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Abstract

We propose a local mesh-free method for the Bates-Scott option pricing model, a 2D partial integro-differential
equation (PIDE) arising in computational finance. A Wendland radial basis function (RBF) approach is used for
the discretization of the spatial variables along with a linear interpolation technique for the integral operator. The
resulting set of ordinary differential equations (ODEs) is tackled via a time integration method. A potential advan-
tage of using RBFs is the small number of discrete equations that need to be solved. Computational experiments
are presented to illustrate the performance of the contributed approach.
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1. Introduction

Several models for option pricing yield partial differential equations (PDEs) in two independent variables, viz,
the time and the price of the underlying asset, [1, chapter 2]. Only for a few cases, e.g., the Black-Scholes equation
for European call and put options, such PDEs have exact closed-form solutions. Therefore, in general, they must
be solved approximately. This can be done using several well-known methods such as finite difference (FD) [35,
chapter 3], adaptive FD [37], finite element (FE) [4] and radial basis functions (RBFs) [2] methods, whereas each of
them has some domain of practicality.

Jump-diffusion models (see, e.g., [26, 28]) have become an important modeling tool in the pricing of financial
derivatives. In the seminal paper [30] in 1976, Merton proposed the addition of jumps into the Black-Scholes model.
Contrary to models with continuous paths, jump-diffusion models allow large sudden changes in the price of the
underlying asset. Jumps can appear at random times. Because of this, a number of alternative models (in contrast
to the Black-Scholes model) have been proposed, see for more [14]. These jump-diffusion models for pricing
American options are governed by a parabolic integro-differential variational inequality which can be formulated
as a free boundary problem. Mostly, these models contain a differential term and a non-local integral term.

To illustrate further, it is known that for pricing options that have particularly short maturities it is necessary
to modify the Black-Scholes equation, see e.g., [8]. Melino and Turnbull showed in [29] that the assumption of
stochastic volatility leads to a distribution of the underlying which is closer to empirical observations than the
log-normal distribution.

Bates and Scott (see [10, 33]) proposed simultaneously models incorporating both jumps in the underlying asset
and stochastic volatility combining Merton model and Heston’s stochastic volatility model [24].

Several techniques have been used to solve (different forms of) the jump-diffusion model such as FD and
(RBF) meshfree techniques. The FD method with second order approximations was proposed in [15] for solving
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simpler versions of the Bates models, i.e., 1D jump diffusion and Levy processes. A FD approach after imposing a
transformation to remove the cross derivative term was studied in [18] for the Heston model.

The RBF meshfree technique was demonstrated by solving the PIDE in the one-dimensional Merton case [11]
for the American vanilla put and the European vanilla call/put options on dividend-paying stocks. The RBF
method in the weak form for the one-dimensional form of the Bates model, i.e., without stochastic volatility has
recently been discussed in [2].

There are even fewer works, for problems which additionally include jumps in the underlying’s process, and
require the solution of a PIDE in two or more spatial dimensions. We mention [37] (and the references cited therein)
that propose an implicit-explicit time discretization in combination with a standard second-order FD discretization
in space. In addition, high-order FD schemes (fourth order in space) have been proposed for solving PDEs arising
from stochastic volatility models [17]. The non-locality of the jump terms in these models leads to matrices with
full matrix blocks. Furthermore, a combination of boundary conditions and a mixed second derivative term in the
PIDE due to the correlation of the volatility and the stock process exhibit difficulties.

A numerical method for pricing American options under the Bates model has been proposed by Toivanen in
[36], where a FD scheme coupled with a componentwise splitting technique is employed. However, according to
the results presented therein, this numerical scheme is not particularly fast. To discuss more, the American problem
is solved as a linear complementarity problem, and then a time-consuming fixed-point iteration procedure must
be performed at each time step. Moreover, the componentwise splitting technique employed in [36] requires a
special treatment of the mixed second-order derivatives, which may cause some loss of accuracy, and imposes
severe restrictions on the choice of the grid step sizes when a non-uniform mesh is employed.

Meshless methods (also known as meshfree methods) have progressed remarkably in the last decades and
some works have been devoted to their classification. The classification can be done based on different criteria, for
example, formulation procedure, shape parameter or the domain representation [20].

Meshless methods are specifically useful in the context of computational finance, where the mixed derivative
terms are dealt with comparative ease. Handling of mixed derivatives by the classical FE [4] or FD schemes
methods is quite complicated and hence meshless methods are the natural choice in such cases. Another merit
related to the meshfree schemes is their flexibility over the computational domain and the distribution of the
supporting nodes in this domain.

In this work, the motivation of choosing this approach is that along with the above-mentioned merits, the local
meshfree methods yields to sparse interpolation matrices and are less sensitive to the choice of the shape parameter
[22]. In addition, it avoids mesh-generation, which is the major problem in the FD, FE and spectral methods [31].
Furthermore, one of the state-of-the-art methods for pricing European options under the Bates model is based
on Fourier transforms, which is fast and competitive. However, the proposed method in this work aims also at
pricing American options.

The paper is organized as follows. In Section 2, we consider a model with stochastic volatility and jumps
in returns described by Bates in [9]. Under this model, the behavior of the asset value S and its variance υ is
described by a system of coupled stochastic differential equations. Discussion on how to model the option for the
American type is also furnished therein. Section 3 is devoted to the main contribution of this work whereas a local
RBF method is presented for the numerical solution of Bates model. As a matter of fact, the advent of the local
meshfree method (in this context) is new.

Moreover, by coupling of the local meshfree method with accurate time integrators needs to be explored for
the purpose of completeness. The discretization of the improper integral operator involved in the Bates model is
given in Section 4. Thence, the discretization in time which is a key element in solving the Bates model via the semi-
discretization technique is brought forward in Section 5 based on two simple yet effective time-stepping solvers.
In the current paper, we concentrate on coupling of a range of time integrators with the local meshfree method.
The numerical results obtained are presented and discussed in Section 6. Finally in Section 7, some conclusions
are drawn.
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2. Option pricing model

The Bates model [9] uses the Black-Scholes equation but also introduces a jump-diffusion term as follows:
dS(t) = (r − q − λξ)S(t)dt +

√
(ν)S(t)dW1 + (η − 1)S(t)dZ(t),

dν(t) = κ(θ − ν(t))dt + σ
√

(ν)dW2,

dW1dW2 = ρdt,

(1)

wherein W1 and W2 are standard Brownian motions, Z(t) is the Poisson process. The Poisson process is a special
case of a so-called counting process. Here r is the risk free rate, q is the dividend yield, ξ is the mean jump, η is the
jump size, i.e., a random variable measuring the jump amplitude and is assumed to be log-normally distributed
in [0, +∞), λ is the intensity of the Poisson process, κ is the rate of reversion of the variance ν, while θ and σ are
the mean level and volatility constant, respectively. It is worth noticing that if in (1) we set η = 1 (i.e., we exclude
the jumps), the vector stochastic differential equation (1) is reduced to the popular Heston model with stochastic
volatility.

Actually, the Heston stochastic volatility model [24] and the Merton jump-diffusion model [30] are combined
to describe the behavior of the underlying asset S and its variance ν. This results in the following PIDE for the
unknown option price U(S, ν, τ) as comes next:

∂U

∂τ
= 1

2
νS2 ∂2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2
σ2ν

∂2U

∂ν2 + (r − q − λξ)S ∂U

∂S

+ κ(θ − ν)∂U

∂ν
− (r + λ)U + λ

∫ ∞

0
U(Sη, ν, τ)f(η)dη,

(2)

where τ = T − t (is the time to expiry), ξ = E[η − 1] and the density function f(η) is given by [37, p. 2517]:

f(η) = 1√
2πσ̂η

exp
[
−

(ln(η) − (γ − 1
2 σ̂2))2

2σ̂2

]
. (3)

Here the mean γ and the standard deviation σ̂ are constants. Furthermore, we have

ξ = exp (γ) − 1. (4)

The initial condition for the put and call options is defined by the payoff function, respectively,

U(S, ν, 0) = p0(S) = max{E − S, 0}, (5)

and
U(S, ν, 0) = p0(S) = max{S − E, 0}, (6)

where E is the strike price.
The solution U(S, ν, τ) must satisfy suitable boundary conditions which can be derived from the PIDE (2) and

the initial condition (5) or (6); and are usually taken into account when solving (2) by a numerical approximation.
In particular, for a call option we have

U(S, ν, τ) ≈ 0, S → 0,

U(S, ν, τ) ≈ Se−qτ − Ee−rτ , S → +∞,

∂U(S, ν, τ)
∂ν

≈ 0, ν → +∞.

(7)

It is remarked that the boundary conditions have been given only for S → 0, S → +∞ and ν → +∞. In
fact, for ν → 0 the PIDE (2) is singular ([7, p. 1307]) and thus it is not exactly clear, which condition (if any) the
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function U(S, ν, τ) has to satisfy. Therefore in the following, using a common approach, we will not prescribe any
boundary condition for ν → 0. In a sense, we let the linear complementarity problem itself impose the boundary
conditions for ν → 0 (see, e.g., [12]). Noting that at the boundary condition in ν = 0, U converges to the price in
the corresponding Merton model.

The question about the existence of a solution strongly depends on which space we are seeking the solution to
be in. We need the integrability of the solution, i.e. their norms must be finite, where the norm is derived from the
PIDE. Accordingly, it is assumed that a viscosity solution exist for the PIDE problem (2).

To tackle the American-type option pricing based on Bates model, a similar model can be obtained by formulat-
ing a linear complementarity problem (LCP) with a same operator. However, a popular alternative approximation
is the penalty method. A nonlinear term as a penalty term according to the idea of [21] is imposed on (2) in order to
make the original option pricing PIDE with free boundaries into a nonlinear PIDE for American options as follows:

∂U

∂τ
= 1

2
νS2 ∂2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2
σ2ν

∂2U

∂ν2 + (r − q − λξ)S ∂U

∂S

+ κ(θ − ν)∂U

∂ν
− (r + λ)U + λ

∫ ∞

0
U(Sη, ν, τ)f(η)dη + F (U).

(8)

In fact, the idea is quite straightforward since in the limit as the positive penalty parameter ϱ, ϱ → ∞, the solution
satisfies U ≥ U∗ −ϵ, for ϵ > 0, ϵ ≪ 1, (here U∗ denotes the payoff). In fact, the solution of the penalty problem is an
approximate solution to the discrete linear complementarity problem. It is recalled that convergence of monotone
schemes for jump diffusion models is discussed in [14, 15].

One of the ways for introducing the penalty term is [13]:

F (U) = 2ϱ[(U(S, ν, 0) − U(S, ν, τ))]
1 + exp (−ϱ2(U(S, ν, 0) − U(S, ν, τ)))

, (9)

where ϱ is the non-negative penalty parameter.
In this case, the boundary conditions for the American call option are given by:

U(S, ν, τ) ≈ 0, S → 0,

U(S, ν, τ) ≈ max{Se−qτ − Ee−rτ , S − E}, S → +∞,

∂U(S, ν, τ)
∂ν

≈ 0, ν → +∞.

(10)

3. A new local RBF method

A key feature of a meshless method is that it does not require a grid and only makes use of a scattered set
of collocation points regardless of the connectivity information between the collocation points. The RBF approxi-
mation uses the pairwise distances between points alongside shape parameter. Distances are easily computed in
any number of spatial dimensions, thus, working in higher dimensions does not increase the complexity of the
method.

The meshfree RBF collocation technique for the solution of PDEs is similar to the spectral approach, i.e., we ap-
proximate the solution P corresponding to M spatial variables y = (y1, . . . , yM ) and time τ by using N supporting
nodes as follows:

P (y, τ) =
N∑

j=1
αj(τ)ϕ

(∥∥y − yj
∥∥) , (11)

where time and space have been decoupled while we are using the Euclidean norm. Here centers yj form a
discretization of the computational domain.

The coefficients αj(τ) have to be determined by imposing that P (y, τ) satisfies the equation at the centers yj .
The radial function ϕ (∥·∥) determines the approximation space as the span of the functions {ϕ

(∥∥· − y1
∥∥), . . .,

ϕ
(∥∥· − yN

∥∥)}. Here, we consider that N = m×n, where m and n are the number nodes along the spatial variables
S and ν, respectively.
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The technique applied in this section is a semi-discretization scheme at which all the spatial variables are
discretized and the temporal variable stay intact in order to construct a set of ODEs. This system will then be
solved using time-stepping methods.

In [38] Wendland constructed a popular family of compactly supported radial functions ϕs,k of the smoothness
degree 2k by starting with the truncated power function (which we know to be strictly positive definite) and radial
on RM for M ≥ 1, and then walking through dimensions.

Here, we need the solution of the PIDEs to be two times differentiable along the spatial variables, hence one
way is to apply the Wendland type ϕ3,2 function given by

ϕ3,2(d) =
(

1 − d

c

)6

+

(
3 + 18d

c
+ 35

(
d

c

)2
)

, (12)

which its degree of smoothness is C4 for any dimensions M ≤ 3. Here the shape parameter c > 0 controls the
flatness and d ≥ 0 is the radius (also known as the distance between two points in R2), i.e., d = ∥x − y∥2 =√

(x1 − x2)2 + (y1 − y2)2. In addition, (·)+ = max{·, 0}. For the sake of simplicity, ϕ3,2 is denoted by ϕ(x, y) from
now on. The choice and the motivation of using eqn (12) is that the function ϕ should be local in order to produce
sparse interpolation matrices, can be applied for problems of dimensions M ≤ 3 which is in our case a 2D PIDE
problem, and also be smooth enough since we have second-order derivative of a function in the structure of (2).
There are of course some other choices of ϕ from the Wendland family of function, but this one also has a low
computational cost in terms of computing the function at each supporting node as well.

The numerical domain for (2) is basically (S, ν, τ) ∈ Ω × (0, T ], where

Ω = [0, +∞) × [0, +∞). (13)

The state space is unbounded in our problem. So, in order to be able to solve the model computationally we need
to localize it to a bounded computational domain. However since the problem is well-posed, the computational
domain in practice is considered to be bounded (Ω = [Smin, Smax] ×[0, 1]), for example, Ω = [0, 3E] × [0, 1] or
Ω = [0, 4E] × [0, 1]. This justifies the use of essentially arbitrary artificial boundary conditions. Here for our local
RBF scheme and unlike the FD method, in order to avoid constructing and handling ill-conditioned evaluation
matrices, we apply the following transformation

s = S − Smin

Smax − Smin
, s ∈ [0, 1], (14)

so as to turn the computational domain into the square [0, 1] × [0, 1]. The original PIDE (2) does not change much
and can be written as comes next:

∂P

∂τ
=1

2
νs2 ∂2P

∂s2 + ρσνs
∂2P

∂s∂ν
+ 1

2
σ2ν

∂2P

∂ν2 + (r − q − λξ)s∂P

∂s

+ κ(θ − ν)∂P

∂ν
− (r + λ)P + λ

∫ ∞

0
P (sη, ν, τ)f(η)dη,

=L(P ) + λI(P ),

(15)

wherein L(P ), and λI(P ) stand for the differential part (including the (r + λ)P ) and the integral part of the model.
This would change the initial condition, e.g., for the call option, we have

P (s, ν, 0) = max{(Smin + (Smax − Smin)s) − E, 0}. (16)

The PDE problem is well posed as an initial value (Cauchy) problem in at least one dimension. We assume
that at time τ , the exact solution of (15), i.e., P (s, ν, τ) is approximated via pi,j(τ). To proceed, it is first observed
that the solution (11) yields in the following functional approximations for the first temporal derivative, the first
spatial derivative in the directions s, ν, the second spatial derivative in the directions s, ν, and the mixed deriva-
tive, respectively: P (0,0,1)(s, ν, τ) =

∑N
j=1 α

′

j(τ)ϕ
(∥∥y − yj

∥∥), P (1,0,0)(s, ν, τ) =
∑N

j=1 αj(τ)ϕ(1,0,0) (∥∥y − yj
∥∥),
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P (0,1,0)(s, ν, τ) =
∑N

j=1 αj(τ)ϕ(0,1,0) (∥∥y − yj
∥∥), P (2,0,0)(s, ν, τ) =

∑N
j=1 αj(τ)ϕ(2,0,0) (∥∥y − yj

∥∥), P (0,2,0)(s, ν, τ)
=
∑N

j=1 αj(τ)ϕ(0,2,0) (∥∥y − yj
∥∥), P (1,1,0)(s, ν, τ) =

∑N
j=1 αj(τ)ϕ(1,1,0) (∥∥y − yj

∥∥).
To approximate the differential part L(P ) of the Bates model using the local Wendland RBF (12), we need the

partial derivatives including the shape parameter c to be determined. After several algebraic calculation, these
partial derivatives are given as follows:

ϕs(x, y) = −
56(c − d)5

+(c + 5d)(x1 − x2)
c8 , (17)

ϕs,s(x, y) = −
56(c − d)4

+
(
c2 + 4cd − 35d2 + 30(y1 − y2)2)

c8 , (18)

ϕν(x, y) = −
56(c − d)5

+(c + 5d)(y1 − y2)
c8 , (19)

ϕν,ν(x, y) = −
56(c − d)4

+
(
c2 + 4cd − 35d2 + 30(x1 − x2)2)

c8 , (20)

ϕs,ν(x, y) =
1680(c − d)4

+(x1 − x2)(y1 − y2)
c8 . (21)

Now, we are able to define the following elements of the N × N matrices (1 ≤ i ≤ m, 1 ≤ j ≤ n):

(Φ)i,j = ϕ(xi, yj), (Φs)i,j = ϕs(xi, yj), (22)
(Φs,s)i,j = ϕs,s(xi, yj), (Φν)i,j = ϕν(xi, yj), (23)
(Φν,ν)i,j = ϕν,ν(xi, yj), (Φs,ν)i,j = ϕs,ν(xi, yj), (24)

Note that the matrix Φ is known as the evaluation or the interpolation matrix in the meshfree RBF methodology.
Substituting equations (22)-(24) based on (17)-(21) into (15), results in the following matrix equation:

∂p(τ)
∂τ

= Bp(τ), (25)

wherein
p(τ) = (p1,1(τ), p1,2(τ), . . . , p1,n(τ), p2,1(τ), . . . , pm,n(τ))∗, (26)

and

B =
[

1
2

νs2Φs,s + ρσνsΦs,ν + 1
2

σ2νΦν,ν + (r − q − λξ)sΦs + κ(θI − ν)Φν − (r + λ)I
]

Φ−1, (27)

and I = IN×N is the identity matrix while s and ν (shown in bold) are diagonal matrices of the same size in the
s and ν directions containing the grids in these directions. Note that the influence of the jump in the Bates model
has not been incorporated into the set of ODEs (25) yet. This would be pursued in the next section.

To be more precise regarding (25), the collocation is made locally over a set of overlapping domains of influence
and the time-stepping is performed in an explicit way. Only systems of equations of low dimensions must be
solved which is a strong point of the local meshfree RBF method in contrast to the standard FD scheme using
uniform grids which mainly leads to ODEs system of high sizes.

As pointed out in [27], if Φ is invertible, then the equation (25) has a solution. In this work and as already
did in [19], we use the Moore-Penrose inverse of the evaluation matrices so as to avoid any ill-conditioning in the
computation of Φ−1. Therefore, as long as the Moore-Penrose inverse exists, our local RBF approach for the Bates
model exists too.

It is remarked that an important attention should be focused on the choice of the shape parameter in our new
local RBF method (25). To be more precise, unlike other conventional methods such as FD and FE, stability of
meshless methods also depend on the value of shape parameter c as well as the total numbers of supporting nodes
N in the working domain. Figures 1-2 show the plot of the local Wendland RBF (12) using different parameters in
the domain of validity r = ∥x − y∥2 ≤ c × L, where basically we choose L = τ .
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Figure 1: One- and two-dimensional local Wendland RBF (12) for c = 0.5 and L = 2.
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Figure 2: One- and two-dimensional local Wendland RBF (12) for c = 1 and L = 2.

4. Discretization of the integral operator

The jump-integral term has the form of a convolution product, and hence could be efficiently evaluated using
a numerical rule. The fast Fourier transform applied by Andersen and Andreasen [3] could allow the user to
compute the jump-integral term but the use of the fast Fourier transform introduces additional localization and
interpolation error, specially if it is employed in conjunction with a non-uniform spatial mesh, so the discretization
of the integral operator must be performed on a mesh which is finer than the mesh used for the discretization of
the differential operators. Hence, it would be requisite to approximate the integral term using the computational
nodal points which have already been used and applied in the process of discretization of the differential part
L(P ).

Herein, the nonlocal integral operator in (15), i.e.,

I(P ) =
∫ ∞

0
P (sη, ν, τ)f(η)dη, (28)

is discretized using the linear interpolation for P (sη, ν, τ) among the grid points, which is an extension over the
discussion in [32]. A change of variable

z = sη, (29)
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for the integral part only is taken into account to transform it into

I(P ) =
∫ ∞

0
P (z, ν, τ)f

(z

s

)(1
s

)
dz. (30)

Now, by using linear interpolation we get an approximation

Ii(P ) ≈
m−1∑
l=1

Mi,l, (31)

of I at each grid point si , i = 2, . . . , m − 1, where

Mi,l =
∫ sl+1

sl

(
sl+1 − z

∆l
P (sl, ν, τ) + z − sl

∆l
P (sl+1, ν, τ)

)
f

(
z

si

)(
1
si

)
dz, (32)

wherein ∆l = sl+1 − sl is the step size. Taking into consideration the log-normal distribution f(η) based on (3),
one may obtain

Mi,l =
∫ sl+1

sl

(
sl+1 − z

∆l
P (sl, ν, τ) + z − sl

∆l
P (sl+1, ν, τ)

)

× exp

−
(ln
(

z
si

)
− (γ − 1

2 σ̂2))2

2σ̂2

( 1
si

)
dz

= 1√
2πσ̂

∫ sl+1

sl

(
sl+1 − z

∆l
P (sl, ν, τ) + z − sl

∆l
P (sl+1, ν, τ)

)

× exp

−
(ln
(

z
si

)
− (γ − 1

2 σ̂2))2

2σ̂2

 /zdz.

(33)

The proper integral (33) can be computed explicitly. It yields in

Mi,l = − 1
2∆l

exp (γ)

erf

−2 ln
(

1
si

)
− 2 ln (sl) + 2γ + σ̂2

2
√

2σ̂


−erf

−2 ln
(

sl+1
si

)
+ 2γ + σ̂2

2
√

2σ̂

 si(P (sl, v, τ) − P (sl+1, v, τ))

(34)

+

erf

2 ln
(

1
si

)
+ 2 ln (sl) − 2γ + σ̂2

2
√

2σ̂


−erf

2 ln
(

sl+1
si

)
− 2γ + σ̂2

2
√

2σ̂

 (sl+1P (sl, v, τ) − slP (sl+1, v, τ))

 ,

wherein the error function erf(·) is the integral of the Gaussian distribution and is defined by

erf(z) = 2√
π

∫ z

0
exp (−t2)dt. (35)

8



The expression given in (34) can further be simplified as follows:

Mi,l = 1
2∆l

siαl

erfc

−2 ln
(

sl

si

)
+ 2γ + σ̂2

2
√

2σ̂

− erfc

−2 ln
(

sl+1
si

)
+ 2γ + σ̂2

2
√

2σ̂

 (36)

+βl

erfc

2 ln
(

sl

si

)
− 2γ + σ̂2

2
√

2σ̂

− erfc

2 ln
(

sl+1
si

)
− 2γ + σ̂2

2
√

2σ̂

 ,

wherein αl = exp (γ) (P (sl, v, τ) − P (sl+1, v, τ)), βl = sl+1P (sl, v, τ) − slP (sl+1, v, τ) and the complementary
error function erfc(·) is expressed as comes next:

erfc(z) = 1 − erf(z). (37)

Due to the integral term, the final semi-discretization leads to a full matrix. We remark that direct solution
methods are usually expensive with a full matrix, and therefore other numerical methods should be considered.
Furthermore, we should avoid constructing systems of higher sizes which is a derivation of applying FD and FE
methods. But, using our new local RBF method, we are able to obtain a set of ODEs of the following form with a
reasonable size:

∂p(τ)
∂τ

= Bp(τ) + λI, (38)

where I is a vector of dimension N × 1 containing the integral approximations at each nodes. Each component of
I could consist of at least several unknowns in terms of pi,j(τ).

Simplifying (38) would result in the following set of ODEs:

∂p(τ)
∂τ

= B̄p(τ). (39)

Finally, by imposing the boundaries (and by considering the penalty approach (9) for the American-style op-
tion) we obtain the following system of semi-discretized ODEs subject to a non-smooth initial condition:

∂p(τ)
∂τ = B̃p(τ) + b(τ) + F (p(τ)),

p(s, ν, 0) = p0 is given,

(40)

where b(τ) is a vector corresponds to the incorporation of the boundary at s → +∞. Furthermore, it is stressed
that the first n rows and the last n rows of B̃ would always be zero due to incorporation of the boundaries for the
spatial variable s.

5. Time discretization

Different time integration techniques can now be applied. In the accompanying discourse, we provide different
time stepping methods that could be applied for solving the locally well-posed semi-discretized system of ODEs
(40) after discretization of the PIDEs. Well-posedness means that there exists a unique solution (depending on the
initial condition) which satisfy (40). As a matter of fact, we assume that G(τ, p(τ)) = B̃p(τ) + b(τ) + F (p(τ)) is
continuous in its first argument, τ , and locally uniformly Lipschitz continuous in its second argument.

The exact solution of the set of ODEs (40) is given by [16, Section 2.1]:

P (τ) = exp (B̃τ)p0 +
∫ τ

0
exp (B̃(τ − ϱ))[b(ϱ) + F (p(ϱ))]dϱ. (41)

The restrictions occurred in the process of computing matrix exponential and particularly the Volterra integral
in (41) makes the users to apply several different time-stepping strategies to solve 40.
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Let us introduce the temporal discretization with fixed time step ∆τ = τ
k−1 , so τι = (ι − 1)∆τ , ι = 1, . . . , k. The

explicit Euler method which is a first-order numerical procedure for solving system of ODEs with a given initial
value is given by

p(τι+1) = p(τι) + ∆τ G(τι, p(τι)), (42)

where
G(τι, p(τι)) = B̃p(τι) + b(τι) + F (p(τι)). (43)

We are often interested in the behavior of a time discretization method as the discretization parameter ∆τ

decreases to zero. When it is required for clarity in such situations, we will write pk to indicate an approximate
solution obtained via a time-stepping method using ∆τ for the exact value Pexact(τ). The scheme (42) converges to
the solution since it satisfies

∥pk − Pexact(τ)∥ → 0, k → +∞. (44)

The method (42) is quite straight-forward for implementations but it requires a large number of steps to con-
verge. This entails a high computational cost. Hence, an alternative known as the explicit midpoint method, that
is, a one-step method can be used for solving our large system of ODEs (particularly in the nonlinear cases due to
applying the penalty approach (9) for tackling American options) as follows [34, p. 328]:

p (τι+1) = p(τι) + ∆τ G

(
τι + ∆τ

2
, φι

)
, (45)

where
φι = p(τι) + ∆τ

2
G(τι, p(τι)). (46)

The explicit midpoint method is also known as the modified Euler method. The name of the method comes from
the fact that in (45) the function G (giving the slope of the solution) is evaluated at

τ = τι + ∆τ

2
, (47)

which is the midpoint between τι at which the value of p(τ) is known and τι+1 at which the value of p(τ) needs to
be found.

The local error at each step of the midpoint method is of order O
(
∆3

τ

)
, giving a global error of order O

(
∆2

τ

)
.

Thus, while more computationally intensive than Euler’s method, the midpoint method’s error generally decreases
faster as ∆τ → 0.

Theorem 5.1. Let the function G(τι, p(τι)) = B̃p(τι) + b(τι) + F (p(τι)) = B̃p(τι) +H(τι, p(τι)) satisfies the Lipschitz
condition in its second argument, while all the eigenvalues of B̃ lie in the left half plane and there exists a basis of RN

consisting of eigenvectors of B̃. Then, the constructed proposed scheme for pricing (2), via the semi-discretized system of
ODEs (40)&(45) is conditionally time-stable.

Proof. Satisfying the Lipschitz condition provides that (40) has a unique solution. Now, the time-stepping solver
(45) for tackling (40) (after imposing the boundaries) can be written as:

pι+1 =
(

I + ∆τ B̃ + (∆τ B̃)2

2

)
pι + ∆τ

(
b

(
τι + ∆τ

2

)
+ F (φι)

)
. (48)

Using the Linearization theorem on the function H , the stability of the difference equation (48) is reduced to
study the eigenvalues of the coefficient matrix of pι. Now, if we let pι be expanded in the eigen-basis (say, u1, u2,
· · · , uN ) of the real matrix B̃, we may write:

pι = α
(ι)
1 u1 + α

(ι)
2 u2 + · · · + α

(ι)
N uN . (49)
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If we now apply the modified Euler’s method, we find

pι+1 =
(

I + ∆τ B̃ + (∆τ B̃)2

2

)(
α

(ι)
1 u1 + α

(ι)
2 u2 + · · · + α

(ι)
N uN

)
= α

(ι)
1

(
I + ∆τ B̃ + (∆τ B̃)2

2

)
u1 + α

(ι)
2

(
I + ∆τ B̃ + (∆τ B̃)2

2

)
u2

+ · · · + α
(ι)
N

(
I + ∆τ B̃ + (∆τ B̃)2

2

)
uN .

(50)

Now, as ui is an eigenvector of B̃, we have(
I + ∆τ B̃ + (∆τ B̃)2

2

)
ui = ui + ∆τ B̃ui + (∆τ B̃)2

2
ui

= ui + ∆τ ωiui + (∆τ ωi)2

2
ui,

=
(

1 + ∆τ ωi + (∆τ ωi)2

2

)
ui,

(51)

where ωi for any 1 ≤ i ≤ N is the eigenvalue of the matrix B̃ associated with the eigenvector ui. The relation (51)
implies that

pι+1 =
N∑

i=1
α

(ι)
i

(
1 + ∆τ ωi + (∆τ ωi)2

2

)
ui. (52)

Using the uniqueness of the basis representation, it is straightforward to write

α
(ι+1)
i =

(
1 + ∆τ ωi + (∆τ ωi)2

2

)
α

(ι)
i . (53)

Accordingly, the time-stability is reduced to∣∣∣∣1 + ∆τ ωi + (∆τ ωi)2

2

∣∣∣∣ ≤ 1, i = 1, 2, . . . , N, (54)

which is equal to the scalar relationship based on the eigenvalues of the matrix B̃. Solving (54) based on the fact
that ∆τ > 0 yields the following bounds for the real and imaginary parts of the eigenvalues:

− 2
∆τ

≤ Re(ωi) ≤ 0, (55)

and
−Ξi ≤ Im(ωi) ≤ Ξi, (56)

wherein Re(·) and Im(·) are the real and imaginary parts, while

Ξi =

√√√√2

√
−Re(ωi)(∆τ Re(ωi) + 2)

∆3
τ

− Re(ωi)(∆τ Re(ωi) + 2)
∆τ

. (57)

Thus, the constructed scheme is stable if the temporal step size ∆τ satisfy (55) and (56) for any eigenvalues of B̃.
Using the polar representation ως = rς exp (iθς), then (54) can be written as

Λ (rς , θς , ∆τ ) ≤ 0, 1 ≤ ς ≤ N, (58)
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wherein Λ (r, θ, ξ) = r4

4 ξ3 +r3 cos (θ)ξ2 +2r2 cos2 (θ)ξ +2r cos (θ). Subsequently, the condition (54) is satisfied if the
real part of all the eigenvalues of B̃ is non-positive and ∆τ ≤ ξ0, where ξ0 = min1≤ς≤N {ξς} and ξς is the unique
positive solution of Λ (rς , θς , ξ) = 0. For numerical purposes, by taking into account the nature of the matrix B̃, cf.
Figure 5, wherein the dominance of the real part for large eigenvalues is prevalent, a fair time-stability bound can
be derived by

∆τ <
−2

Re(ωB̃
max)

, (59)

where ωB̃
max stands for the largest eigenvalue of B̃. An important remark here is that this conditional time stability is

clearly dependent on the choice of the shape parameter, since its choice has clear impact on the largest eigenvalues
of B̃. Therefore, the scheme is stable (in the Lyapunov sense) under (59). The proof is now complete.

The convergence of the whole numerical procedure, i.e.,

∥pm,n,k − Pexact(s, ν, τ)∥ → 0, (60)

can now be hold under the conditional stability condition (59) when the all step sizes end to zero which imply the
consistency as well.

6. Numerical experiments

In this section, we consider numerical experiments on three benchmark problems and assess the actual conver-
gence behavior of the FD and our new RBF collocation methods for different cases of the Bates PIDE. A comparison
with the Monte-Carlo method and Fourier Transform (FT) approach is also given (in different cases). For any given
numbers of mesh points m, n in the s- and ν-directions, we compute the value of European and American options
for different types of methods and time-stepping schemes.

The discretization along the price variable, also known as spatial discretization, is carried out by the standard
(centered) three-point FD scheme, then it means that when the spatial discretization interval is halved, the error is
reduced by a factor approximately equal to four [15].

The simulations are done in Mathematica 11.0 with built-in precision [5] while we have set AccuracyGoal → 5,
PrecisionGoal → 5 in the codes to run the programs (for the part of solving set of ODEs as quickly as possible).
To emphasize the performance of the proposed computational procedure, all the simulations are run on an office
laptop with Windows 7 Ultimate equipped Intel(R) Core(TM) i5-2430M CPU 2.40GHz processor and 16.00 GB of
RAM on a 64-bit operating system.

The computer time needed to obtain the option prices will be denoted as CPUTime in seconds. We apply
different strategies for choosing the free positive shape parameter in order to put on show the reliability of the
proposed local WRBF method. Moreover, let WRBF denote the approximation method based on the proposed
local RBF approach.

An equidistant computational grid in each direction is considered, though any types of mesh could be used
for our local WRBF method. Furthermore, to have a fair comparisons, we applied (42) for time stepping of the
European options and (45) for time stepping of the American options. Furthermore, for the nodes locating at the
boundary ν = 0, we impose no boundary and we take such nodes account as interior node at which the PIDE
without the integral term satisfy. That is, the semi-discretized equations of the PIDE (without the integral term)
are considered to be valid at this boundary.

The following error measure
∥pm,n,k(si, νj , τι) − Pref(s, ν, τ)∥, (61)

is used for option comparisons. Since the exact solutions are mostly not available, then a very accurate estimation
with a large number of nodes in both the time and space directions is taken into consideration from the literature.

Test Problem 6.1. [25] In this test, we compare the results of different methods in the European call case applying the
following parameters

τ = 1, E = 100, r = 0.025, q = 0, θ = 0.04, κ = 1.5, σ = 0.3, λ = 0, ρ = −0.9. (62)
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Method m n Size k Price U Error CPUTime
FD

20 20 400 401 8.70011 1.94763 × 10−1 0.91
40 25 1000 2001 8.59748 2.97389 × 10−1 2.67
40 40 1600 2001 8.67396 2.20911 × 10−1 5.39
65 45 2925 4001 8.86090 3.39711 × 10−2 15.77

WRBF
14 14 196 401 9.55241 6.57545 × 10−1 1.09
17 15 255 501 9.11440 2.19528 × 10−1 2.26
18 18 324 801 8.98740 9.25280 × 10−2 4.57
20 20 400 801 8.88861 6.26023 × 10−3 7.80

Table 1: Results of comparisons for Experiment 6.1.

For this scenario, we compare the price obtained through each scheme with the price obtained through the
very refined implementation of Fourier Transform (FT) approach, i.e., 8.894869, which we took as the reference
in the hot zone (S, v) = (100, 0.04), [25]. The computational domain for the FD is Ω = [0, 3E] × [0, 1] and its
transformation to Ω̄ = [0, 1] × [0, 1] for the WRBF.

One of the earliest techniques in order to suggest a shape parameter was proposed by Hardy in [23]. This
technique is given by

c = 0.815θ, θ = 1
N

N∑
i=1

θi, (63)

where θi is the distance of the i-th data point to its nearest neighbor. In this experiment we have applied c =
(1/2)0.815θ to include less number of supporting nodes in the process of building our matrices (22)-(27).

The results for this test are put together in Table 1. As we may see, the option price can be computed with
a good level of accuracy in a short piece of time using WRBF while FD requires more and more spatial nodes
in order to reach higher accuracies. Figure 3 displays the option price functions P on the transformed domain
(s, v) ∈ [0, 1] × [0, 1] using the WRBF. It shows that the WRBF solution is reliable and it does not contain any
spurious of oscillation specially near the far field boundaries.

(a) τ = 0 (b) τ = 1

Figure 3: Option price for Test Problem 6.1 with m = 20, n = 20 and k = 1001, at (a) initial moment and (b) final moment.

The results are mostly reported at some certain points of the domain which are, also known as hot zones, (i.e.,
(100, 0.04)) throughout this section. Actually, these values are deemed significant from the financial standpoint [6].
Furthermore, if the point that we are computing for, is not a node of the mesh, the approximate solution at such a
point is obtained by a built-in interpolation command in the applied programming package Mathematica.
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To further validate the proposed approach, in the following, the approximated prices are compared with ref-
erence benchmarks computed using adaptive finite difference (AFD) and Monte Carlo methods (MC) [37]. The
reference prices are brought forward in Table 2 based a giant computational grid 8193 × 4097 refined grid in space
and 2048 time steps. The Monte Carlo prices are computed based on 268 million paths with 1000 time steps.

From Table 1 we can state that for a fixed absolute error, e.g., 10−3, FD requires more than m = 65, n = 45 points
for spatial and k = 4001 for temporal discretization, while for this accuracy we only need (around) m = 20, n = 20
and k = 801, number points for discretizations, and thus (65 × 45)/(20 × 20) ≃ 7 times more spatial points and
subsequently 15.77/7.80 ≃ 2 more CPU times are required for FD in contrast to the WRBF.

Option type European Call, MC European Call, AFD American Call, AFD
Price U 6.156860 6.157288 6.161108

Table 2: Reference prices.

Test Problem 6.2. [37] The aim of this test is to study the variation of the resultant error for a European option under the
Bates model. The parameters are selected as follows:

τ = 0.5, E = 100, r = 0.02, q = 0.06, θ = 0.04, κ = 2.0,
σ = 0.25, σ̂ = 0.4, µ = −0.5, λ = 0.2, ρ = −0.5.

(64)

Table 3 provides the numerical comparison and accuracies of different methods while the number of points
along the spatial directions are increasing. The results show several choices for the number of time steps. The
computational domain for the FD is Ω = [0, 4E] × [0, 1] (exactly based on [37]) and the transformation of Ω =
[0, 3E] × [0, 1] to Ω = [0, 1] × [0, 1] for the WRBF.

Here and as we pointed out at the beginning of the section, we apply a different strategy known as “guessing”
and fixing it for the shape parameter in all cases. Here, we have chosen c = 2 and all the results are driven
based on this for this experiment. The results declares that how our proposed WRBF scheme converge to the true
benchmark price as quickly as possible and it reaches good accuracies in contrast to its correspondent FD scheme
which require a higher number of computational supporting nodes to reach the same accuracies. To illustrate
further, in Figure 4 (left), we have provided the computational grid which is equidistant in each direction for the
case m = n = 26.

Noting that the empty circles are the nodes at which PIDE (15) must be imposed so as to obtain the approxi-
mate solutions while the three known boundaries are given by filled circles. Although here we have applied an
equidistant grid, the computational grid for our local method could of any type and structure due to applying the
meshfree technology (this is unlike the FD scheme which is limited to the standard grids unless the finite differ-
ence approximations get applied for non-standard grid by accepting higher computational burden). Furthermore,
the structure of the coefficient matrix B̃ in (40) is illustrated in Figure 4 (right) which shows that after imposing
the discretization of integral term, it would be dense. However, whatever the values are away from the diagonals
their absolute values are getting smaller and smaller. This is another advantage of the new scheme at which one
may obtain results of higher accuracies by solving sets of ODEs of reasonable sizes.

To check the stability of the computational procedure of WRBF, it is necessary to check that all the eigenvalues
of the coefficient matrix B̃ in (40) have negative real parts, in other words they locate in the left side of the complex
plane. This is pursued numerically for different values of the number of spatial nodes in Figure 5. In light of
the results, it can be inferred that all the eigenvalues have negative reals parts which is the beginning condition
for the time-stepping solver to converge. Besides, by increasing the number of nodes, the largest eigenvalue (in
absolute sign) gets bigger which put on show that the system is getting stiff and a time-stepping solver with a
larger stability region or more number of temporal discretization nodes must be applied.

From computational results observed in Table 3 for the proposed WRBF scheme, it could be conjectured that
there is a relation among the required number of time steps (in the forward Euler time-stepping scheme) and the
number of spatial nodes. It could be written that the following relation could provide a (mild) stability condition
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Figure 4: The computational grid along its boundaries (left) and the plot of the coefficient matrix B̃ for m = 26, n = 26 for the WRBF method.

Method m n Size k Price U Error CPUTime
FD

16 16 256 201 6.51049 3.53201 × 10−1 0.85
30 25 725 501 5.97330 1.83987 × 10−1 4.31
40 40 1600 1001 6.05925 9.80335 × 10−2 14.12
60 50 3000 2001 6.10135 5.59411 × 10−2 64.91
70 70 4900 5001 6.11918 3.81049 × 10−2 162.15

WRBF
20 14 280 281 5.85113 3.06154 × 10−1 5.85
22 22 484 501 5.28339 8.73899 × 10−1 19.95
24 24 576 601 6.17289 1.55974 × 10−2 30.69
26 26 676 2001 6.16721 9.92461 × 10−3 46.06

Table 3: Results of comparisons for Test Problem 6.2.

for the numerical treatment discussed in this work, k > m × n, or alternatively

mn

k
< 1. (65)

Figure 6 illustrates that how the numerical solution evolves once this condition is broken using the local WRBF
method in Experiment 6.2.

From Table 3 we can state that for a fixed absolute error, e.g., 10−2, FD requires (around) m = 70, n = 70 points
for spatial and k = 4901 for temporal discretization, while for this accuracy we only need (around) m = 24, n = 24
and k = 601, number points for discretizations, and thus (70 × 70)/(24 × 24) ≃ 8 times more spatial points and
subsequently 162.15/46.06 ≃ 3 more CPU times are required for FD in contrast to the WRBF.

It is remarked that the values obtained for the error reductions in Tables 1-4 are not necessarily uniform. A non-
uniform convergence pattern is not at all surprising and it is also experienced by other authors dealing with the
numerical approximation of the Bates model for American options (see, e.g, [7]). As a matter of fact, the solution
being sought is affected by several kinds of irregularities (e.g., the Bates model is singular for ν = 0, [7, p. 1307]).
Hence, the convergence of numerical discretization schemes is irregular as well.

Test Problem 6.3. [37] Using the same parameters as in Test Problem 6.2, here we study the variation of the resultant error
for an American option under the Bates model.

The results based on the choice ϱ = 10 as the penalty term (9) for this test are put together in Table 4. The
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Figure 5: Distribution of the eigenvalues of the coefficient matrices B̃, m = 20, n = 14 in top left, m = 22, n = 22 in top right, m = 24, n = 24
in bottom left, m = 26, n = 26 in bottom right.

computational domain for the FD is Ω = [0, 4E] × [0, 1] (exactly based on [37]) and the transformation of Ω =
[0, 3E] × [0, 1] to Ω = [0, 1] × [0, 1] for the WRBF.

The explicit mid-point time-stepping scheme which possess a higher rate of convergence and higher stability
region is used for both the FD and the WRBF schemes in Table 4 in order to handle the American options (which
are nonlinear after semi-discretization process) as quickly and efficiently as possible.

Here, in the practical implementations of the American options, we consider U(Smax, ν, τ) ≈ Smax − E for the
boundary at S → +∞. Due to this, the vector b(τ) in (40) is zero.

For this problem, we used the idea of trial-and-error [19, section 17.1.1] for finding a good shape parameter
(not an optimal one). Hence, we have a different c corresponding to each number of spatial nodes.

Once again, the option price can be computed with a high level of accuracy in a short piece of time using the
WRBF while FD requires much more spatial nodes in order to reach higher accuracies. Since our main aim is to
price stochastic volatility jump models via moderate-size semi-discrete systems in a small piece of time via the
local Wendland RBF meshfree method, we do not consider more spatial nodes to get prices of higher accuracies
(more than 10−3). Similar to (65) and the theoretical stability bound (59), we may write a numerical stability bound
for the number of temporal nodes in contrast to the number of spatial nodes for the explicit mid-point method as
mn
k < 1.

Numerical results shown in Table 4 indicate that the new WRBF solution provides an accurate solution of the
pricing American options in contrast to the standard procedures, such as FD. The results agreed with the results of
the AFD scheme given in Table 2. Furthermore, it is necessary to check the numerical rate of convergence for the
explicit mid-point method (45) especially in the American option pricing case. Due to this, in Table 5, the stability
and numerical convergence order of (45) is getting checked out by halving the temporal step size for a fixed spatial

16



Figure 6: The numerical solution with the broken stability condition (65) in Test Problem 6.2, when m = n = 22 and k = 325 < 22 × 22 in left
and m = n = 26 and k = 501 < 26 × 26 in right.

Method m n Size k Price U Error CPUTime
FD

16 16 256 101 6.51397 3.52860 × 10−1 12.17
22 22 484 251 6.01610 1.45012 × 10−1 19.45
32 32 1024 401 6.04772 1.13385 × 10−1 89.65
42 42 1764 1001 6.05446 1.06644 × 10−1 474.72
52 52 2704 1251 6.08157 7.95339 × 10−2 799.75

WRBF
c = 43 18 16 288 201 6.15899 2.11433 × 10−3 12.95
c = 3 20 20 400 401 6.16658 5.47023 × 10−3 35.75
c = 60 23 18 414 401 6.16346 2.35619 × 10−3 41.67
c = 59 26 26 676 651 6.17034 9.23562 × 10−3 124.30

Table 4: Comparison of convergence history for Test Problem 6.3.

discretization (m = 20, n = 20, c = 3) via the following relation:

ROC ≈
∣∣∣∣log2

Papprox(∆τ ) − Papprox(∆τ /2)
Papprox(∆τ /2) − Papprox(∆τ /4)

∣∣∣∣ . (66)

The results in Table 5 confirm the stability bound (65) as well as a second order of convergence along the
temporal variables, which is quite fast with better stability region in contrast to the first order Euler’s method (42)
that we applied for the European case (linear PIDEs).

We too stress that the condition number of the collocation matrix (in the case of FD or global meshfree methods)
is very sensitive to selection of the shape parameter c [22], the numbers of supporting nodes N = m × n and the
system gets ill-conditioned instantly. But in our case, this dependence is low.

7. Summary

In this paper, a local RBF method for pricing European and American options on an underlying asset described
by the Bates model was proposed. It was discussed how the Wendland compactly supported radial function along
a good shape parameter allow us to obtain a numerical method for this kind of problem. In all the numerical
simulations performed, absolute errors are of accuracy order 10−3.

Moreover, the discretization of the non-local integral operator was performed efficiently, as it requires about
the same computer time as is necessary to discretize (all) the other local operators in the PIDE. It is also worth
noticing that good results are also obtained when the variance process is extremely close the origin, or when the
option’s maturity is long.
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k Price U ROC
201 Fail -
401 6.1665782270 -
801 6.1665818490 -
1601 6.1665827713 1.97
3201 6.1665830020 2.00

Table 5: Checking the stability and convergence rate along time for Test Problem 6.3.

(a) τ = 0 (b) τ = 0.5

Figure 7: The numerical solution of local WRBF for American option under the Bates model in Experiment 6.3.
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