
Accelerating Host-Compiled Simulation by Modifying IR code:
Industrial application in the spatial domain

Abstract - Space applications rely on long and complex design
processes, as they must deal with strict non-functional
requirements such as criticality, timeliness, reliability and
safety. The huge number of analysis and evaluations
performed requires powerful simulations technologies
combining high simulation speed and accuracy. Host-compiled
simulation is a powerful approach to achieve fast, timed
simulation of software running in complex embedded systems.
However, in the general term, there is still the need of
improving the speed and accuracy of these solutions, and there
is a lack of host-compiled approaches oriented to space
applications. To solve the first point, this paper presents an
alternative that modifies the standard solution of adding the
modeling of the cross-compiled control flow in the host
computer by modifying the compiler’s intermediate
representation. That way, the host binary naturally follows the
cross-compiled binary flow, avoiding a separate modeling, and
improving simulation speed while maintaining accuracy.
Additionally, the paper focuses on LEON processor, commonly
used by the European Space Agency (ESA).

I Introduction

The space domain represents an important area in the
world of electronic system design. On the one hand, system
correctness in this domain must be completely granted, as
space systems must be designed to operate in extremely
difficult conditions and far away from any human being. As
a result, the development of these systems typically requires
long and complex design processes, in order to achieve the
required figures, involving large evaluation, exploration and
verification processes.

On the other hand, the conditions described above make
especially important to obtain the maximum benefits from
the scarce resources available while providing certain
flexibility, as these capabilities will determine the possibility
to overcome the problems found during a mission. However,
the combination of these qualities is difficult to obtain.

Advances in hardware capabilities, such as
multiprocessor or reconfigurable hardware, are being slowly
adopted in the space domain, since their clear benefits
clashes with the restrictions of certification processes.
Additionally, there is a lack of methodologies and tools to
support the exploitation of these new technologies in the
scope of systems considering the peculiarities of space
applications. As a result, it is important to develop tools
capable of ensuring that the design process is in the right
direction from the very beginning, since going back in the
designs is typically very costly. The challenge is then to

exploit these capabilities, considering the difficulty to cover
all the cases resulting from these dynamic behaviors.

To solve this challenge, it is required to consider two ideas.
First, it is mandatory to dispose of tools capable of modelling,
analysing and exploring a huge set of conditions in reduced
times and with high accuracy.

Secondly, to get all the benefits from these hardware
architectures, the software is usually dependent on the
underlying platform both in functionality and performance.
Thus, HW details must be considered when the software
elements are developed, allocated or dynamically allocated
to the computing resources. Application models require the
adequate granularity to extract the medium- and fine-grain
details, such as parallelism or cache performance, that will
reduce the response times of key application functionalities

Traditionally, embedded software development and
verification has been performed by running the application
SW on a physical prototype of the hardware platform.
However, this solution is only available late in the design
process and it is typically hard to use, especially as the
complexity of embedded systems grows. Additionally, it can
be non-adequate to analyze the design internals or to
evaluate a huge number of conditions, as the evaluations are
limited by the number of real platforms available.

Virtual platforms offer a powerful alternative to hardware
prototypes. On them, the modeling of the processor is a key
factor, since it is the element in charge of most of the system
functionality. Several alternatives have been proposed to
simulate the processors’ operation, providing different
tradeoffs in terms of accuracy vs. performance and usability.

Among them, host-compiled timing simulation has
received considerable attention in the last years, as this kind
of simulation maximizes the ratio between simulation speed
and modeling accuracy. Thus, its improvement and
adaptation to the space domain can be relevant to provide the
modeling, analysis and exploration support required to adapt
the next generation space domain applications to the new
execution platform capabilities, while maintaining the hard
constraints imposed by this application domain.

In order to improve host-compiled simulation techniques,
this paper proposes an alternative to improve simulation
speed while maintaining the modeling accuracy. Host-
compiled techniques typically rely on annotating the impact
of the target platform within the source code to analyze their
effects on the host simulation. However, the code does not
always behave the same in the host and in the target

 .

2

processor, requiring an important overhead to solve these
differences. This paper proposes a technique that, modifying
the intermediate representation code, can obtain the same
accuracy without this overhead.

 Additionally, during this work, a host-compiled
simulation infrastructure has been adapted to the space
domain by modeling a LEON3-based platform, as LEON3
is a processor typically used in this domain.

II State of the art
Host-compiled simulation has become an important

approach for system modeling since it achieves a significant
speedup without excessively compromising accuracy,
compared to cycle-accurate simulations. Early works on SLS,
such as [2,3], considered a unique mapping between source
code and binary code, skipping the effects of compiler
optimizations. However, to accurately model real embedded
systems, optimizations had to be integrated.

To do so, several techniques were proposed, depending on
the type of code that was to be analyzed and annotated.
These techniques can be categorized [4] into binary
(assembly) level simulation (BLS), IR-level simulation
(IRLS) and source-level simulation (SLS), in terms of
functional representation levels.

BLS typically relies on the generation of an alternative
source code with the same functionality but following the
binary code structure. Results obtained are quite accurate,
but they have critical problems when compared with SLS or
IRLS. First, there are corner cases that are difficult to model,
such as indirect branches. Secondly, a virtual platform
should also support software development and debugging.
However, the generation of an alternative source code,
completely different from the original one, disables the
possibility of using the tool for debugging purposes.

Similar alternatives have been proposed using IR level. To
address the mapping problems found in early SLS work, in
[4] the compiler is modified to add timing information into
the Intermediate Representation (IR). However, modifying
the compiler takes a lot of effort. Furthermore, not all
compilers can be modified.

As an alternative, Wang et al. [5], propose the generation
of an annotated intermediate source code, created to model
the IR code. A similar approach in also proposed in [6].
Nevertheless, these approaches have similar problems to
BLS, since C code reconstructed from IR-level code is
hardly readable, and also rules out source-level debugging.

Finally, the consideration of compiler optimizations has
also been addressed at source-level. Most source-level works
typically rely on complex analysis to relate basic blocks of
the cross-compiled assembler code with the original source
code. The work in [7] tries to overcome the mapping
problems dividing the source code and the binary code into
segments called loop levels. [8] proposes an alternative that,
through a complex analysis of the binary control graph,
integrates conditional annotations in the source code.

These methods have been used in other works to model
HW/SW platforms [10] and networked systems for IoT[11].

In a similar way, the work in [1] proposes an approach that,
taking information both from the binary flow graph and the
debugging information, generates conditional timing
annotations. In this case, the use of the debugging
information simplifies the analysis of the binary graph,
making the solution more portable. As a result, these
methods have been used in other works to model GPUs [9],
and also in works of other authors, such as [12]. The
problem of this approach is that the accuracy and generality
is obtained at the expense of a certain overhead, due to the
conditional annotations.

To minimize annotation overheads, [13] proposes a
solution that simplifies the execution flow graph, reducing
the number of conditional annotations, and slightly
increasing simulation speed. However, the problem of
complex conditional annotations is not solved.

To overcome these limitations, this work presents an
alternative that follows some of these ideas, but applying
them at the IR level. Then, the host-compiled executable
code is generated from the modified IR without requiring an
additional source code generation, as is usual in IR
techniques. Therefore, the code obtained is not only faster
without decreasing modeling accuracy, but it can also be
used for debugging purposes.

III Intermediate Level Annotation
In host-compiled simulation, functional and timing

modeling of the processor is enabled by automatically
annotating performance information within the original
program, which is run on the host processor.

To do so, the cross-compiled binary code is analyzed,
identifying its basic blocks and extracting the parameters
required to model its execution in the target processor, such
as the number of cycles and instructions. However, the
process of finding the relationships between basic blocks of
the cross-compiled binary code and the blocks of the original
code requires sophisticated matching methods, due to the
modifications done by compiler optimizations.

To solve it, instead of directly annotating static time
values in the source code, it has been proposed to model the
binary-level control flow for the target architecture together
with the software functionality [1] (Fig 1).

However, the problem of this approach is that simulating
the target control flow and the functionality hand-in-hand,
means executing the code twice. Additionally, the modeling
of the target control flow is quite artificial, requiring
complex codes that increase the number of instructions to be
executed during simulation. Therefore, the use of these
matching algorithms leads to some simulation overhead.

As can be seen in the figure, for a single line in the source
code (c[i]=a[i]*b[i];), it is necessary to call a “bb” function
(Fig. 1 b), which involves multiple comparisons, and
additional function calls such as the one required to evaluate

 3

the different steps of a loop (Fig. 1 c). Thus, resulting
overhead can increase simulation time up to 40 times, as can
be seen in [1] results.

The proposal done in this work is that, to speed up
simulation, it is necessary to find a solution capable of
modeling this binary flow in a fully integrated and natural
way in the host simulation. For example, we can consider a
“switch” block in a C program. In the source code, there is
just a basic block for each possible value of the control
variable (each “case” section). Each basic block is one of the
multiple jump alternatives from the “switch” instruction.

However, typical binary instruction sets do not have
instructions supporting multiple jumps. Thus, in the cross-
compiled binary, the “switch” can be replaced by a list of
conditional braches, which means a full set of new basic
blocks. If we want to model that flow in the source code, it
is necessary to have a list of “if” instructions together with
the original “switch” block, increasing simulation overhead.

Additionally, when compiling the source code for the host
execution, the “switch” will again be transformed, due to the
same reason. Thus, in the host program there will be two sets
of branches: one from the native implementation of the
“switch”, and one from the list of blocks added to model the
cross-compiled binary code. The point is that both sets have
the same functionality, since they come from the same
original source code. In other words, we are executing the
same code twice, with the corresponding unneeded overhead.

To reduce this overhead, the paper proposes a novel
alternative based on the modification of the compiler’s
intermediate representation (IR). The idea is to use not only
the same source code for target analysis and host simulation,
but also to modify the IR code used during host compilation
to follow the structure of the cross-compiled binaries. Thus,
basic blocks in the IR code and in the cross-compiled binary
easily match, and annotations can be made without adding a
duplicated execution flow, speeding up the simulation.

A. Benefits from reusing front-end modifications

When reusing the IR code, it is important to note that the
same compiler infrastructure can generate different binary
codes due to differences in the back-end step, but also in the

front-end compilation step. Nevertheless, typically IR code
generated by the front-end compiler for one machine can be
still valid for other machines, while results obtained from the
back-end are not re-targetable. Thus, the first novel idea
presented by this paper is that it is not necessary to go back
to source code to make the annotation, as done in previous
techniques.

Moreover, it is not only possible to reuse the IR code
generated for the cross-compiler to generate the simulation
executable but also a simulation improvement.

Additionally, the majority of the control flow
modifications made during the compilation process, are a
result of front-end optimizations. Thus, if we reuse IR code,
most of the differences found in [1] are no longer a problem.

B. Annotation of back-end modifications

The main issue resulting from the proposed approach is to
handle modifications done in the back-end step. In order to
modify the IR code obtained during the native compilation
step to be as similar as possible to the cross-compiled binary
flow, this work has focused on the operation of the LLVM
compiler, since it is an open-source compiler which is
gaining increasing interest [14], and in which it is easy to
analyze and modify the IR code.

Typically, differences between the IR and the binary code
can be catalogued in two different groups. First, there are
differences stemming from instructions that cannot be
directly transformed into assembler code. They result in
cases such as in the “switch” commented above, where
modeling the binary flow leads to unnecessary code duplicity.

A second group of differences appears because the back-
end compilation step may modify some of the decisions
taken by the front-end to generate the IR code. For example,
the back-end compiler may change the order of “then” and
“else” clauses in an “if” structure found in the IR. It can also
modify the operations done in comparisons, for example to
force a comparison with ‘0’, if the compiler considers that
the resulting improvement in performance merits the change.

It is important to note that only the changes that involve
the creation or destruction of basic blocks are relevant for
the IR modification during the annotation process. Other

Figure 1: Annotation code, extracted from [1]

 .

4

changes, such as a reordering of the basic blocks, are no
critical for that process.

To handle both cases, the proposed process for the IR
modification has the following steps:
- Generate flow graphs with the basic blocks, both in the

IR and in the binary codes and find the differences,
matching basic-block marks (Figure 2).

- If there are different basic blocks, cross-check the IR
code to know the IR instruction that caused the change,
searching for one of the elements described below.

- If so, modify the IR to match the binary following a
template that depends on the responsible instruction.

- Adapt the order of the basic blocks of the template to
the blocks in the binary.

- If no solution is found to adapt the template to the binary
flow or it is not caused by an identified element, the
solution applied in [1] is applied.

The last step has been added for completeness, but in our
experiments, the previous steps have solved all the
differences without requiring this last one.

Thus, the most critical point is to identify the elements in
the intermediate code that provoke the modifications and
generate the templates used to modify the IR code.

Considering LLVM IR code, the main language
constructs provoking differences between IR and binary
code are switch and return clauses, complex logic conditions
and select and data extension instructions.

Switch clauses do not have a direct mapping into
assembler instructions, since assembler branches do not
permit multiple jumps. As a result, the compiler can replace
the switch by a list of conditional branches or a branch table.

Return instructions in the IR code is not followed by any
basic block. As a result, the compiler tries to optimize the
execution graph of the function and the “return” basic blocks
disappears. To model this, the IR code is modified by
analyzing the binary code graph and moving codes and
removing jumps until both fit.

When a condition is the result of the composition of
multiple simple conditions (e.g. “if(a>0 && b<1 && c==0)
{…}”), binary and IR codes differ. In LLVM, the IR code
considers the logical conditions as any other mathematical
operation. Thus, it obtains the result of the composition first,
and then applies it to a single “if” statement. However, for a
standard processor, this procedure is inefficient. Instead, the
back-end compiler changes the single “if” of a compositional
condition for several “if” clauses with single conditions (e.g.
“if (a==0) { if (b<1) { if (c>2) {…} } }“).

As a consequence, the approach proposed modifies the IR
code taking the simple conditions that form the composite
conditions and creating as many “if” clauses as required,
following the order found in the cross-compiled binary code.

So, for example, in Fig 2, it can be shown how the branch
at the end of the “entry” basic block depends on a composite

condition, and how a new “if” struct is added to use simple
conditions instead of composite conditions, as the compiler
back-end does when generating the binary code.
Furthermore, “uc_add_time” functions are added to annotate
the number of cycles and instructions in the basic blocks.

Figure 2: Annotated IR code

Select instructions are included by the LLVM compiler
for short conditional blocks with a single instruction,
replacing the “if” clause. If there is a divergence between the
basic blocks of the IR and the binary due to a “select” clause,
the IR is modified by replacing the “select” with an explicit
“if”, where timing annotations can be added.

Zero extension instructions are used to convert data types.
It is typically used when saving values from boolean
operations. In that cases require conditional branches are
used for their implementation. If so, the instruction is
modified adding an explicit “if” clause in the IR code, as in
the “select” instructions case.

C. Overall proposed procedure

To implement the annotation process described before, a
complete compilation flow is proposed (figure 3). In this
flow, the first step is to compile the original code for the
target processor, extracting the corresponding IR code. Then,
the IR code is cross-compiled into assembler code and
analyzed to obtain the basic-block information to be
annotated. After that, the IR code is modified following the
steps described in the previous section, in order to generate
an annotated IR code with minimal overhead. Finally, the
code is compiled for the host computer and simulated.

This approach has several advantages with respect to the
approaches found in the bibliography so far. First, the IR
code is not transformed into a new C code, but directly
reused. Thus, the debugging information found in the final
host executable corresponds to the original source code, and
thus, debugging is made possible.

 5

Source Code

IR code

Compiler
Front-end

Cross-compiler
Back-end

Binary code

Binary Analyzer

IR annotator

Binary Basic Block
Information

Annotated IR Code

Host Executable

Host Compiler
Back-end

Figure 3: Annotation flow

Secondly, the modifications proposed are quite generic, so
they can be valid for a large set of processors. In the same
way, modifications of the IR code are not done within the
compiler, but by an external tool. Since this tool is processor-
independent, the approach can be widely used.

Finally, timing annotation has been slightly modified with
respect to the proposal presented in [1]. Instead of adding a
“wait” statement to model the timing delay in every basic
block, the proposed annotation function only accumulates
the number of cycles and instruction of each basic block in a
global variable. The “wait” statements are added only at OS
function calls, and at specific basic blocks in the code. In this
way, the simulation speed-up is also increased.

IV Results
To evaluate the accuracy and speed of the technique

proposed, it has been applied to obtain execution time
estimations of several examples of a generic test suite. All
tests have been compiled with LLVM compiler with –O3
optimizations degree. Results obtained have been compared
with the simulation techniques in [1], and with the execution
in a real platform and in the host computer.

To obtain the estimation and measures, a XILINX ML506
platform board has been used. In this board, its FGPA (Virtex
5) has been configured to integrate a platform with a LEON3
core [16]. To obtain information about the number of
instructions required to execute the examples in the real
board, the LEON3 peripheral “l3stat”, which provides
several HW performance counters has been used.

The examples provided in the Mälaardalen benchmark
suite [15] have been executed and evaluated, as proposed in
[1]. The results obtained can be seen in Table 1. To obtain
accurate time measurements, and minimize the variability
added by the Linux OS, the examples have been executed in
a loop repeating them 1 million times.

This table first compares the number of instructions
required to execute the examples in the real board and the

estimation obtained with the proposed technique. As it can
be shown, errors are typically around 1%, with a maximum
value of 7%. First analysis of the errors indicate that most
the instructions not considered by the estimation tool are
related to traps in the real board. This problem is under
evaluation and will be analyzed in future works.

Table 1: Estimation accuracy and simulation speed

Number of instructions Execution time

(msec per 1Mill exec.)
Test Board Estimation Error % Native Estimation Factor
adpcm 83904 83685 0.26 45451 45744 1.01
bs 64 67 4.69 14 24 2.00
cnt 2075 2073 0.10 782 973 1.24
compress 4894 4930 0.74 724 1322 1.83
cover 934 936 0.21 125 135 1.08
crc 20851 20850 0.00 207 264 1.30
duff 518 518 0.00 72 81 1.14
edn 46941 47036 0.20 2943 3134 1.06
expint 1704 1703 0.06 541 555 1.02
fac 146 145 0.68 34 62 2.00
fdct 1586 1586 0.00 166 231 1.44
fft 1505 1393 7.44 245 272 1.13
fir 282245 279499 0.97 22292 74774 3.35
insertsort 480 478 0.42 75 135 1.86
jfdctint 2923 2935 0.41 452 516 1.13
lcdnum 185 184 0.54 11 30 3.00
lms 211464 208788 1.27 44524 47134 1.06
ludcmp 1970 1930 2.03 233 274 1.17
matmult 91577 91577 0.00 10422 10502 1.01
ns 6939 6945 0.09 601 734 1.22
nsichneu 6765 6764 0.01 702 802 1.14
prime 6456 6884 6.63 1696 2011 1.19
qsort 1286 1319 2.57 85 111 1.38
qurt 736 743 0.95 221 220 1.00
st 91132 87087 4.44 13358 13364 1.00
statemate 1025 1038 1.27 90 212 2.33
ud 1909 1893 0.84 290 301 1.03

Additionally, overhead results in table 1 shows a mean

factor value (time of the proposed approach / time to execute
the original code) of 1.45 with worst overhead of 3.35%.

To analyze these results with respect to other previous
approaches in the state of the art, the comparison with the
results reported in [1] can be found in table 2. Although the
values reported in this previous approach were obtained for
an ARM-based platform and using a gcc compiler, we
consider that the ratios of accuracy and overhead can be
compared with the new ones, in order to evaluate the benefits
of the proposed approach.

As the table shows, the error of the developed tool for the
benchmarks selected in [1], is lower than 1.3, while in the
previous approach was up to 16%. Additionally, the
overhead factor of the proposed approach is lower than 2.4
times, while in the previous approach the overhead required

 .

6

execution times up to 40 times bigger than the native
execution of the original code for the worst example.

Table 2: Comparison with the approach in [1]

 Proposed Approach Paper [1]

Estimation

Error %
Overhead

Factor
Estimation

Error %
Overhead

Factor
crc 0.00 1.29 0.00 3.22
edn 0.20 1.06 16.66 10.71
matmult 0.00 1.01 0.14 5.38
nsichneu 0.01 1.14 0.00 40.04
statemate 1.27 2.35 -2.15 10.00

Thus, results demonstrate that the proposed approach can

provide a very good ratio accuracy vs. speed, with very high
accuracy and very low overhead for the examples proposed.

This technology has been also applied to a larger
application, more common in the space domain: a CCSDS
122 use case. For this use case, operations with one core and
two cores have been evaluated, using one and two threads to
run the code. When moving to a dual-core platform, the
mapping of tasks to cores change on each execution, so
instructions and cycles on each processor cannot be
compared separately. Thus, comparison is only possible
analyzing the overall execution time. Results obtained can
be found in table 3.

Table 3: Estimation of a CCSDS 112 use case
Cores /
Threads Board Estimation Error

% CPU0 CPU1 CPU 0 CPU 1
1 core Instruc. 396363906 392061803 1,1

Time(ms) 13202,6 12407,5 6,0
2 cores
1 thread

Instruc. 387605066 39716098 413141813 32904 3,3
Time(ms) 13786,4 13822,4 12737,65 12737,65 7,8

2 cores
2 threads

Instruc. 191801968 232804017 214835297 198339547 2,7
Time(ms) 9064,5 9104,6 7399,92 7399,92 18,7

As it can be seen, the parallelization integrated in the code

can reduce the execution time taking advantage of the dual
core. As the table shows, when considering the example, the
accuracy of the estimation tool is still quite good since all
errors are below 20%.

V Conclusions
Host compiled simulation has demonstrated during last

years to be a very attractive solution since it enables
obtaining accurate performance estimation times with high
simulation speed. Additionally, it provides an early way to
create virtual platforms where application SW can be
developed, evaluated and debugged considering timing
parameters. As a result, it can be adapted to solve the
problems found when adapting modern HW platforms to the
space domain.

Additionally, results obtained by previous techniques still
can be improved in terms both of accuracy and overhead. To
solve the discrepancies between the host binary and the
target binary, the proposed approach presents a technique

that modifies the IR code generated by the compiler for the
target platform, in order to model the details of its execution
in the target board. Then, this IR code is compiled with the
host compiler back-end and executed in the host computer.
The modifications done in the IR code have two goals. First,
the basic block structure is modified to replicate the structure
of the cross-compiled binary. Then, IR basic blocks are
annotated with the performance information required to
model their execution in the target board when run in the host
computer. These modifications of the basic blocks enable to
apply simple annotation mechanisms and avoids the
overhead found in previous approaches.

The technique has been adapted to a typical Space
platform, based on a LEON3 processor, and evaluated with
a benchmark suite and a typical CCSDS112 space
application.

Results obtained show that the proposed approach
overcomes most of the limitations found in previous
approaches, providing not only fast and accurate SW
simulation and performance analysis but also SW debugging.

REFERENCES
[1] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Source-Level Simulation of Software Timing Considering Complex Code
Optimizations,” in Proceedings of DAC’11, San Diego, California, 2011
[2] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable
performance estimation at the transaction level,” in Proc. of DATE, 2008.
[3] T. Meyerowitz et all, “Source-level timing annotation and simulation for
a heterogeneous multiprocessor,” in Proceedings of DATE, 2008.
[4] O. Matoussi and F. Petrot, “IR-level annotation strategy dealing with
aggressive loop optimizations for performance estimation in native
simulation,” in Proceedings of CODES+ISSS, 2017.
[5] Z. Wang and A. Herkersdorf, “Software performance simulation
strategies for high-level embedded system design,” Performance
Evaluation, vol. 67, no. 8, pp. 717–739, 2010.
[6] X. Zheng, L. K. John, A. Gerstlauer , “Accurate Phase-Level Cross-
Platform Power and Performance Estimation”, Proc. of DAC 2016.
[7] Z. Wang, K. Lu, and A. Herkersdorf, “An approach to improve accuracy
of source-level TLMs of embedded software”, Proc. DATE, 2011
[8] D. Mueller-Gritschneder, Kun Lu and Ulf Schlichtmann, “Control-flow-
driven Source Level Timing Annotation for Embedded Software Models on
Transaction Level”, Proc. of DSD 2011.
[9] C. Gerum, O. Bringmann & W. Rosenstiel, “Source level performance
simulation of GPU cores”, Proc. of DATE, 2015
[10] R. Stahl, D. Mueller-Gritschneder, U. Schlichtmann, “Automated
Redirection of Hardware Accesses for Host-Compiled Software
Simulation”, Proc. of FDL, 2018
[11] P Penil, A Díaz, H Posadas, J Medina, P Sánchez, “High-level design
of Wireless sensor networks for performance optimization under security
hazards”, ACM Transactions on Sensor Networks (TOSN), 2017
[12] O. Bringmann, W. Ecker, A. Gerstlauer, et al., “The Next Generation of
Virtual Prototyping: Ultra-fast Yet Accurate Simulation of HW/SW
Systems”, Proc. of DATE 2015
[13] S. Schulz, O. Bringmann, “Accelerating Source-Level Timing
Simulation”, Proc. of DATE, 2016.
[14] Nick Flaherty, “ARM Moves to LLVM Open-Source for Future
Compilers”, http://www.eetimes.com/document.asp?doc_id= 1321853,
EETimes, 2014.
[15] Mälardalen WCET research group WCET Benchmark Suite.
http://www.mrtc.mdh.se/projects/wcet
[16] Cobham Gaisler AB, Download Cross Compiler System,
http://www.gaisler.com/index.php/downloads/compilers

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christoph%20Gerum.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Oliver%20Bringmann.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wolfgang%20Rosenstiel.QT.&newsearch=true
https://ieeexplore.ieee.org/author/37086508559
https://ieeexplore.ieee.org/author/37086508559
https://ieeexplore.ieee.org/author/37265854500
https://ieeexplore.ieee.org/document/8524038/
https://ieeexplore.ieee.org/document/8524038/
https://ieeexplore.ieee.org/document/8524038/
javascript:void(0)
javascript:void(0)
javascript:void(0)
http://www.eetimes.com/document.asp?doc_id=%201321853
http://www.mrtc.mdh.se/projects/wcet

