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Abstract: We consider a spectral problem for the Laplacian operator in a planar T-like
shaped thin structure Ωε, where ε denotes the transversal thickness of both branches. We
assume the homogeneous Dirichlet boundary condition on the ends of the branches and
the homogeneous Neumann boundary condition on the remaining part of the boundary of
Ωε. We study the asymptotic behavior, as ε tends to zero, of the high frequencies of such
a problem. Unlike the asymptotic behavior of the low frequencies where the limit problem
involves only longitudinal vibrations along each branch of the T-like shaped thin structure
(i.e. 1D limit spectral problems), we obtain a two dimensional limit spectral problem
which allows us to capture other kinds of vibrations. We also give a characterization of
the asymptotic form of the eigenfunctions originating these vibrations.

Résumé: On considère le problème spectral pour le Laplacien, dans une structure mince
bidimensionnelle Ωε en forme de T, où ε désigne l’épaisseur des deux branches du T.
Les conditions aux limites sont du type Neumann homogène sur tout le bord sauf aux
extrémités des branches où une condition de Dirichlet homogène est imposée. On étudie
le comportement asymptotique des hautes fréquences lorsque ε tend vers zéro. Contraire-
ment au comportement asymptotique des basses fréquences, pour lesquelles le problème
limite ne fait apparâıtre que des vibrations longitudinales le long de chaque branche de
la structure (c’est-à-dire, des problèmes spectraux limites 1D ), on obtient à la limite un
problème spectral bidimensionnel, qui nous permet de capter d’autres types de vibrations.
On donne également une caractérisation de la forme asymptotique des fonctions propres
qui sont à l’origine de ces vibrations.
Keywords: Laplace operator; spectral problem; high frequencies; thin structures; junc-
tions.
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1 Introduction

In this paper we study the asymptotic behavior of a spectral problem for the Laplacian
operator in a planar T-like shaped thin structure Ωε (see Figure 1), as the thickness ε of
both branches tends to zero. More precisely, let

Ωε = (ω × ]−ε, 0[)
⋃

(εω × [0, d[)

and
Γε = (∂ω × ]−ε, 0[)

⋃
(εω × {d})

a part of its boundary, where d ∈]0,+∞[ and ω ⊂ R is an open bounded interval such
that 0 ∈ ω.

Figure 1: The T-like shaped structure Ωε, when ω =]− 1, 1[

In Ωε, we consider the following eigenvalue problem

−4Uε = λεUε, in Ωε,

Uε = 0, on Γε,

∂Uε
∂ν

= 0, on ∂Ωε \ Γε,

(1.1)

where ν denotes the unit outer normal on ∂Ωε. For each ε, let

0 < λε,1 ≤ λε,2 ≤ · · · ≤ λε,k ≤ · · ·
k→+∞−−−−−→ +∞,

be the sequence of all the eigenvalues of (1.1), with the classical convention of repeated
eigenvalues. The mini-max principle provides (see Section 2)

∃λ∗1 > 0 : λ∗1 ≤ λε,k ≤
k2π2

d2
, ∀k ∈ N, ∀ε. (1.2)
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This estimate asserts that the so-called low frequencies (i.e. the sequences {λε,k}ε, for
any fixed k) are of order O(1). Precisely, in [17] (see also [18]), as ε tends to zero, the
authors obtain a limit spectral problem (see (2.11)) composed by two 1D differential
equations whose solutions are coupled by a junction condition (see Theorem 2.1). This
limit problem is posed on the skeleton of the T -like structure, namely for (x1, x2) ∈
(ω × {0})

⋃
({0}×]0, d[), while a Dirichlet condition is imposed on the extremes ∂ω and

at x2 = d.
Nevertheless, as it happens in many singularly perturbed problems (see, for instance,

[20], [21], [22], [31], [32], and [42]), there are sequences of eigenvalues {λε = λε,k(ε)}ε of
order O(ε−γ) with k(ε) → ∞ and for some γ > 0, the so-called high frequencies, whose
corresponding eigenfunctions Uε = Uε,k(ε), suitably normalized, do not vanish asymptot-
ically. The goal of this paper is to localize those sequences of eigenvalues giving rise to
other kinds of vibrations, such as the transverse vibrations of the T -like shaped structure,
and provide information on the structure of the corresponding eigenfunctions. It should
be emphasized that this is closely linked with the normalization for the eigenfunctions of
(1.1) that we choose (see (3.3)).

At first (see Section 2), problem (1.1) is reformulated on the fixed domain Ωa
⋃

Ωb,
Ωa = ω×]0, d[, Ωb = ω×]−1, 0[, through suitable rescalings (see (2.4)), and the asymptotic
behavior of the low frequencies, as ε tends to zero, is recalled. Then (see Section 3), we
prove that εγλε, for γ > 0 and λε eigenvalue of (1.1), accumulate along all the positive
real axis (see Proposition 3.2 and Remark 3.3). However, only for the eigenvalues λε of
(1.1) such that ε2λε are asymptotically near an eigenvalue of one of the following 1D
Neumann spectral problems 

−(za)′′ = λaza, in ω,

(za)′ = 0, on ∂ω,
(1.3)

or 
−(zb)′′ = λbzb, in ]− 1, 0[,

(zb)′(−1) = 0 = (zb)′(0),
(1.4)

the associated eigenfunctions, normalized by ‖Uε‖2
L2(Ωε) = ε, can be asymptotically nonzero

(see Proposition 3.4, Corollary 3.5, Proposition 3.6, Proposition 4.1, and Proposition 4.2).
Moreover, in Section 5, for any fixed eigenvalue λ of (1.3) or (1.4), we prove that

∀ε, ∃λε eigenvalue of (1.1) : |ε2λε − λ| ≤ cε
3
2 , (1.5)

where c is a constant independent of ε. However, obtaining (1.5) involves the introduction
of a correcting term ε2µ, where the parameter µ is identified (see Proposition 4.5) with the
eigenvalues of another two 1D Dirichlet spectral problems in the skeleton of the structure,
namely, of problems 

−α′′ = µα, in ]0, d[,

α(0) = α(d) = 0,
(1.6)
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and 
−β′′ = µβ, in ω \ {0},

β = 0, on ∂ω ∪ {0},
(1.7)

Furthermore, roughly speaking, any fixed function of the type

za(x1)α(x2) in Ωa and β(x1)zb(x2) in Ωb, (1.8)

where za and zb are eigenfunctions of (1.3) and (1.4), and α and β are eigenfunctions of
the problems (1.6) and (1.7), is limit of “groups” eigenfunctions associated with all the
eigenvalues λε belonging to small intervals centered at λ (see (1.5), Theorems 5.2, 5.3,
and 5.4 for the precise statements). Section 4 is devoted to “guessing” the decomposition
structure of functions in (1.8), while a complete characterization of the eigenfunctions
associated with eigenvalues λε of (1.1) of order O(ε−2) is given in Theorem 5.6.

We explicitly notice that the low frequencies are related only with longitudinal vibra-
tions along each branch of the T-like shaped thin structure (see Theorem 2.1 and Figure 2
(a)), while our results capture also vibrations depending on both variables, which are re-
ferred to as transverse vibrations along each branch, and are produced by high frequencies
(see Theorems 5.2-5.4, Remark 5.5 and Figure 2 (b)). In fact, we get results for eigenvalues
and eigenfunctions of (1.1) which are of interest in terms of the associated evolution prob-
lems since, from (1.8), we can construct standing waves which approach time-dependent
solutions for long times, and these times can be precisely computed in terms of bounds
for discrepancies such as that in (1.5) (see [41] and [34] for an abstract framework as well
as for applications to very different vibrating systems).

(a) (b)

Figure 2: Examples of approximation of eigenfunctions giving rise to longitudinal and
transverse vibrations for ω =] − 1, 1[ and d = 1. Figure (a) is obtained by choosing
the eigenvalue µ = 16π2 in (2.11). Figure (b) is obtained using formula (5.19) with
λa = λb = 4π2, µa = µb = 64π2, and ε = 0.1.

It should be emphasized that it seems to be a common fact to many mechanical systems
arising in thin structures that the low frequencies give rise to longitudinal vibrations while
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for other kinds of vibrations such as torsional or stretching vibrations one must look
among those associated to the high frequencies: see, for instance, [8], [23], [24], [35] and
references therein. Also, we emphasize that, to our knowledge, this is the first work in
the literature addressing the asymptotics of the high frequencies for a thin T-like shaped
structure. About the study of spectral problems for the Laplace operator in (bounded
or unbounded) thin trips and tubes we refer to [1], [2], [3], [5], [10], [11], [29], and [39].
Some of these references also address the phenomena of the localization of certain kinds
of vibrations concentrating asymptotically its support in regions where the geometry of
the problem has some kind of perturbation. Related to the localization of eigenfunctions
giving rise to vibrations concentrated at points or along certain regions of the structure
we mention [22], [25], [33], [36], [40], [42]. About the study of junctions as considered in
this paper but in other contexts, we refer to [4], [9], [12], [14], [15], [16], [19], [26], [27],
[28], [30] and [37].

Finally, we summarize the structure of the paper as follows. Section 2 contains the
statement of the problem, classical techniques from T -like shaped structures and some
preliminary results on the low frequencies. Section 3 contains some results for the high
frequencies which among other things provide a limit spectral problem and a critical
parameter for which the associated eigenfunctions are asymptotically different from zero
in the weak topology of L2(Ωa

⋃
Ωb). Section 4 contains an analysis of the limit spectral

problem and a corrector term which is essential to detect the asympotic form of the above
mentioned eigenfunctions. Finally, Section 5 contains the main results of the paper.

2 Statement of the problem and some results on low

frequencies

In what follows, both y = (y1, y2) and x = (x1, x2) denote a generic element of R2, |ω|
denotes the length of interval ω, and ε ∈]0,min{1, d}[.

The weak formulation of (1.1) is
Uε ∈ Vε, Uε 6≡ 0,∫

Ωε

DUεDV dy = λε

∫
Ωε

UεV dy, ∀V ∈ Vε,
(2.1)

where D stands for the gradient and

Vε = {V ∈ H1(Ωε) : V = 0 on Γε}. (2.2)

Let us set 
Ωa = ω × ]0, d[ , Ωb = ω × ]−1, 0[ ,

Γa = ω × {d}, Γb = ∂ω × ]−1, 0[ .
(2.3)

As it is usual (see [7]), problem (2.1) is reformulated on the fixed domain Ωa
⋃

Ωb through
the maps 

x = (x1, x2) ∈ Ωa −→ (εx1, x2) ∈ Ωa
ε = εω×]0, d[,

x = (x1, x2) ∈ Ωb −→ (x1, εx2) ∈ Ωb
ε = ω × ]−ε, 0[ .

(2.4)
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Precisely, if (λε, Uε) satisfies (2.1) then (λε, uε), with uε = (uaε , u
b
ε) defined by

uaε(x1, x2) = Uε(εx1, x2) in Ωa, ubε(x1, x2) = Uε(x1, εx2) in Ωb, (2.5)

satisfies

uε = (uaε , u
b
ε) ∈ Vε, uε 6≡ 0,∫

Ωa

(
∂x1u

a
ε∂x1v

a + ε2∂x2u
a
ε∂x2v

a
)
dx+

∫
Ωb

(
ε2∂x1u

b
ε∂x1v

b + ∂x2u
b
ε∂x2v

b
)
dx

= ε2λε

(∫
Ωa

uaεv
adx+

∫
Ωb

ubεv
bdx

)
, ∀(va, vb) ∈ Vε,

(2.6)

where

Vε =
{

v = (va, vb) ∈ H1(Ωa)×H1(Ωb) : va(x1, 0) = vb(εx1, 0) on ω,

va = 0 on Γa, vb = 0 on Γb
}
.

(2.7)

Conversely, if (λε, uε) satisfies (2.6) then (λε, Uε), with Uε defined by

Uε(y1, y2) = uaε

(y1

ε
, y2

)
in Ωa

ε , Uε(y1, y2) = ubε

(
y1,

y2

ε

)
in Ωb

ε,

satisfies (2.1).
The mini-max principle allows us to obtain estimate (1.2) with λ∗1 denoting the first

eigenvalue of the following problem

w = (wa, wb) ∈ V ∗,∫
Ωa

DwaDvadx+

∫
Ωb

DwbDvbdx

= λ∗
(∫

Ωa

wavadx+

∫
Ωb

wbvbdx

)
, ∀(va, vb) ∈ V ∗,

(2.8)

where

V ∗ = {v = (va, vb) ∈ H1(Ωa)×H1(Ωb) : va = 0 on Γa, vb = 0 on Γb}.

As far as the proof of the upper bound is concerned, we refer to [17]. To prove the lower
bound, we use the characterization of the first eigenvalue of (2.1) and of (2.8). Indeed,

λε,1 = min
V ∈Vε\{0}

∫
Ωε
|DV |2dy∫

Ωε
|V |2dy

≥ min
(va,vb)∈V ∗\{0}

∫
Ωa |Dva|2dx+

∫
Ωb |Dvb|2dx∫

Ωa |va|2dx+
∫

Ωb |vb|2dx
= λ∗1.

Estimates (1.2) allow us to assert that the so-called low frequencies are of order O(1).
Namely, we recall the following result proved in [17].
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Theorem 2.1. For each ε ∈]0,min{1, d}[, let {λε,k}k∈N be the sequence of all the eigen-
values of (2.1). Let

0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · ·
k→+∞−−−−−→ +∞,

be the sequence of all the eigenvalues (with the classical convention of repeated eigenvalues)
of 

(ua, ub) ∈ V ,

|ω|
∫ d

0

(ua)′(va)′dy2 +

∫
ω

(ub)′(vb)′dy1

= µ

(
|ω|
∫ d

0

uavady2 +

∫
ω

ubvbdy1

)
, ∀(va, vb) ∈ V ,

(2.9)

where

V =
{
v = (va, vb) ∈ H1(]0, d[)×H1(ω) : va(d) = 0, vb = 0 on ∂ω,

va(0) = vb(0)
}
.

(2.10)

Then,
lim
ε→0

λε,k = µk, ∀k ∈ N.

Let {ε} ⊂]0,min{1, d}[ be a sequence tending to zero and, for each ε in such a sequence, let
{(λε,k, Uε,k)}k∈N be a sequence of eigenelements of (2.1) with {Uε,k}k∈N an orthonormal
basis in L2(Ωε). Then, there exists a subsequence of {ε}, still denoted by {ε}, and a
sequence {(uak, ubk)}k∈N ⊂ V such that

lim
ε→0

∫
εω×]0,d[

(∣∣∣Uε,k − ε− 1
2uak

∣∣∣2 +
∣∣∣∂y1Uε,k∣∣∣2 +

∣∣∣∂y2Uε,k − ε− 1
2 (uak)

′
∣∣∣2)dy=0, ∀k∈N,

lim
ε→0

∫
ω×]−ε,0[

(∣∣∣Uε,k − ε− 1
2ubk

∣∣∣2 +
∣∣∣∂y1Uε,k − ε− 1

2 (ubk)
′
∣∣∣2 +

∣∣∣∂y2Uε,k∣∣∣2)dy=0, ∀k∈N,

and uk = (uak, u
b
k) is an eigenfunction of problem (2.9) with eigenvalue µk. Furthermore,

{uk}k∈N is an orthonormal basis in L2(]0, d[)× L2(ω) with the inner product

(u, v) = |ω|
∫ d

0

uava dy2 +

∫
ω

ubvb dy1, ∀u, v ∈ V .
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Remark that (2.9) is the weak formulation of

−(ua)′′ = µua, in ]0, d[,

−(ub)′′ = µub, in ω \ {0},

ua(d) = 0,

ub = 0, on ∂ω,

ua(0) = ub(0),

|ω|(ua)′(0) =
(
(ub)′(0−)− (ub)′(0+)

)
,

(2.11)

where u′ and u′′ denote the first and the second derivative of u, respectively.

3 A critical order for high frequencies

In this section we study the asymptotic behavior of the eigenvalues λε of (2.1) of order of
magnitude O(ε−γ) for γ > 0 and the asymptotic behavior of the corresponding eigenfunc-
tions (the case γ = 0 is recalled in Theorem 2.1). We prove that εγλε accumulate along all
the positive real axis for any γ > 0 (see Proposition 3.2 and Remark 3.3). Moreover, we
prove that there exists a different behavior of the corresponding eigenfunctions depending
on whether ε2λε are asymptotically near an eigenvalue of (3.7) or not (see Proposition 3.4,
Corollary 3.5, and Proposition 3.6). As a matter of fact, on the basis of the normalization
(3.4) and the convergence (3.13), only when γ = 2 and λ is an eigenvalue of the limit
problem (3.7) the associated eigenfunctions can converge towards some function different
from zero.

At first, we recall the following result proved in [6].

Theorem 3.1. Let {Tε}ε∈[0,1] be a family of selfadjoint and compact operators on a Hilbert
space H. For each ε ∈ [0, 1], let {µε,k}k∈N be the sequence of all the eigenvalues of Tε with
the classical convention of repeated eigenvalues. Assume that the family {Tε}ε∈[0,1] satisfies
the following property:

∀k ∈ N, the function ε ∈ [0, 1]→ µε,k is continuous. (3.1)

Then, for each γ ∈]0,+∞[ and λ ∈]0,+∞[ there exists a vanishing sequence {εj}j∈N ⊂
[0, 1] and a diverging sequence of integer positive numbers {k(εj)}j∈N such that

εγj
(
µεj ,k(εj)

)−1
= λ.

Proposition 3.2. For each ε ∈]0,min{1, d}[, let {λε,k}k∈N be the sequence of all the
eigenvalues of (2.1). Then, for each γ ∈]0,+∞[ and λ ∈]0,+∞[, there exists a vanishing
sequence {εj}j∈N and a diverging sequence of positive integer numbers {k(εj)}j∈N such
that

εγjλεj ,k(εj) = λ.
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Proof. Let {Tε}ε∈[0,1] be the family of operators defined by

T0 : w = (wa, wb) ∈ V −→ T0(w) ∈ V

where 

T0(w) = (T0(w)a, T0(w)b) ∈ V ,

|ω|
∫ d

0

∂y2T0(w)a∂y2v
ady2 +

∫
ω

∂y1T0(w)b∂y1v
bdy1

= |ω|
∫ d

0

wavady2 +

∫
ω

wbvbdy1, ∀(va, vb) ∈ V ,

with V defined in (2.10), if ε = 0;

Tε : W ∈ Vε −→ Tε(W ) ∈ Vε

where 
Tε(W ) ∈ Vε,∫

Ωε

DTε(W )DV dy =

∫
Ωε

WV dy, ∀V ∈ Vε,

with Vε defined in (2.2), if ε > 0.
It is clear that Tε is a linear, self-adjoint, positive, and compact operator. Moreover,

the eigenvalues of T0 are {1/µk}k∈N where {µk}k∈N are the eigenvalues of (2.9), while
for ε > 0 the eigenvalues of Tε are {1/λε,k}k∈N where {λε,k}k∈N are the eigenvalues of
(2.1). Consequently, due to Theorem 2.1, {Tε}ε also satisfies (3.1). Then, the statement
in Proposition 3.2 follows from Theorem 3.1.

Remark 3.3. Note that this result holds true for a particular sequence. Nevertheless, it
is worth mentioning that for any vanishing sequence {ε} ⊂]0,min{1, d}[, the existence of
a diverging sequence of integer positive numbers {k(ε)} such that

lim
ε→0

(εγλε,k(ε)) = λ,

can be obtained by means of the convergence of the corresponding spectral families. For
the sake of brevity, the proof of this result is not included (see [21], [31], and [32] for the
technique).

In order to localize certain sequences of eigenvalues λε = λε,k(ε) of (2.1) whose cor-
responding eigenfunctions do not vanish asymptotically, we first search among those of
order O(ε−2), namely we look for λε eigenvalues of (2.1) such that

lim
ε→0

(
ε2λε

)
= λ ∈]0,+∞[. (3.2)

Moreover, we assume that the corresponding eigenfunctions are normalized by

‖Uε‖2
L2(Ωε) = ε. (3.3)

9



Thus, rescaling (2.4) leads us to (λε, uε), eigenelement of (2.6) with λε satisfying (3.2)
and uε = (uaε , u

b
ε) such that ∫

Ωa

|uaε |2dx+

∫
Ωb

|ubε|2dx = 1. (3.4)

Proposition 3.4 describes the asymptotic behavior, as ε → 0, of (λε, uε) under the above
assumptions, whereas Proposition 3.6 states the behavior of (λε, uε) when λε = O(ε−γ)
for γ ∈]0,+∞[\{2}, and (3.4) holds true.

Let V a and V b be the spaces defined by

V a =
{
v ∈ L2(Ωa) : ∂x1v ∈ L2(Ωa)

}
and

V b =
{
v ∈ L2(Ωb) : ∂x2v ∈ L2(Ωb)

}
.

(3.5)

Proposition 3.4. Let (λε, uε) be a solution to (2.6) with λε satisfying (3.2) and uε =
(uaε , u

b
ε) satisfying (3.4). Let V a and V b be defined in (3.5). Then, there exists a subse-

quence of {ε}, still denoted by {ε}, and (ua, ub) ∈ V a×V b (in possible dependence on the
subsequence) such that

uaε ⇀ ua, ∂x1u
a
ε ⇀ ∂x1u

a, ε∂x2u
a
ε ⇀ 0 weakly in L2(Ωa),

ubε ⇀ ub, ε∂x1u
b
ε ⇀ 0, ∂x2u

b
ε ⇀ ∂x2u

b weakly in L2(Ωb),
(3.6)

as ε tends to zero. Moreover, (ua, ub) satisfies

(ua, ub) ∈ V a × V b,∫
Ωa

∂x1u
a∂x1v

adx+

∫
Ωb

∂x2u
b∂x2v

bdx

= λ

(∫
Ωa

uavadx+

∫
Ωb

ubvbdx

)
, ∀(va, vb) ∈ V a × V b,

(3.7)

with λ given in (3.2).

Proof. Choosing (va, vb) = (uaε , u
b
ε) as test function in the equation in (2.6) and taking

into account (3.4) give∫
Ωa

(
|∂x1uaε |

2 + |ε∂x2uaε |
2) dx+

∫
Ωb

(∣∣ε∂x1ubε∣∣2 +
∣∣∂x2ubε∣∣2) dx = ε2λε. (3.8)

Then, (3.4), (3.8), and (3.2) provide the existence of a subsequence of {ε}, still denoted
by {ε}, and of (ua, ub) ∈ V a × V b (in possible dependence on the subsequence) satisfying
(3.6) (cf. e.g. the argument in (3.15)).

To prove that (ua, ub) is a solution to problem (3.7), we introduce the spaces

Ṽ a =
{
va ∈ C∞(Ωa) : va = 0 on Γa

}
and
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Ṽ b =
{
vb ∈ C∞(Ωb) : vb = 0 on Γb

}
.

Let (va, vb) ∈ Ṽ a × Ṽ b be fixed. For each ε, we define

vε =



va, in ω × ]ηε, d[ ,

va(x1, ηε)
x2

ηε
+ vb(εx1, 0)

ηε − x2

ηε
, in ω × ]0, ηε[ ,

vb, in Ωb,

(3.9)

where {ηε}ε is a sequence in ]0, 1[ such that

lim
ε→0

ε
√
ηε

= 0. (3.10)

Choosing (va, vb) = (vε|Ωa , vε|Ωb) as test function in (2.6) gives∫
ω

∫ d

ηε

(
∂x1u

a
ε∂x1v

a + ε2∂x2u
a
ε∂x2v

a
)
dx

+

∫
ω

∫ ηε

0

∂x1u
a
ε

(
∂x1v

a(x1, ηε)
x2

ηε
+ ε(∂x1v

b)(εx1, 0)
ηε − x2

ηε

)
dx

+

∫
ω

∫ ηε

0

ε2∂x2u
a
ε

(
va(x1, ηε)− vb(εx1, 0)

ηε

)
dx

+

∫
Ωb

(
ε2∂x1u

b
ε∂x1v

b + ∂x2u
b
ε∂x2v

b
)
dx = ε2λε

∫
ω

∫ d

ηε

uaεv
adx

+ε2λε

∫
ω

∫ ηε

0

uaε

(
va(x1, ηε)

x2

ηε
+ vb(εx1, 0)

ηε − x2

ηε

)
dx

+ε2λε

∫
Ωb

ubεv
bdx.

(3.11)

The Cauchy-Schwarz inequality, the fact that (ua, ub) ∈ C∞(Ωa) × C∞(Ωb), (3.2), (3.6),
and (3.10) allow us to pass to the limit, as ε tends to zero, in (3.11) and obtain∫

Ωa

∂x1u
a∂x1v

adx+

∫
Ωb

∂x2u
b∂x2v

bdx = λ

(∫
Ωa

uavadx+

∫
Ωb

ubvbdx

)
. (3.12)

Note that (3.10) is used to prove that the third integral in the left-hand side of (3.11)
vanishes as ε tends to zero.
Finally, equation (3.12) implies that (ua, ub) satisfies (3.7), since (va, vb) in an arbitrary

element of Ṽ a × Ṽ b and this space is dense in V a × V b.
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Corollary 3.5. Let λ be a positive real number which is not an eigenvalue of (3.7) and let
{λε}ε be any sequence of eigenvalues of (2.6) satisfying (3.2). For each ε, let uε = (uaε , u

b
ε)

be an eigenfunction of (2.6) associated with λε and satisfying (3.4). Then
uaε ⇀ 0, ∂x1u

a
ε ⇀ 0, ε∂x2u

a
ε ⇀ 0 weakly in L2(Ωa),

ubε ⇀ 0, ε∂x1u
b
ε ⇀ 0, ∂x2u

b
ε ⇀ 0 weakly in L2(Ωb),

as ε tends to zero.

Proposition 3.6. Assume that {λε}ε is any sequence of eigenvalues of (2.6) such that

lim
ε→0

(εγλε) = λ ∈]0,+∞[, (3.13)

for some γ ∈]0,+∞[\{2}. For each ε, let uε = (uaε , u
b
ε) be an eigenfunction of (2.6)

associated with λε and satisfying (3.4). Then

uaε ⇀ 0 weakly in L2(Ωa), ubε ⇀ 0 weakly in L2(Ωb),

as ε tends to zero.

Proof. Choosing (va, vb) = (εγ−2uaε , ε
γ−2ubε) as test function in (2.6) and taking into ac-

count (3.4) give∫
Ωa

(
εγ−2 |∂x1uaε |

2+ εγ |∂x2uaε |
2) dx+

∫
Ωb

(
εγ
∣∣∂x1ubε∣∣2+ εγ−2

∣∣∂x2ubε∣∣2) dx=εγλε. (3.14)

Assume γ ∈]2,+∞[. Then, (3.4), (3.14), and (3.13) provide the existence of a subse-
quence of {ε}, still denoted by {ε}, and of (ua, ub) ∈ L2(Ωa)× L2(Ωb) satisfying

uaε ⇀ ua, ε(γ−2)/2∂x1u
a
ε ⇀ 0, εγ/2∂x2u

a
ε ⇀ 0 weakly in L2(Ωa),

ubε ⇀ ub, εγ/2∂x1u
b
ε ⇀ 0, ε(γ−2)/2∂x2u

b
ε ⇀ 0 weakly in L2(Ωb),

(3.15)

as ε tends to zero. Note that the convergence of the scaled derivatives towards zero
follows from the convergence of (uaε , u

b
ε) towards (ua, ub) in D′(Ωa)×D′(Ωb). Consequently,

passing to the limit in (2.6), as ε tends to zero, with test functions (εγ−2va, εγ−2vb),
(va, vb) ∈ C∞0 (Ωa)× C∞0 (Ωb), and recalling λ 6= 0 provide

ua = 0 in Ωa, ub = 0 in Ωb,

which concludes the proof when γ ∈]2,+∞[.
Assume γ ∈]0, 2[. Choosing (va, vb) = (uaε , u

b
ε) as test function in (2.6) and taking into

account (3.13) give∫
Ωa

(
|∂x1uaε |

2 + |ε∂x2uaε |
2) dx+

∫
Ωb

(∣∣ε∂x1ubε∣∣2 +
∣∣∂x2ubε∣∣2) dx = ε2−γεγλε→0,

12



as ε tends to zero. Consequently, taking again into account (3.4), there exists a subse-
quence of {ε}, still denoted by {ε}, and ua ∈ L2(Ωa), independent of x1, ub ∈ L2(Ωb),
independent of x2, such that

uaε ⇀ ua weakly in L2(Ωa), ∂x1u
a
ε → 0 strongly in L2(Ωa),

ubε ⇀ ub weakly in L2(Ωb), ∂x2u
b
ε → 0 strongly in L2(Ωb),

as ε tends to zero. Furthermore, from (3.14) we deduce

εγ/2∂x2u
a
ε ⇀ 0 weakly in L2(Ωa), εγ/2∂x1u

b
ε ⇀ 0 weakly in L2(Ωb).

Finally, passing to the limit in (2.6), as ε tends to zero, with test functions (εγ−2va, εγ−2vb),
(va, vb) ∈ C∞0 (]0, d[)× C∞0 (ω \ {0}), and recalling that λ 6= 0 provide

ua = 0 in Ωa, ub = 0 in Ωb,

which concludes the proof when γ ∈]0, 2[.

4 Analysis of the spectral limit problem (3.7) and be-

yond

In this section we present an analysis of the eigenvalues and eigenfunctions of limit prob-
lem (3.7) obtained in Section 3. We give a characterization of the eigenvalues and eigen-
functions assuming some hypotheses of convergence in addition to those in Proposition 3.4
(see also (3.2)). These hypotheses are justified in Section 5. In particular, Propositions
4.1 and 4.2 below relate the eigenvalues and eigenfunctions of problem (3.7) with those of
the 1D Neumann problems (1.3) and (1.4) while, introducing some kind of corrector term
for the eigenvalues, in Subsection 4.1 we establish an additional relation of the eigenvalues
and eigenfunctions of (3.7) with those of the 1D Dirichlet problems (1.6) and (1.7).

It is evident that the spectral problem (3.7) can be split in the following two uncoupled
problems 

ua ∈ V a,∫
Ωa

∂x1u
a∂x1vdx = λa

∫
Ωa

uavdx, ∀v ∈ V a,
(4.1)


ub ∈ V b,∫

Ωb

∂x2u
b∂x2vdx = λb

∫
Ωb

ubvdx, ∀v ∈ V b,
(4.2)

i.e. if A, B, and C denote the sets of the eigenvalues of (4.1), (4.2), and (3.7), respectively,
then

C = A ∪B.
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Proposition 4.1. The couple (λa, ua) is an eigenelement of (4.1) iff λa is an eigenvalue
of (1.3) and

ua(x1, x2) = α(x2)za(x1) in Ωa,

with α ∈ L2(]0, d[) and za eigenfunction of (1.3) associated with λa.

Proof. Choosing v = ϕψ, with ψ ∈ C∞0 (]0, d[) and ϕ ∈ H1 (ω), as test function in (4.1)
gives ∫ d

0

(∫
ω

(∂x1u
a∂x1ϕ− λauaϕ) dx1

)
ψdx2 = 0, ∀ϕ∈H1 (ω) , ∀ψ∈C∞0 (]0, d[),

which implies∫
ω

∂x1u
a(x1, x2)∂x1ϕ(x1)dx1 = λa

∫
ω

ua(x1, x2)ϕ(x1)dx1, ∀ϕ ∈ H1 (ω) ,

for a.e. x2 ∈]0, d[, i.e.
−∂2

x1
ua(x1, x2) = λaua(x1, x2), in ω,

∂x1u
a (·, x2) = 0, on ∂ω,

for a.e. x2 ∈]0, d[. (4.3)

Finally, the result follows from (4.3) by the classical decomposition method.

Similarly, the following result holds true.

Proposition 4.2. The couple (λb, ub) is an eigenelement of problem (4.2) iff λb is an
eigenvalue of (1.4) and

ub(x1, x2) = β(x1)zb(x2) in Ωb,

with β ∈ L2(ω) and zb eigenfunction of (1.4) associated with λb.

As it is well known, all the eigenvalues of Neumann problem (1.3) are simple and
satisfy

0 = λa0 < λa1 < · · · < λak < · · ·
k→+∞.−−−−−→ +∞, (4.4)

Moreover, they can be explicitly computed in terms of the extremes of the interval ω.
We denote by {zak}k∈N0 , N0 = {0} ∪ N, the corresponding eigenfunctions subject to the
orthonormalization condition ∫

ω

zai z
a
j dx1 = δij i, j ∈ N0. (4.5)

Note that za0 = |ω|− 1
2 , since λa0 = 0.

Similarly, the set of all the eigenvalues of the Neumann problem (1.4) is given by{
(kπ)2

}
k∈N0

, (4.6)

while
{1} ∪

{√
2 cos(kπx2)

}
k∈N

(4.7)

is an orthonormal basis in L2(]− 1, 0[), zbk =
√

2 cos(kπx2) being an eigenfunction of (1.4)
associated with the eigenvalue λbk = (kπ)2, for k ∈ N, and 1 associated with 0.

14



Corollary 4.3. Let λε be an eigenvalue of problem (2.6) with {λε}ε ⊂ R satisfying (3.2).
Then, λ defined by (3.2) is an eigenvalue of problem (3.7) iff

λ ∈ {λak}k∈N ∪
{
λbk
}
k∈N .

Proof. This corollary is an immediate consequence of previous results.

Remark 4.4. If
λ /∈ {λak}k∈N0

∪
{
λbk
}
k∈N0

,

then in Proposition 3.4
ua = 0 in Ωa, ub = 0 in Ωb,

and (3.6) holds for the whole sequence.

According to Proposition 4.1 and Proposition 4.2, if λ ∈ {λak}k∈N ∪
{
λbk
}
k∈N, the limit

eigenfunction (ua, ub) in the statement of Proposition 3.4 can be written as

ua(x1, x2) = α(x2)za(x1) in Ωa, ub(x1, x2) = β(x1)zb(x2) in Ωb, (4.8)

where za is an eigenfunction of (1.3) associated with λa, zb is an eigenfunction of (1.4)
associated with λb, and α ∈ L2(]0, d[) and β ∈ L2(ω) are unknown functions (here, we
assume that α or β are the zero function if λ 6∈ {λak}k∈N or λ 6∈

{
λbk
}
k∈N, respectively).

There are many possible functions α(x2) or β(x1) such that ua and ub given in (4.8) satisfy
(3.7). In the next subsection, we look for particular functions α(x2) and β(x1) that will
be used in Section 5 for proving the main results.

4.1 The correction terms

Proposition 4.5. For each ε, let (λε, uε) be a solution to problem (2.6) with λε satisfying
the following property:

∃λ ∈ {λak}k∈N ∪
{
λbk
}
k∈N , ∃µ ∈ R : lim

ε→0

ε2λε − λ
ε2

= µ, (4.9)

where {λak}k∈N is the sequence of all the eigenvalues of (1.3) (see (4.4)) and
{
λbk
}
k∈N is the

sequence of all the eigenvalues of (1.4) (see (4.6)). Moreover, assume that uε = (uaε , u
b
ε)

satisfies (3.4). Consider a subsequence of {ε}, still denoted by {ε}, and (ua, ub) ∈ V a×V b

satisfying (3.6) and (3.7). In addition, assume that

{
uaε − ua

ε

}
ε

is bounded in L2(Ωa),

{
ubε − ub

ε

}
ε

is bounded in L2(Ωb).

(4.10)

Then, 
∃m ∈ N : ua = α(x2)zam(x1), in Ωa,

∃n ∈ N : ub = β(x1)zbn(x2), in Ωb,
(4.11)
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with zak an eigenfunction of (1.3) associated with λak and satisfying (4.5), {zbk}k∈N given
in (4.7), α and β satisfying (1.6) and (1.7), respectively, where µ is given in (4.9), and
α or β different from zero.

Proof. The proof of this proposition will be developed in several steps.
The first step is devoted to improving Proposition 3.4, i.e. to proving that

uaε ⇀ ua weakly in H1(Ωa),

ubε ⇀ ub weakly in H1(Ωb),
(4.12)

as ε tends to zero, 

{
1

ε
∂x1 (uaε − ua)

}
ε

is bounded in L2(Ωa),

{
1

ε
∂x2
(
ubε − ub

)}
ε

is bounded in L2(Ωb),

(4.13)

∫
Ωa

|ua|2dx+

∫
Ωb

|ub|2dx = 1, (4.14)

and
ua = 0, on Γa, ub = 0, on Γb. (4.15)

To this aim, choosing (va, vb) =

(
uaε
ε2
,
ubε
ε2

)
as test function in the equation in (2.6) and

taking into account (3.4) give∫
Ωa

(∣∣∣∣1ε∂x1uaε
∣∣∣∣2 + |∂x2uaε |

2

)
dx+

∫
Ωb

(∣∣∂x1ubε∣∣2 +

∣∣∣∣1ε∂x2ubε
∣∣∣∣2
)
dx =

ε2λε
ε2

. (4.16)

Moreover, choosing (va, vb) =

(
−u

a
ε

ε2
,−u

b
ε

ε2

)
as test function in the equation in (3.7) gives

−
∫

Ωa

1

ε2
∂x1u

a∂x1u
a
εdx−

∫
Ωb

1

ε2
∂x2u

b∂x2u
b
εdx

= − λ
ε2

(∫
Ωa

uauaεdx+

∫
Ωb

ububεdx

)
.

(4.17)

Then, adding (4.16) to (4.17) and taking again into account (3.4) provide∫
Ωa

(
1

ε2
∂x1u

a
ε∂x1 (uaε − ua) + |∂x2uaε |

2

)
dx

+

∫
Ωb

(∣∣∂x1ubε∣∣2 +
1

ε2
∂x2u

b
ε∂x2

(
ubε − ub

))
dx

=
ε2λε − λ

ε2
+
λ

ε2

(∫
Ωa

uaε (uaε − ua) dx+

∫
Ωb

ubε
(
ubε − ub

)
dx

)
.

(4.18)
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Now, choosing (va, vb) =

(
−u

a
ε − ua

ε2
,−u

b
ε − ub

ε2

)
as test function in the equation in (3.7)

gives

−
∫

Ωa

1

ε2
∂x1u

a∂x1 (uaε − ua) dx−
∫

Ωb

1

ε2
∂x2u

b∂x2
(
ubε − ub

)
dx

= − λ
ε2

(∫
Ωa

ua (uaε − ua) dx+

∫
Ωb

ub
(
ubε − ub

)
dx

)
.

(4.19)

Finally, adding (4.18) to (4.19) provides∫
Ωa

(∣∣∣∣1ε∂x1 (uaε − ua)
∣∣∣∣2+|∂x2uaε |2

)
dx+

∫
Ωb

(∣∣∂x1ubε∣∣2 +

∣∣∣∣1ε∂x2 (ubε − ub)
∣∣∣∣2
)
dx

=
ε2λε − λ

ε2
+ λ

(∫
Ωa

∣∣∣∣uaε − uaε

∣∣∣∣2dx+

∫
Ωb

∣∣∣∣ubε − ubε

∣∣∣∣2dx
)
,

which combined with assumptions (4.9) and (4.10) proves (4.12)-(4.15).

The second step is devoted to proving the decompositions in (4.11) with α and β
satisfying the equations in (1.6) and (1.7), respectively, where µ is given in (4.9).

As far as the first decomposition in (4.11) is concerned, if λ is not an eigenvalue of
problem (4.1), then

ua = 0 in Ωa.

Consequently, the first decomposition in (4.11) holds true for any m ∈ N with α = 0 (also
for m = 0).

If (λ, ua) is an eigenelement of problem (4.1), Proposition 4.1 (cf. also (4.4) and (4.5))
ensures that

∃m ∈ N : λ = λam, ua = α(x2)zam(x1), in Ωa, (4.20)

with some function α ∈ L2(]0, d[). More precisely, due to (4.12), α ∈ H1(]0, d[). Then,
the aim is to prove that∫ d

0

α′ψ′dx2 = µ

∫ d

0

αψdx2, ∀ψ ∈ C∞0 (]0, d[), (4.21)

where µ is given in (4.9).
Subtracting equation in (3.7) by equation in (2.6) gives

∫
Ωa

(
∂x1 (uaε − ua) ∂x1va + ε2∂x2u

a
ε∂x2v

a
)
dx

+

∫
Ωb

(
ε2∂x1u

b
ε∂x1v

b + ∂x2
(
ubε − ub

)
∂x2v

b
)
dx

=
(
ε2λε − λ

)(∫
Ωa

uaεv
adx+

∫
Ωb

ubεv
bdx

)

+λ

(∫
Ωa

(uaε − ua) vadx+

∫
Ωb

(
ubε − ub

)
vbdx

)
, ∀(va, vb) ∈ Vε.

(4.22)
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Now, choosing (va, vb) =

(
zam(x1)ψ(x2)

ε2
, 0

)
as test function in (4.22), with ψ ∈ C∞0 (]0, d[),

gives 

∫
Ωa

(
1

ε2
∂x1 (ψ(x2)uaε − ψ(x2)ua) (zam)′(x1) + ∂x2u

a
εz
a
m(x1)ψ′(x2)

)
dx

=
ε2λε − λ

ε2

∫
Ωa

uaεz
a
m(x1)ψ(x2)dx

+λ

∫
Ωa

1

ε2
(uaε − ua) zam(x1)ψ(x2)dx, ∀ψ ∈ C∞0 (]0, d[).

(4.23)

On the other side, since zam satisfies problem (1.3), one has

∫
Ωa

1

ε2
∂x1 (ψ(x2)uaε − ψ(x2)ua) (zam)′(x1)dx

= λ

∫
Ωa

1

ε2
(uaε − ua) zam(x1)ψ(x2)dx, ∀ψ ∈ C∞0 (]0, d[).

(4.24)

Consequently, from (4.23) and (4.24) one derives∫
Ωa

∂x2u
a
εz
a
m(x1)ψ′(x2)dx =

ε2λε − λ
ε2

∫
Ωa

uaεz
a
m(x1)ψ(x2)dx, ∀ψ ∈ C∞0 (]0, d[). (4.25)

Finally, passing to the limit in (4.25), as ε tends to zero, and using (4.9) and (4.12) imply∫
Ωa

∂x2u
azam(x1)ψ′(x2)dx = µ

∫
Ωa

uazam(x1)ψ(x2)dx, ∀ψ ∈ C∞0 (]0, d[), (4.26)

which proves (4.21), since

ua = zam(x1)α(x2) in Ωa, and

∫
ω

|zam(x1)|2dx1 = 1.

As far as the second decomposition in (4.11) is concerned, if λ is not an eigenvalue of
problem (4.2), then

ub = 0 in Ωb.

Consequently, the second decomposition in (4.11) holds true for any n ∈ N with β = 0.
If (λ, ub) is an eigenelement of problem (4.2), Proposition 4.2 (cf. also (4.6) and (4.7))

ensures that
∃n ∈ N : λ = λbn, ub = β(x1)zbn(x2), in Ωb, (4.27)

with some function β ∈ L2 (ω). More precisely, due to (4.12), β ∈ H1(ω). For ε

small enough, choosing (va, vb) =

(
0,
χ(x1)zbn(x2)

ε2

)
as test function in (4.22), with

χ ∈ C∞0 (ω \ {0}) and arguing as above provide∫
ω

β′χ′dx1 = µ

∫
ω

βχdx1, ∀χ ∈ C∞0 (ω \ {0}) ,
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where µ is given in (4.9).

The third step is devoted to proving the boundary conditions in (1.6) and (1.7), i.e.

α(d) = 0, β = 0, on ∂ω, (4.28)

β(0) = 0 (4.29)

α(0) = 0. (4.30)

Identifications (4.28) follow from (4.15), (4.20), (4.27), and the fact that zam and zbn
are not the zero function.

To identify the other boundary conditions, we first show that

β(0)zbn(0)

∫
ω

g(x1)dx1 = α(0)

∫
ω

zam(x1)g(x1)dx1, ∀g ∈ C1 (ω) . (4.31)

On one hand, the second lines in (4.12) and (4.13) allow us to apply Proposition 2.1
in [12] to the sequence {

∣∣ubε − ub∣∣}ε and to obtain

lim
ε→0

∫
ω

∣∣ubε(εx1, 0)− ub(εx1, 0)
∣∣ dx1 = 0,

which implies

lim
ε→0

∫
ω

(
ubε(εx1, 0)− ub(εx1, 0)

)
g(x1)dx1 = 0, ∀g ∈ C1 (ω) . (4.32)

Moreover, (4.27) and the continuity of β (since β ∈ H1(ω)), ensure that

lim sup
ε→0

∫
ω

∣∣(ub(εx1, 0)− β(0)zbn(0)
)
g(x1)

∣∣ dx1

≤ |zbn(0)|max
ω
|g| lim

ε→0

∫
ω

|β(εx1)− β(0)|dx1 = 0, ∀g ∈ C1 (ω) .

(4.33)

Combining (4.32) and (4.33) proves

lim
ε→0

∫
ω

ubε(εx1, 0)g(x1)dx1 = β(0)zbn(0)

∫
ω

g(x1)dx1, ∀g ∈ C1 (ω) . (4.34)

On the other hand, the first line in (4.12) and (4.20) provide

lim
ε→0

∫
ω

uaε(x1, 0)g(x1)dx1 =

∫
ω

ua(x1, 0)g(x1)dx1

= α(0)

∫
ω

zam(x1)g(x1)dx1, ∀g ∈ C1 (ω) .

(4.35)

Finally, (4.31) follows from (4.34), (4.35), and the fact that

uaε(x1, 0) = ubε(εx1, 0), on ω. (4.36)
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The proof of (4.29) depends on λ; more precisely, if it is an eigenvalue of (4.1) or not.
At first note that (see (4.7))

zbn(0) 6= 0, ∀n ∈ N0. (4.37)

If λ is not an eigenvalue of (4.1), then

ua = 0 in Ωa.

Thus, as above remarked, α is the zero function. Consequently, choosing

g(x1) = 1, in ω,

in (4.31) gives
β(0) = 0.

If λ is an eigenvalue of (4.1), choosing

g(x1) = za0(x1) = |ω|−
1
2 , in ω,

in (4.31) gives

β(0)zbn(0)|ω|
1
2 = α(0)

∫
ω

zam(x1)za0(x1)dx1 = 0, (4.38)

since {zak}k∈N0 is an orthonormal basis in L2(ω) and m > 0 (we explicitly remark that
m > 0 because λ 6= 0). Then, (4.29) follows from (4.37) and (4.38).

Finally, (4.30) is obtained choosing

g(x1) = zam(x1), in ω,

in (4.31), using (4.29) and recalling that {zak}k∈N0 is an orthonormal basis in L2(ω).

Remark 4.6. Notice that k 6= 0 is assumed in (4.9). This assumption is equivalent to
requiring λ 6= 0. Nevertheless, we note that the proof of Proposition 4.5 up to (4.31) also
works if k = 0 in (4.9), i.e. if λ = 0. We emphasize that the case λ = 0 will be treated in
Proposition 4.7, without assumption (4.10).

Proposition 4.7. For each ε, let (λε, uε) be a solution to (2.6) with λε satisfying the
following property:

∃µ ∈]0,+∞[ : lim
ε→0

λε = µ,

and uε = (uaε , u
b
ε) satisfying (3.4). Let V be defined in (2.10). Then, there exists a

subsequence of {ε}, still denoted by {ε}, and (ua, ub) ∈ V (in possible dependence on the
subsequence) such that

uaε ⇀ ua weakly in H1(Ωa),
1

ε
∂x1u

a
ε ⇀ 0, weakly in L2(Ωa),

ubε ⇀ ub weakly in H1(Ωb),
1

ε
∂x2u

b
ε ⇀ 0, weakly in L2(Ωb),

as ε tends to zero. Moreover, (ua, ub) satisfies (2.9) and

|ω|
∫ d

0

|ua|2dx2 +

∫
ω

|ub|2dx1 = 1.
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Proof. The normalized condition (3.4) implies that there exists a subsequence of {ε},
still denoted by {ε}, and (ua, ub) ∈ L2(Ωa) × L2(Ωb) (in possible dependence on the
subsequence) such that

uaε ⇀ ua weakly in L2(Ωa), ubε ⇀ ub weakly in L2(Ωb),

as ε tends to zero. Then, the result is obtained adapting the proof of Theorem 1.1 in [13]
with fε = λε(u

a
ε , u

b
ε) and f = µ(ua, ub) (take also into account Remark 1.4 in [13]).

Remark 4.8. Proposition 4.7 agrees with Theorem 2.1. In fact, if {λε,k}k∈N are the eigen-
values of (2.6) and {uε,k}k∈N are the corresponding eigenfunctions such that ‖uε,k‖L2(Ωa

⋃
Ωb) =

1, then, by Theorem 2.1, for each fixed k ∈ N, the sequence λε,k converges, when ε tends
to zero, towards µk, the k-th eigenvalue of (2.9). Moreover, there exists a subsequence of
{ε}, still denoted by {ε}, and a sequence {uak, ubk}k∈N ⊂ V, V defined by (2.10), such that

lim
ε→0

(
‖uaε,k − uak‖L2(Ωa) + ‖∂x1uaε,k‖L2(Ωa) + ‖∂x2(uaε,k − uak)‖L2(Ωa)

)
= 0,

lim
ε→0

(
‖ubε,k − ubk‖L2(Ωb) + ‖∂x1(ubε,k − ubk)‖L2(Ωb) + ‖∂x2ubε,k‖L2(Ωb)

)
= 0,

for every k ∈ N, and uk = (uak, u
b
k) is an eigenfunction of problem (2.9) with eigenvalue

µk. Note that in Theorem 2.1 a different convergence result on the limit eigenfunctions
appears. It depends on the different initial normalization of the eigenfunctions.

5 The main results

In this section, we characterize the behavior of the eigenfunctions associated with eigen-
values λε of (2.6) of order O(ε−2) (see Theorem 5.6). We also provide bounds for the
convergence rate of the values ε2λε near an eigenvalue of (3.7) and their corresponding
eigenfunctions (see Theorem 5.2, Theorem 5.3, and Theorem 5.4). These results justify
and complement those in Section 4.1.

First, we introduce here some notations that will be used throughout the section.
Fix ε > 0, let Vε be the space defined in (2.7) equipped with the following inner

product
(·, ·)ε : (v, w) =

(
(va, vb), (wa, wb)

)
∈ V 2

ε −→ (v, w)ε

=

∫
Ωa

(
vawa + ∂x1v

a∂x1w
a + ε2∂x2v

a∂x2w
a
)
dx

+

∫
Ωb

(
vbwb + ε2∂x1v

b∂x1w
b + ∂x2v

b∂x2w
b
)
dx.

Note that, in order to obtain bounds for the eigenfunctions associated with the eigen-

values of (2.6) of order O(ε−2), it is equivalent to normalize either with (·, ·)
1
2
ε or ‖ ·

‖L2(Ωa
⋃

Ωb) since ε2λε = O(1) and

(uε, uε)ε =
(
ε2λε + 1

)
(‖uaε‖2

L2(Ωa) + ‖ubε‖2
L2(Ωb)).
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Let
Bε : w = (wa, wb) ∈ Vε −→ Bε(w) ∈ Vε

be the operator defined by
Bε(w) ∈ Vε,

(Bε(w), v)ε =

∫
Ωa

wavadx+

∫
Ωb

wbvbdx, ∀v = (va, vb) ∈ Vε.

This operator is linear, self-adjoint, positive, and compact. Consequently, Bε possesses a
countable infinity of positive eigenvalues converging to zero (for instance, see Th. 4.6 in
[42])

ρε,1 ≥ ρε,2 ≥ · · · ρε,k ≥ · · · → 0.

Moreover, it is easily verified that

ρε,k =
1

ε2λε,k + 1
, ∀k ∈ N, (5.1)

where {λε,k}k∈N is the sequence of the eigenvalues of (2.6).
We also introduce here a result which will be used in what follows (see Section III.1

in [38] for its proof):

Lemma 5.1. Let A : H −→ H be a linear, self-adjoint, positive and compact operator on
a Hilbert space H. Let u ∈ H, with ‖u‖H = 1 and λ, r > 0 such that ‖Au − λu‖H < r.
Then, there exists an eigenvalue λi of A satisfying |λ − λi| < r. Moreover, for any
r∗ > r there is u∗ ∈ H, with ‖u∗‖H = 1, u∗ being a linear combination of eigenfunctions
associated with all the eigenvalues of operator A lying on the segment [λ−r∗, λ+r∗], such
that

‖u− u∗‖H <
2r

r∗
.

Theorem 5.2. Let λa be an eigenvalue of (1.3). Then, for each ε there exists an eigen-
value λε of (2.6) such that

|ε2λε − λa| ≤ c1ε
3
2 , (5.2)

where c1 is a constant independent of ε.
Let za be an eigenfunction of (1.3) associated with λa such that

‖za‖L2(ω) = 1. (5.3)

Let (µ, α) be an eigenelement of (1.6) such that

‖α‖L2(]0,d[) = 1. (5.4)

Set
ua(x1, x2) = za(x1)α(x2), in Ωa. (5.5)
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Let θ ∈]0, 3
2
[. Then, there exists Ka ∈]0,+∞[ and for each ε, there exists a linear com-

bination ũε = (ũaε , ũ
b
ε) ∈ Vε of eigenfunctions of (2.6) associated with all the eigenvalues

λε,l(ε), · · · , λε,l(ε)+ν(ε), l(ε) ∈ N, ν(ε) ∈ N0, satisfying

ε2λε,l(ε), · · · , ε2λε,l(ε)+ν(ε) ∈ [λa −Kaε
θ, λa +Kaε

θ],

such that
(ũε, ũε)ε = 1,∥∥ũaε − δaεua∥∥L2(Ωa)

+
∥∥∂x1 (ũaε − δaεua)∥∥L2(Ωa)

+ ε
∥∥∂x2 (ũaε − δaεua)∥∥L2(Ωa)

+
∥∥∥ũbε∥∥∥

L2(Ωb)
+ ε

∥∥∥∂x1ũbε∥∥∥
L2(Ωb)

+
∥∥∥∂x2ũbε∥∥∥

L2(Ωb)
≤ c2ε

3
2
−θ,

where c2 is a constant independent of ε and {δaε}ε ⊂]0,+∞[ is such that lim
ε→0

δaε =
1√

1 + λa
.

Proof. We apply Lemma 5.1 for parameters λ and test functions u that we construct
taking into account Proposition 3.4 and Proposition 4.5.

Let

vaε (x1, x2) =


za(x1)α(x2) in ω × ]ε, d[ ,

za(x1)α(ε)
x2

ε
, in ω × ]0, ε[ .

(5.6)

We observe that vε = (vaε , 0) ∈ Vε.
The first step is devoted to proving that

∃c3 ∈]0,+∞[ :
(
λa + ε2µ+ 1

)(
Bε(vε)−

1

λa + ε2µ+ 1
vε, v

)
ε

≤ c3ε
3
2 (v, v)

1
2
ε , ∀v ∈ Vε.

(5.7)

Let us note that(
λa + ε2µ+ 1

)(
Bε(vε)−

1

λa + ε2µ+ 1
vε, v

)
ε

=
(
λa + ε2µ

) ∫
Ωa

vaεv
adx−

∫
Ωa

(
∂x1v

a
ε∂x1v

a + ε2∂x2v
a
ε∂x2v

a
)
dx,

∀v = (va, vb) ∈ Vε.

(5.8)

As far as the first and the third terms in right-hand side of (5.8) are concerned, since

23



za is an eigenfunction of (1.3) associated with λa, one has

λa
∫

Ωa

vaεv
adx−

∫
Ωa

∂x1v
a
ε∂x1v

adx

=

∫ ε

0

(
α(ε)

x2

ε

∫
ω

(λaza(x1)va(x1, x2)− (za)′(x1)∂x1v
a(x1, x2)) dx1

)
dx2

=

∫ d

ε

(
α(x2)

∫
ω

(λaza(x1)va(x1, x2)− (za)′(x1)∂x1v
a(x1, x2)) dx1

)
dx2 =0,

∀v = (va, vb) ∈ Vε.

(5.9)

For the other terms in right-hand side of (5.8), we have

ε2µ

∫
Ωa

vaεv
adx−

∫
Ωa

ε2∂x2v
a
ε∂x2v

adx

= ε2

∫
ω

za(x1)

(∫ d

0

(µα(x2)va(x1, x2)− α′(x2)∂x2v
a(x1, x2)) dx2

)
dx1

+ε2

∫
ω

za(x1)

(∫ ε

0

µ
(
α(ε)

x2

ε
− α(x2)

)
va(x1, x2)dx2

)
dx1

−ε2

∫
ω

za(x1)

(∫ ε

0

(
α(ε)

1

ε
− α′(x2)

)
∂x2v

a(x1, x2)dx2

)
dx1,

∀v = (va, vb) ∈ Vε.

(5.10)

As far as the first integral in the right-hand side of (5.10) is concerned, taking into
account that (µ, α) is an eigenelement of (1.6) and that

va(x1, 0) = vb(εx1, 0), on ω,

one easily obtains

ε2

∫
ω

za(x1)

(∫ d

0

(µα(x2)va(x1, x2)− α′(x2)∂x2v
a(x1, x2)) dx2

)
dx1

= ε2α′(0)

∫
ω

za(x1)va(x1, 0) dx1 = ε2α′(0)

∫
ω

za(x1)vb(εx1, 0) dx1

≤ ε2|α′(0)|
(∫

ω

|vb(εx1, 0)|2dx1

) 1
2

≤ ε2|α′(0)|ε−
1
2‖vb(·, 0)‖L2(ω)

≤ ε
3
2 |α′(0)|2

(
‖vb‖2

L2(Ωb) + ‖∂x2vb‖2
L2(Ωb)

) 1
2 ≤ ε

3
2 |α′(0)|2(v, v)

1
2
ε ,

∀v = (va, vb) ∈ Vε.

(5.11)
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As far as the second integral in the right-hand side of (5.10) is concerned, thanks to
the smoothness of the functions za, α, i.e. za ∈ C∞(ω) and α ∈ C∞([0, d]),

∃c4 ∈]0,+∞[ : ε2

∫
ω

za(x1)

(∫ ε

0

µ
(
α(ε)

x2

ε
− α(x2)

)
va(x1, x2)dx2

)
dx1

≤ c4ε
2(v, v)

1
2
ε , ∀v = (va, vb) ∈ Vε.

(5.12)

As far as the last integral in the right-hand side of (5.10) is concerned, at first remark
that the condition α(0) = 0 (see (1.6)) implies that

|α(ε)| ≤ ‖α′‖L∞([0,d])|ε|, ∀ε. (5.13)

Consequently,

∃c5 ∈]0,+∞[ : ε2

∫
ω

za(x1)

(∫ ε

0

(
α(ε)

1

ε
− α′(x2)

)
∂x2v

a(x1, x2)dx2

)
dx1

≤ c5ε
2ε

1
2‖∂x2va‖L2(Ωa) = c5ε

3
2 (v, v)

1
2
ε , ∀v = (va, vb) ∈ Vε.

(5.14)

Finally (5.7) follows from (5.8), (5.9), (5.10), (5.11), (5.12), and (5.14).
Choosing

v = Bε(vε)−
1

λa + ε2µ+ 1
vε

in (5.7) gives

∃c3 ∈]0,+∞[ :

(
Bε(vε)−

1

λa + ε2µ+ 1
vε, Bε(vε)−

1

λa + ε2µ+ 1
vε

)
ε

≤ c3ε
3
2

1

λa + ε2µ+ 1

(
Bε(vε)−

1

λa + ε2µ+ 1
vε, Bε(vε)−

1

λa + ε2µ+ 1
vε

)1
2

ε

,

i.e.
∃c6 ∈]0,+∞[ :

(
Bε(vε)−

1

λa + ε2µ+ 1
vε, Bε(vε)−

1

λa + ε2µ+ 1
vε

)1
2

ε

≤ c6ε
3
2 .

(5.15)

On the other hand, using that za is an eigenfunction of (1.3) associated with λa and
satisfies (5.3), and that α satisfies (5.4), and α(0) = 0, it is easy to show that

lim
ε→0

(vε, vε)ε = 1 + λa. (5.16)

Combining (5.15) and (5.16) gives

∃c7 ∈]0,+∞[ :

(
Bε(δ

a
εvε)−

1

λa + ε2µ+ 1
δaεvε, Bε(δ

a
εvε)−

1

λa + ε2µ+ 1
δaεvε

)1
2

ε

≤ c7ε
3
2 .

(5.17)
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with

δaε =
1

(vε, vε)
1
2
ε

. (5.18)

Applying Lemma 5.1 with A = Bε, λ = (λa + ε2µ+ 1)−1 and u = (δaεv
a
ε , 0), where vaε and

δaε are defined in (5.6) and (5.18), respectively, and taking into account (5.1), from (5.17)
one derives that ∣∣∣∣ 1

ε2λε + 1
− 1

λa + ε2µ+ 1

∣∣∣∣ ≤ c7ε
3
2 ,

which proves (5.2). Finally, applying Lemma 5.1 with r∗ = Cεθ, for any positive constant
C, one completes the proof of this theorem.

Theorem 5.3. Let λb be an eigenvalue of (1.4). Then, for each ε there exists an eigen-
value λε of (2.6) such that

|ε2λε − λb| ≤ c1ε
3
2 ,

where c1 is a constant independent of ε.
Let zb be an eigenfunction of (1.4) associated with λb such that

‖zb‖L2(]−1,0[) = 1.

Let (µ, β) be an eigenelement of (1.7) such that

‖β‖L2(ω) = 1.

Set
ub(x1, x2) = zb(x2)β(x1), in Ωb.

Let θ ∈]0, 3
2
[. Then, there exists Kb ∈]0,+∞[ and for each ε, there exists a linear com-

bination ũε = (ũaε , ũ
b
ε) ∈ Vε of eigenfunctions of (2.6) associated with all the eigenvalues

λε,l(ε), · · · , λε,l(ε)+ν(ε), l(ε) ∈ N, ν(ε) ∈ N0, satisfying

ε2λε,l(ε), · · · , ε2λε,l(ε)+ν(ε) ∈ [λb −Kbε
θ, λb +Kbε

θ],

such that
(ũε, ũε)ε = 1,∥∥ũaε∥∥L2(Ωa)

+
∥∥∂x1ũaε∥∥L2(Ωa)

+ ε
∥∥∂x2ũaε∥∥L2(Ωa)

+
∥∥∥ũbε − δbεub∥∥∥

L2(Ωb)

+ ε
∥∥∥∂x1(ũbε − δbεub)∥∥∥

L2(Ωb)
+
∥∥∥∂x2(ũbε − δbεub)∥∥∥

L2(Ωb)
≤ c2ε

3
2
−θ,

where c2 is a constant independent of ε and {δbε}ε ⊂]0,+∞[ is such that lim
ε→0

δbε =
1√

1 + λb
.

Proof. Similar arguments to the proof of Theorem 5.2 allow us to prove this theorem.
Now, in order to apply Lemma 5.1 the function vε used is

vε(x1, x2) =



0, in ω×]ε, d[,

zb(0)β(εx1)
ε− x2

ε
, in ω × ]0, ε[ ,

zb(x2)β(x1), in Ωb,
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where zb and β are defined in the statement of the theorem (cf. Proposition 3.4 and
Proposition 4.5).

Theorem 5.4. Let (λa, za) and (λb, zb) be eigenelements of (1.3) and (1.4), respectively,
such that λa = λb = λ and

‖za‖L2(ω) = 1 = ‖zb‖L2(]−1,0[).

Let (µa, α) and (µb, β) be eigenelements of (1.6) and (1.7), respectively, such that

‖α‖L2(]0,d[) = 1 = ‖β‖L2(ω).

Set
ua(x1, x2) = za(x1)α(x2), in Ωa,

ub(x1, x2) = zb(x2)β(x1), in Ωb.

Let θ ∈]0, 3
2
[. Then, there exists K ∈]0,+∞[ and for each ε, there exists a linear com-

bination ũε = (ũaε , ũ
b
ε) ∈ Vε of eigenfunctions of (2.6) associated with all the eigenvalues

λε,l(ε), · · · , λε,l(ε)+ν(ε), l(ε) ∈ N, ν(ε) ∈ N0, satisfying

ε2λε,l(ε), · · · , ε2λε,l(ε)+ν(ε) ∈ [λ−Kεθ, λ+Kεθ],

such that
(ũε, ũε)ε = 1,∥∥ũaε − δaεua∥∥L2(Ωa)

+
∥∥∂x1(ũaε − δaεua)∥∥L2(Ωa)

+ ε
∥∥∂x2(ũaε − δaεua)∥∥L2(Ωa)

+
∥∥∥ũbε − δbεub∥∥∥

L2(Ωb)
+ ε

∥∥∥∂x1(ũbε − δbεub)∥∥∥
L2(Ωb)

+
∥∥∥∂x2(ũbε − δbεub)∥∥∥

L2(Ωb)

≤ c2ε
3
2
−θ,

where c2 is a constant independent of ε and {δaε}ε ∪ {δbε}ε ⊂]0,+∞[ is such that lim
ε→0

δaε =

1√
2(1 + λ)

= lim
ε→0

δbε.

Proof. This result is a direct consequence of Theorem 5.2 and Theorem 5.3.

Remark 5.5. Note that the values µa and µb in Theorem 5.4 can be different. In case
µa = µb, there exists a linear combination ũε satisfying the statement of Theorem 5.4
where δaε = δbε. To prove it, we apply Lemma 5.1 with λ = (λa + ε2µa + 1)−1 and u = δaεvε
where the function vε is defined by

vε(x1, x2) =



za(x1)α(x2), in ω × ]ε, d[ ,

za(x1)α(ε)
x2

ε
+ zb(0)β(εx1)

ε− x2

ε
, in ω × ]0, ε[ ,

zb(x2)β(x1), in Ωb,

(5.19)

27



and δaε = (vε, vε)
− 1

2
ε , being za, zb, α and β the functions defined in the statement of the

theorem (cf. the proof of Theorem 5.2).
On the other hand, since α(0) = 0, one can choose

vε(x1, x2) = za(x1)α(x2) + zb(0)β(εx1)
ε− x2

ε
, in ω × ]0, ε[ ,

and
vaε (x1, x2) = za(x1)α(x2) in Ωa,

instead of (5.19)2 and (5.6), respectively, getting the same estimates. We use (5.19) and
(5.6) to unify proofs (cf. Proposition 3.4, Theorem 5.2, Theorem 5.3 and Theorem 5.4).

Theorem 5.6. Let λ ∈]0,+∞[.

1. There exists a subsequence of ε converging towards zero, still denoted by ε, and a
vanishing sequence of positive numbers {dε}ε, such that ε2λε,k(ε) ∈ [λ − dε, λ + dε],
for some eigenvalue λε,k(ε) of (2.6).

2. λ is an eigenvalue of (3.7) iff there is a vanishing sequence of positive numbers
{dε}ε, as ε → 0, and sequence of functions {ũε}ε, with (ũε, ũε)ε = 1, ũε being
a linear combination of eigenfunctions of (2.6) associated with all the eigenvalues
λε,l(ε), · · · , λε,l(ε)+ν(ε), l(ε) ∈ N, ν(ε) ∈ N0, satisfying

ε2λε,l(ε), · · · , ε2λε,l(ε)+ν(ε) ∈ [λ− dε, λ+ dε],

such that {ũε}ε converges, as ε → 0, to some function u 6= 0 in the weak topology
of V a × V b, where V a and V b are defined by (3.5). Moreover,

• if λ = λa is an eigenvalue of (1.3) and za is an eigenfunction associated with
λa, satisfying ‖za‖L2(ω) = 1, and µ is an eigenvalue of (1.6) and α is an

eigenfunction associated with µ, satisfying ‖α‖L2(]0,d[) = 1, then ũε = (ũaε , ũ
b
ε)

can be constructed such that {ũaε}ε converges to ua = (1 + λa)−
1
2 za(x1)α(x2) in

V a.

• if λ = λb is an eigenvalue of (1.4) and zb is an eigenfunction associated with
λb, satisfying ‖zb‖L2(]−1,0[) = 1, and µ is an eigenvalue of (1.7) and β is an
eigenfunction associated with µ, satisfying ‖β‖L2(ω) = 1, then the sequence

ũε = (ũaε , ũ
b
ε) can be constructed such that {ũbε}ε converges towards ub = (1 +

λb)−
1
2 zb(x2)β(x1) in V b.

Proof. The proof of item 1 has been performed in Proposition 3.2, see also Remark 3.3.
The proof of the right hand side of the equivalence of item 2, is also obtained by

Theorem 5.2 and Theorem 5.3, in the case where λ is an eigenvalue of (1.3) or of (1.4).
The rest of the statements follows from Theorem 5.2, Theorem 5.3, and Theorem 5.4.

As regards the proof of the left hand side of the equivalence we follow the idea in
Proposition 3.4 with minor modifications. Namely, we proceed by contradiction and we
assume that λ is not an eigenvalue of (3.7). On account of ũε =

∑ν(ε)
j=0 β

ε
juε,l(ε)+j for
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certain constants βεj and uε,k = (uaε,k, u
b
ε,k) eigenfunctions corresponding to λε,k such that

‖uaε,k‖2
L2(Ωa) + ‖ubε,k‖2

L2(Ωb)
= 1, k = l(ε) + j, for j = 0, . . . , ν(ε), we obtain the relation∫

Ωa

(
∂x1ũ

a
ε∂x1v

a + ε2∂x2ũ
a
ε∂x2v

a
)
dx+

∫
Ωb

(
ε2∂x1ũ

b
ε∂x1v

b + ∂x2ũ
b
ε∂x2v

b
)
dx

=

ν(ε)∑
j=0

(ε2λε,l(ε)+j − λ)βεj

(∫
Ωa

uaε,l(ε)+jv
adx+

∫
Ωb

ubε,l(ε)+jv
bdx

)

+λ

(∫
Ωa

ũaεv
adx+

∫
Ωb

ũbεv
bdx

)
, ∀(va, vb) ∈ Vε.

(5.20)

Then, considering that |ε2λε,l(ε)+j − λ| ≤ dε, we take limits in (5.20) with (va, vb) =
(vε|Ωa , vε|Ωb), where vε is defined in (3.9), to get that (λ, u) satisfies (3.7) and, consequently,
u ≡ 0, which contradicts our assumption.
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