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Abstract

Gear rattle is a common and inherent phenomenon to multi-stage-constant-
mesh gearboxes, since this kind of transmission consist of two different types
of gear pairs: active and inactive stages. The former is in charge of transmit-
ting the energy, whilst the latter, although its teeth are engaged, is loosely
connected to the output shaft. Gear rattle problematic resides in undesirable
impacts and fluctuations in the inactive gears provoked by their interaction
with the active stage, leading to vibrations which can produce fails in ele-
ments connected or belonging to the gearbox. In this regard, understanding
the lubricant role is crucial, being this aspect the key to comprehend the
dynamic behaviour of low-loaded gear transmissions and to palliate these
phenomenon consequences as the ultimate goal of this research. Within this
context, in this work, six formulations, which consider both entraining and
squeeze fluid effects, were implemented in gear transmission models previ-
ously developed by the authors in order to calculate the hydrodynamic forces.
Special attention was paid to the fluid viscosity influence on the dynamic be-
haviour under stationary conditions.
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1. Introduction

Gearboxes are one of the key elements of the automobile powertrain
[7, 16, 20, 21], which main goal is to transform the energy provided by the
engine to wheels’ speed or torque, depending on the driver′s needs during
the vehicle travel. Although gearboxes are principally known because of this
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application, they are also used in helicopters, electric windmills, tractors
and so on [3, 17, 18, 22]. Currently, one of the most used gearboxes is the
one which stages are constantly in mesh, choosing the gear by synchroniz-
ers, and therefore, avoiding displacement between gears to get in mesh, as
occurred in old-fashioned gearbox configurations. In this regard, constant
mesh transmissions consist of two different gear pairs, the ones which are
actually transmitting the power and those which are not, but are engaged.
The former are known as ”active” and the latter are usually called ”inac-
tive”. This gearbox configuration results in a dynamic issue derived from
the interaction of the active and inactive stages known as gear rattle, which
usually leads to undesirable noise and harmful vibrations to the components
connected or belonging to the gearbox.

Since gearboxes are lubricated, the role of the fluid is of key importance
to understand and avoid gear rattling, as it is the only element that can
palliate the impacts and fluctuations between teeth. Ideally, increasing the
fluid viscosity would solve this issue, however, it has to be taken into ac-
count the power losses derived from an uncontrolled viscosity increment in
addition to the variation of dynamic system features. In this respect, find-
ing the lubricant viscosity which eludes gear rattle without decreasing the
gearbox performance is the engineering challenge in this application. On this
matter, it is required to accurately model damping mechanisms linked to the
lubricated contact, since they have received little attention in contrast to the
large number of studies on gear dynamics [1, 4, 5, 23, 24].

In order to model the fluid action in rattle conditions, there are few ap-
proaches in the scientific literature [2, 14, 15, 25, 26, 27, 28, 29], which results
show some dispersion, not existing a unified solution. As commented, the
impacts occur on the inactive gears due to the fact that they are lowly loaded,
and therefore, the vibrations produced in the active gear pair greatly affects
them. In this context, the lubrication regime present in the inactive gear con-
junctions is hydrodynamic, being several the effects which, in combination,
produce the fluid action. Particularly, this action is commonly calculated by
the superposition of two effects [26, 27, 28, 29], although there are approaches
which consider only one of them [2, 13, 14, 15]; the fluid squeeze when teeth
profiles are approaching and the entraining velocity of the lubricant in the
conjunction. From previous preliminary results [10], it was concluded that
both effects are required to model properly the lubricant action in hydrody-
namic conditions. This is the reason why, continuing that preliminary study,
this work assesses a gear pair dynamic behaviour in rattle conditions for dif-
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ferent fluid viscosities, restricting the formulations to those which consider
both squeeze and entraining fluid effects. The strength of this proposal lies in
the use of an enhanced model previously developed by the authors [8, 11, 12],
which takes into account flank and counter-flank contacts, in which six hy-
drodynamic formulations were implemented with the aim of providing the
results which could lead to a unified formulation of hydrodynamic efforts.

After this introduction, section 2 presents the fundamentals required
to develop and understand the six hydrodynamic force formulations imple-
mented. Then, the transmission dynamic model features are described in
section 3, where the used formulations are reorganized to facilitate the reader
comprehension. In section 4, it is described the main parameters of the gear
transmission case of study and the the set-up of the performed studies. Af-
terwards, the results are discussed, to finish with some conclusions in the last
section.

2. Fundamentals of hydrodynamic lubrication

The use of lubricant fluid is common in gear transmissions, in order to
avoid dry contact and overheating which could lead to power losses and pre-
mature system fails. In lubrication theory, depending on the transmitted
load, rheological properties and the gears roughness, the regimes of lubrica-
tion are generally divided into: Elasto-Hydrodynamic Lubrication (EHL),
viscous rigid, iso-viscous elastic and Hydrodynamic Lubrication (HDL) [9].

Regarding vehicle gearboxes, the inactive stages are usually under HDL,
which analysis is the main aim of this work since it is focused on gear rattle,
whilst the active gear is generally under EHL (Figure 1).

In order to identify among regimes of lubrication, in this study, the Green-
wood (equation (1)) and the Stribeck′s parameters were used to assure that
the transmission was on HDL.

Ge =
(2W )8/3

(2U)2

Gv =
GW 3

U2







→
W =

q

2 · 109Eeqρeq
, U =

2Veη

2 · 109Eeqρeq

G = 2αEeq

(1)

Where W , U and G are non-dimensional parameters respectively related
to the load, rheological and material properties, which are dependant of the
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Figure 1: Schema of the most common lubrication regimes present in a gearbox

Young modulus (Eeq), the oil dynamic viscosity (ηoil), the fluid entraining
velocity (Ve), the load per unit of length (q), the equivalent radius of curva-
ture (ρeq) and the viscosity-pressure coefficient (α). Moreover, the Stribeck
parameter is dependant of the central film thickness hc and inversely propor-
tional to the mean roughness of the gear profiles Ra (λ= hc/Ra).

After determining the lubrication regime, the fluid effect on the line of
action is obtained by Kelvin-Voigt′s model, which calculates the lubricant
force by means of multiplying a linear viscous damping and the approaching
velocity (equation 2).

FC = Clubδ̇ (2)

For the analytical calculation of this viscous damping (Club) and to as-
sess the considered fluid effects, solving the Reynolds equation was required
(equation 3), in addition to the comprehension of the terms which compose
this well-known equation.
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∂

∂x

(
ρh3

12η

∂p

∂x

)

︸ ︷︷ ︸

Poiseulle

=
∂

∂x

(
ρh (u1 + u2)

2

)

︸ ︷︷ ︸

Couette

+ ρ
∂h

∂t
︸︷︷︸

Squeeze

+ h
∂ρ

∂t
︸︷︷︸

Local expansion

(3)

Where p is the fluid pressure distribution, ρ the density, h the film thick-
ness, ui are the profile velocities in the x direction (tangential to the teeth
profile) and ḣ= ∂h

∂t
represents the speed when the contact profiles are ap-

proaching or moving away, being negative when they are approaching.
At the same time, Couette term involves several effects expressed in equa-

tion 4:

∂

∂x

(
ρh (u1 + u2)

2

)

︸ ︷︷ ︸

Couette

= ρ
(u1 + u2)

2

∂h

∂x
︸ ︷︷ ︸

Wedge

+ h
(u1 + u2)

2

∂ρ

∂x
︸ ︷︷ ︸

Density wedge

+
ρh

2

∂ (u1 + u2)

∂x
︸ ︷︷ ︸

Lengthening wedge

(4)

Regarding these two equations 3 and 4, as the regime of lubrication is
HDL, some approximations can be performed in order to simplify them.
For instance, the lubricant rheological properties could be considered to be
constant in the conjunction, and therefore, the ”Local expansion” and ”Den-
sity wedge” terms can be neglected under these conditions (ρ(x, y, z, t) ≡ ρ).
Moreover, another term which could be ignored is the ”Lengthening wedge”,
since the contact length is in the order of a few microns [6], thus, the sum of
the profile velocities can be approximated as constant on the contact area.
Including these two approximations, Reynolds equation is simplified to the
form presented in equation 5.

ρ

12η

∂

∂x

(

h3
∂p

∂x

)

︸ ︷︷ ︸

Poiseulle

= ρ
(u1 + u2)

2

∂h

∂x
︸ ︷︷ ︸

Wedge

+ ρ
∂h

∂t
︸︷︷︸

Squeeze

(5)

Hence, two effects are involved: the physical wedge, which is associated
with the oil inlet and outlet into the contact area, and the squeeze effect of
the oil trapped between normal approaching surfaces.

The last step in order to calculate the hydrodynamic forces is to in-
tegrate the Reynolds equation, obtaining the pressure distribution on the
contact area. Depending on the simplifications considered and the bound-
ary conditions, several analytical expressions can be found in the literature
[2, 14, 15, 27, 28, 29]. In this respect, even though the formulations assessed
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in this work consider both effects (wedge and squeeze), the authors also differ
in two aspects when calculate their expressions: i) the calculation of the pres-
sure distribution and ii) the contact area length. Regarding the former, the
formulations diverge in the pressure distribution shape, not to mention the
boundary conditions. With respect to the latter, some formulations consider
an infinite contact area, whilst in others different finite values are assumed.

With all the above in mind, the force due to the lubricant in the considered
domain (x0 < x < x1) can be calculated as:

FHDL = b

∫ x1

x0

p (x) dx = FWedge + FSqueeze = CWedge
eq Ve − CSqueeze

eq ḣ (6)

Where b is the gear face width.
Next, it is presented a description of the hydrodynamic force formulations

which were analysed in this work, in addition to their approaches in terms
of pressure distribution, boundary conditions and contact area extension.

2.1. Sasaki et al. formulation

Sasaki et al. proposed an expression where wedge and squeeze terms were
superposed. This means that each effect was calculated individually [26, 28].

In order to obtain the wedge effect, the solution was calculated using the
Half-Sommerfeld boundary conditions, which impose a pressure maximum
at xa (equation 7).

∂p

∂x
= 0 → x = −xa

p = 0 → x = −∞






(7)

Calculating the hydrodynamic force due to the physical wedge taking into
account an infinite contact area:

FWedge
HDL = b

∫ ∞

−∞
p (x)dx⇒ CWedge

eq = 2bη
ρeq
hc

(8)

When the squeeze term was calculated, the imposed boundary conditions
were that the pressure was null at ±∞. This fact leads to a symmetric
pressure distribution without negative values (equation 9).

∂p

∂x
= 0 → x = 0

p = 0 → x = ±∞






(9)
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Afterwards, the force was calculated by integrating between ±∞ the pres-
sure distribution:

F Squeeze
HDL = b

∫∞
−∞ p (x)dx

⇒ CSqueeze
eq = 3

√
2πbη
2

(
ρeq
hc

) 3

2

[

1 − 2
π

arctan
(

3
√
2

2

√
ρeq
hc

ḣ
Ve

)] (10)

2.2. Sasaki-modified formulation

Following Wiegert et al. work [28], a modification of the Sasaki‘s formu-
lation was implemented in order to calculate the hydrodynamic force. Specif-
ically, the Sasaki‘s model was improved by including Martin′s consideration
[19], which has been experimentally proven to fulfill the static conditions of
the hydrodynamic force [28]. This improvement consists of considering a

√
6

instead of a 2 in the term due to fluid inflow (wedge effect):

FWedge
HDL = b

∫ ∞

−∞
p (x)dx⇒ CWedge

eq =
√

6bη
ρeq
hc

(11)

The squeeze term was defined as previously presented in equation 10.

2.3. Rahnejat et al. formulation

Rahnejat et al. followed the same approach as Sasaki et al., obtaining
individually both wedge and squeeze effects. As a matter of fact, when the
wedge term was solely calculated, the same solution as Sasaki′s formulation is
obtained (equation 8), since the Half-Sommerfeld boundary conditions were
considered (equation 7).

Regarding the squeeze effect, a symmetric quadratic pressure distribution
was considered, whilst the boundary conditions were that the pressure is zero
at ±∞ (equation 12).

∂p

∂x
= 0 → x = 0

p = 0 → x = ±∞






(12)

Then, the pressure distribution was integrated in the interval of ±∞
(equation 13).

F Squeeze
HDL = b

∫ ∞

−∞
p (x)dx⇒ CSqueeze

eq =
3
√

2πbη

2

(
ρeq
hc

) 3

2

(13)
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An important aspect to remark about this formulation is that Rahnejat
et al. considered only the wedge term when the profiles were moving away
(ḣ > 0), considering both effects (wedge and squeeze) when the profiles were
approaching (ḣ < 0).

2.4. Rahnejat-modified formulation

Following the same procedure as in section 2.2, it is proposed to improve
Rahnejat′s formulation by including the experimentally proved Martin’s con-
sideration [19]. Thus, the wedge term is defined by equation 11 whilst the
squeeze term is determined as in Rahnejat et al. proposed (equation 13)

2.5. Wiegert formulation

Wiegert et al. proposed a semi-analytical expression which depends on
the film rupture position (xfr) and the film thickness in that position (hfr),
which both are usually numerically calculated [28, 29].

FHDL = 3πbη
ρeq
hfr

Ve−3πbη

(
ρeq
hc

) 3

2

[

π√
2

+
xfr
hfr

√

hc
ρeq

+
√

2 arctan

(

xfr
√

2ρeqhc

)]

ḣ

(14)
In order to avoid the numerical calculation of the film rupture location and

thickness, Wiegert et al. proposed two formulae depending on the required
accuracy, in which procedure, instead of superposing both effects, the authors
took into account the wedge and squeeze effects at the same time to calculate
the force in the conjunction, in addition to Martin′s consideration.

The first proposed formulation gives a relative error lower than 2% (equa-
tion 15), whilst the second’s error is lower than 20% (equation 16):

FHDL =
√

6πbη
ρeq
hc
Ve −

3
√

2πbη

2

(
ρeq
hc

) 3

2

[

1 − 2

π
arctan

(
√

3

√
ρeq
hc

ḣ

Ve

)]

ḣ

(15)

FHDL =
√

6πbη
ρeq
hc
Ve −

3
√

2πbη

2

(
ρeq
hc

) 3

2



1 −
√

3πḣ
(

2Ve
√

hc

ρeq
+
√

3π|ḣ|
)



 ḣ

(16)
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In this respect, Wiegert et al. proposed the second formulation, even if
the error was higher than the first one, in order to avoid the computational
problems derived from the use of the arctan(x) function.

3. Dynamic model description

The hydrodynamic formulations presented in section 2 have been imple-
mented in the gear transmission model previously developed by the authors
[8, 11, 12]. Since the aim of this work is to study and assess the behaviour
of these formulations under gear rattle conditions, a reduced model of 2 de-
grees of freedom (d.o.f) were used, although this model allows for using more
d.o.f. when bearings and more gear pairs are considered [11]. These two d.o.f
corresponded to the rotation of each wheel (θ1R1 and θ2R1) and the dynamic
equations of this 2-dof model can be synthesised as described in equation 17.

JjRkθ̈jRk + tjRkθ (θjRk, θjRk) = TjRk where

{

j = 1, 2

k = 1
(17)

In subscript jRk, j is the shaft number and, as there are two shafts, takes
values of 1 and 2, R means that is rotational and k is the wheel number,
being 1 since there is only one gear per shaft. Moreover, J is the inertia,
θ the rotational degree of freedom, t the torque due to the forces in the
conjunction, whilst T represents the external applied torque.

The inputs of this dynamic model were the pinion speed θ̇1R1 and the
resistive torque of the driven wheel T2R1, which values are being specified
in the following section, obtaining as results the driven wheel rotation θ2R1,
which can be represented by the dynamic transmission error, and the torque
due to the contact forces (tjRkθ) required to overcome the resistive torque.

To calculate tjRkθ, it was necessary to determine the distances between
gear teeth potentially in contact δi, where i is the number of each poten-
tial contact, which in turn allows for the calculation of the forces in the
conjunction Fi. These forces Fi were obtained differently depending on the
lubrication regime of the considered contact and on the distance between
teeth (equation 18). During this process, the model considers several aspects
that modify this distance between profiles, such as manufacturing errors, tip
and bottom reliefs among other parameters, in addition to flank and counter-
flank contacts.
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Fi =

{

FHDLi
δi > 0

FEHLi
δi ≤ 0

(18)

From equation 18, it can be observed that two approaches were taken
into account to calculate the contact force, and also, that there was not
a transition region between elastohydrodynamic and hydrodynamic lubrica-
tion, which in general could lead to an error. However, since low-torque
operating conditions were analysed, this assumption produces a negligible
error. Regarding the calculation of contact forces, when the distance be-
tween tooth profiles was negative (δi ≤ 0), the force FEHLi

was calculated by
multiplying the magnitude of interference (δi) by its corresponding meshing
stiffness (Keqi), which in this study was obtained from a previous quasi-static
analysis, although it can be calculated by a hybrid method of calculating the
flexibility matrix superposing a global FEM model and a hertzian analyti-
cal expression. The procedure to calculate this force has been extensively
explained by the authors in the literature, and for the sake of brevity, the
reader interested in this procedure is referred to [8, 11, 12]. Nevertheless,
when the distance between tooth profiles was positive (δi > 0), the force
FHDLi

was analytically calculated by the hydrodynamic equations presented
in section 2, which are reorganised as presented in equation 19.

FHDLi
=

{

CWedge
eqi

Vei − CSqueeze
eqi

ḣi ḣi < 0

CWedge
eqi

Vei ḣi ≥ 0

}

(19)

As can be seen, the squeeze effect forces are neglected when the profiles are
moving away (∂h

∂t
> 0), since the proposed formulations does only explain this

physical effect when the profiles are approaching (∂h
∂t
< 0). Table 1 lists the

expressions of the implemented hydrodynamic force in the form of equation
19 (CWedge

eqi
and CSqueeze

eqi
).

To avoid an infinite value of the hydrodynamic force formulations when
hc becomes null, a saturation value was adopted (hmin = 10Ra). This means
that when the distance between profiles was smaller than hmin, in order to
calculate the hydrodynamic force, the central film thickness was equal to this
saturation value (hc = hmin). Moreover, when the profiles were far from each
other, the force due to the lubricant was considered negligible. Specifically,
it was assumed that this lubricant effect was negligible when the distance
between profiles was higher than 1 mm (hc > hmax = 1mm). In order
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Table 1: CWedge
eqi

and CSqueeze
eqi

expressions for hydrodynamic force

Formula CWedge
eqi

CSqueeze
eqi

Sasaki 2bη ρeq
hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

[

1 − 2
π

arctan
(

3
√
2

2

√
ρeq
hc

ḣ
Ve

)]

Sasaki-
mod

√
6bη ρeq

hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

[

1 − 2
π

arctan
(

3
√
2

2

√
ρeq
hc

ḣ
Ve

)]

Rahnejat 2bη ρeq
hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

Rahnejat-
mod

√
6bη ρeq

hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

Wiegert0.02
√

6bη ρeq
hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

[

1 − 2
π

arctan
(√

3
√

ρeq
hc

ḣ
Ve

)]

Wiegert0.2
√

6bη ρeq
hc

3
√
2πbη
2

(
ρeq
hc

) 3

2

[

1 −
√
3πḣ

(

2Ve

√

hc
ρeq

+
√
3π|ḣ|

)

]

to comprehend the force algorithm choice, Figure 2 represents the different
regions when two teeth are contacting, which is also summarised in equation
20.

Pinion

tooth

Driven Wheel

tooth

Line of 

action

h
max h

min0

0
i
F

i
i HDL

C

F F

h

i
i HDL

C min

F F

h h

i
i EHL
F F

max
h

min max
h h

Approaching

direction

min
0 h

0

Figure 2: Schema of the force algorithm choice
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Fi =







0 δi > hmax

FHDLi
= CWedge

eqi
Vei − CSqueeze

eqi
ḣi ḣi < 0

{
hmax > δi > hmin hc = δi
hmin > δi > 0 hc = hmin

FHDLi
= CWedge

eqi
Vei ḣi ≥ 0

{
hmax > δi > hmin hc = δi
hmin > δi > 0 hc = hmin

FEHLi
= Keqiδi δi ≤ 0

(20)

4. Case of study and test set-up

Table 2 shows the parameters of the transmission example of application,
of which the dynamic behaviour was simulated.

Table 2: Gear transmission parameters

Parameter Value Parameter Value

Pinion/Wheel teeth
(z1/z2)

18/36
Pinion/Wheel inertia
(J1R1/J2R1) [kgm2]

1.75e-4
/2.8e-3

Rack Ad./Ded.
(Adrack/Ddrack)

1.25m/1m Rack tip rad. (rt) 0.25m

hmin/hmax [mm] 8e-3/1 Mean roughness (Ra) [µm] 0.8
Module (m) [mm] 3 Face width (b) [mm] 26.7
Poisson coef. (ψ) 0.3 Pres. angle (ϕi) [degree] 20

Young modulus (E) [GPa] 207
Half-width contact (a)/

Backlash [mm]
1/1.355

Bearing radius (rb) [mm] 10 Work. distance (d) [mm] 81.1
Radial clearance (rc) [mm] 0.025 Bearing length (lb) [mm] 15

As commented before, the model requires to introduce some input data.
In this study, the pinion angular speed θ̇1R1 and the resistive torque of the
driven wheel T2R1 were specified. Specifically, since stationary conditions of
the system were to be assessed, the pinion angular speed was considered with-
out excitation (equation 21), analysing the dynamic behaviour after some
meshing cycles.

θ̇1R1 = Ω + ϑ sin(∆ωt) where ϑ = 0 (21)
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The range of constant pinion speeds introduced was Ω = 500 : 100 : 9000
rpm, obtaining the dynamic transmission error after one thousand meshing
cycles. This value was chosen because the gear pair achieved its stationary
state. Moreover, in order to assess the different hydrodynamic formulations
as well as the torque influence on the transmission dynamic behaviour, these
pinion speeds were simulated under four scenarios of the resistive torque
(Table 3).

Table 3: Resistive torque scenarios

Scenario Torque value

1 T2R1 = 0 Nm

2 T2R1 =
πηlbr

3

b

2rc
θ̇2R1

3 T2R1 = 0.1 Nm

4 T2R1 = 0.1 +
πηlbr

3

b

2rc
θ̇2R1

In the first scenario, no torque was applied. In the second, the torque
applied on the driven wheel was formulated as a torsional viscous damping,
which simulates a journal bearing behaviour [27], where ηb is the dynamic
viscosity (same oil as in the gears ηb = η), rb, lb and rc are the journal bearing
radius, width and radial clearance. This variable torque expression follows
Petrov′s friction, which is the typical resistance in low-load conditions of a
gear mounted on a shaft by a journal bearing. Moreover, the resistive torque
adopted a constant value in the third scenario, high enough to be close to
EHL conditions, whilst in the fourth, the superposition of the two previ-
ous scenarios was performed. In this way, the dynamic system behaviour
was assessed under no torque, only variable and only constant torque inde-
pendently, and lastly, under the superposition of the constant and variable
components.

These tests were performed when two dynamic viscosities were considered.
In this respect, 75W90 lubricant oil model, which is commonly used in vehicle
transmissions, was implemented (equation 22) [30].
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η = ρν

{

ρ = C1 + C2 (Tin − 40)

ν = Z − exp(−0.7489 − 3.295Z + 0.6119Z2 − 0.3193Z3))

Where Z = ξ − 0.7

log[log(ξ)] = C3 − C4 log(Tin + 237.15)

(22)

Where the constants of the lubricant oil model were defined as C1 =
0.8353, C2 = −0.0006, C3 = 7.9737 and C4 = 3.0773. As observed in
equation 22, this model takes into account the effect of the temperature
(Tin) on the rheological properties, where ρ, ν and η are the density, the
kinematic and dynamic viscosity of the fluid. These rheological parameter
values for the two assessed lubricant temperatures (40 and 60 oC) are listed
in Table 4.

Table 4: Gear transmission parameters

75W90
Density
[kg/m3]

Kinematic
viscosity [m2/s]

Dynamic
viscosity [Pas]

Tin = 40oC 835.9 9.594e-05 0.08
Tin = 60oC 823.3 4.144e-05 0.0341

In this research work, the hypothesis of isothermal conditions in the fluid
were considered, implementing a constant value of the fluid dynamic viscosity
to assess its effect on the gear transmission dynamics. Nevertheless, in high-
speed range (higher than 6000 rpm), the thermal effect could be of relevance,
and therefore, the results must be treated carefully.

5. Results and discussion

In this section, the dynamic transmission error (DTE) of the four torque
considered scenarios is presented for the six hydrodynamic force formulations
implemented. Specifically, the DTE were calculated during one thousand
meshing cycles for each pinion speed, showing the last ten of each pinion
speed in the same figure and observing the DTE mean value and deviation
in the different pinion speeds simulated.
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Moreover, the root mean square (RMS) value of the DTE is shown for
the pinion speed range (Ω = 500 : 100 : 9000 rpm), assessing in this way the
discrepancies among formulations. Subsequently, a deeper analysis of the
speed on which formulations differ is also presented.

5.1. Scenario 1: Without external torque

In Figure 3, the DTE is shown when there was no torque applied.
From the figure, higher oscillations are observed with the more viscous

oil temperature (Tin = 40◦C), since higher lubricant forces are induced than
in the lower viscosity case. In this regard, this viscosity parameter affects
the whole dynamic behaviour, palliating the oscillation amplitude in high
frequencies with the decrement of the viscosity. Moreover, the role of the
squeeze effect, in this case scenario, is almost negligible, as there are not
discrepancies between formulations that implement the same formulations
for the entraining fluid effect. This makes sense, as the squeeze term would
be prominent, with respect to the entraining velocity one, when the teeth
profiles are closer or there exist impacts between them. In order to appreciate
these aspects and the discrepancies among formulations, the RMS value of
the DTE is shown in Figure 4.

First thing that can be observed from the RMS values with both oil
temperatures is that Sasaki′s and Rahnejat′s formulations follow a trend
which is different from the other four formulations. This means that Martin′s
consideration is decisive in this case.

Apart from that, at 40◦of inlet temperature, these four formulations
present a DTE amplification close to 8000 rpm, which is not appreciated
in the Sasaki′s and Rahnejat′s formulations. On the other hand, at the
higher temperature, the increment of the oscillation amplitude is observed
at 5000 rpm in these four formulations, whilst, with Sasaki′s and Rahnejat′s,
this DTE amplification is appreciated close to 6000 rpm. Thus, as con-
cluded above, the viscosity clearly influences the system dynamic behaviour,
and therefore, these speed regions where formulations differ must be assessed
separately (Figure 5 and 6).

In this respect, at 40◦, 7900 rpm pinion velocity results were assessed
(Figure 5), obtaining that the DTE main frequency is related to the angular
rotation (125 Hz) and there is an harmonic derived from the pinion mesh
frequency (18*125=2250 Hz). Again, Martin′s consideration changes the
dynamic behaviour, not finding a DTE amplification frequency in Rahnejat′s
and Sasaki′s formulations, whilst in the other four, it does appear. Moreover,
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Figure 3: DTE of the considered speed range in stationary conditions with no applied
torque for the six hydrodynamic force formulations (Tin = 40◦C above and Tin = 60◦C
below)

the same DTE mean value is obtained for the six formulations, the half of
the backlash (6.77∗10−4 rad). On the other hand, there is a phase difference
between Sasaki′s and Rahnejat′s and the other four formulations, which is
due to a slightly different starting point of the simulation and not related to

16



2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki/Martins

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat/Martins

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.02

RMS of Transmission Error (T
in

=40ºC)

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.2

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki/Martins

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat/Martins

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.02

RMS of Transmission Error (T
in

=60ºC)

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.2

Figure 4: Transmission error RMS value of the speed range considered in stationary
conditions without applied torque (Tin = 40◦C on the left and Tin = 60◦C on the right)
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Figure 5: DTE and its spectrum at 7900 rpm without applied torque (Tin = 40◦C)

the formulations. This fact happens in the subsequent scenarios for the same
reason, thus, for the sake of brevity, the same idea is not being repeated.

At 60◦, 4700 rpm pinion velocity results were assessed (Figure 6), finding
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Figure 6: DTE and its spectrum at 4700 rpm without applied torque (Tin = 60◦C)

that the DTE main frequency is related to the angular rotation (78 Hz) and
there is an harmonic derived from the pinion mesh frequency (18*78=1404
Hz). Again, Martin′s consideration changes the dynamic behaviour, not ob-
taining a DTE amplification frequency in Rahnejat′s and Sasaki′s formula-
tions, whilst in the other four, it does appear. Moreover, the same DTE
mean value is obtained for the six formulations, the half of the backlash.

5.2. Scenario 2: Petrov′s torque

In Figure 7, the DTE is shown when Petrov’s formulation torque was
applied as external load.

From the figure, a similar behaviour as in the first scenario is observed
but with a distortion of the DTE mean value, which, in this case, is fur-
ther from the half-backlash position. This distortion is higher in the low
viscosity case because of the lubricant forces, which are smaller with the
viscosity decrement. It is also observed that the entraining fluid effect is
predominant in this scenario since Sasaki′s and Rahnejat′s follows a different
trend as the other four formulations. Furthermore, the higher oscillations
are observed with the more viscous oil temperature (Tin = 40◦C) with a
similar amplitude as in the first scenario, affecting this viscosity parameter
the whole dynamic behaviour, palliating the high-frequency amplitudes with
the viscosity decrement. In order to appreciate these facts, the DTE RMS
value is shown in Figure 8.

The RMS values show that, with both oil temperatures, Sasaki′s and
Rahnejat′s formulations follow a trend which is different from the other four
formulations. This means that Martin′s consideration is decisive in order
to correctly simulate the dynamic behaviour under rattle conditions (low
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Figure 7: DTE of the speed range considered in stationary conditions with Petrov′s torque
for the six hydrodynamic force formulations (Tin = 40◦C above and Tin = 60◦C below)

loads). This trend happens in the following scenarios, therefore, for the sake
of brevity, it is not being repeated in the subsequent sections.

Furthermore, at the lower temperature, these four formulations present a
DTE amplification close to 8000 rpm, which is not appreciated in the Sasaki′s
and Rahnejat′s formulations. At Tin = 60◦C, the increment of the oscillation

19



2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki/Martins

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat/Martins

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.02

RMS of Transmission Error (T
in

=40ºC)

2000 4000 6000 8000
0

0.5

1

1.5
x 10

−7

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.2

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Sasaki/Martins

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Rahnejat/Martins

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.02

RMS of Transmission Error (T
in

=60ºC)

2000 4000 6000 8000
0

1

2

3

x 10
−8

R
M

S
(T

E
)

Pinion angular velocity (RPM)

Wiegert 0.2

Figure 8: Transmission error RMS value of the considered speed range in stationary
conditions with Petrov′s torque (Tin = 40◦C on the left and Tin = 60◦C on the right)

amplitude is observed at 5000 rpm in these four formulations, however, with
Sasaki′s and Rahnejat′s, this DTE amplification is appreciated close to 6000
rpm. Hence, the viscosity clearly influences the system dynamic behaviour.
The speed regions where formulations differ are to be assessed separately in
order to comprehend this performance (Figure 9 and 10).

At 40◦and 7900 rpm, the DTE main frequency is related to the angu-
lar rotation (125 Hz), being the amplitude four times greater for the four
formulations that implement Martin′s consideration than Rahnejat′s and
Sasaki′s ones. There is an harmonic derived from the pinion mesh frequency
(18*125=2250 Hz), which is observed when the six formulations were imple-
mented. If the results are compared with the obtained in first scenario, the
main difference is the distortion of the DTE mean value, since the oscillation
amplitude is similar although a variable external torque was applied.

At 60◦and 4700 rpm, the DTE main frequency is related to the angular
rotation (78 Hz), being the amplitude five times greater for the four formu-
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Figure 9: DTE and its spectrum at 7900 rpm Petrov′s torque (Tin = 40◦C)
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Figure 10: DTE and its spectrum at 4700 rpm Petrov′s torque (Tin = 60◦C)

lations that implement Martin′s consideration than Rahnejat′s and Sasaki′s
ones. Moreover, there is an harmonic derived from the pinion mesh frequency
(18*78=1404 Hz) and observed for the six formulations. When comparing
with first scenario results, a distortion of the DTE mean value is observed
for the six formulations, being this distortion even greater for Sasaki′s and
Rahnejat′s formulations.

5.3. Scenario 3: 0.1Nm Torque

The DTE is presented in Figure 11, when a constant external torque of
0.1 Nm was applied and two oil viscosities were considered.

From the figure, the DTE tends to move forward to the half-backlash
position with the increment of the pinion speed. This fact is quicker in the
high viscosity case (Tin = 40◦C), since the lubrication force is greater than
in the low viscosity case, where this tendency is observed to be smoother.
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Figure 11: DTE of the considered speed range in stationary conditions with 0.1Nm torque
for the six hydrodynamic force formulations (Tin = 40◦C above and Tin = 60◦C below)

There is also higher distortion between Sasaki′s and Rahnejat′s formulations
with respect to the other four in the lower viscosity case, which is due to
Martin′s consideration in the entraining velocity effect. In the pinion speed
range between 500 and 1000 rpm, this distortion is reduced because of the
squeeze effect when the profiles are closer than in higher speeds. In Figure
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12, these aspects can be assessed by the DTE RMS values.
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Figure 12: Transmission error RMS value of the speed range considered in stationary
conditions with 0.1Nm torque (Tin = 40◦C on the left and Tin = 60◦C on the right)

At 40◦of inlet temperature, Sasaki′s and Rahnejat′s formulations do not
present a DTE amplification close to 8000 rpm whilst the other four formu-
lations do, following a similar trend as in both previous scenarios. At the
higher temperature, a DTE amplification is observed at 5000 rpm for these
four formulations, whilst, with Sasaki′s and Rahnejat′s, it is close to 6000
rpm. These speed regions are assessed next by Figure 13 and 14.

The main DTE frequency corresponds to the angular rotation, which
value is 125 Hz, at 40◦of the oil and 7900 rpm of pinion speed (Figure 13).
When Sasaki′s and Rahnejat′s formulations were implemented, the value cor-
responding to this frequency is a fifth of the value obtained with the other
four formulations. Apart from that, an harmonic related to the pinion mesh
frequency was obtained at 2250 Hz for the six formulations.

At 60◦and 4700 rpm, the angular rotation frequency is 78 Hz, which
correspond to the main DTE frequency, as shown in Figure 14. In this case,
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Figure 13: DTE and its spectrum at 7900 rpm Petrov′s torque (Tin = 40◦C)
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Figure 14: DTE and its spectrum at 4700 rpm Petrov′s torque(Tin = 60◦C)

the difference between Sasaki′s and Rahnejat′s with respect to the other four
is not so appreciated by the DTE spectrum, since the main difference resides
in the DTE mean value, which is not represented by the RMS values of the
signals. Moreover, an harmonic at 1400 Hz was obtained, which is related to
the pinion mesh frequency.

5.4. Scenario 4: 0.1Nm+Petrov′s torque

In Figure 7, the DTE is shown when Petrov’s formulation was added to
0.1 Nm external torque.

From the figure, similarly as in the previous scenario, the DTE tends to
approach the half-backlash position when the pinion speed increases. This
effect is emphasised in the high viscosity case, as the equivalent lubricant
damping is greater than at Tin = 60◦C. Moreover, the difference between
Sasaki′s and Rahnejat′s and the other four formulations is higher in the low
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Figure 15: DTE of the speed range considered in stationary conditions with constant
and variable torque for the six hydrodynamic force formulations (Tin = 40◦C above and
Tin = 60◦C bellow)

viscosity case, which is related to Martin′s consideration and therefore to the
entraining fluid effect. This fact is not so noticeable between 500 and 1000
rpm, which is explained by the role of the squeeze effect as the profiles are
closer than in higher speed values. These discrepancies among formulations
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are explained by Figure 16 where the DTE RMS values are presented.
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Figure 16: Transmission error RMS value of the speed range considered in stationary
conditions with constant and variable torque (Tin = 40◦C on the left and Tin = 60◦C on
the right)

At 40◦of inlet temperature, the DTE obtained by the four formulations
presents a DTE amplification close to 8000 rpm, whilst the DTE calculated
with Sasaki′s and Rahnejat′s formulations does not. At 40◦of inlet tem-
perature, this DTE amplification is observed at 5000 rpm in Sasaki′s and
Rahnejat′s whilst in the four formulations is not so well apprecieated. This
is the contrary behaviour observed in the three preceding scenarios. In order
to assess this behaviour, Figure 17 and 18 presents the DTE at these speeds.

At 40◦and 7900 rpm pinion speed, the same behaviour as in previous sce-
narios was obtained. The DTE main frequency due to the angular rotation
was obtained at 125 Hz and an harmonic at 2250 Hz derived from the pinion
mesh frequency.

However, at 60◦and 4700 rpm, the contrary behaviour to the three pre-
ceding scenarios was obtained, where the DTE main frequency related to
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Figure 17: DTE and its spectrum at 7900 rpm with constant and variable torque (Tin =
40◦C)
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Figure 18: DTE and its spectrum at 4700 rpm with constant and variable torque (Tin =
60◦C)

the angular rotation (78 Hz) was higher for Sasaki′s and Rahnejat′s than for
the other four formulations. This results from the change in the dynamic
behaviour due to the variable torque applied.

5.5. Comparison among torque scenarios

With Figures 19, 20, 21 and 22, the influence of the external torque on
the dynamic behaviour of the system and on the six formulations is to be
assessed.

In Figure 19, the DTE error is presented for the four torque scenarios,
when the six formulations were considered in the higher viscosity case. It
is concluded by this figure that the higher the torque, the further the teeth
is from the half-backlash position. This distance is reduced with the in-
crement of the pinion speed. In order to appreciate the difference between
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formulations and torque scenarios, the DTE RMS value of these signals are
presented in Figure 20.
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Figure 19: DTE under the four torque scenarios and for the six hydrodynamic force
formulations (Tin = 40◦C)

From the figure, regarding the torque influence, a change of the behaviour
at low speeds is appreciated with higher torques. With respect to the for-
mulations comparison, Sasaki′s and Rahnejat′s follows a different trend than
the other four. This means that the fluid entraining effect is more promi-
nent than the squeeze one in the analysed cases, and therefore, that Martin′s
consideration is of crucial importance in order to assess rattle phenomenon.

In Figure 21, the DTE error is presented for the four torque scenarios,
when the six formulations were considered in the lower viscosity case. As
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Figure 20: RMS value of the DTE under the four torque scenarios (Tin = 40◦C)

before, the higher the torque, the further the teeth is from the half-backlash
position. This distance is reduced with the increment of the pinion speed.
Comparing with the higher viscosity case, it can be concluded that the lower
the viscosity, more speed is required to reach this half-backlash position,
since the lubricant forces are greater with high viscosities and push harder
the tooth to this position.

In order to appreciate the difference between formulations and torque
scenarios, the DTE RMS value of these signals are presented in Figure 20.

From the figure, regarding the torque influence, besides the change of the
behaviour at low speeds with higher torques, there are significant modifi-
cations in the dynamic behaviour close to 5000 rpm. Whilst in the results
obtained when Sasaki′s and Rahnejat′s formulations were implemented, there
exist a DTE amplification with the increment of torque at 4700 rpm, the con-
trary occurs in the other four formulations, decreasing the value of the DTE
RMS with the increment of the torque. From this fact, it is concluded that
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Figure 21: DTE under the four torque scenarios and for the six hydrodynamic force
formulations (Tin = 60◦C)

Martin′s consideration makes the difference among formulations and also
that the torque influence on the dynamic behaviour becomes of importance
with the decrement of the viscosity, which is not the case for high viscosities,
where the torque influence is less significant.

6. Conclusions

In this paper, the dynamic behaviour of low-loaded gear transmissions
were assessed under four torque scenarios, using six formulations which con-
siders both fluid effects to calculate the hydrodynamic forces. In this regard,
gear transmission models previously developed by the authors were used,
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Figure 22: RMS value of the DTE under the four torque scenarios(Tin = 60◦C)

making special emphasis on the influence of the fluid viscosity on the system
dynamic behaviour.

Based on the obtained results, it can be concluded that, under these
operating conditions, the effect of lubricant entrance in the contact area
plays a decisive role in the dynamic behaviour, becoming the squeeze effect
important when the profile teeth were closer. In this regard and comparing
results obtained implementing the six formulations, Sasaki′s and Rahnejat′s
formulations follow a different trend than the other four. This means that the
fluid entraining effect is more prominent than the squeeze one in the analysed
cases, and therefore, that Martin′s consideration makes the difference among
formulations and is therefore of crucial importance in order to assess rattle
phenomenon.

Regarding the torque influence on the dynamic behaviour, the applied
torque becomes of importance with the decrement of the viscosity, changing
the DTE amplification regions, which is not the case for high viscosities,
where the torque influence is less significant. Thus, the role of the oil in
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terms of the viscosity effect on the dynamic behaviour is higher than the
external torque effect.

As future work, two lines are proposed; studying the thermal effects on
the dynamics of the gear transmission as well as the experimental validation
of the analysed formulations.
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