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Linear entropy and Bell inequalities
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For mixed states of a pair of spin-1/2 particles, the positivity of the sum of the conditional linear entropies
is a sufficient condition for the nonviolation of the Bell-CHSH~Clauser-Horne-Shimony-Holt! inequalities.

PACS number~s!: 03.65.Bz, 89.70.1c
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Entropy inequalities in clasical and quantum informati
have been studied since long ago@1#, but recently they are
receiving increasing attention@2# in view of the application
to quantum computers and quantum communication. In
cent times, information-theoretic Bell-type inequalities@3,2#
have been derived, and a relation between the entropy
equality and the standard Bell-CHSH~Clauser-Horne-
Shimony-Holt! @4# inequality has been established@5#. In this
paper we prove, using the so-called linear entropy, that
mixed states of a pair of spin-1/2 particles, the positivity
the sum of the conditional entropies is a sufficient condit
for the Bell-CHSH inequality.

The difference between classical and quantum inform
tion may be formalized in terms of the entropy. IfS12 is the
entropy of the composite system andS1 ,S2 those of the sub-
systems, the classical statement that we cannot have m
information about the whole than about each part may
represented by the inequality

S2/11S1/2>0, Si / j5S122Sj , j 51,2, ~1!

whereS2/1 andS1/2 are called conditional entropies. Actuall
the stronger condition holds that each conditional entro
must be non-negative, but here we shall use only Eq.~1!.
The inequality is violated by quantum mechanics in so
cases, for instance in the singlet spin state, whereS1250, but
bothS1 andS2 are positive. In this paper we shall not use t
standard von Neumann@6# entropy, but the more simple on
defined by

S125Tr@r~12r!#512Tr~r2!, Sj512Tr~r j
2!, j 51,2,

~2!

wherer is the 434 density matrix representing the state
the two-particle system andr1(r2) the 232 reduced density
matrix of the first~second! particle. The classical counterpa
of Eq. ~2!, called Tsallis entropy@7# of order 2, fulfills
Eq. ~1!.

A relevant question is whether the violation of Eq.~1! is
merely a theoretical feature derived from the definition
quantum entropy, or instead has empirical consequen
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Horodecki et al. @5# proved that if bothS2/1>0 and S1/2
>0, then no Bell inequality can be violated. Here we prov
stronger statement:

Theorem. For any state~mixed in general! of a system
consisting of two spin-1/2 particles, the entropy inequal
~1! is a sufficient condition for the nonviolation of the Bel
CHSH @4# inequalities.

Local realism implies constraints on the statistics of tw
widely separated systems. These constraints are generi
known as Bell inequalities and arise from the assumption
the existence of an underlying joint probability for a set
measurable quantities. The CHSH Bell-type inequality a
plies to a pair of two-state systems and constrains the v
of a linear combination of four correlation functions betwe
the two systems. As is well known, the CHSH inequality c
be violated by the statistical predictions of quantum mech
ics.

In order to prove the theorem we consider two dichotom
observables, that is, Hermitian and traceless operatorsa1
and b1 ~a2 and b2!, for the first ~second! particle fulfilling
the conditions

a1
25b1

25a2
25b2

251, ~3!

and define the ‘‘Bell operator’’@8# by

B5a1a21a1b21b1a22b1b2 . ~4!

The density matrixr fulfils the equalities

Tr r51, Tr~rB!5b, ~5!

b being a real number in the interval@22&,2&#. The Bell-
CHSH inequality is violated in the stater if ubu.2. We shall
prove ~see below! that

S1/21S2/1<
1
2 @12 1

4 b2#, ~6!

which shows that all possible Bell-CHSH inequalities a
fulfilled if the entropy inequality~1! holds true, which is the
statement of the theorem.

In order to prove Eq.~6!, we first define a different den
sity matrix:

r85r2 1
2 I 1^ r22 1

2 r1^ I 21 1
2 I , ~7!

where I 5(I 1 ,I 2) is the unit 434 (232) matrix and ^

means tensor product. It is easy to see that ifr fulfills Eqs.
~5!
©2000 The American Physical Society01-1
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r8 also fulfills it with the sameb, but each reduced densit
matrix of r8 is one-half the unit matrix. The relevant result
that S1/21S2/1 is the same forr as it is forr8, which allows
one to write it in terms of the entropyS128 of r8; that is,

S1/21S2/15S1/28 1S2/18 52S128 21. ~8!

The second Eq.~8!, may be derived easily from Eqs.~1! and
~2!, taking into account thatr j85 1

2 I j ( j 51,2). The proof of
the first equality is as follows. From Eq.~7! we get

Tr~r82 1
2 I !25Tr~r2 1

2 I 1^ r22 1
2 r1^ I 2!2. ~9!

After some algebra, this gives

Tr r825Tr r22 1
2 Tr r1

22 1
2 Tr r2

21 1
2 , ~10!

which easily leads to the first Eq.~8!.
Now we search for the density matrixr9, which makes

S129 a maximum constrained by Eqs.~5!. This puts forth a
straightforward variational problem, and the solution is

r95 1
4 @ I 1 1

4 bB#. ~11!

In fact, it is easy to prove that any density matrix fulfillin
Eqs.~5! may be written in the formr91dr with r9 given by
Eq. ~11! and dr Hermitian, traceless, and such th
Tr(drB)50. The entropy associated with such a density m
trix fulfills

S125S129 2Tr~dr2!<S129 , ~12!

the inequality coming from the property that indicates th
the trace of the square of a Hermitian matrix is non-negat
The entropyS129 may be calculated by inserting Eq.~11! in to
Eq. ~2!. We get
s

A
v.

02410
-

t
e.

S129 512 1
16 Tr@ I 1 1

2 bB1 1
16 b2B2#5 1

4 @32 1
4 b2#, ~13!

where we have taken into account the relations

Tr I 54, TrB50, TrB25Tr~4I 1@a1 ,b1#@a2 ,b2# !516.
~14!

Equation~6! follows immediately from Eqs.~8! and~13!,
if we take into account thatS129 , being a maximum, is no
smaller thanS128 . This completes the proof.

Our result include previous ones obtained within t
information-theoretic approach, in particular the one o
tained in Ref.@5#, where the authors showed that from

S~a,b!>max$S~a!,S~b!%, ~15!

the Bell-CHSH inequality can be derived, while to obtain t
same result we have started from

S~a,b!> 1
2 @S~a!1S~b!#, ~16!

It is easy to see that Eq.~15! implies Eq. ~16!, so our
proof is less restrictive than theirs.

Some other interesting questions still open are wheth
similar result could be obtained by using the standard v
Neumann and Shannon entropies, instead of Eqs.~2!, and if
it would be possible to generalize these results to syst
with more than two degrees of freedom. A particular e
ample investigated in this respect@9# suggests that this would
be the case.

We acknowledge financial support from DGICYT
Project No. PB-98-0191~Spain!.
-

tt.
@1# A. Wehrl, Rev. Mod. Phys.50, 221 ~1978!.
@2# N. J. Cerf and C. Adami, Phys. Rev. A55, 3371~1997!; Phys.

Rev. Lett.79, 5194~1997!.
@3# S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.61, 662

~1988!.
@4# J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phy

Rev. Lett.23, 880 ~1969!.
@5# R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett.

210, 377 ~1996!; R. Horodecki and M. Horodecki, Phys. Re
.

A 54, 1838~1996!.
@6# J. Von Neumann,Mathematical Foundations of Quantum Me

chanics~Princeton University Press, Princeton, NJ, 1955!.
@7# C. Tsallis, J. Stat. Phys.52, 479 ~1988!; M. L. Lyra and C.

Tsallis, Phys. Rev. Lett.80, 53 ~1998!.
@8# S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev. Le

68, 3259~1992!.
@9# A. Mann, M. Revzen, and E. Santos, Phys. Lett. A238, 85

~1998!.
1-2


