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1 Abstract

Quantitative estimate of observational uncertainty is an essential ingredi-
ent to correctly interpret changes in climatic and environmental variables
such as wildfires. In this work we compare four state-of-the-art satellite fire
products with the gridded, ground-based EFFIS dataset for Mediterranean
Europe and analyse their statistical differences. The data are compared for
spatial and temporal similarities at different aggregations to identify a spa-
tial scale at which most of the observations provide equivalent results. The
results of the analysis indicate that the datasets show high temporal cor-
relation with each other (0.5/0.6) when aggregating the data at resolution
of at least 1.0◦ or at NUTS3 level. However, burned area estimates vary
widely between datasets. Filtering out satellite fires located on urban and
crop land cover classes greatly improves the agreement with EFFIS data.
Finally, in spite of the differences found in the area estimates, the spatial
pattern is similar for all the datasets, with spatial correlation increasing as
the resolution decreases. Also, the general reasonable agreement between
satellite products builds confidence in using these datasets and in particular
the most-recent developed dataset, FireCCI51, shows the best agreement
with EFFIS overall. As a result, the main conclusion of the study is that
users should carefully consider the limitations of the satellite fire estimates
currently available, as their uncertainties cannot be neglected in the over-
all uncertainty estimate/cascade that should accompany global or regional
change studies and that removing fires on human-dominated land areas is
key to analyze forest fires estimation from satellite products.

2 keyword
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3 Introduction

Wildfires are often devastating in countries with dense urban-wildland in-
terface: every year, thousands of people around the world are affected by
fire, with a severe toll of human life losses and significant economic damage.
For instance, during the summer of 2018, Australia, Greece, North America,
Scandinavia (with some areas even within the Artic Circle) and the United
Kingdom experienced unusually destructive wildfires. Close to Athens, a
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series of wildfires killed 99 people in July 2018, the deadliest fires in recent
Greek history (AghaKouchak et al., 2018). In addition, societal exposure to
large fires has been increasing (Moritz et al., 2014; Bowman et al., 2017).
For these reasons, both the occurrence of and the changes in climatic ex-
tremes are of great concern for their impact on fire occurrence, as weather
factors control fire severity and the extent of the burned area (Jolly et al.,
2015; Turco et al., 2018b).

Reliable information on Burned Area (BA) is crucial to identify the
drivers of changes in fire activity (Forkel et al., 2017; Andela et al., 2017),
assess fire risk (Chuvieco et al., 2014; Lasaponara et al., 2018) and/or de-
velop fire risk prediction tools (Turco et al., 2018a). Also, observed BA
data are used to validate dynamic global vegetation models (Lasslop et al.,
2014), as input for atmospheric emission models (van der Werf et al., 2017),
and for estimating fire impacts on human health (Reid et al., 2016) and
safety of properties (Moritz et al., 2014). It is also worth recalling that
fire disturbance is one of the Essential Climate Variables (ECVs) defined
by the Global Climate Observing System (GCOS) programme (Belward
et al., 2016) since there are strong links between climate and fire (see e.g.
Williams and Abatzoglou, 2016; Forkel et al., 2017; Abatzoglou et al., 2018).
Developing systematic assessments of fire data and improving the use of
satellite products in impact modelling has thus become a strategic topic in
national and international climate programs (see e.g. the Fire cci project;
https://www.esa-fire-cci.org/, last access: May 2019).

There is now a growing body of studies that use BA estimates based
on satellite products (Mouillot et al., 2014; Chuvieco et al., 2019). The
Moderate Resolution Imaging Spectroradiometer (MODIS), on board the
Terra and Aqua satellites since 2000 (https://modis.gsfc.nasa.gov/about/,
last access: May 2019), has been used to generate the global BA time series
MCD64A1, now in its collection 6 (Giglio et al., 2018) and to derive other
variables (GFED; van der Werf et al., 2017, that includes fuel properties
and emission coefficients). The Fire cci project, which is part of the Eu-
ropean Space Agency (ESA) Climate Change Initiative (CCI) (Hollmann
et al., 2013), has developed long-term time series of Burned Area products,
the MODIS Fire cci v5.1 Burned Area product (hereinafter FireCCI51),
adapted to the needs of impact modellers (Chuvieco et al., 2016; Lizundia-
Loiola, J., Pettinari, M.L. and Chuvieco, E., 2018).

On the other hand, BA estimates vary widely between the different
datasets (Mouillot et al., 2014; Chuvieco et al., 2019) and, thus, rigorous
evaluation of BA estimates is a much needed step to assess the reliability
of the information. Unfortunately, a number of constraints may limit such
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analysis (see Mouillot and Field, 2005 for a global synthesis on national fire
statistics and their limitations). In the case of ground-based BA data, they
are commonly affected by:

• periods of unavailable or poor-quality data (Mouillot and Field, 2005;
Koutsias et al., 2013);

• difficulties in the estimation of Burned Area from field observations
(Pereira et al., 2011; Short, 2015);

• uncertainties due to different fire report protocols between countries
and/or protocol changes during time (Turco et al., 2013);

• high political controls on BA statistics (Kasischke et al., 2000; Belhadj-
Khedher et al., 2018);

On the other hand, satellite products provide global information but
they cover only the last two decades. In addition, most assessments of
satellite-derived fire datasets are based on comparisons between different
satellite products (see e.g. Chuvieco et al., 2018; Humber et al., 2018),
with scarce attention to comparing satellite BA estimates with independent
ground-based observations.

Previous studies have shown that MODIS products are suitable proxies
for national statistics in North America, Russia and China (Chang and Song,
2009; Giglio et al., 2010), but large discrepancies emerge when comparing
them to higher resolution (Fusco et al., 2019). At the moment, it remains
unclear what is the temporal-spatial aggregation scale at which satellite BA
products are more consistent and reliable. In Europe, two studies compare
remote sensing and field BA data at national scale (Loepfe et al., 2012; Vilar
et al., 2015), finding high correlation between the MODIS BA product and
the European national statistics, with a slight underestimation of the total
BA. However, the national scale of these studies prevents local interpreta-
tion.

To summarise, a comprehensive evaluation of satellite BA products with
official statistics in Mediterranean Europe at high spatial resolution remains
undone. Indeed, Mediterranean Europe, where the analysis of Vilar et al.
(2015) is focused, is a crucial region for a detailed comparison study, ow-
ing to both the large impact of fires across the area (San-Miguel-Ayanz
et al., 2013) and the availability of a highly-controlled fire dataset based on
ground observations. The database of the European Forest Fire Informa-
tion System (EFFIS; San-Miguel-Ayanz et al., 2012) is available at monthly
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temporal resolution and high spatial resolution for a long period (1985-2011)
for Portugal, Spain, Southern France, Italy and France. This high-quality
fire dataset, even though it cannot clearly be taken as error-free “ground
truth”, represents the state-of-the-art information available today at the
scale of Mediterranean Europe and it calls for further analysis, allowing
larger confidence in the results of the comparison with satellite products.

Responding to such challenge, this paper presents a spatio–temporal
comparison between the ground-based BA dataset from EFFIS and BA es-
timations obtained from several state-of-the-art satellite products (MODIS,
GFED4, GFED4s and FireCCI51). This paper is structured as follows: in
Section 4 a description of the data and methods considered in this work is
presented. The main results are described in Section 5. The main conclu-
sions derived from the analysis are reported in Section 6.

4 Methods

4.1 Data

The high-quality database provided by the European Forest Fire Informa-
tion System (San-Miguel-Ayanz et al., 2012, EFFIS) has been compiled by
the Joint Research Centre and the Directorate–General for the Environ-
ment of the European Commission, and it is the main source of harmo-
nized data on forest fires in Europe. From EFFIS we obtained monthly
BA data at the NUTS3 level (Nomenclature of Units for Territorial Statis-
tics, which corresponds to aggregations of municipalities or provinces) for
Portugal (1980-2015), Spain (1985-2014), southern France (1985-2016) and
Italy (1985-2015), and Greece (1983-2011). The NUTS classification has
been modified several times since its implementation in 2003. The EFFIS
data are provided for the NUTS3 2006 version (see http://ec.europa.eu/

eurostat/web/nuts/ for more details, last access: May 2019), with a typi-
cal resolution of 10000-15000 km2, corresponding to a grid-box with size of
about 1-1.2 degrees. The EFFIS dataset comes from the national member
states fire statistics and it consists of BA occurring in forests and other land
areas, excluding agricultural or other artificial surfaces (as detailed in San-
Miguel-Ayanz et al., 2012). Figure 1 shows the long-term average over the
common period (1985-2011) of the EFFIS data at NUTS3 level and indicates
that the spatial variability of annual BA is quite high, with highest values in
the northwestern and eastern Iberian Peninsula, as well as in Southern Italy
and in Greece. EFFIS data have been widely used in studies that analyse
spatial-temporal fire changes and identify fire drivers (see e.g. Turco et al.,
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2017).

Figure 1: Annual mean burned area fraction in southern Europe for the
1985–2011 period (in permillage).

For the comparison, we focused on four satellite products providing
monthly burned area information:

• the Moderate Resolution Imaging Spectroradiometer MCD64A1 c6
(hereinafter MODIS; Giglio et al., 2018);

• the fourth generation of the Global Fire Emissions Database (GFED4;
Giglio et al., 2013);

• the GFED4s, which extends the GFED4 including the BA from “small”
fires. Specifically, GFED4s includes an estimation of the area burned
by small fires (< 100 ha) based on MODIS active fire hotspots located
outside of burned patches mapped in the MCD64A1 BA product. The
BA allocated to each outside-of-burn hotspot is in turn estimated using
postulated relationships between the difference normalized burn ratio,
the number of within-burn hotspots, and the BA actually mapped in
the MCD64A1 product. See Randerson et al. (2012) for more details;

• the MODIS Fire cci v5.1 Burned Area product (FireCCI51), based on
the highest spatial-resolution bands of the MODIS sensor (R, red, and
NIR, near-infrared) and complementing existing global BA datasets
using higher spatial-resolution bands (Chuvieco et al., 2018; Lizundia-
Loiola, J., Pettinari, M.L. and Chuvieco, E., 2018).

Table 1 summarizes the Burned Area data used in the study, their spatial
and temporal availability, resolution and providers.

Although some countries have data also after 2011, unfortunately for
Greece there are only data until this year. Thus, to obtain a consistent
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Table 1: Description of the datasets used in this study. *EUMED domain
corresponds to Portugal, Spain, Southern France, Italy and Greece.

Dataset Coverage(T/S) Resolution(T/S) Source

EFFIS 1985-2011/EUMED* month/NUTS3 http://effis.jrc.ec.europa.eu/

FireCCI51 2001-2017/Global month/0.25◦ https://www.esa-fire-cci.org/

GFED4 1995-2016/Global month/0.25◦ http://www.globalfiredata.org

GFED4s 1997-2016/Global month/0.25◦ http://www.globalfiredata.org

MODIS 2001-2016/Global month/0.25◦ http://modis-fire.umd.edu/

and homogeneous ensemble, only the common period, 2001-2011, has been
considered in the comparison. The base spatial resolution considered in
the analysis is 0.25◦ at monthly temporal resolution. The MODIS products
were downloaded at their nominal spatial resolution (500m), and were then
aggregated at the 0.25◦ resolution for comparison with the other products.

Since EFFIS data are focused on report forest fires, i.e. excluding agri-
cultural or pasture fires, we performed a filtering of the satellite data (when
possible) according to the land cover. Then we analyze the sensitivity of the
results of this filtering by comparing unfiltered and filtered data. Specifically,
we filter out from the FireCCI51 BA data the values from the land cate-
gories ’cropland, rainfed’, ’cropland, irrigated or post-flooding’ and ’mosaic
cropland (>50%)’. In the following we refer to this data as FireCCI51-nat.
GFED4 data provide the land cover distribution of burned area in percent-
age. We filter out the GFED4 data in case the corresponding land cover
distributions ’croplands’ or ’urban and built-up’ are greater then 50%. In
the following we refer to this data as GFED4-nat. Similarly, we filtered
the MODIS data considering the land cover ’croplands’ and ’urban and
built-up’ according to the MODIS Land Cover Type Product (MCD12Q1).
Hereinafter we refer to this data as MODIS-nat.

4.2 Comparison methodology

To have a complete view of the resolution-dependent differences between
datasets at different spatial scales, we follow two approaches. First, in ad-
dition to the base resolution of 0.25◦, all datasets have been conservatively
aggregated also at 0.5◦, 1.0◦, 1.5◦, 2.0◦ and 2.5◦ resolutions. To perform
such analysis, the NUTS3-level EFFIS dataset was downscaled at the reso-
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lution of the satellite products (0.25◦), applying the following conservative
procedure:

• for each NUTS3 region we find the number, n, of pixels with resolution
0.25◦ in this region, and

• we assign to such pixels the value of the BA given by EFFIS, cor-
responding to the burned area in that NUTS3 region, divided by n.
In this way we ensure that the total BA of the NUTS3-level data is
conserved.

This procedure imposes homogeneity of the BA estimates from EFFIS at
scales smaller than those of the NUTS3 regions, while satellite products
display natural variability on these scales. Thus, caution should accompany
the comparison between satellite products and EFFIS at these smaller scales.
On the other hand, satellite data can be compared with each other also at
scales smaller than NUTS3.

As an alternative approach, we also compared the BA values within the
NUTS classification. This is a hierarchical way for aggregating the terri-
tory of Europe: Specifically, we compared the datasets aggregating their
values over NUTS3 (small regions), NUTS2 (basic regions that aggregated
NUTS3 area) and NUTS1 areas (major socio-economic regions that aggre-
gated NUTS2 areas). Finally, following the approach of previous studies, the
accumulated value of BA over the entire domain has also been considered
in the analysis.

The temporal and spatial statistical differences/similarities between the
satellite products (called SAT) and EFFIS, considering the latter as ground
reference, have been evaluated for each resolution. For satellite products, for
each aggregation scale, we estimated the mean relative error (MEr = 100 ∗
SAT−EFFIS

EFFIS
) and the Pearson correlation of the monthly series (Spearman

correlation provides very similar results, not shown).
To compare the spatial pattern, we assessed the agreement of the mean

values (averaged over the common period 2001-2011) of the annual BA for
the EFFIS data and satellite products. The spatial pattern obtained for
each satellite products is compared to EFFIS data using the correlation,
the variability (standard deviation), the centred root-mean-square error and
the bias. To make the different indices comparable, standard deviation and
centred root-mean-square error statistics have been normalized by dividing
for the standard deviation of the reference EFFIS dataset, and the bias has
been normalized with respect to the mean of the reference dataset. Finally,
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Taylor diagrams (Taylor, 2001) have been used to summarize these metrics
on a single plot.

9



5 Results of the analysis

Figure 2: Monthly burned area in southern Europe (in km2) for each dataset.

5.1 Temporal correlations

We first estimate the temporal consistency of the five datasets. Figure 2
shows the total monthly BA over the entire domain (see Figure 1), that is,
summing the monthly BA values over the whole Mediterranean Europe. A
strong periodicity, with the highest values during summer months, is evident
in all datasets. Table 2 indicates strong agreement of the datasets at this
large spatial scale, with correlations ranging from 0.92 to 0.97 (third column
in Table 2). To distinguish the interannual variability from the annual cycle,
the correlations of monthly anomalies (obtained by subtracting the mean
annual cycle; fourth column in Table 2) were also estimated, obtaining values
ranging from 0.92 to 0.97. This confirms the excellent temporal correlation
between datasets at the scale of Mediterranean Europe.

Although the temporal correlation between the BA series is very high,
the total BA values, averaged over the common period 2001-2011, display
relevant differences between the different datasets (Table 2). EFFIS data
indicate that on average, about 3600 km2 are burned every year. The closest
estimation to this value is provided by the FireCCI51-nat dataset, with
about 3100 km2 (i.e. with a difference of about −14%). The standard error
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Table 2: Temporal consistency between the datasets for the whole EUMED
domain. The first column indicates the dataset. The second column shows
the annual mean total burned area. The third and fourth columns report
respectively the correlation between the satellite datasets and the EFFIS
monthly data, and between the monthly anomalies, obtained by subtracting
the mean annual cycle.

Dataset Burned area (km2) Monthly correlations Monthly anomalies correlations

EFFIS 3597 1 1
FireCCI51-nat 3085 (2289-3729) 0.96 0.94
FireCCI51 6187 (5467-6907) 0.94 0.90
GFED4-nat 2204 (867-3597) 0.97 0.97
GFED4 3291 (1020-5564) 0.97 0.95
GFED4s 5632 0.92 0.90
MODIS-nat 2.557 0.97 0.97
MODIS 4515 0.95 0.92

field provide by this dataset indicated that, although the spread is quite large
(2289-3729), it includes the EFFIS estimate. Also, it is worth noting that for
the unfiltered FireCCI51 data, the BA values over the region is much higher,
according to previous studies indicating that over Europe many fires occur
over cropland areas (Giglio et al., 2013). The GFED4-nat dataset shows a
lower value (−39%), with a larger spread 867-3597 and shows more similar
estimate to the EFFIS one considering the unfiltered data. Interestingly, the
’nat’ datasets improves also the correlation values. The MODIS unfiltered
data show larger values (+25%) and GFED4s even larger differences (56%).
Unfortunately, these two datasets do not provide information on the BA
uncertainty and the GFED4s data does not provide information on the land
cover data. Small fires often occur in pastures, agricultural lands and in
other landscapes dominated by the human presence (Randerson et al., 2012;
van der Werf et al., 2017). Thus the large difference between GFED4s and
EFFIS might be explained since the former includes BA from “small” fires
while the latter includes fires usually referenced for forest or wildland areas,
i.e. excluding fires in agricultural setting.

To identify the spatial scales where the datasets display the stronger
agreement, we first focus on different spatial aggregations of the data and
compare decreasing resolutions from 0.25◦ to 2.5◦. As an illustrative exam-

11



Figure 3: Pearson correlation (left) and MEr (right) comparing EFFIS and
FireCCI51-nat at 0.25◦ (a-b), 1.0◦ (c-d) and 2.5◦ (e-f) resolutions. Only
significant (p− value < 0.05) correlations are shown. The value inside each
panel corresponds to the spatial mean of the score (in case of correlation,
only statistically significant values have been considered in the average).

ple, Figure 3 shows the correlation and the difference between the FireCCI51
and the EFFIS data. Correlation values increase as the resolution decreases,
with spatially averaged values equal to 0.56 at 0.25◦ and to 0.73 at 2.5◦. At
this coarser resolution, most of the domain pixels display significant corre-
lations between the two datasets. On average the bias of FireCCI51 with
respect to EFFIS is negative, with few areas with positive differences, mainly
over Greece. Overall, at 2.5◦ resolution, most of the grids show differences
lower than 50%. Figure 4 summarizes the temporal similarity scores for the
different resolutions (0.25, 0.5, 1, 1.5, 2 and 2.5◦) and the satellite products
(filtered or not). Figure 4(a) confirms that the correlation values are larger
considering the filtered products (”nat”) and for coarser resolutions. On the
other hand, Figure 4(b) indicates that the filtered products generally have
a lower bias with respect the original datasets, and that these ones show
higher values than the EFFIS data. Overall, MODIS-nat and FireCCI51
show the best agreement with the EFFIS data.

Following the second approach mentioned above, Figure 5 shows the
comparison between the FireCCI51-nat and EFFIS data within NUTS3,
NUTS2 and NUTS1 regions and indicates that at the larger scale of aggre-
gation (NUTS1), all the domain show statistically significant correlation,
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with spatially averaged value of 0.79 and a difference of -30%. Interesting,
the results are similar also aggregating the data at NUTS2 and NUTS3 level.

Considering all the datasets and the NUTS divisions (Figure 6), three
main conclusion can be drawn. First, the best correlation values are obtained
considering the NUTS1 regions, with spatially averaged values larger then
0.7. Second, generally larger correlations are obtained considering the ”nat”
datasets. Finally, in term of difference (”bias” in Figure 6), this analysis
confirms that higher similarity between EFFIS and remotely-sensed datasets
are obtained considering the ”nat” versions of the latter.

Figure 4: Spatial mean of (a) Pearson correlation (considering only pixels
with statistically significant correlations) and (b) MEr for different satellite
products and resolutions.

5.2 Spatial similarity

Figure 7 shows the mean values (averaged over the common period 2001-
2011) of the annual BA for the EFFIS and FireCCI51 datasets. This com-
parison reveals the similarity between these datasets, with spatial correlation
above 0.9, bias < -20%, and a centred root-mean-square error of less than 0.4
for aggregation larger then 1.0◦. At finer resolution (0.25◦), the agreement
is lower but still quite good, with spatial correlation around 0.7. As men-
tioned above, the lower agreement at scales lower than the NUTS3 (about
1 square degree) area can also be due to the homogeneous interpolation of
the EFFIS data. Higher resolution ground data (currently unavailable from
EFFIS over the Mediterranean Europe domain) would be needed to validate
satellite fire products at smaller scale.

The Taylor diagrams in Figure 8 show a summary of the scores for all
satellite products and type of aggregations (grids or NUTS). In the figure,
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Figure 5: Pearson correlation (left) and MEr (right) comparing EFFIS and
FireCCI51-nat at NUTS3 (a-b), NUTS2 (c-d) and NUTS1 (e-f) level. Only
significant (p− value < 0.05) correlations are shown. The value inside each
panel corresponds to the spatial mean of the score (in case of correlation,
only statistically significant values have been considered in the average).

the satellite datasets that are more similar to the EFFIS data are close, in
Taylor diagram space, to the observations (labelled as OBS). The diagrams
confirm that generally higher spatial agreement is obtained with lower reso-
lution and the closest agreement with EFFIS is obtained for the MODIS-nat,
GFED4-nat and FireCCI51-nat products. For instance, these datasets, at
resolution 2.5◦ or at NUTS1 level, display a spatial correlation close or above
0.95, a bias lower then 10%, a relative RMSD lower then 0.5 and a standard
deviation of around 1, that is, a spatial variability very close to that of the
EFFIS data.
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Figure 6: Spatial mean of (a) Pearson correlation (considering only pixels
with statistically significant correlations) and (b) MEr for different satellite
products and NUTS aggregations.
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Figure 7: a) Spatial distribution of annual BA series, averaged over the
period 2001-2011, for a) EFFIS and b) FireCCI51-nat data at resolution
0.25◦. Panels c) and d) are the same as a) and b), respectively, for resolution
1◦. Panels e) and f) are the same as a) and b), respectively, for resolution
2.5◦. The spatial validation scores (correlation RHO, centred root mean
square RMSD, and mean error ME) for the FireCCI51-nat values, with
respect to the EFFIS values, are given below the corresponding panels.
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Figure 8: Taylor diagrams summarising the spatial similarity to EFFIS of
the mean annual burned series for different satellite products and a) res-
olutions and b) NUTS aggregations. The products that are more similar
to the reference (EFFIS) are closer to the asterisk indicated as OBS. The
colours indicate the bias (in percentage with respect to the EFFIS data)
of the dataset. The numbers correspond to the different resolutions while
the letters and the markers correspond to the different datasets: circle–F
is FireCCI51-nat, square–G is GFED4-nat, diamond–Gs is GFED4s and
star–M is MODIS-nat.
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6 Conclusions

In this work we provided an assessment of satellite-based Burned Area
datasets in Mediterranean Europe (FireCCI51, GFED4, GFED4s and MODIS),
comparing them with the ground-based EFFIS dataset. The results indicate
that the satellite products generally show good agreement with EFFIS in
terms of temporal correlation (correlation values above 0.9), when consider-
ing the total BA in the whole Mediterranean region. However, even at this
sub-continental scale, large biases have been found for MODIS and GFED4s,
with an overestimation compared to EFFIS of +25% and +56% respectively.
Higher agreement has been found removing agricultural fires. The temporal
correlation between the datasets decreases at finer aggregation scales, with
reasonably good scores at resolution coarser than 1◦. At higher resolution,
also our interpolation of the EFFIS dataset (originally provided at NUTS3
level) can generate discrepancies with the satellite-based estimates. Unfor-
tunately, no comprehensive ground-based fire dataset at higher resolution is
currently available for the whole Mediterranean Europe.

In the comparison of the spatial BA pattern between satellite products
and the EFFIS BA series, temporally averaged over the common period
2001-2011, the results of the analysis indicate that the highest discrepancies
were found considering spatial pattern with resolution 0.25◦. The spatial
patterns become more similar at lower resolution, and the satellite datasets
generally show good agreement with EFFIS data considering spatial aggre-
gation of a least 1◦ or aggregating the data at NUTS3 level, a fact that
provides confidence in using these products at this scale. The fact that the
BA estimations are more similar when aggregating the data over larger areas
might be explained by the fact that at coarser resolution some of the tempo-
ral and spatial noise apparent in the higher resolution data are reduced. At
smaller scale, some caution should be adopted in drawing conclusions based
only on the satellite datasets. In general, better agreement with EFFIS
has been obtained for the MODIS, GFED4 and for FireCCI51 products.
In particular the most-recent developed dataset, FireCCI51, show the best
agreement with EFFIS overall.

In practical applications, users should carefully take into account the
limitations of the satellite products (as well as of any other dataset includ-
ing EFFIS). Without proper high-resolution ground-based BA information
it is difficult or impossible to properly document and validate fire patterns,
as well as to analyse the causes and impacts of fires. The results of this work
also emphasize the crucial importance of making environmental data acces-
sible for research activities and application. Based on the results reported

18



here, future work will consider the long-term predictability of climate-driven
impacts on fires by means of a hybrid modelling strategy (see e.g. (Ceglar
et al., 2018). This study is the first step in this direction, providing the
groundwork to choose the most reliable datasets and products to develop
seasonal-to-multiannual fire predictions for Mediterranean Europe.
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