in the usual Euclidean topology thatMr;n1,...,nd inherits
from the ambient space (Rn1×···×nd)×r. Consequently, the components also converge

individually: limj→∞ A(j)
i → Ai, i = 1, . . . , r. The result follows from the fact that

adding the above convergent sequences results in a convergent sequence in Nr;n1,...,nd

with limit A. Hence, A lies in the Euclidean closure of Nr;n1,...,nd so that the latter
is dense in σr.

From Proposition 4.7, Φr has a smooth inverse, which solves the TDP on
Nr;n1,...,nd ⊂ Rn1×···×nd . We finally arrive at the goal of this section.

Definition 4.8. The inverse of Φr on the manifold of r-nice tensors is

τr;n1,...,nd : Nr;n1,...,nd → M̂r;n1,...,nd , A1 + · · ·+ Ar 7→ {A1, . . . ,Ar}.

We call this mapping the tensor decomposition map.

Remark 4.9. One way to interpret the above construction is that near
A ∈ Nr;n1,...,nd we locally have the identification τr;n1,...,nd = π̂ ◦ Φ−1

a , where a =
(A1, . . . ,Ar) is any ordered r-nice decomposition of A, Φ−1

a is the local inverse in
(1.3), and π̂ is as in Proposition 4.6.

4.3. Implications for the condition number. Let a = (A1, . . . ,Ar) be any
ordered r-nice decomposition inMr;n1,...,nd . For the r-nice tensor A = A1 + · · ·+Ar ∈
Nr;n1,...,nd , we will relate the condition number κ[τr;n1,...,nd ](A), as defined in (2.3),
to the condition number of the CPD κ(A1, . . . ,Ar) from [5]. We have the following
result, proved in the appendix.



PENCIL-BASED ALGORITHMS FOR CPD ARE NOT STABLE 753

Lemma 4.10. Let us choose the Riemannian metrics on Nr;n1,...,nd andMr;n1,...,nd

inherited from their respective ambient spaces. Then the mapping π̂ from Propo-
sition 4.6 induces a natural Riemannian metric on M̂r;n1,...,nd with the following
properties.

1. π̂ is a local isometry;
2. for all A = A1+· · ·+Ar ∈ Nr;n1,...,nd , we have κ(A1, . . . ,Ar) = κ[τr;n1,...,nd ](A);

and
3. for any {A1, . . . ,Ar}, {B1, . . . ,Br} ∈ M̂ we have

distM̂({A1, . . . ,Ar}, {B1, . . . ,Br})= min
π∈Sr

(distM((A1, . . . ,Ar), π(B1, . . . ,Br))) .

Here, distM̂ and distM are the respective Riemannian distances.

Because of (1.3) and the equality of condition numbers in Lemma 4.10, we find
that for every a = (A1, . . . ,Ar) ∈Mr;n1,...,nd we have

κ[τ ](A) = lim
ε→0

sup
B∈Nr;n1,...,nd

,

‖A−B‖F≤ε

distM̂(τ(A), τ(B))

‖A − B‖F

= lim
ε→0

sup
B∈σr

‖A−B‖F≤ε

min
π∈Sr

‖Φ−1
a (A)− π ◦ Φ−1

a (B)‖F
‖A − B‖F

,

where τ = τr;n1,...,nd and the last equality follows from (3) in Lemma 4.10. The above
equality is very significant because it allows us to make sense of the distance between
two unordered CPDs, i.e., sets of rank-1 tensors, {A1, . . . ,Ar} and {B1, . . . ,Br}. As a
consequence, we get an instance of the well-known rule of thumb in numerical analysis

min
π∈Sr

‖A−BPπ‖F︸ ︷︷ ︸
forward error

. κ[τ ](A)︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error

(4.7)

for nearby A = A1 + · · · + Ar and B = B1 + · · · + Br; herein, A = [Ai]i ∈ Rn1···nd×r

(resp., B = [Bi]i ∈ Rn1···nd×r) is a matrix that contains the vectorized rank-1 tensors
Ai (resp., Bi) as columns, and Pπ is the r × r permutation matrix representing the
permutation π. The notation . indicates that the bound is asymptotically sharp for
infinitesimal ‖A − B‖F .

5. Pencil-based algorithms for the CPD. We start by specifying a very
general class of numerical algorithms to which the analysis in section 6 applies. The
construction may seem a bit abstract at first sight, so it is useful to keep in mind that
the prototypical algorithm from the introduction is an example of a PBA.

As it suffices, in principle, to present a single input for which an algorithm is
unstable, we can choose a well-behaved subset of r-nice tensors N ∗ ⊂ Nr;n1,n2,n3

⊂
Rn1×n2×n3 (for the exact choice of N ∗ see Definition 5.1 below) and specify what
a PBA should compute for such inputs. If the numerical instability already occurs
on this subset, then it is also unstable on larger domains. We recall from section 4
that by considering only r-nice tensors Nr;n1,n2,n3 , the TDP consists of computing
the action of the function τr;n1,n2,n3

from Definition 4.8. PBAs compute this map in
a particular way via the four transformations described below.

The input of a PBA is assumed to be the multidimensional array A ∈ Rn1×n2×n3 .
The first transformation is the multilinear multiplication ρQ that maps n1 × n2 × n3

tensors to format n1 × n2 × 2 via the matrix Q ∈ Rn3×2 with orthonormal columns

ρQ : Rn1×n2×n3 → Rn1×n2×2, A 7→ (In1
, In2

, QT ) · A.
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Note that it is a multilinear orthogonal projection [18, section 2.6].

The second transformation, θ̂, computes the set of unit-norm columns of the first
factor matrix A of the CPD when restricted to Nr;n1,n2,2:

θ̂|Nr;n1,n2,2
: Nr;n1,n2,2 → Ŝr;n1

, B =

r∑
i=1

ai ⊗ bi ⊗ zi 7→ {a1, . . . ,ar}.

Herein, Ŝr;n1 = Sr;n1/Sr, where Sr;n1 is as in (4.3). Note the curious definition of

θ̂ involving the restriction to Nr;n1,n2,2. The reason for this formulation is that a
PBA will be executed using floating-point arithmetic. It is unlikely that the floating
point representation fl(B) ∈ Rn1×n2×2 is exactly in Nr;n1,n2,2 ⊂ Rn1×n2×2, even when

B ∈ Nr;n1,n2,2. Therefore, a minimal additional demand is placed on θ̂: for every

B ∈ Nr;n1,n2,2, θ̂ must be defined for fl(B).
The third transformation, υ, when restricted to

Rr;n1,n2,n3 :=
{
(A, A) | A=(a1, . . . ,ar) ∈ Sr;n1 and A =

r∑
i=1

ai⊗bi⊗ci ∈ Nr;n1,n2,n3

}
,

essentially computes the Khatri–Rao product B�C of the remaining factor matrices,
namely,

υ|Rr;n1,n2,n3
: Rr;n1,n2,n3

→S×rn2,n3
,(

A =

r∑
i=1

ai ⊗ bi ⊗ ci, (a1, . . . ,ar)

)
7→ (b1 ⊗ c1, . . . ,br ⊗ cr).

For the proof of instability in section 6, it will not matter if or how υ is defined
outside of Rr;n1,n2,n3 , so we impose no further constraints. The final step computes
the (unordered) Khatri–Rao product of two ordered sets of vectors:

�̂ : Rp×r × Rq×r → S×rp,q/Sr,
(
(x1, . . . ,xr), (y1, . . . ,yr

)
7→ {x1 ⊗ y1, . . . ,xr ⊗ yr}.

Applied to A and B � C, this yields the set of rank-1 tensors solving the TDP.
We will define a PBA to be an algorithm composing the above functions. The

input space for a PBA is thus

N ∗ := ρ−1
Q (Nr;n1,n2,2) ∩Nr;n1,n2,n3

;(5.1)

it is the subset N ∗ mentioned at the start of this section. Hence, we arrive at the
definition of the class of PBAs for solving a TDP whose input is in N ∗ ⊂ Rn1×n2×n3 .

Definition 5.1 (pencil-based algorithm). Let the maps ρQ, θ̂, υ, and �̂ be
as above. A PBA for solving the TDP is an algorithm that computes the tensor
decomposition map τr;n1,n2,n3 when given the n1×n2×n3 input array A =

∑r
i=1 ai⊗

bi ⊗ ci ∈ N ∗, where ai ∈ S+(Rn1) and N ∗ is as in (5.1), by performing the following
steps.

S1. B ← ρQ(A);

S2. {a1, . . . ,ar} ← θ̂(B);
S3.a Choose an order A := (a1, . . . ,ar);
S3.b (b1 ⊗ c1, . . . ,br ⊗ cr)← υ(A, A);
S4. output ← �̂

(
(a1, . . . ,ar), (b1 ⊗ c1, . . . ,br ⊗ cr)

)
.
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6. Pencil-based algorithms are unstable. We continue by showing that
PBAs are numerically forward unstable for solving the TDP for third-order tensors.
For A ∈ N ∗ ⊂ Rn1×n2×n3 let {Ã1, . . . , Ãr} be the CPD returned by a PBA in floating-
point representation. The overall goal in the proof of Theorem 1.2 is showing that
for all small ε > 0 there exists an open neighborhood Oε ⊂ N ∗ of r-nice tensors such
that for A = A1 + · · ·+ Ar in Oε the excess factor

ω(A) :=
minπ∈Sr

√∑r
i=1 ‖Ai − Ãπ(i)‖2F

κ[τr;n1,n2,n3 ](A) · ‖A − fl(A)‖F
(6.1)

is at least a constant times ε−1. The exact statement is in Theorem 6.1 below.
We call ω the excess factor because it measures by how much the forward er-

ror (see (4.7)) produced by the numerical algorithm, as measured by the numerator,
exceeds the forward error that one can expect from solving the TDP (which is equiv-
alent to computing the map τr;n1,n2,n3

), as measured by the denominator. Showing
that the excess factor can become arbitrarily large on the domain of τr;n1,n2,n3

is
essentially equivalent to the standard definition of numerical forward instability of an
algorithm for computing τr;n1,n2,n3 [26]. In fact, the excess factor can be interpreted
as a quantitative measure of the forward numerical instability of an algorithm on a
particular input. Ideally, ω is bounded by a small constant, but for numerically un-
stable algorithms ω is “too large” relative to the problem dimensions. The next result
is a more precise version of Theorem 1.2 which states that for all A ∈ Oε, a PBA
becomes arbitrarily unstable as ε→ 0, irrespective of the problem size.

Theorem 6.1. For all n1, n2 ≥ r ≥ 2 and n3 ≥ r + 2, there exists a constant
Λ > 0 and a tensor O ∈ Nr;n1,n2,n3 (see (6.5)) with the property that for all sufficiently
small ε > 0, there exists an open neighborhood Oε of O (see Lemma 6.5) such that for
all tensors A ∈ Oε:

1. A ∈ N ∗ is a valid input for a PBA, and
2. ω(A) ≥ Λ ε−1.

Herein, N ∗ is as in Definition 5.1.

The following subsections develop the proof of the above theorem. It should be
noted that in the proof we are using the following unproven but reasonable assumption
about the behavior of roundoff errors in the standard model of floating-point arith-
metic. We stress at this point that the numerical experiments in section 7 strongly
support this assumption, demonstrating almost perfect agreement with Theorem 6.1.

Assumption 6.2. Let Oε be as in Theorem 6.1 and ρQ and θ̂ as in Definition 5.1.
There exist β1, β2 > 0 and an open neighborhood O′ε ⊂ Oε such that for all A ∈ O′ε
and B = ρQ(A) ∈ Rn1×n2×2 we have

(a) minπ∈Sr ‖A− ÃPπ‖F ≥ β1 · κ[θ̂](B) · ‖B − fl(B)‖F ; and
(b) ‖B − fl(B)‖F ≥ β2εu‖B‖F ,

where εu is the unit roundoff, Pπ is the permutation matrix corresponding to π, and
Ã = [ãi]i with {ã1, . . . , ãr} = θ̂(fl(B)).

Proof sketch. We argue why this assumption is reasonable. In words, statement
(a) claims that the roundoff errors B−fl(B) are not structured in such a way that the

direction of the worst perturbation (for θ̂) is completely avoided, and statement (b)
claims that at least one entry of B = ρQ(A) ∈ Rn1×n2×2 is not representable in the
floating-point system.
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The following argument essentially shows that Assumption 6.2 (a) is valid. Let

B̃ := fl(B). Consider the open neighborhood N ⊂ Rn1×n2×2 around B̃ of radius equal
to 1

2εmin, where εmin is the nonzero floating-point number closest to zero. All tensors

in N are rounded to B̃; that is, fl(N) = B̃. Projecting this neighborhood orthogonally
onto TB̃Nr;n1,n2,2 results in a sphere of radius 1

2εmin in TB̃Nr;n1,n2,2 centered at the
origin. Just as in the usual lim-sup definition of the condition number, for B ∈ N we
have to first order

minπ∈Sr ‖Ã− θ̂(B)Pπ‖F
‖B̃ − B‖F

≈
‖(dB̃ θ̂)(x)‖
‖x‖

,(6.2)

where x is the projection of B̃−B onto TB̃Nr;n1,n2,2. Let v ∈ TB̃Nr;n1,n2,2 be a vector

of unit length such that the right-hand side equals κ[θ̂](B̃); such a vector exists by
definition of the condition number. For every 0 < β1 < 1, it follows that there exists
at least an open spherical cap C = {z ∈ S(TB̃Nr;n1,n2,2) | 〈z,v〉 ≥ 1 − γ} with γ > 0

such that for all z ∈ C, the right-hand side of (6.2) is at least β1 · κ[θ̂](B̃). Since

κ[θ̂](B̃) ≈ κ[θ̂](B), the claim essentially follows by taking the preimage of C under the
projection and then the preimage under ρQ.

Concerning Assumption 6.2 (b), in the standard model of floating-point arithmetic
we have

‖B − fl(B)‖2F =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

(bi1,i2,i3 − (1 + δ̇i1,i2,i3)bi1,i2,i3)2

=

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

δ̇2
i1,i2,i3b

2
i1,i2,i3 ,

where |δ̇i1,i2,i3 | ≤ εu. While a detailed analysis of β2 is outside of the scope of this
work, it is reasonable to assume that β2 is not so small. We can take guidance
from [7] where the root mean squared representation error is computed for some
number systems, assuming a logarithmic distribution of the real numbers bi1,i2,i3 . In
this case, [7, section V] shows that, after plugging in the parameters of double-precision
IEEE floating-point arithmetic [26, section 2.3], one has

1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

δ̇2
i1,i2,i3 ≈

(
308√

3
log 2

)2

ε2u.

If all bi1,i2,i3 are roughly proportional, i.e., b2i1,i2,i3 ≈
1

n1n2n3
‖B‖2F , then β2 ≈ 308√

3

log 2 ≈ 123.

6.1. The key ingredients. The key observation is that for computing the tensor
decomposition map τr;n1,n2,n3 every PBA computes θ̂ in S2. We will show that the

condition number of θ̂ is comparable to the condition number of τr;n1,n2,2. Combining
this result with the observations from section 3 and [6], which both demonstrated that
the condition number of the tensor decomposition map τr;n1,n2,2 for n1×n2×2 tensors
can be much worse than the one of τr,n1,n2,n3

for n1× n2× n3 tensors, motivated our
proof of Theorems 1.2 and 6.1.

Let us consider the relation between the tensor decomposition map for n1×n2×2
tensors and θ̂. For brevity, we denote the manifold of r-nice tensors in Rn1×n2×2 by
N := Nr;n1,n2,2. The main intuition underpinning the proof of Theorem 6.1 is the
following diagram:
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N

N × Ŝr;n1 M̂r;n1,n2,2.

IdN ×θ̂
τr;n1,n2,2

η̂
(6.3)

Herein, η̂ is any map so that τr;n1,n2,2 = η̂ ◦ (IdN ×θ̂). For example, we could take the
map η̂ = τr;n1,n2,2 ◦ π1, where π1(x, y) = x projects onto the first factor. For clearly

conveying the main idea, let us imagine for a moment that IdN ×θ̂, η̂, and τr;n1,n2,2

were smooth (C∞) multivariate functions between Euclidean spaces. For any such
functions f, g, we have that κ[f ](x) = ‖Jf (x)‖2, where Jf (x) is the Jacobian matrix
of f at x; see, e.g., [9, Proposition 14.1]. Consequently, for the composite function
g ◦ f , we get

κ[g ◦ f ](x) = ‖Jg(f(x))Jf (x)‖2 ≤ ‖Jg(f(x))‖2‖Jf (x)‖2 = κ[g](f(x)) · κ[f ](x).(6.4)

It thus seems feasible to obtain lower bounds on the condition number of f = IdN ×θ̂
in function of the condition numbers of g ◦ f = τr;n1,n2,2 and g = η̂. The key insight
is that η̂ should be chosen in such a way that it has a condition number bounded by a
constant, so that κ[IdN ×θ̂](B) would be comparable in magnitude to κ[τr;n1,n2,2](B).

Using the above ideas, we will rigorously prove the next lemma in the appendix,

which states that the condition number of θ̂ can be bounded from below by the
condition number of the tensor decomposition map τr;n1,n2,2 in some cases.

Lemma 6.3. Let 0 < ν < 1 be sufficiently small. Let B =
∑r
i=1 ai ⊗ bi ⊗ zi be

an element of N . Assume that ‖ai‖ = 1 and ‖bi ⊗ zi‖ < 1 + ν for i = 1, . . . , r. Let
A = [ai]

r
i=1. If there exists a matrix A′ ∈ Rn1×r with orthonormal columns such that

‖A−A′‖F ≤ ν, then

κ[θ̂|N ](B) ≥ κ[τr;n1,n2,2](B)

10r
− 1.

This shows that in some circumstances, the condition number of θ̂|N is proportional
to the condition number of τr;n1,n2,2 in Rn1×n2×2. Unfortunately, the errors in the

computation of θ̂|N cannot always be corrected, as we prove the following result in
the appendix.

Lemma 6.4. Let 0 < ν < 1 be sufficiently small. Let A =
∑r
i=1 ai⊗bi⊗ ci ∈ N ∗

be a CPD such that ‖ai‖ = 1 and ‖bi ⊗ ci‖ ≥ 1− ν for i = 1, . . . , r; denote its factor
matrices by A,B,C. Assume there exists a matrix A′ ∈ Rn1×r with orthonormal
columns such that ‖A−A′‖F ≤ ν. Then, for every matrix Ã ∈ Rn1×r with unit-norm
columns such that

δ := min
π∈Sr

‖A− ÃPπ‖F < 1,

and every matrices B̃ ∈ Rn2×r and C̃ ∈ Rn3×r, we have

min
π∈Sr

‖A�B � C − (Ã� B̃ � C̃)Pπ‖F ≥
√

3
4 (1− ν) δ.

This result implies that a PBA would not be able to compensate the error in-
troduced in the computation of θ̂ in step S2 even if steps S3 and S4 would perfectly
recover the rank-1 summands. Moreover, under the assumptions of Lemma 6.3, the
condition number of θ̂ is proportional to the condition number of τr;n1,n2,2. This
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indicates that the magnification of an input perturbation of a PBA will be roughly
proportional to the condition number of the TDP for n1 × n2 × 2 tensors. However,
we recall from section 3 and [6] that there is a great discrepancy between the distri-
bution of the condition numbers of the TDPs for n1×n2×n3 and n1×n2×2 tensors,
the latter being much larger than the former on average. This will then imply that
the excess factor ω in (6.1) is large. In the next subsections, we exploit Lemmas 6.3
and 6.4 for proving Theorem 6.1.

6.2. Constructing a bad tensor. The role of O in Theorem 6.1 will be played
by the following tensor. Let U be the n3 × n3 orthogonal matrix U = [Q⊥ Q ], where
Q⊥ is an n3 × (n3 − 2) matrix whose columns form an orthonormal basis of the
complement of the columns of Q, where the latter is as in section 5. Define the n3× r
matrix with orthonormal columns

C ′ := U

(
In3×r −

2

n3
1n31

T
r

)
diag(1,−1, . . . ,−1) =

2

n3
U



n3

2 − 1 1 1
−1 1− n3

2 1
−1 1 1− n3

2
−1 1 1 · · ·
...

...
...

−1 1 1


,

where 1k ∈ Rk is the vector of ones, and Im×n = [ei]
n
i=1, where ei is the ith standard

basis vector of Rm. Denote the columns of C ′ by c′i. Let A′ = [a′i]
r
i=1 ∈ Sr;n1

and
B′ = [b′i]

r
i=1 ∈ Sr;n2 be matrices with orthonormal columns, where Sr;n ⊂ Rn×r is as

in (4.3). Note that such matrices exist when n1, n2 ≥ r; e.g., In×r − 2
n1n1Tr ∈ Sr;n

for n ≥ r. The orthogonally decomposable (odeco) tensor associated with these factor
matrices is

O :=

r∑
i=1

a′i ⊗ b′i ⊗ c′i.(6.5)

It will satisfy the requirements in Theorem 6.1 and complete the proof of instability
of PBAs.

It is a very bad omen that O is not a valid input for PBAs. This is because the
projected tensor ρQ(O) has a positive-dimensional family of decompositions, implying
κ[τr;n1,n2,2] = ∞. Indeed, we have QT c′1 = 2

n3
[−1 − 1]T and, since we require

n3 ≥ r + 2 in Theorem 6.1, we also have QT c′i = 2
n3

[1 1]T for all 2 ≤ i ≤ r. The
projected tensor is thus

ρQ(O) = − 2

n3
a′1 ⊗ b′1 ⊗

[
1
1

]
+

2

n3

r∑
i=2

a′i ⊗ b′i ⊗
[
1
1

]
.

This tensor has multilinear rank equal to (r, r, 1), so that it has a family of decom-
positions by combining [13, Theorem 4.1], σr(Sr,r,1) ' σr(Sr,r), and [32, Proposition
5.3.1.4]. By Lemma 3.1, [5, Corollary 1.2], or [14, Lemma 6.5] the condition number
of ρ(Q) is infinite. By taking an appropriate neighborhood of O the proof of Theo-
rem 6.1 will be completed. This is investigated in the next lemma, which we prove in
the appendix.

Lemma 6.5. Let (O1, . . . ,Or) ∈ S×r be an ordered CPD of O as in (6.5). Let

Uε := {(A1, . . . ,Ar) ∈Mr;n1,n2,n3
⊂ S×r | ‖Ai − Oi‖F < ε, i = 1, . . . , r}

and Oε := Φr(Uε) ∩N ∗. Then, Oε is a Euclidean-open subset of σr with O ∈ Oε.
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Note that for all A ∈ Oε, we have in particular that A ∈ N ∗, so that both A and
its projection B = ρQ(A) are r-nice. The next result allows us to apply Lemmas 6.3
and 6.4 for tensors in Oε.

Lemma 6.6. Let A′, B′, C ′ be as in the definition of O in (6.5). For all n1, n2 ≥
r ≥ 2 and n3 ≥ r + 2, there exists a constant µ > 0 so that for all sufficiently small
1 ≥ ε > 0 and all A ∈ Oε there exist factor matrices (A,B,C) ∈ Rn1×r×Rn2×r×Rn3×r

of A such that both A and B have unit-norm columns and the following bounds holds:

‖A−A′‖F ≤ µε, ‖B −B′‖F ≤ µε, and ‖C − C ′‖F ≤ µε.

Moreover, the columns of B�C satisfy 1−µε ≤ ‖bi⊗ci‖F ≤ 1+µε for all i = 1, . . . , r.

This lemma is also proved in the appendix. Combining these two lemmas with
Lemmas 6.3 and 6.4, we get the following important corollary.

Corollary 6.7 (A bad r-nice tensor). Let A′, B′, C ′ be as in the definition of
O in (6.5), and let Oε be as in Lemma 6.5. If ε > 0 is sufficiently small, then for all
A ∈ Oε, there exist factor matrices (A,B,C) ∈ Rn1×r×Rn2×r×Rn3×r such that both
A and B have unit-norm columns and the following properties hold.

1. ‖A−A′‖F ≤ µε; and
2. B�C ∈ Rn2n3×r has columns whose norms are bounded by 1−µε ≤ ‖bi⊗ci‖ ≤

1 + µε, where µ > 0 is as in Lemma 6.6.

6.3. Proof of Theorem 6.1. Let A ∈ O′ε ⊂ Oε, where O′ε is as in Assump-
tion 6.2 and Oε as in Lemma 6.5. Denote the floating-point representation of A by
Ã := fl(A). We show that the excess factor ω(A) in (6.1) is proportional to ε−1.

We assume that the output of step S1 is the best possible numerical result when
providing A as input, namely, the floating-point representation of B = ρQ(A) =∑r
i=1 ai ⊗ bi ⊗ (QT ci), i.e., B̃ = fl(B) = fl(ρQ(A)). For streamlining the analysis,

we ignore further compounding of roundoff errors, assuming the best possible case in
which the PBA manages to execute steps S2, S3, and S4 exactly (perhaps by invoking

an oracle). Let {ã1, . . . , ãr} = θ̂(B̃), Ã := [ãi]i, {a1, . . . ,ar} = θ̂(B), and A := [ai]i.
Then, by the same construction as in subsection 4.3, we get

min
π∈Sr

‖A− ÃPπ‖F . κ[θ̂](B) · ‖B − B̃‖F .

Using Assumption 6.2 (a), it follows that there exists a 1 ≥ β1 > 0 such that

min
π∈Sr

‖A− ÃPπ‖F ≥ β1 · κ[θ̂](B) · ‖B − B̃‖F ≥ β1 · κ[θ̂|N ](B) · ‖B − B̃‖F ,

where the last inequality is by definition of condition numbers and restrictions of
maps. Applying Lemma 6.3 and using the properties from Corollary 6.7 yields

min
π∈Sr

‖A− ÃPπ‖F ≥
β1

10r
(κ[τr;n1,n2,2](B)− 10r) · ‖B − B̃‖F .

Assume that the left-hand side is bounded from above by 1. Regardless of the partic-
ular {b̃i ⊗ c̃i}i that the PBA computes in step S3, invoking Lemma 6.4 shows that
after completion of step S4 the forward error satisfies

min
π∈Sr

‖A�B�C−(Ã�B̃�C̃)Pπ‖F ≥
(1− µε)β1

√
3/4

10r

(
κ[τr;n1,n2,2](B)−10r

)
·‖B−B̃‖F ,
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where B and C are such that (A,B,C) are factor matrices of A satisfying the proper-
ties in Lemma 6.6. Dividing both sides of this expression by κ[τr;n1,n2,n3

](A)·‖A−Ã‖F
gives the excess factor ω(A) on the left-hand side

ω(A) ≥ κ[τr;n1,n2,2](B)− 10r

κ[τr;n1,n2,n3
](A)

· (1− µε)β1

√
3

20r
· ‖B − B̃‖F
‖A − Ã‖F

.(6.6)

We continue by bounding the factor ‖B − B̃‖F ‖A − Ã‖−1
F in this inequality. Since

B̃ = fl(B) and Ã = fl(A), we have in the standard model of floating-point arithmetic
with unit roundoff εu,

‖A − Ã‖2F =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

(ai1,i2,i3 − (1 + δi1,i2,i3)ai1,i2,i3)2 ≤ ε2u‖A‖2F ,

where |δi1,i2,i3 | ≤ εu. By Assumption 6.2 (b), there exists a β2 > 0 so that ‖B−B̃‖F ≥
β2εu‖B‖F . Hence, we need to bound the norms of A and B. To this end, the following
result is useful;

‖O‖F =
∥∥∥(A′ ⊗B′ ⊗ C ′)

r∑
i=1

ei ⊗ ei ⊗ ei

∥∥∥
F

=
∥∥∥ r∑
i=1

ei ⊗ ei ⊗ ei

∥∥∥
F

=
√
r,

where A′, B′, C ′ are as in the definition of O in (6.5), and ei is the ith standard
basis vector of Rr. Let (A1, . . . ,Ar) ∈ Uε be an ordered CPD of A, where Uε is as in
Lemma 6.5. Let o = (O1, . . . ,Or) be the ordered CPD from Lemma 6.5, and define
Ei := Ai − Oi. Note that ‖Ei‖F ≤ ε. The norms of A and B are then estimated as
follows:

‖A‖F =

∥∥∥∥∥
r∑
i=1

Ai

∥∥∥∥∥
F

=

∥∥∥∥∥
r∑
i=1

(Oi + Ei)

∥∥∥∥∥
F

≤ ‖O‖F +

r∑
i=1

‖Ei‖F =
√
r(1 +

√
rε).

Exploiting the linearity of the multilinear multiplication ρQ we also have

‖B‖F = ‖ρQ(A)‖F

=

∥∥∥∥∥ρQ(O) +

r∑
i=1

ρQ(Ei)

∥∥∥∥∥
F

≥ ‖ρQ(O)‖F −
r∑
i=1

‖ρQ(Ei)‖F ≥ ‖QTC ′‖F − rε,

where we used that the 3-flattening of ρQ(O) is (QTC ′)(A′�B′)T and that ‖ρQ(O)‖F =

‖QTC ′‖F , since A′ and B′ have orthonormal columns. By construction, QTC ′ =
2
n3

[−1 1 ... 1
−1 1 ... 1

]
, so that we have ‖QTC ′‖F =

√
2r 2

n3
. We have thus shown that

ω(A) ≥ κ[τr;n1,n2,2](B)− 10r

κ[τr;n1,n2,n3 ](A)
· (1− µε)β1β2

√
3

20r
·

2
n3

√
2r − rε

√
r(1 +

√
rε)

.(6.7)

The condition number κ[τr;n1,n2,n3
](A) is bounded as follows. Let o be the ordered

CPD of O as in Lemma 6.5. By Lemma 4.10 (2), we have κ[τr;n1,n2,n3 ](A) = κ(a),
where a = (A1, . . . ,Ar) ∈ Uε and κ(a) is the condition number of the TDP from (1.3).
Since o is a completely orthogonal decomposition, which is a special type of weak
3-orthogonal decomposition [44, section 5.2], it follows from [5, Proposition 5.2] that
κ(o) = 1. Theorem 1.1 of [5] then implies that κ(o) is the classic spectral 2-norm
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of the derivative of Φ−1
o Since Φ−1

o is smooth and the spectral norm is a Lipschitz-
continuous function with Lipschitz constant 1, it follows that there exists a Lipschitz
constant ` > 0 such that for sufficiently small ε > 0, we have |κ[τr;n1,n2,n3

](A) −
κ[τr;n1,n2,n3 ](O)| ≤ `‖A − O‖F for all A ∈ Oε. Hence,

κ[τr;n1,n2,n3
](A) ≤ 1 + `ε.(6.8)

Finally, we bound κ[τr;n1,n2,2](B). Let zi = QT ci ∈ R2, and let T be the 2n1n2 ×
r(n1 + n2) block matrix as in the proof of Lemma 3.1 applied to B’s CPD. Consider
the following 2n1n2 × (n1 + n2) submatrix of T ,

T ′ :=
[
In1
⊗ b1 ⊗ z1

‖z1‖ a2 ⊗ In2
⊗ z2

‖z2‖

]
, and set v′ :=

[
‖z1‖a2

‖z2‖b1

]
.

Note that ‖v′‖2 = ‖z1‖2 + ‖z2‖2. From the identification of condition numbers from
Lemma 4.10 and from the steps in the proof of Lemma 3.1 it follows that

κ[τr;n1,n2,2](B) =

(
min

v∈Rr(n1+n2)

‖Tv‖
‖v‖

)−1

≥ ‖v′‖
‖T ′v′‖

=
‖v′‖

‖a2 ⊗ b1 ⊗ (z1 + z2)‖
.(6.9)

It follows from Lemma 6.6 that

‖QTC −QTC ′‖F = ‖QT (C − C ′)‖F ≤ ‖C − C ′‖F ≤ µε.

Since z′i := QT c′i = 2
n3

(−1)i [ 1
1 ] for i = 1, 2, we have z′1 + z′2 = 0 and ‖a2⊗b1⊗ (z1 +

z2)‖ = ‖z1 + z2‖. Consequently, we get the bounds

‖z1+z2‖ = ‖(z′1 + z′2)+(z1 − z′1)+(z2 − z′2)‖ ≤ ‖z1 − z′1‖+ ‖z2 − z′2‖ ≤
√

2µε, and

‖v′‖2 = ‖z1‖2 + ‖z2‖2 ≥ (max{0, ‖z′1‖ − ‖z1 − z′1‖})2 + (max{0, ‖z′2‖ − ‖z2 − z′2‖})2.

Note that we can bound ‖z′i‖ − ‖zi − z′i‖ ≥ 2
√

2
n3
− µε for i = 1, 2. Assuming that ε is

sufficiently small, we obtain ‖v′‖ ≥ 4
n3
−
√

2µε. Plugging all of these into (6.9) yields

κ[τr;n1,n2,2](B) ≥ 4

n3µ
√

2
ε−1 − 1 = Ω(ε−1).(6.10)

Plugging (6.8) and (6.10) into (6.7), the proof of Theorem 6.1 is concluded. This
ultimately completes the proof of Theorem 1.2.

Remark 6.8. It is important to observe that the construction of the open set Oε
depends on the projection operator ρQ and, hence, on Q ∈ Rn3×2. That is, we have
shown that regardless of a choice of Q that is independent of A, there exists an open
set where the PBA with projection ρQ is unstable. The above construction does not
automatically apply to situations where Q is chosen as a function of the input A.

7. Numerical experiments. We present the results of some numerical experi-
ments in Matlab R2018a for supporting the main result and exemplifying the behavior
of PBAs on third-order random CPDs. They were performed on a computer system
consisting of two Intel Xeon E5645 CPUs (6 cores, 2.4 GHz each) with 48 GB of main
memory.

Three PBAs are considered in the experiments below, which we refer to as
cpd pba, cpd pba2, and cpd gevd, respectively.4 The first, cpd pba, is a variant

4Both cpd pba and cpd pba2 are provided as ancillary files to the arXiv manuscript at
https://arxiv.org/abs/1807.04159; they require some functionality from Tensorlab v3.0 [46].

https://arxiv.org/abs/1807.04159
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of the prototypical PBA discussed in section 1; it uses Tensorlab’s ST-HOSVD [45]
implementation in mlsvd for computing Q1 and Q2 and then recovers the first factor
matrix A = Q1X via the matrix of eigenvectors X from the eigenvalue decomposition
of S1S

−1
2 , the second from normalizing the columns of B = Q2(X−1S1)T , and the

third as CT = (A�B)†AT(3). cpd pba2 computes the CPD by randomly projecting the
input tensor A with ρQ, then employing the cpd function from Tensorlab v3.0 to re-
cover the two factor matrices A and B, and finally computing A�B�((A�B)†AT(3))

T

to obtain a representative of the set of rank-1 tensors. The last PBA we consider is
the cpd gevd function from Tensorlab v3.0. The analysis in section 6 does not strictly
apply to the default settings5 of cpd gevd because it chooses the projection matrix Q
as a function of the input tensor A ∈ Rn1×n2×n3 . Specifically, if (U1, U2, U3) · S = A
is an HOSVD [17], then cpd gevd chooses Q as the first two columns of U3.

Throughout these experiments, the forward error of the TDP is evaluated as
follows. If A =

∑r
i=1 ai ⊗ bi ⊗ ci and A ′ =

∑r
i=1 a′i ⊗ b′i ⊗ c′i, then we recall from

(4.7) that

errforward := min
π∈Sr

‖A�B � C − (A′ �B′ � C ′)Pπ‖F

is the forward error. Evaluating all r! permutations is a Herculean task when r � 10.
Fortunately, when A and A ′ are very close, the optimal permutation can be found
heuristically by solving the linear least-squares problem minX∈Rr×r ‖A�B�C−(A′�
B′ � C ′)X‖F and then projecting the minimizer to the set of permutation matrices
by setting the largest value in every row to 1 and the rest to 0. In all experiments,
the forward error is computed in this manner.

7.1. The bad odeco tensor. We start with an experiment to support the
analysis of section 6. Let ρQ = Id⊗ Id⊗QT , where Q ∈ Rn3×2, be the projection
operator of the PBA. Let A ∈ Rn1×n2×n3 be an r-nice tensor whose CPD is ε-close to
the odeco tensor (6.5), i.e., A ∈ Oε, where the latter is as in Lemma 6.5. According
to the analysis in section 6, the excess factor ω(A) of a PBA with projection operator
ρQ should behave like Ω(ε−1).

We consider 85 × 29 × 11 tensors. Q ∈ R11×2, A′ ∈ R85×9, and B′ ∈ R29×9

were respectively generated by computing the Q-factor of the QR-decomposition
of a matrix with i.i.d. standard normal entries. The matrix C ′ ∈ R11×9 was con-
structed as in the definition of (6.5). Then Oi := a′i ⊗ b′i ⊗ c′i for i = 1, . . . , 9. For

k = 1, . . . , 50, we constructed the randomly perturbed tensors Pk,i = Oi + 2−k
Xk,i
‖Xk,i‖F ,

where Xk,i has i.i.d. standard normal entries. Using the cpd function with default
settings from Tensorlab, we then computed the rank-1 approximations Ak,i of Pk,i.
Let εk := max {‖Ak,i − Oi‖F }i, and then the corresponding tensor is Ak =

∑9
i=1 Ak,i,

so that Ak ∈ Oεk with probability 1. Let a∗k = {Ak,1, . . . ,Ak,9} denote the true CPD.
A rank-9 CPD ak ∈ S×r/Sr of Ak was computed numerically using cpd pba and the
forward error relative to a∗k was computed. We also applied cpd with default settings
to Ak for numerically computing another rank-9 CPD a′k. The forward error between
a∗k and a′k was recorded.

The results of the above experiment are shown in Figure 7.1. cpd attains a forward
error of approximately 4 · 10−16 in all cases. As the random tensors are very close to
the odeco tensor, their condition numbers are approximately 1. A forward error equal
to a small multiple of the machine precision 1.11 · 10−16 is thus anticipated from a

5There is an option to use a random orthonormal projection, in which case the theory of this
paper applies.
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stable algorithm. The situation is dramatically different for cpd pba. Since the odeco
tensor was chosen to behave badly with respect to the projection ρQ, we expect from
section 6 that the forward error of the PBA grows like the excess factor ω = Ω(ε−1).
The dashed line in Figure 7.1 shows the result of fitting the model kε−1 to the data
with ε > 10−14. As can be seen, the experimental data match the predictions from
the theory in section 6 very well, specifically with regard to the growth rate of the
excess factor.

Fig. 7.1. The forward error errforward of cpd pba and cpd for random tensors in Oε from
Lemma 6.5 in function of ε. The dashed line is 4.3 · 10−15 · ε−1.

7.2. Distribution of the excess factors. The previous experiment illustrated
the forward error in the worst possible case that we know of, mainly to illustrate
Theorem 1.2. Based on the construction in section 6, it is not reasonable to expect
that this will correspond to the typical behavior. However, the next experiment shows
that, unfortunately, one should typically expect a loss of precision of at least a few
digits.

The setup is as follows. For each tested tensor shape n1 × n2 × n3, we generated
105 random rank-r CPDs {a1⊗b1⊗c1, . . . ,ar⊗br⊗cr} by sampling the entries of the
vectors ai ∈ Rn1 , bi ∈ Rn2 and ci ∈ Rn3 i.i.d. from a standard normal distribution.
The corresponding tensor A =

∑r
i=1 ai ⊗ bi ⊗ ci was then constructed. We used

the three PBAs as well as Tensorlab’s cpd function to compute the CPD from A,
recording the forward error. As rank we took r = n3 − 2. The results are displayed
in Figure 7.2. The plots on the left show the empirical ccdfs of the forward errors of
the four algorithms. The plots on the right show the excess factors of the PBAs.

Recall that cpd by default will use the PBA cpd gevd as initialization and will
then refine its output by running a quasi-Newton method; see [43, 46]. The stopping
criterion for cpd was set to ‖A −

∑r
i=1 A ′i‖F ≤ 2

√
10εu, where εu ≈ 1.1 · 10−16 is

the unit roundoff of standard double precision floating point arithmetic, and A ′i are
the rank-1 tensors. The forward error of cpd will thus be bounded approximately by
2
√

10κ(A1, . . . ,Ar) · εu. Most of the generated TDPs were well conditioned, as can be
inferred from the figure by noting that the forward error of cpd is always less than
10−13.

The loss of precision of the two PBAs is very pronounced in Figure 7.2. Although
cpd gevd is not strictly a PBA, because its projection operator depends on the tensor,
its loss of precision in Figure 7.2 asymptotically matches that of the PBAs. Note the
seemingly asymptotic log-linear relationship between the probability P[ω > x] and
x in the right plots in Figure 7.2; that is, it seems plausible that asymptotically
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Fig. 7.2. The empirical cumulative distribution function of the forward error errforward and
the excess factor ω for the standard PBA from section 1, the cpd gevd and cpd functions from
Tensorlab, and the cpd function from Tensorlab initialized with the factor matrices obtained with
the PBA applied to rank-(n3 − 2) tensors of size n1 × n2 × n3.

P[ω > x] = ax−1 for some a > 0. A possible explanation of this behavior follows from
our geometrical interpretation of the causes of instability. The inputs A for which
we expect ω(A) > x with large x are those such that ci 6≈ cj and yet QT ci ≈ QT cj
for some i 6= j. This is more likely to happen if n3 is large, since ci ∈ S(Rn3) and
QT ci ∈ S(R2). Indeed, the extreme case QT ci = QT cj , for some i 6= j, corresponds
to a hypersurface L of S(Rn3)×r. If we realize that QT ci ≈ QT cj is similar to the
property of being close to L, then we expect ω > x to happen in some neighborhood
of radius comparable to 1/x around L. This neighborhood will have a volume of
the order of x−1, qualitatively explaining the observed behavior. We pose a formal
argument as an open problem.

8. Conclusions. We proved in Theorem 1.2 that pencil-based algorithms for
computing the CPD of low-rank third-order tensors are numerically unstable. Not
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only do there exist inputs for which such algorithms are unstable, the numerical
experiments suggest that for certain random CPDs the loss of precision is roughly
Ω(− log10(ε)) with probability ε. In addition to these results, we bounded the distri-
bution of condition numbers of random CPDs in Theorem 1.4.

The main conclusion of our work is this: PBAs should be handled with care, as
the numerical experiments in section 7 demonstrated that an excess loss of precision
is probable. When the most accurate result is sought, we advise to apply a Newton-
based refinement procedure to the output of a PBA. This is in fact the default strategy
pursued by the cpd function from Tensorlab v3.0. While this strategy is certainly ad-
visable when the input is perturbed only by roundoff errors, it is not clear to us
whether employing a PBA for generating a starting point for an iterative method is
more effective than a random initialization in the presence of significant (measure-
ment) errors in the input data, both for reasons of conditioning (Theorem 1.4) and
stability (Theorem 1.2). We believe that a further study on this point is required.

We hope that the construction of inputs for which PBAs are unstable, in sec-
tion 6, offers insights that can help in the design of numerically stable algorithms for
computing CPDs. Our analysis suggests that methods partly recovering the rank-1
tensors from a matrix pencil are numerically unstable in the neighborhood of some
adversarially chosen inputs.

Finally, we emphasize that PBAs are numerically unstable because they trans-
form the tensor decomposition problem into a more difficult computational problem
that is nevertheless perceived to be easier to solve, probably because there are direct
algorithms for solving them. Here is thus a decidedly positive message that we wish to
stress: computing a CPD can be easier, from a numerical point of view, than solving
the generalized eigendecomposition problem for a projected tensor. We hope that
these observations may (re)invigorate the search for numerically stable algorithms for
computing CPDs.

Appendix A. Proof of the lemmas. The proofs of the technical Lemmas 4.10
and 6.3 to 6.6 are presented.

A.1. Proof of Lemma 4.10. For brevity, let

M =Mr;n1,...,nd , M̂ = M̂r;n1,...,nd , N = Nr;n1,...,nd , and τ = τr;n1,...,nd .

For (1) we just refer to [36, section 2.3] which covers our case since the group Sr

acts by isometries on M. Therefore, the induced metric ĝ on M̂ is the pushforward
ĝ := π̂∗g of the Riemannian metric g on M that is inherited from the standard
product of inner products on the ambient Euclidean space (namely (Rn1...nd)×r) of
M ⊂ S×r ⊂ (Rn1...nd)×r. We denote by h the metric on N which is given by
the standard Euclidean inner product 〈·, ·〉 that N inherits from the ambient space
Rn1×···×nd ' Rn1...nd .

It will be insightful to describe the metric ĝ on M̂ more concretely. Let a =
(A1, . . . ,Ar) ∈ M be an arbitrary ordered r-nice decomposition, and let â := π̂(a)
denote the corresponding CPD. Let π̂−1

a be the smooth local section with (π̂−1
a ◦

π̂)(a) = a. The pushforward ĝ = π̂∗g is defined (see [33, page 183]) as the map

satisfying ĝ â(ŝ, t̂) := ga(dπ̂(a)π̂
−1
a (ŝ),dπ̂(a)π̂

−1
a ( t̂ )) for all ŝ, t̂ ∈ TâM̂ ' TaM, where

ga(b, c) :=
∑r
i=1〈bi, ci〉 with bi, ci ∈ TAiS. Using the identification TâM̂ ' TaM

which is given by the isometry daπ̂ we can write t̂ = {t1, . . . , tr} with ti ∈ TAiS.
Similarly, we can write ŝ = {s1, . . . , sr} with si ∈ TAiS. Then it follows that
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g â(ŝ, t̂) =

r∑
i=1

〈ti, si〉 and ‖̂t‖2M̂,â
=

r∑
i=1

‖ti‖2 =
∥∥[t1 · · · tr

]∥∥2

F
,

where ‖ · ‖M̂,â
is the induced norm on TâM̂.

From the foregoing discussion it indeed follows for every choice of a ∈ π̂−1(τ(A))
that

κ[τ ](A) = max
t∈TAN

‖(dAτ)(t)‖M̂,τ(A)

‖t‖F
= max

t∈TAN

‖dπ̂(a)π̂
−1
a

(
(dAτ)(t)

)
‖F

‖t‖F

= max
t∈TAN

‖(dA(π̂−1
a ◦ τ))(t)

)
‖F

‖t‖F
= max

t∈TAN

‖(dAΦ−1
a )(t)‖F
‖t‖F

= κ(A1, . . . ,Ar),

where the second equality is by the definition of the metric, the third by the linearity
of derivatives, and the final equality is precisely Theorem 1.1 of [5]. This finishes the
proof of (2).

Finally, (3) follows from the fact that π̂ is a local isometry and thus preserves the

lengths of curves. Given any curve joining two elements in M̂, its lift through the
covering π̂ thus has the same length. Since we are free to choose the representative,
we thus choose one that minimizes the length of the lifted curve.

A.2. Proof of Lemma 6.3. For brevity, we drop all subscripts:

N = Nr;n1,n2,2, M̂ = M̂r;n1,n2,2, M =Mr;n1,n2,2, Ŝ = Ŝr;n1
, S = Sr;n1

,

and τ = τr;n1,n2,2.

Consider again the diagram from (6.3). Note that N , M̂, and N × Ŝ are manifolds.
We claim that Θ = IdN ×θ|N and η̂ are smooth maps between manifolds. We can
explicitly write η̂ as

η̂ : N × Ŝ → M̂, (B, {a1, . . . ,ar}) 7→ π̂(A� (A†B(1))
T ),

where A = [ai]i ∈ S is a n1 × r matrix with the ai’s as columns in any order;
B(1) = A(B �Z)T is the 1-flattening [32] of B =

∑r
i=1 ai ⊗ bi ⊗ zi; and with a minor

abuse of notation π̂ is the smooth map that takes a matrix and sends it to the set of
its columns. By assumption r ≤ n1 so that S is the manifold of matrices with linearly
independent unit-norm columns. Therefore, A† = (ATA)−1AT for all A ∈ S, which is
a smooth map. Consequently, η̂ is a smooth map, by [33, Proposition 2.10 (d)]. Let
Ψ∗n1,...,nd

be the map from (4.1). Then we have

θ̂|N = π ◦
(
π2 ◦ (Ψ∗n1,n2,2)−1

)×r ◦ τ,
where π2 : R \ {0} × S+(Rn1) × S+(Rn2) × S+(Rn3) → S+(Rn1) projects onto the
second factor, and π is as in Lemma 4.4. The projection π is a local diffeomorphism
by Lemma 4.4, the coordinate projection π2 is smooth, Ψ∗n1,n2,2 is a diffeomorphism,
and τ is a diffeomorphism by Proposition 4.7. Therefore, θ|N is smooth, by [33,
Proposition 2.10(d)], and so Θ is smooth.

Recall that the spectral norm of a linear operator F : V → W , where V and
W are normed vector spaces with respective norms ‖ · ‖V and ‖ · ‖W , is ‖F‖V,W :=

maxt∈V
‖F (t)‖W
‖t‖V . For composable maps, the foregoing spectral norms are submulti-

plicative. Since τ = η̂ ◦ Θ is a composition of smooth maps between manifolds, we
have that dAτ = dΘ(A)η̂ ◦ dAΘ. Therefore,
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κ[τ ](A) := ‖dAτ‖TAN ,Tτ(A)M̂
≤ ‖dAΘ‖TAN ,TΘ(A)(N×Ŝ) ‖dΘ(A)η̂‖TΘ(A)(N×Ŝ),Tτ(A)M̂

= κ[Θ](A) · κ[η̂](Θ(A)),

where the last step follows from the definition in (2.3). Note that this generalizes
(6.4).

We can write the condition number of Θ as a function of the condition number
of θ̂|N . As Riemannian metric on N × Ŝ we choose the product metric of the natural
Riemannian metric on N , which is inherited from the ambient Rn1×n2×2 ' Rn1n22,
and the Riemannian metric that is the pushforward of the standard Euclidean inner
product that S inherits from Rn1×r via the map π : S → Ŝ, which is also a local
isometry by the same arguments as in the proof of Lemma 4.10. Let t ∈ TAN be
arbitrary, and observe that

‖dAΘ(t)‖2N×Ŝ,Θ(A)
= ‖
(
t,dA θ̂|N (t)

)
‖2N×Ŝ,Θ(A)

= ‖t‖22 + ‖dA θ̂|N (t)
)
‖2
Ŝ,θ̂|N (A)

.

As a result, we find(
κ[Θ](A)

)2
= max

t∈S(TAN )
‖dAΘ(t)‖2N×Ŝ,Θ(A)

= 1 + max
t∈S(TAN )

‖dA θ̂|N (t)
)
‖2
Ŝ,θ̂|N (A)

= 1 +
(
κ[θ̂|N ](A)

)2
.

Exploiting that
√

1 + x2 ≤ 1 + |x| for all x ∈ R, we thus find

κ[τ ](A)

κ[η̂](Θ(A))
− 1 ≤ κ[θ̂|N ](A).(A.1)

The proof will be completed by bounding κ[η̂](Θ(A)) from above. Let A = [ai]i ∈
S be a factor matrix of B =

∑r
i=1 ai ⊗ bi ⊗ zi, which thus imposes an order on the

ai’s. Let us denote the other two factor matrices by B = [bi]i ∈ Sr;n2 (the bi’s are

in GLP) and Z = [zi]i ∈ R2×r. Since N × Ŝ is locally isometric to N × S, there is

a local section π−1
A of π. As M̂ is locally isometric to M via π̂, there is also a local

section π̂−1
? that is consistent with A in the sense that

(π̂−1
? ◦ η̂)(B, {a1, . . . ,ar}) = η

(
B, π−1

A ({a1, . . . ,ar})
)
,

where η(B, A) := A � (A†B(1))
T . We have that κ[η](B, A) = κ[η̂](B, {a1, . . . ,ar})

because of the local isometries. Hence, we can study κ[η](B, A) instead.
The derivative of η is computed as follows. We note that

(dA†)(Ȧ) = (d(ATA)−1AT )(Ȧ) = (ATA)−1ȦT − (ATA)−1(ȦTA+AT Ȧ)(ATA)−1AT

= (ATA)−1
(
ȦT − (ȦTA+AT Ȧ)A†

)
,

where Ȧ is a tangent vector in TASr;n1
. We find that

(d(B,A)η)(Ḃ, Ȧ) = A� (A†Ḃ(1))
T + Ȧ� (A†B(1))

T

+A�
(
(ATA)−1

(
ȦT − (ȦTA+AT Ȧ)A†

)
B(1)

)T
.

Now, by definition of the Riemannian metrics,

κ[η](B, A) = max
‖Ḃ‖2F+‖Ȧ‖2F=1

‖(d(B,A)η)(Ḃ, Ȧ)‖F .(A.2)
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Let (Ḃ, Ȧ) be a maximizer of (A.2). Note that ‖Ḃ‖F ≤ 1 and ‖Ȧ‖F ≤ 1. Since
A � (A†B(1))

T is a submatrix of A ⊗ (A†B(1))
T , it follows that ‖A � (A†B(1))

T ‖F ≤
‖A‖F ‖A†B(1)‖F . Exploiting this inequality and the triangle inequality a few times,
we obtain

κ[η](B, A)

≤ ‖A‖F ‖A†Ḃ(1)‖F + ‖A†B(1)‖F + ‖A‖F ‖(ATA)−1
(
ȦT − (ȦTA+AT Ȧ)A†

)
B(1)‖F .

The right-hand side is a Lipschitz continuous function in a neighborhood of (B, A) ∈
Rn1×n2×2 × Rn1×r, say with Lipschitz constant ` > 0.

By assumption there is a matrix A′ = [a′i]i with orthonormal columns with ‖A−
A′‖F < ν. Let B ′ be the tensor with factor matrices A′,B, Z; that is, B ′ :=

∑r
i=1 a′i⊗

bi⊗zi. Then, by the triangle inequality and the computation rules for inner products
of rank-1 tensors from (2.1),

‖B ′ − B‖F ≤
r∑
i=1

‖(ai − a′i)⊗ bi ⊗ zi‖F =

r∑
i=1

‖ai − a′i‖F ‖bi ⊗ zi‖F ≤ rν(1 + ν),

where the last step is because ‖bi ⊗ zi‖F < 1 + ν for each i. This shows that

‖(B, A)− (B ′, A′)‖F ≤
√
r2ν2(1 + ν)2 + ν2 = ν

√
r2(1 + ν)2 + 1 ≤ ν

√
4r2 + 1

because ν ≤ 1. Let us write L := `
√

4r2 + 1. Then, using the Lipschitz continuity
from above, ‖A′‖F =

√
r and (A′)† = (A′)T , we find

κ[η](B, A)

≤
√
r‖(A′)T Ḃ(1)‖F +‖(A′)TB ′(1)‖F +

√
r‖
(
ȦT−(ȦTA′+(A′)T Ȧ)(A′)T

)
B ′(1)‖F +νL.

Recall that for matrices X,Y we have the inequality ‖XY ‖F ≤ min{‖X‖2‖Y ‖F ,
‖X‖F ‖Y ‖2}. Observe that (A′)TB ′(1) = B � Z and ‖(A′)T ‖2 = 1. Exploiting these
we obtain

κ[η](B, A) ≤
√
r+‖B � Z‖F +

√
r
(
‖ȦTB ′(1)‖F +‖(ȦTA′+(A′)T Ȧ)(B � Z)T ‖F

)
+νL

≤
√
r + ‖B � Z‖F +

√
r‖B ′(1)‖2 + 2

√
r‖ȦTA′‖F ‖B � Z‖F + νL.

Finally, we have ‖ȦTA′‖F ≤ ‖ȦT ‖F ‖A′‖2 ≤ 1. Then, since B ′(1) = A′(B � Z)T , we

also have ‖B ′(1)‖2 ≤ ‖B � Z‖2 ≤ ‖B � Z‖F ≤
√
r(1 + ν). This shows

κ[η](B, A) ≤
√
r + (1 + 3

√
r)‖B � Z‖F + νL ≤ 10r,

where in the last step we assumed that νL ≤ r. Plugging this into (A.1) finishes the
proof.

A.3. Proof of Lemma 6.4. Observe that B̃ � C̃ can naturally be regarded as
a matrix in the space Rn2n3×r. Therefore,

ε := min
π∈Sr

‖A�B � C − (Ã� B̃ � C̃)Pπ‖F

≥ min
π∈Sr

min
M∈Rn2n3×r

‖A�B � C − (Ã�M)Pπ‖F ,



PENCIL-BASED ALGORITHMS FOR CPD ARE NOT STABLE 769

where Pπ is the permutation matrix corresponding to π. Let π ∈ Sr be any permu-
tation. Then

min
M∈Rn2n3×r

‖A�B � C − (Ã�M)Pπ‖F = min
M∈Rn2n3×r

‖A�B � C − (ÃPπ)�M‖F ,

where the last step is because of the definition of the Khatri–Rao product and be-
cause every M ∈ Rn2n3×r can be factored as (MP−1

π )Pπ since Pπ is invertible. Let
m1, . . . ,mr be the columns of M . Then, we have that

‖A�B � C − (ÃPπ)�M‖2F =

r∑
i=1

‖ai ⊗ (bi ⊗ ci)− ãπi ⊗mi‖2F(A.3)

is a sum of squares, so that we can minimize each mi separately. The first-order
necessary optimality conditions are

(ãπi ⊗ In2n3)T (ai ⊗ (bi ⊗ ci)− ãπi ⊗mi) = 0, i = 1, . . . , r.

Solving for mi yields the unique solution mi = 〈ãπi ,ai〉bi ⊗ ci. Plugging this mini-
mizer into the ith term in the right-hand side of (A.3), we find

‖(ai − 〈ãπi ,ai〉ãπi)⊗ bi ⊗ ci‖2F = ‖ai − 〈ãπi ,ai〉ãπi‖2‖bi ⊗ ci‖2F
≥ (1− ν)2‖ai − 〈ãπi ,ai〉ãπi‖2,

where we used the computation rules for inner products from (2.1) in the first step,
and the assumption that ‖bi⊗ci‖F ≥ 1− ν in the last step. From this it follows that

min
M∈Rn2n3×r

‖A�B � C − (ÃPπ)�M‖2F

≥ (1− ν)2‖A− ÃPπ diag(〈ãπ1 ,a1〉, . . . , 〈ãπr ,ar〉)‖2F .

Let us define ζπ := ‖A− ÃPπ diag(〈ãπ1
,a1〉, . . . , 〈ãπr ,ar〉)‖F . We claim that the

minimizer of minπ∈Sr ζπ equals the minimizer π∗ of minπ∈Sr ‖A− ÃPπ‖F . To prove
this, we show that ζπ∗ = minπ∈Sr ζπ by exhibiting an upper bound for ζπ∗ that is

smaller than a lower bound for ζπ′ with π′ 6= π∗. Let ãπ∗i := ai + f̃i. Observe that

δi := ‖f̃i‖ ≤ ‖A−ÃPπ∗‖F ≤ δ and 〈ãπ∗i ,ai〉 = 〈ai+ f̃i,ai〉 = 1+〈f̃i,ai〉. Consequently,

ζπ∗ = ‖A− ÃPπ∗ − ÃPπ∗ diag(〈f̃1,a1〉, . . . , 〈f̃r,ar〉)‖F
≤ ‖A− ÃPπ∗‖F + ‖ÃPπ∗ diag(〈f̃1,a1〉, . . . , 〈f̃r,ar〉)‖F
≤ δ + ‖Ã‖F ‖Pπ∗‖2‖diag(〈f̃1,a1〉, . . . , 〈f̃r,ar〉)‖2
= δ +

√
r max

1≤i≤r
|〈f̃i,ai〉| ≤ δ(1 +

√
r),

where the last step is due to the Cauchy–Schwarz inequality. Next, we lower bound
ζπ′ with π′ 6= π∗. In this case, there exist k 6= j such that π′k = π∗j . Then

‖ak − 〈ãπ′k ,ak〉ãπ′k‖
2 = ‖ak − 〈ãπ∗j ,ak〉ãπ∗j ‖

2 = 1− 〈ãπ∗j ,ak〉
2.

Note that for all i = 1, . . . , r we have that

0 ≤ ‖a′i − ãπ∗i ‖ = ‖a′i − (ai + f̃i)‖ ≤ ‖a′i − ai‖+ ‖f̃i‖ ≤ ν + δ.
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Set f ′i := ai − a′i + f̃i and note that ‖f ′i‖ ≤ ν + δ. Therefore, we have

|〈ãπ∗j ,ak〉| = |〈a
′
j + f ′j ,a

′
k + (ak − a′k)〉|

≤ |〈a′j ,a′k〉|+ |〈a′j ,ak − a′k〉|+ |〈f ′j ,a′k〉|+ |〈f ′j ,ak − a′k〉|
≤ 0 + ‖ak − a′k‖+ ‖f ′j‖+ ‖f ′j‖‖ak − a′k‖
≤ ν + (ν + δ) + (ν + δ)ν.

It follows that we have the following lower bound:

ζ2
π′ =

r∑
i=1

‖ai − 〈ãπ′i ,ai〉ãπ′i‖
2 ≥ ‖ak − 〈ãπ′k ,ak〉ãπ′k‖

2

= 1− 〈ãπ∗j ,ak〉
2 ≥ 1− (ν + (1 + ν)(ν + δ))2.

When both ν and δ are sufficiently small, we have

ζπ∗ ≤ (1 +
√
r)δ <

√
1− (ν + (1 + ν)(ν + δ))2 ≤ ζπ′

for all π′ 6= π∗. This indeed proves that π∗ is also the minimizer of minπ∈Sr ζπ.
Combining the foregoing results, we find

min
π∈Sr

ζ2
π = ζ2

π∗ =

r∑
i=1

‖ai − 〈ãπ∗i ,ai〉ãπ∗i ‖
2 =

r∑
i=1

(
1− 〈ãπ∗i ,ai〉

2
)
.

By the law of cosines, 〈ãπ∗i ,ai〉 = 1− 1
2δ

2
i so that 1− 〈ãπ∗i ,ai〉

2 = δ2
i (1− 1

4δ
2
i ). Since

δi ≤ δ < 1, we get

min
π∈Sr

‖A�B�C−(Ã�B̃�C̃)Pπ‖2F ≥ (1−ν)2ζ2
π∗ = (1−ν)2

r∑
i=1

δ2
i (1− 1

4δ
2
i ) ≥ 3

4
(1−ν)2δ2

because δ2 =
∑r
i=1 δ

2
i . This concludes the proof.

A.4. Proof of Lemma 6.5. Recall that ρQ = IdRn1 ⊗ IdRn2 ⊗QT . Both
σr(Sn1,n2,n3) and σr(Sn1,n2,2) are generically complex r-identifiable by Lemma 4.1
because of the assumption on r. The image Φr(Uε/Sr) is open because Φr is a dif-

feomorphism onto its image and Uε/Sr ⊂ M̂r;n1,n2,n3
is an open submanifold by

construction. The key step consists of showing that

N ∗ = ρ−1
Q (Nr;n1,n2,2) ∩Nr;n1,n2,n3

is open dense in σr(Sn1,n2,n3
). By Proposition 4.7, we already know that Nr;n1,n2,n3

is open dense, so that it suffices showing that ρ−1
Q (Nr;n1,n2,2) is dense in σr(Sn1,n2,n3).

We do this next.
Let A ∈ σr(Sn1,n2,n3

) be arbitrary. We let B := ρQ(A) and write

A =

r∑
i=1

ai⊗bi⊗ci and B =

r∑
i=1

ai⊗bi⊗zi, where ai ∈ Rn1 ,bi ∈ Rn2 , ci ∈ Rn3 , zi ∈ R2.

Let us decompose ci = Qzi+Q
⊥z′i, where Q⊥ ∈ Rn3×(n3−2) is a matrix whose columns

form an orthonormal basis of the orthogonal complement of the space spanned by the

columns of Q and z′i ∈ Rn3−2. Consider a generic sequence with (a
(k)
i ,b

(k)
i , z

(k)
i ) ∈

Rn1 × Rn2 × R2 such that
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lim
k→∞

a
(k)
i = ai, lim

k→∞
b

(k)
i = bi, and lim

k→∞
z

(k)
i = zi.

Note that B(k)
i := a

(k)
i ⊗b

(k)
i ⊗z

(k)
i lives in Sn1,n2,2 by construction. As the sequence is

arbitrary and Mr;n1,n2,2 is open dense in S×rn1,n2,2
by Proposition 4.5, we can assume

that the sequence is restricted so that all (B(k)
1 , . . . ,B(k)

r ) ∈ Mr;n1,n2,2. Taking the

quotient with the symmetric group Sr, we get by Proposition 4.6: {B(k)
1 , . . . ,B(k)

r } ∈
M̂r;n1,n2,2. Note that

Φr
(
{B(k)

1 , . . . ,B(k)
r }

)
=

r∑
i=1

B(k)
i ∈ Nr;n1,n2,2

by Proposition 4.7. Now let

A(k)
i := a

(k)
i ⊗ b

(k)
i ⊗ (Qz

(k)
i +Q⊥z′i).

Then ρQ(A(k)
i ) = B(k)

i so that A(k)
i ∈ ρ−1

Q (Nr;n1,n2,2). Now observe that

limk→∞
∑r
i=1 A(k)

i = A; in other words, A lies in the Euclidean closure of
ρ−1
Q (Nr;n1,n2,2). Since it was arbitrary, this proves the claim.

A.5. Proof of Lemma 6.6. Recall the map Ψ∗n1,n2,n3
from (4.1); it is a diffeo-

morphism. There is a natural isomorphism between R \ {0}× S+(Rn3) and Rn3 \ {0}
so that

Ψ∗∗ : S+(Rn1)× S+(Rn2)× Rn3 \ {0} → S, (x,y, z) 7→ x⊗ y ⊗ z

is also a diffeomorphism. Hence, there is a Lipschitz constant ` > 0 so that for all
i = 1, . . . , r

‖(ai,bi, ci)− (a′i,b
′
i, c
′
i)‖ ≤ `‖Ai − Oi‖F ≤ `ε,

where the norm on the left-hand side is the standard product norm of the Euclidean
norms on S(Rn1), S(Rn2), and Rn3 . In particular, this implies

‖A−A′‖F <
√
r`ε, ‖B −B′‖F <

√
r`ε, ‖C − C ′‖F <

√
r`ε.

Hence, for µ ≥
√
r` the first part of the lemma holds. For the second part, we write

∆bi := bi − b′i and ∆ci := ci − c′i. Then we have

bi ⊗ ci = b′i ⊗ c′i + b′i ⊗∆ci + ∆bi ⊗ c′i + ∆bi ⊗∆ci.

By the definition of the odeco tensor O in (6.5), we have ‖b′i‖ = ‖c′i‖ = 1. Using the
triangle inequality and the computation rules for inner products from (2.1), we get∣∣‖bi ⊗ ci‖F − ‖b′i ⊗ c′i‖F

∣∣ ≤ ‖b′i ⊗∆ci‖F + ‖∆bi ⊗ c′i‖F + ‖∆bi ⊗∆ci‖F
= ‖b′i‖‖∆ci‖F +‖∆bi‖‖c′i‖F +‖∆bi‖‖∆ci‖F ≤ 2`ε+ `2ε2.

Since ‖b′i ⊗ c′i‖F = 1 and ε ≤ 1, taking µ ≥ max{(`+ 2)`,
√
r`} finishes the proof.
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