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THE POLYNOMIAL EIGENVALUE PROBLEM IS WELL
CONDITIONED FOR RANDOM INPUTS\ast 

DIEGO ARMENTANO\dagger AND CARLOS BELTR\'AN\ddagger 

Abstract. We compute the exact expected value of the squared condition number for the
polynomial eigenvalue problem, when the input matrices have entries coming from the standard
complex Gaussian distribution, showing that in general this problem is quite well conditioned.
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1. Introduction. Recall the homogeneous generalized eigenvalue problem
(GEVP): given two n\times n matrices A,B, find (\alpha , \beta ) \in \BbbC 2 \setminus \{ (0, 0)\} such that

det(\beta A - \alpha B) = 0.

The point (\alpha , \beta ) is called a generalized eigenvalue of (A,B) and the corresponding
nonzero vectors x, y \in \BbbC n satisfying

(\beta A - \alpha B)x = 0, y\ast (\beta A - \alpha B) = 0,

are called the right and left eigenvectors of (A,B).
The equations defining the generalized eigenvalues are homogeneous in (\alpha , \beta ) and

x, y, respectively. This means that (\alpha , \beta ) is a generalized eigenvalue if and only if
any nonzero multiple of (\alpha , \beta ) is also a generalized eigenvalue and similarly for x and
y. It is thus natural to consider the eigenvalues and eigenvectors in projective spaces
\BbbP (\BbbC 2) and \BbbP (\BbbC n) where, for b \geq 2, \BbbP (\BbbC b) is the set of one-dimensional subspaces of
\BbbC b (see section 2).

The polynomial eigenvalue problem (PEVP), a well known generalization of the
GEVP, is among the most important problems in numerical linear algebra; see the
excellent survey [26] for context. The question now is: given A0, . . . , Ad \in \BbbC n\times n, find
(\alpha , \beta ) \in \BbbP (\BbbC 2) such that

\scrF (A, (\alpha , \beta )) = det(P (A,\alpha , \beta )) = 0,

where A = (A0, . . . , Ad) and

(1.1) P (A,\alpha , \beta ) = \beta dA0 + \alpha \beta d - 1A1 + \cdot \cdot \cdot + \alpha d - 1\beta Ad - 1 + \alpha dAd =

d\sum 
j=0

\alpha j\beta d - jAj .
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A solution (\alpha , \beta ) \in \BbbP (\BbbC 2) of \scrF (A, (\alpha , \beta )) = 0 is simply called an eigenvalue of
A. Let us denote by Eig(A) the set of eigenvalues of A.

For generic input A, there exist nd such eigenvalues. Right and left eigenvectors
of A are defined as in the GEVP case. If we set d = 1 we get (up to a sign convention)
the GEVP.

A good deal of effort has been dedicated in the last years to find efficient algo-
rithms for particular instances of the PEVP such as the quadratic eigenvalue problem;
see [5, 25, 20] (the inverse version [24] is also of interest). The nowadays method of
choice for solving the PEVP is to linearize it obtaining a GEVP (in dimension nd)
that can be solved using standard eigenvalue solvers. Different ways to linearize the
problem can be analyzed in search for optimal ones in terms of stability or numerical
convenience; see [22].

A fundamental question regarding the numerical solution of the PEVP is the
stability, governed by the so-called condition number [16, 21, 19]. When we consider
the natural Hermitian structure over \BbbP (\BbbC 2) and the space of matrices (see section 2),
the condition number for the GEVP has a nice expression computed in [16, section
6]: for a matrix pair (A,B) \in \BbbC n\times n \times \BbbC n\times n and an eigenvalue (\alpha , \beta ) \in \BbbP (\BbbC 2), we
have

\mu ((A,B), (\alpha , \beta )) =
\| (\alpha , \beta )\| \| x\| \| y\| 
| \=\alpha y\ast Ax+ \=\beta y\ast Bx| 

\| (A,B)\| F ,

where x and y are the corresponding right and left eigenvectors, and \| \cdot \| F denotes
Frobenius norm (the factor \| (A,B)\| F is missing in [16] since Dedieu and Tisseur
compute the absolute condition number instead of the relative condition number).
This formula is indeed a consequence of the definition of the condition number as the
maximum of the change in the eigenvalue when the input is locally perturbed (see
section 2 for a more formal definition).

The same definition as the maximum possible change in the eigenvalue when the
input is perturbed is valid for the more general PEVP. An explicit formula for the
condition number for the PEVP was derived in [16, Theorem 4.2],

(1.2) \mu (A, (\alpha , \beta )) =

\left(  d\sum 
j=0

| \alpha | 2j | \beta | 2d - 2j

\right)  1/2

\| x\| \| y\| 
| y\ast v| 

\| A\| F ,

where again A = (A0, . . . , Ad), (\alpha , \beta ) \in Eig(A), and x and y are the corresponding
right and left eigenvectors and

(1.3) v = \=\beta 
\partial 

\partial \alpha 
P (A,\alpha , \beta )x - \=\alpha 

\partial 

\partial \beta 
P (A,\alpha , \beta )x.

Note that the condition number depends both on the input A, and on the particular
eigenvalue (\alpha , \beta ). It is customary to consider

\mu max(A) = max
(\alpha ,\beta )\in Eig(A)

\mu (A, (\alpha , \beta )).

Computing the condition number for any numerical problem (including the PEVP)
is a time-consuming task that suffers from intrinsic stability problems as pointed out
in [17]. It is hence usual to estimate average values of the condition number for a given
family of inputs, in such a way that we can rely on probabilistic arguments instead of
computing condition numbers of particular inputs. The linear algebra case is probably
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the most studied one; see [18, 14] for estimates on Turing's condition number with
different normalizations. Theoretical results describing the average condition number
of the standard eigenvalue--eigenvector problem have been recently obtained [3, 2],
but we are not aware of any previous similar result for the PEVP case. In this paper
we fill this gap. Through this manuscript, we will denote by

Ew(f(w)) or Ew\in W (f(w))

the expected value of a function f : W \rightarrow \BbbR , where w \in W follows some prescribed
distribution in the probability space W .

Recall that a complex random variable has the standard Gaussian distribution
\scrN \BbbC (0, 1) when the real part and the imaginary part are independent and identically
distributed real Gaussian centered random variables with variance 1/2 (see section 2
for details). Then we have the following.

Theorem 1.1. Let A = (A0, . . . , Ad) \in \BbbC (d+1)n2

be chosen at random with inde-
pendent entries following the distribution \scrN \BbbC (0, 1). Then, the expected value of the
squared condition number for the PEVP satisfies

EA

\left(  1

dn

\sum 
(\alpha ,\beta )\in Eig(A)

\mu (A, (\alpha , \beta ))2

\right)  =
(d+ 1)n2  - 1

d
.

A trivial consequence of Theorem 1.1 is the following.

Corollary 1.2. Let A = (A0, . . . , Ad) \in \BbbC (d+1)n2

be chosen as in Theorem 1.1.
Then,

EA

\bigl( 
\mu max(A)2

\bigr) 
\leq ((d+ 1)n2  - 1)n,

and in particular

EA (log (\mu max(A))) \leq 3

2
log n+

1

2
log(d+ 1).

Since the number of digits needed to describe accurately the output of a numerical
problem is controlled by the logarithm of the condition number, we can now see from
Corollary 1.2 that there is no intrinsic obstruction for computing solutions to the
PEVP, even for very large values of n and d.

The proof of Theorem 1.1 (see section 3.5) will be a consequence of a much
more general result, Theorem 2.1. We also prove similar results for other numerical
problems; see sections 3.1, 3.2, 3.3, 3.4, 3.6, 3.7 for other examples of application.

Remark 1.3. The real case (i.e., the case that the coefficients of the matrices in-
volved are, say, obtained from the real standard Gaussian distribution) can also be
analyzed. The techniques, however, are quite more involved and heavily use sophis-
ticated results from real semialgebraic geometry. It turns out that these real random
polynomial eigenvalue problems are also quite well conditioned on the average; see
the main result in [7].

Remark 1.4. Since the condition number satisfies \mu (tA, (\alpha , \beta )) = \mu (A, (\alpha , \beta )) for
any nonzero t \in \BbbC , the results above also apply in the case that the vector of matrices
A = (A0, . . . , Ad) is distributed according to any centrally symmetric distribution in

\BbbC (d+1)n2

. Note that this is different from the coefficients of the matrices following any
central distribution!
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Remark 1.5. One standard approach to solve a polynomial equation p(x) = 0 in
one complex variable is to construct the companion matrix of the given polynomial and
compute its eigenvalues (this is the method used by Matlab's command root). It is
usually convenient to balance the companion matrix before applying QR or some other
standard eigensolver. Specific eigensolvers that make use of the special structure of
companion matrices have also been developed; see [10, 9, 30, 4] and references therein.
The stability of the process can be improved by using a companion matrix different
from the standard one; see [15].

Currently existing eigenvalue solvers exhibit remarkable stability and accuracy
properties, and indeed the above process shows excellent practical performance. In
contrast, computing eigenvalues of a matrix by writing down its characteristic polyno-
mial and solving it by Newton's method (or other basic procedure) shows quite a poor
performance in practice. This may have contributed to support the idea, extended
in some part of the community, that polynomial root finding is poorly conditioned,
while eigenvalue computation is well conditioned. Indeed, in [29, page 92] root finding
is presented as a classic example of ill-conditioned problem and so is the computation
of eigenvalues in the non-symmetric case.

Theorem 1.1 (with n = 1 for the polynomial case) shows that this is not the case
at least if the coefficients are drawn from \scrN \BbbC (0, 1):

Both polynomial root finding and polynomial eigenvalue problems are
pretty well conditioned on the average, and indeed polynomial root
finding has average squared condition number exactly equal to 1.

An explanation of the poor practical performance of the characteristic polynomial
method for computing eigenvalues is given in [13].

Remark 1.6. The condition number in a numerical problem measures the change
in the solution when the input is locally perturbed, giving a worst-case bound: the
worst (local) perturbation in the input defines the condition number of a problem.

In some situations, perturbations of the input can be expected to be ``random""
in the sense that there is no preferred direction. Of course, in this case the observed
condition number of the problem may seem better than the theoretical bound, since
most perturbations will be quasiorthogonal to the worst direction from the concen-
tration of measure phenomenon. The condition number for random direction in the
perturbation was called in [1] the stochastic condition number \mu st. Using [16, Theorem
4.2], its formula for the PEVP is given by

\mu st(A, (\alpha , \beta ))2 =

\int 
\.A\in \BbbS 

| y\ast P ( \.A,\alpha , \beta )x| 2

| y\ast v| 2
\| A\| 2F d\sigma \BbbS ( \.A),

where \BbbS denotes the unit sphere of \BbbC n2(d+1), with the rotationally invariant probability
measure d\sigma \BbbS , and v is given by (1.3). From [1, Theorem 1] we have \mu 2 = (d+1)n2\mu 2

st.
Then, by Theorem 1.1 we obtain the equality

(1.4) EA

\left(  1

dn

\sum 
(\alpha ,\beta )\in Eig(A)

\mu st(A, (\alpha , \beta ))2

\right)  =
(d+ 1)n2  - 1

d(d+ 1)n2
\approx 1

d
,

where A \in \BbbC (d+1)n2

is chosen at random with independent \scrN \BbbC (0, 1) entries.
Thus, for a random eigenvalue of a random input and a random direction in the

perturbation, one should expect the squared relative change in the solution to be

around (d+1)n2 - 1
d(d+1)n2 times the size of the perturbation (relative to \| A\| F = \| (A0, . . . ,



THE PEVP IS WELL CONDITIONED FOR RANDOM INPUTS 179

Fig. 1.1. Empirical cdfs of the perturbation in a randomly chosen eigenvalue of a random
problem instance for different values of the parameters d, n. Our theoretical expected values from
(1.4) are 0.1111, 0.1652, 0.3241, 0.9688 from top to bottom. The computed (empirical) expected values
are 0.1106, 0.1633, 0.3312, 0.9593.

Ad)\| F ). In Figure 1.1 we have computed the empirical cumulative distribution func-
tion (cdf) of the size of that perturbation for different choices of d, n. For each of
these choices we have computed 100, 000 random problem instances and correspond-
ing random perturbation directions and then we have computed the distance from the
eigenvalue of the unperturbed problem to that of the perturbed problem (the size of
the perturbation is 10 - 6 relative to the norm of the input). The computations have
been made with Matlab's command polyeig.

2. Geometric framework: A general result. We will follow the path of
[27, 16, 28] but considering a general setting of input and output spaces that can be
applied to many different situations (see, for example, [11] or [1]).

2.1. The complex projective space and its subvarieties. For an integer
b \geq 2, the projective space \BbbP (\BbbC b) is a classical object defined as the set of complex
lines through 0 in \BbbC b, that is, as the set of possible directions in \BbbC b. A detailed yet
accessible description of the geometry of \BbbP (\BbbC b) can be found in [11, page 190], for
example. An algebraic subvariety Z of \BbbP (\BbbC b) is the subset of \BbbP (\BbbC b) given as the zero
set of some collection of homogeneous polynomial equations, and it is irreducible if
it cannot be decomposed into two proper subvarieties of Z or, equivalently, if the
smooth points of Z---the points at which Z is a complex manifold---form a connected
manifold. See, for example, [23] for a classical approach to (complex, projective)
algebraic varieties.

The degree of an algebraic variety is defined in geometric terms: if an algebraic
variety Z \subseteq \BbbP (\BbbC b) is of dimension m, then we can intersect it with a linear subspace
L of \BbbP (\BbbC b) of codimension m and expect the number of intersection points \#(Z \cap L)
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to be finite. It turns out that such number is finite and constant for a generic linear
subspace, and it is called the degree of the variety; see [23, page 415]. This is a
fundamental difference between real and complex algebraic geometry.

An important property of algebraic subvarieties of \BbbP (\BbbC b) is the rigidity of their
volume: if an algebraic variety Z \subseteq \BbbP (\BbbC b) has dimension m and degree d then its
volume (w.r.t. the natural metric in \BbbP (\BbbC b), the Fubini--Study metric defined in section
2.3 below) is exactly equal to d times the volume of the complex projective space of
the same dimension as Z. In other words,

(2.1) V ol(Z) = vol(\BbbP (\BbbC m+1)) d =
\pi m

\Gamma (m+ 1)
d;

see [12, Corollary 20.10].

2.2. The input-output spaces and solution variety. In many numerical
problems there is a space of inputs \scrI that we can identify with an m-dimensional
complex vector space, and a space of outputs \scrO that we can identify with a one-
dimensional projective irreducible algebraic subvariety of \BbbP (\BbbC b), for some b \in \BbbN .
Some concrete examples are discussed below.

We denote by d\scrO the degree of \scrO ; that is, the generic number of intersections of
\scrO with a linear subspace in \BbbP (\BbbC b) of codimension 1. We denote elements in \scrI by p
and elements in \scrO by z. Under the identification \scrI = \BbbC m, we consider a polynomial
\scrF : \BbbC m \times \BbbC b \rightarrow \BbbC ,

\scrF (p, z)

bihomogeneous in its two variables with degrees

degp \scrF = r, degz \scrF = s.

We look at the problem:
given p \in \scrI , find z \in \scrO such that \scrF (p, z) = 0.

Then, we consider the solution variety

\scrV = \{ (p, z) \in \scrI \times \scrO : \scrF (p, z) = 0\} \subseteq \scrI \times \BbbP (\BbbC b),

as well as the two natural projections \pi 1 : \scrV \rightarrow \scrI , \pi 2 : \scrV \rightarrow \scrO .
Here are some basic examples of the general setting above, including the PEVP

case:
A \scrI \equiv \BbbC d+1 is the set of polynomials of degree at most d, homogeneous in two

variables, and we search for a zero z \in \BbbP (\BbbC 2). Here, \scrF is the evaluation map

\scrF (p, z) = p(z).

B \scrI \equiv \BbbC n\times n\times \BbbC n\times n \equiv \BbbC 2n2

is the set of pairs of matrices (A,B), and we search
for a generalized eigenvalue (\alpha , \beta ) \in \BbbP (\BbbC 2), i.e., a solution of

\scrF ((A,B), (\alpha , \beta )) = det(\beta A - \alpha B) = 0.

In general, there exist n generalized eigenvalues.
C \scrI \equiv \BbbC n\times n \times \cdot \cdot \cdot \times \BbbC n\times n \equiv \BbbC (d+1)n2

(there are d + 1 copies of \BbbC n\times n), and
we want to solve the PEVP; that is, given A = (A0, . . . , Ad) we want to find
(\alpha , \beta ) \in \BbbP (\BbbC 2) such that

\scrF (A, (\alpha , \beta )) = det(P (A,\alpha , \beta )) = 0,

where P is given in (1.1). In general, there exist dn eigenvalues. Note that
A and B can be seen as a particular cases of C.
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D One can also consider structured, sparse, or lacunary versions of the problems
above. For example, the same problems where some of the entries of the
matrices are set to 0 or where the matrices are Toeplitz or stochastic or have
some other structure.

2.3. Hermitian products, norms, and Riemannian structures. The space
\BbbC b is equipped with the canonical Hermitian inner product \langle \cdot , \cdot \rangle . The associated
projective space \BbbP (\BbbC b) is a smooth manifold which carries a natural Riemannian
metric, namely, the real part of the Fubini--Study metric. This metric is the Hermitian
structure on \BbbP (\BbbC b), given in the following way: for z \in \BbbC b,

(2.2) \langle w,w\prime \rangle z :=
\langle w,w\prime \rangle 
\| z\| 2

for all w, w\prime in the Hermitian complement z\bot of z in \BbbC b. (See [11, page 190] for
example).

If we are to define condition numbers and to measure properties of random inputs,
it is customary to endowe the input space \scrI with a Hermitian inner product \langle \cdot , \cdot \rangle \scrI .
We denote by \| \cdot \| \scrI the induced norm, and we identify \scrI \equiv \BbbC m as follows: choose any
basis p1, . . . , pm orthonormal w.r.t \langle \cdot , \cdot \rangle \scrI and consider the linear isometry

(2.3)

\BbbC m \rightarrow \scrI \left(   x1

...
xm

\right)   \mapsto \rightarrow 
\sum m

i=1 xipi.

Any such isometry (i.e., any choice of orthonormal basis of \scrI ) gives a valid identifi-
cation \scrI \equiv \BbbC m.

A random choice of p \in \scrI is to be understood as a random variable for the
Gaussian density on the complex vector space \scrI given by

(2.4)
1

\pi m
e - \| p\| 2

\scrI , p \in \scrI .

In other words, under the equivalence \scrI \equiv \BbbC m, a random element p \in \scrI is ob-
tained by generating a random element x \in \BbbC m with the standard complex Gaussian
distribution \scrN \BbbC (0, Idm) on \BbbC m. Thus, generating x1, . . . , xm independently and iden-

tically distributed with density \pi  - 1e - | \zeta | 2 , \zeta \in \BbbC , a random element in \scrI is given by\sum m
i=1 xipi. A key feature of the Gaussian distribution is that it is independent of the

particular choice of the basis p1, . . . , pm.

We will use the following notation for norms.
\bullet By \| \cdot \| we mean the standard Hermitian vector norm. In particular, if A is
a matrix, we have \| A\| = \| A\| F (Frobenius norm).

\bullet By \| A\| 2 (with A a matrix or a linear operator) we denote the operator 2-norm
of A.

\bullet By \| \cdot \| z we mean the norm in the tangent space Tz\BbbP (\BbbC b); that is, the norm
induced by the Hermitian product in (2.2).
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2.4. The geometric definition of the condition number. The relative con-
dition number of numerical problems in this generic input-output setting is defined as
follows (see [11], [1], or [12, section 14.1] for a general setting, or [16] for a specification
to the PEVP). Let z0 be a solution for an input p0. Assume that z0 is a smooth point
of \scrO , and let \.z0 be any nonzero vector in Tz0\scrO . When the directional derivative

D\scrF (p0, z0)(0, \.z0)

is not equal to 0, from the implicit function theorem, there is a locally defined solution
map, denoted by Sol, which sends an input p (close to p0) to its output z (close to
z0). This map is given by the composition \pi 2 \circ \pi  - 1

1 , locally defined in a neighborhood
of p0. The condition number at (p0, z0) is then defined by the operator norm of the
derivative of the solution map, normalized by the norm of the input

(2.5) \mu (\scrF , p0, z0) = \| p0\| \scrI \| DSol(p0, z0)\| 2 = sup
\.p\in \scrI 

\| \.z\| /\| z0\| 
\| \.p\| \scrI /\| p0\| \scrI 

,

where \.z = DSol(p0, z0) \.p. (We will write \mu (p0, z0) when the mapping \scrF is clear from
the context.)

In the case that Sol is just Lipschitz, the condition number uses the local Lipschitz
constant instead of the 2-norm of the derivative, but we will not deal with this case
here. The condition number is set to \infty if D\scrF (p0, z0)(0, \.z0) = 0 for some (i.e., for all)
nonzero vector \.z0 \in Tz0\scrO , or if z0 is not a smooth point of \scrO .

This geometric definition of the condition number is inspired by its intuitive def-
inition: it is a local bound for the change in the output under perturbations on the
input, both measured in relative error terms. The classical condition number of linear
algebra \kappa (A) = \| A\| 2 \| A - 1\| 2 does not exactly follow this definition since in our gen-
eral framework we measure the relative error with respect to the norm of the input
as a vector. Indeed, our definition gives the so called Demmel's condition number,

\mu (A, x) = \| A\| F \| A - 1\| 2,

for the problem of solving Ax = b with b fixed.

2.5. Main result: General version. Our main result is a general formula
for the expected value of the condition number. Its main feature is that it is valid
for the general input-output setting described above. For p \in \scrI and z \in \scrO , let
n(p) = \#\pi 2(\pi 

 - 1
1 (p)) be the number of z's such that \scrF (p, z) = 0, and \scrV z = \pi 1(\pi 

 - 1
2 (z)),

i.e.,
n(p) = \#\{ z \in \scrO : \scrF (p, z) = 0\} , \scrV z = \{ p \in \scrI : \scrF (p, z) = 0\} ,

where we set n(p) = +\infty in case that \pi  - 1
1 (p) is an infinite set.

Theorem 2.1. With the notations above, assume that:
\bullet n(p) is finite (equivalently, \pi 2(\pi 

 - 1
1 (p)) \not = \scrO since these are algebraic sets and

\scrO is irreducible) for all p \in \scrI in the complement of some m - 2 dimensional
subvariety, and there exists p0 \in \scrI such that

(2.6) n(p0) = sd\scrO ,

where, recall, s = degz \scrF \in \BbbN .
\bullet \scrV z is an m  - 1 dimensional variety for all z \in \scrO , and there exists z0 \in \scrO 

such that the degree of \scrV z0 is equal to r= degp \scrF .
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Then, for all p \in \scrI in the complement of some zero-measure set, the equation
\scrF (p, z) = 0 has exactly sd\scrO solutions in \scrO . Moreover, the expected squared condition
number, for the standard Gaussian distribution on \scrI given by (2.4), satisfies

(2.7) Ep\in \scrI 

\left(  1

sd\scrO 

\sum 
z:\scrF (p,z)=0

\mu (p, z)2

\right)  =
(m - 1)r

s
.

Remark 2.2. Since the hypotheses of Theorem 2.1 only involve the algebraic struc-
ture of the problem, we conclude that the expected square condition number for the
standard Gaussian does not depend on the chosen Hermitian inner product on \scrI (see
Examples 3.1 and 3.2).

2.6. Proof of Theorem 2.1. It will be helpful to recall the notion of a con-
structible subset of an algebraic variety Z (see [23, page 393]): it is a set of the form

r\bigcup 
i=1

(Vi \setminus Wi),

where Vi,Wi are algebraic subvarieties of Z. In other words, a constructible set is
a finite union of quasialgebraic varieties. Chevalley's theorem [23, page 395] asserts
that the projection of a constructible set is a constructible set.

We organize the proof of Theorem 2.1 in several claims. The key step is Claim 5
which uses the smooth coarea formula (see Appendix B below). This result requires
that the projections \pi 1, \pi 2 from the solution variety \scrV are surjective submersions, and
Claims 1 to 4 are just devoted to prove that these hypotheses hold once we remove
lower dimensional algebraic subvarieties from \scrI ,\scrO , and \scrV .
Claim 1: There exists a proper subvariety \scrS \subseteq \scrI such that for p \in \scrI \setminus \scrS we have

n(p) = sd\scrO , and all the solutions z \in \scrO of \scrF (p, z) = 0 are smooth points of
\scrO and have multiplicity equal to 1. In particular, \scrS has Lebesgue measure
zero on \scrI . Similarly, there exists at most a finite collection of z \in \scrO such
that the degree of \scrV z is different from r. This is a classical fact, but we
include a short proof using tools from classical complex analytic geometry
since the same tools will be used later. The set

\^\scrI = \{ p \in \scrI : n(p) = sd\scrO \} 

is constructible (see [23, page 398]). From (2.6), \^\scrI \not = \emptyset , and furthermore,
if p \in \^\scrI , from B\'ezout's theorem [23, page 432], all the solutions z \in \scrO of
\scrF (p, z) = 0 have multiplicity equal to 1 (in particular, all z are smooth
points of \scrO ). Then, from the implicit function theorem for all \widetilde p sufficiently
close to p we also have \widetilde p \in \^\scrI . In other words, \^\scrI is a constructible open set,
thus a quasialgebraic set from [23, page 394]. In particular its complement,

\scrS = \scrI \setminus \^\scrI ,

is an algebraic subvariety of \scrI , and thus its Lebesgue measure is zero. The
first part of the claim follows. The second claim is proved in a similar way:
the set of z \in \scrO such that \scrV z has degree equal to r is open and constructible,
thus quasialgebraic in \scrO , and hence its complement is an algebraic subset
(a finite collection of points) of \scrO .
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Claim 2: For all but a finite set of z \in \scrO , the set

\scrS z = \{ p \in \scrS : \scrF (p, z) = 0\} 

is an algebraic variety of dimension at most m  - 2. Assume that there is
an infinite collection of points z such that \scrS z has dimension m  - 1. Since
the number of irreducible components of the m  - 1 dimensional variety \scrS 
is finite (recall that any algebraic variety can be written as a finite union
of irreducible varieties; see, for example, [23, page 355]), this implies that
there exists one such irreducible component Y of dimension m - 1 such that
\scrS z \supseteq Y for an infinite collection of z \in \scrO . But then for all p \in Y the
number of solutions of \scrF (p, z) = 0 is infinite, that is, a contradiction to the
hypotheses of the theorem.

Claim 3: Let \^\scrO be the smooth part of \scrO , and let \^\scrV = \{ (p, z) \in \^\scrI \times \^O : \scrF (p, z) = 0\} .
Then, \pi 1 restricted to \^\scrV is a submersion onto \^\scrI . Note that \^O is a complex
1-dimensional smooth submanifold of \scrO . From Claim 1, given (p, z) \in \^\scrV , z
is a solution to \scrF (p, z) = 0 of multiplicity 1, that is, \partial 

\partial z\scrF (p, z) \not = 0. From

the implicit function theorem \^\scrV is an m-dimensional complex manifold, its
tangent space is

T(p,z)
\^\scrV = KerD\scrF (p, z) \subseteq \scrI \times Tz\BbbP (\BbbC b) \equiv \scrI \times z\bot 

and the projection \pi 1 | \^\scrV : \^\scrV \rightarrow \^\scrI is a submersion at (p, z).

Claim 4: After removing from \^\scrV at most a (m  - 1)-dimensional subvariety, the re-
striction of \pi 2 to \^\scrV is a submersion onto the complement of a finite set of
points in \^\scrO . Note that \pi 2 : \scrV \rightarrow \scrO is surjective by the hypotheses of the
theorem. Now, from Claim 2 we have that for all but a finite number of
points z \in \^\scrO there is some p \in \scrI such that p \in \scrV z \setminus \scrS z, and hence the
image of \phi 2 := \pi 2 | \^\scrV contains \^\scrO except at most a finite number of points.
Now, from Sard's theorem the set of singular values of \phi 2 has zero-measure
w.r.t. the Riemannian measure inherited from the Fubini--Study metric on
\BbbP (\BbbC b). Furthermore, it is the projection of the constructible set consisting
of the points (p, z) \in \^V such that \partial 

\partial p\scrF (p, z) = 0. Hence, it is a zero-measure

constructible set, that is, a finite collection of points in \scrO . The (m  - 1)-
dimensional subvariety to be removed from \^\scrV is precisely the preimage of
that finite set, which is by the hypotheses of the theorem a finite union of
(m - 1)-dimensional varieties, that is, itself a (m - 1)-dimensional variety.

Claim 5: For any measurable mapping g : \scrV \rightarrow [0,\infty ),

(2.8)

\int 
p\in \scrI 

\sum 
z\in \scrO :\scrF (p,z)=0

g(p, z) dp =

\int 
z\in \scrO 

\int 
p\in \scrV z

NJ\pi 1(p, z)

NJ\pi 2(p, z)
g(p, z) dp dz,

where NJ means Normal Jacobian (see Appendix B). In particular, these
integrals are well defined. This is a consecuence of the smooth coarea formula
(Theorem B.1 below) applied to the two projections \pi 1 : \^\scrV \rightarrow \^\scrI and \pi 2 :
\^\scrV \rightarrow \^\scrO . From Claim 3, \pi 1 | \^\scrV is a surjective submersion and we have\int 

(p,z)\in \^\scrV 
NJ\pi 1(p, z) g(p, z) d(p, z) =

\int 
p\in \^\scrI 

\sum 
z\in \scrO :\scrF (p,z)=0

g(p, z) dp.
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On the other hand, from Claim 4, \pi 2 | \^\scrV is a surjective submersion after
removing some zero measure sets out of \scrV and \scrO . We then have\int 
(p,z)\in \^\scrV 

NJ\pi 1(p, z) g(p, z) d(p, z) =

\int 
z\in \^\scrO 

\int 
p\in \^\scrI :\scrF (p,z)=0

NJ\pi 1(p, z)

NJ\pi 2(p, z)
g(p, z) dp.

Putting these two equalities together we have\int 
p\in \^\scrI 

\sum 
z\in \scrO :\scrF (p,z)=0

g(p, z) dp =

\int 
z\in \^\scrO 

\int 
p\in \^\scrI :\scrF (p,z)=0

NJ\pi 1(p, z)

NJ\pi 2(p, z)
g(p, z) dp.

Finally, from Claims 1 and 2 we can substitute \^\scrI and \^\scrO by \scrI and \scrO ,
respectively, in this last equality, and the claim follows. Note that in order
to change \^\scrI to \scrI in the domain of the inner integral we need to use Claim 2.

Claim 6: The quotient of the Normal Jacobians satisfies

NJ\pi 1(p, z)

NJ\pi 2(p, z)
\mu (p, z)2 = \| p\| 2\scrI , (p, z) \in \^\scrV .

Given (p, z) \in \^\scrV , let D\pi 2(p, z)
\ast : Tz

\^\scrO \rightarrow T(p,z)
\^\scrV be the adjoint operator to

D\pi 2(p, z), and let

( \.p0, \.z0) = D\pi 2(p, z)
\ast ( \.z0) \in T(p,z)

\^\scrV ,

where \.z0 is any nonzero vector in Tz
\^\scrO , and let ( \.pj , \.zj), 1 \leq j \leq m - 1 be an

orthonormal basis of the orthogonal complement of ( \.p0, \.z0) in T(p,z)
\^\scrV (this

tangent space was described in Claim 3). Since the image of D\pi 2(p, z)
\ast is

the orthogonal complement to the kernel of D\pi 2(p, z), then we have \.zj = 0
and \.pj orthogonal to \.p0 for 1 \leq j \leq m - 1. Then, writing the linear operators
D\pi 1(p, z) and D\pi 2(p, z) on this basis we get

NJ\pi 1(p, z) = | det(D\pi 1(p, z))| 2 =
\| \.p0\| 2\scrI 

\| \.p0\| 2\scrI + \| \.z0\| 2z
.

Similarly, we have

NJ\pi 2(p, z) =
\| \.z0\| 2z

\| \.p0\| 2\scrI + \| \.z0\| 2z
.

In particular,
NJ\pi 1(p, z)

NJ\pi 2(p, z)
=

\| \.p0\| 2\scrI 
\| \.z0\| 2z

.

Now, note from the definition of the condition number that \mu (p, z) is pre-
cisely \| p\| \scrI times the operator norm of the linear operatorDSol(p, z) given by

D\pi 2(p, z) \circ D\pi  - 1
1 (p, z) : Tp

\^\scrI \rightarrow Tz
\^\scrO .

Since we have an orthogonal basis \.p0, \.p1, . . . , \.pm - 1 satisfying

D\pi 2(p, z) \circ D\pi  - 1
1 (p, z)( \.pj) = 0, 1 \leq j \leq m - 1,
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we conclude that

\mu (p, z)

\| p\| \scrI 
= \| D\pi 2(p, z) \circ D\pi  - 1

1 (p, z)\| 2

=
\| D\pi 2(p, z) \circ D\pi  - 1

1 (p, z)( \.p0)\| z
\| \.p0\| \scrI 

=
\| D\pi 2(p, z)( \.p0, \.z0)\| z

\| \.p0\| \scrI 
=

\| \.z0\| z
\| \.p0\| \scrI 

.

We have thus proved the equality in the claim.
Claim 7: The following equality holds:

Ep\in \scrI 

\left(  \sum 
z\in \scrO :\scrF (p,z)=0

\mu (p, z)2

\right)  = (m - 1) r d\scrO .

(And this readily implies the theorem). In order to prove Claim 7 we use

Claims 5 and 6 with g(p, z) = e - \| p\| 2
\scrI \mu (p, z)2/\pi m, getting

Ep\in \scrI 

\left(  \sum 
z\in \scrO :\scrF (p,z)=0

\mu (p, z)2

\right)  =
1

\pi m

\int 
z\in \scrO 

\int 
p\in \scrV z

\| p\| 2\scrI e - \| p\| 2
\scrI dp dz.

Now, for any z \in \scrO (except at most a finite number) using Lemma A.1
(recall, we have identified \scrI with \BbbC m through a linear isometry (2.3)) we
have

(2.9)

\int 
p\in \scrV z

\| p\| 2\scrI e - \| p\| 2
\scrI dp = \pi m - 1 r (m - 1),

since the set \scrV z is (for almost all z \in \scrO ) an algebraic subvariety of dimension
m  - 1 and degree r. Using that the volume of \scrO is d\scrO V ol(\BbbP (\BbbC 2)) = \pi d\scrO 
(see (2.1)) we then get the claimed formula.

3. Examples. We now analyze some of the consequences of Theorem 2.1, visit-
ing the scenarios A, B, C, and D in section 2.

3.1. Solving univariate polynomials. Let \scrH d[X,Y ] \equiv \BbbC d+1 be the space of
degree d homogeneous bivariate polynomials

p(X,Y ) =

d\sum 
j=0

ajX
jY d - j , a0, . . . , ad \in \BbbC 

with the (canonical) Hermitian product given by \| p\| 2 =
\sum d

j=0 | aj | 2.
Let

\scrI = \scrH d[X,Y ], \scrO = \BbbP (\BbbC 2), \scrF (p, z) = p(z),

where z = (X,Y ) \in \BbbC 2. Then a pair (p, z) is in the associated solution variety \scrV if
and only if z is a (projective) zero of p. Setting Y = 1 this yields the problem of
solving univariate polynomials, although we prefer to use the homogenized version
since our result applies directly: the hypotheses of Theorem 2.1 are trivially satisfied.
We then have

(3.1) Ep\in \scrH d[X,Y ]

\left(  1

d

\sum 
z\in \BbbP (\BbbC 2): p(z)=0

\mu (p, z)2

\right)  =
d

d
= 1,

independently of the degree. The condition number (2.5), in this case, has the form
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(3.2) \mu (p, (x, 1)) =
\| p\| \| (1, x, . . . , xd)\| 
| \^p\prime (x)| (1 + | x| 2)

,

where (x, 1) \in \BbbP (\BbbC 2) is a root of p and \^p(X) = p(X, 1) is this univariate polynomial. A
random polynomial is obtained by choosing coefficients aj , associated to the monomial
XjY d - j (with 0 \leq j \leq d), independent with distribution \scrN \BbbC (0, 1). Equation (3.1)
then implies that the condition number for such a random polynomial is in general
quite small.

3.2. A second view to polynomial solving. Remarkably, as we will now see,
the same result on the expected value of the squared condition number obtained in
section 3.1 holds if we endow \scrH d[X,Y ] with the Bombieri--Weyl Hermitian product
which makes monomials of different degrees orthogonal and

\| XjY d - j\| BW =

\biggl( 
d

j

\biggr)  - 1/2

, (j = 0, . . . , d)

(cf. Remark 2.2). In that classical case the condition number has a very simple

expression in terms of the non-homogeneous polynomial \^p(X) = p(X, 1) =
\sum d

j=0 ajX
j

(with X \in \BbbC ):

(3.3) \mu BW (p, (x, 1)) =
\| \^p\| BW (1 + | x| 2) d

2 - 1

| \^p\prime (x)| 
,

where \| \^p\| BW is the Bombieri--Weyl norm of the polynomial \^p, given by

\| \^p\| 2BW =

d\sum 
j=0

\biggl( 
d

j

\biggr)  - 1

| aj | 2.

See [6] for a proof of (3.3).
This Bombieri--Weyl metric is the standard choice in many papers regarding poly-

nomial system solving after Shub and Smale's work [27]; see also [11, 12].
We can describe this case in our framework taking the input set \scrI = \scrH d[X,Y ]

(again, bivariate homogeneous polynomials of degree d) but now using the Bombieri--
Weyl Hermitian structure. The general definition of the condition number given (2.5)
then gives precisely the formula in (3.3). Our Theorem 2.1 then implies

(3.4) Ep\in \scrH d[X,Y ]

\left(  1

d

\sum 
z\in \BbbP (\BbbC 2): p(z)=0

\mu BW (p, z)2

\right)  =
d

d
= 1,

where under the identification \scrH d[X,Y ] = \BbbC d+1, p(X,Y ) =
\sum d

j=0 ajX
jY d - j is drawn

from a0, . . . , ad independent with distribution \scrN \BbbC 
\bigl( 
0,
\bigl( 
d
j

\bigr) \bigr) 
, respectively.

Our claim in (3.4) agrees with the value computed in [8, Theorem 23], where\surd 
d\mu BW is denoted by \mu norm, although the proof is different.

3.3. Lacunary polynomial solving. Now, let i = \{ 0, i1, i2, . . . , ik, d\} \subseteq 
\{ 0, . . . , d\} (we identify the case k = 0 with i = \{ 0, d\} ) be a ordered set of indices
and let

\scrH i
d[X,Y ] = \{ a0Y d+ai1X

i1Y d - i1+\cdot \cdot \cdot +aikX
ikY d - ik+adX

d : a0, ai1 , . . . , aik , ad \in \BbbC \} 
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be the space of polynomials containing only monomials of those degrees. Let

\scrI = \scrH i
d[X,Y ], \scrO = \BbbP (\BbbC 2), \scrF (p, z) = p(z).

The hypotheses of Theorem 2.1 are again satisfied (note that the polynomial Xd - Y d

has exactly d projective zeros).
As a subspace of \scrH d[X,Y ], the input space \scrH i

d[X,Y ] can be endowed with any of
the induced Hermitian products given in the examples above. Then, from Theorem
2.1 we have

(3.5) Ep\in \scrH i
d[X,Y ]

\left(  1

d

\sum 
z\in \BbbP (\BbbC 2): p(z)=0

\mu (p, z)2

\right)  =
k + 1

d
.

This equality describes quantitatively how solving lacunary systems exhibits better
stability properties than solving dense polynomials, which we could have qualitatively
guessed since the perturbations on the input are more restricted. Note that \mu in (3.5)
is the condition number adapted to the structure of the input and thus does not obey
(3.2) or (3.3).

3.4. Generalized eigenvalue problem. As pointed out above, with

\scrI = \BbbC n\times n \times \BbbC n\times n, \scrO = \BbbP (\BbbC 2), \scrF ((A,B), (\alpha , \beta )) = det(\beta A - \alpha B),

we get the GEVP. Let us now apply our Theorem 2.1 for the canonical Hermitian
inner product on \scrI which gives the standard Frobenius norm. Note that the degrees
of \scrF in its two entries are r = s = n. We check the following.

\bullet The set of eigenvalues is different from the total set \BbbP (\BbbC 2) as long as A and
B are not simultaneously singular, that is, in the complement of a 2n2  - 
2 dimensional subvariety, and there exists (A,B) such that the number of
eigenvalues is equal to n.

\bullet For all (\alpha , \beta ) \in \BbbP (\BbbC 2), the set \scrV (\alpha ,\beta ) of (A,B) such that det(\beta A - \alpha B) = 0 is
a 2n2  - 1 dimensional variety. Moreover, \scrV (1,0) is the set of (A,B) such that
det(B) = 0 which has degree n.

Thus, the hypotheses of Theorem 2.1 are satisfied. We then have

E(A,B)\in \BbbC n\times n\times \BbbC n\times n

\left(  1

n

\sum 
(\alpha ,\beta )\in Eig(A,B)

\mu ((A,B), (\alpha , \beta ))2

\right)  =
(2n2  - 1)n

n
= 2n2  - 1.

The expected value of the squared condition number for the GEVP is thus essentially
equal to the size of the input.

3.5. Polynomial eigenvalue problem. This case is just

\scrI = (\BbbC n\times n)d+1, \scrO = \BbbP (\BbbC 2), \scrF (A, (\alpha , \beta )) = det

\left(  d\sum 
j=0

\alpha j\beta d - jAj

\right)  ,

where A = (A0, . . . , Ad) \in \scrI , and we endow \scrI with the canonical Hermitian inner
product. Again the hypotheses of Theorem 2.1 are easily checked with the same tools
as in Section 3.4, and we conclude

EA\in (\BbbC n\times n)d+1

\left(  1

dn

\sum 
(\alpha ,\beta )\in Eig(A)

\mu (A, (\alpha , \beta ))2

\right)  =
((d+ 1)n2  - 1)n

dn
=

(d+ 1)n2  - 1

d
,

which proves our Theorem 1.1.
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3.6. Sparse polynomial eigenvalue problem. The same preceding argument
can be applied to sparse versions of the PEVP case. Instead of writing down a generic
result, we show how to use it in a particular case: assume for example that we deal
with the quadratic eigenvalue problem

\scrF ((A,B,C), (\alpha , \beta )) = det(\alpha 2A+ \alpha \beta B + \beta 2C) = 0,

where we impose on the input matrices some structure. For example, assume that A
is diagonal and C is upper triangular.

We check the hypotheses of Theorem 2.1.
\bullet The set of eigenvalues is different from the total set as long as A and C are not
simultaneously singular, thus in the complement of a codimension 2 variety,
and for input A = Idn (the identity matrix), B = 0 and generic C the number
of solutions is equal to 2n.

\bullet \scrV (\alpha ,\beta ) is a codimension 1 variety for all (\alpha , \beta ) \in \scrO and \scrV (1,0) is the set of
(A,B,C) such that det(A) = 0, that is, a degree n variety.

With the Hermitian structure given by Frobenius product, Theorem 2.1 can thus be
applied, and we conclude that in this sparse case there are in general 2n eigenvalues
and the expected condition number squared equals

EA,B,C

\left(  1

2n

\sum 
(\alpha ,\beta )\in Eig(A,B,C)

\mu ((A,B,C), (\alpha , \beta ))2

\right)  =

(n+ n2 + n(n+1)
2  - 1)n

2n
=

3n2 + 3n - 2

4
,

where the nonzero entries of A, B, and C follow again an independent distribution
\scrN \BbbC (0, 1). Note that, as in the case of lacunary polynomials, the condition number \mu 
in this section is the structured condition number and thus does not satisfy (1.2).

3.7. More elaborate eigenvalue problems. We finally include one example
of use in the case that \scrO \not = \BbbP (\BbbC 2). Assume that our problem is the following: on
input A,B,C (three complex n\times n matrices), find (\alpha , \beta , \gamma ) \in \BbbP (\BbbC 3) such that

\alpha \beta + \alpha \gamma + \beta \gamma = 0, det(\alpha A+ \beta B + \gamma C) = 0.

This is, in some sense, a system of two homogeneous equations and three variables,
thus one would expect the solution set to be a finite collection of points (\alpha , \beta , \gamma ) \in 
\BbbP (\BbbC 3). We can treat this problem inside our framework as follows. Let

\scrO = \{ (\alpha , \beta , \gamma ) \in \BbbP (\BbbC 3) : \alpha \beta + \alpha \gamma + \beta \gamma = 0\} ,

which is a degree 2 irreducible algebraic subvariety of \BbbP (\BbbC 3). Consider the input
space (\BbbC n\times n)3 endowed with the Frobenius Hermitian product. We check that the
hypotheses of Theorem 2.1 hold.

\bullet If A is nonsingular, then (1, 0, 0) \in \scrO is not a solution of

\scrF ((A,B,C), (\alpha , \beta , \gamma )) = det(\alpha A+ \beta B + \gamma C) = 0.

Similarly, if C is nonsingular then (0, 0, 1) is not a solution. We conclude that
in the complement of a codimension 2 subvariety the number of solutions is



190 DIEGO ARMENTANO AND CARLOS BELTR\'AN

finite. Moreover, for (A,B,C) = (Idn, B, - B) where B is diagonal with
entries 1, 2, . . . , n the solutions are those points of the form

( - m, \gamma + 1, \gamma ) \in \scrO , 1 \leq m \leq n, \gamma \in \BbbC .

For these points to be in \scrO we need

 - m(2\gamma + 1) + (\gamma + 1)\gamma = 0;

that is, for each m there are exactly 2 values of \gamma that satisfy ( - m, \gamma +1, \gamma ) \in 
\scrO . We thus have found an input with exactly 2n solutions.

\bullet \scrV (\alpha ,\beta ,\gamma ) is a codimension 1 variety for all (\alpha , \beta , \gamma ) \in \scrO and \scrV (1,0,0) is the set
of (A,B,C) such that det(A) = 0, that is, a degree n variety.

We can thus apply Theorem 2.1, and we conclude that there are exactly 2n solutions
for generic A,B,C and that the expected condition number squared for the problem
in this section equals

EA,B,C

\left(  1

2n

\sum 
(\alpha ,\beta ,\gamma )\in \scrO :\scrF ((A,B,C),(\alpha ,\beta ,\gamma ))=0

\mu ((A,B,C), (\alpha , \beta , \gamma ))2

\right)  =

(3n2  - 1)n

n
= 3n2  - 1,

where A,B,C have random independent entries with distribution \scrN \BbbC (0, 1).
Note that the choice of the variety \alpha \beta + \alpha \gamma + \beta \gamma in this example is not crucial:

for a generic homogeneous equation defined in \BbbP (\BbbC 3), the solution set is an irreducible
algebraic variety and in many cases one can very easily check that the hypotheses of
our theorem still hold.

Appendix A. A useful integral. In this section we prove the following lemma.

Lemma A.1. Let \scrJ \subseteq \BbbC a be a homogeneous complex algebraic variety of degree
d and dimension n. Then, \int 

p\in \scrJ 
\| p\| 2e - \| p\| 2

dp = \pi n nd.

Proof. Let \Pi : \scrJ \rightarrow \BbbP (\scrJ ) be the restriction to \scrJ of the quotient map \BbbC a \rightarrow 
\BbbP (\BbbC a). Its Normal Jacobian is equal to

NJ(\Pi )(p) =
1

\| p\| 2n - 2
.

(In order to compute this Normal Jacobian just consider any orthonormal basis of
Tp\scrJ whose last vector is \.p = p and use the definition of the Normal Jacobian given
in Appendix B). The coarea formula (Theorem B.1 below) applied to \pi then yields\int 

p\in \scrJ 
\| p\| 2e - \| p\| 2

dp =

\int 
q\in \BbbP (\scrJ )

\int 
p\in \scrJ :\pi (p)=q

\| p\| 2n - 2+2e - \| p\| 2

dp dq =

V ol(\BbbP (\scrJ ))

\int 
w\in \BbbC 

| w| 2ne - | w| 2 dw.
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Since \BbbP (\scrJ ) has degree d and dimension n - 1, from (2.1) its volume in the projective
space satisfies

V ol(\BbbP (\scrJ )) = V ol(\BbbP (\BbbC n)) d =
\pi n - 1

\Gamma (n)
d.

On the other hand, using polar coordinates we have\int 
w\in \BbbC 

| w| 2ne - | w| 2 dw = 2\pi 

\int \infty 

0

t2n+1e - t2 dt = \pi 

\int \infty 

0

sne - s ds = \pi \Gamma (n+ 1).

The lemma follows.

Appendix B. The coarea formula. For completeness of this manuscript
we include here the smooth coarea formula, a version for Riemannian manifolds of a
well known generalization of the change of variables theorem and Fubini's theorem
discovered by Federer. Here we follow [11, page 241] or [12, Theorem 17.8]. First we
define the Normal Jacobian of a smooth mapping \varphi : M \rightarrow N where M and N are
smooth manifolds of dimensions m \geq n: for x \in M , let v1, . . . , vn, vn+1, . . . , vm be an
orthonormal basis of the tangent space TxM , with D\varphi (x)vn+1 = \cdot \cdot \cdot = D\varphi (x)vm = 0.
Then, NJ\varphi (x) is the volume of the parallelepiped spanned by D\varphi (x)v1, . . . , D\varphi (x)vn
in T\varphi (x)N . In other words, NJ\varphi (x) is the absolute value of the determinant of the
derivative D\varphi (x) restricted to the orthogonal complement of its kernel. If D\varphi is not
surjective, the Normal Jacobian is set to 0.

Theorem B.1 (the smooth coarea formula). Let M,N be Riemannian manifolds
of respective dimensions m \geq n, and let \varphi : M \rightarrow N be a smooth surjective surjection
(i.e., \varphi is surjective and the derivative D\varphi is surjective at every point of M). Then,
for any positive measurable function \phi : M \rightarrow [0,\infty ) we have\int 

x\in M

\phi (x) dx =

\int 
y\in N

\int 
x\in \varphi  - 1(y)

\phi (x)

NJ\varphi (x)
dx dy

and \int 
x\in M

NJ\varphi (x)\phi (x) dx =

\int 
y\in N

\int 
x\in \varphi  - 1(y)

\phi (x) dx dy

(in particular, the left-hand side is finite if and only if so is the right hand side in
both equalities).

Note that in Theorem B.1 the inner integrals are to be understood as integrals in the
submanifolds \varphi  - 1(y) with the metric inherited from M . These sets are submanifolds
for a.e. y \in N by Sard's theorem.
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