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Fourth-order interference in the Wigner representation
for parametric down-conversion experiments
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In the Wigner formalism, after giving a general description of a light beam, the theory of parametric
down-conversion is developed to second-order in the coupling constant. We then describe the detection process
by calculating the auto-correlation and cross-correlations of the signal and idler beams. Four recent experi-
ments are analyzed in detail: interference on a screen, Franson’s experfibpss Rev. Lett62, 2205
(1989, Rarity and Tapster’'s experimeri8hys. Rev. Lett64, 2495(1990], and induced coherence without
induced emissiofX. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. L&%, 318(1991)].
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[. INTRODUCTION possible trajectories seem to interfere. In contrast, the phase-
space representations suggest an interpretation in terms of
Experiments using photon pairs from parametric down-waves. If the Wigner distribution is interpreted as a probabil-
conversion(PDC) have become very popular in the past de-ity distribution of field-mode amplitudes, then the corpuscu-
cade for the study of nonclassical aspects of Iight In the  lar aspect of light appears just as wave interference, includ-
pioneer experiment of Burnham and Weinbé@1 it was |ng a ZerO-pOint vacuum field. There are two difficulties for
found that the measured value of the correlation time bethis interpretationi(i) The Wigner function associated with
tween the two down-converted photons was very small, anEh_e guantum states of Ilght is not always norj—negatlve defi-
more recent experiments have shown that it may be smalldfit€ and, consequently, it cannot always be interpreted as a
than picoseconds3]. This means that experiments with PDC probability distribution, a_mc(n) the detection probability is
photons pairs are well suited for the study of the quantu ot proportional to the Intensity, but to thg d|_fferenge be-
aspects of light, such as photon entanglement. ween the actual intensity and the zero-point intengstye

. c. V). In PDC experiments the first difficulty does not
The theory of PDC has been developed using the standarsde . Co L
: . ; he W f |
Hilbert-space formulation of quantum optig$], but, to our dppear because the Wigner function is always positive in

X these experimentsee Sec. V.
knowledge, no study of PDC has been made using the phase- In the rest of the paper we shall study in the Wigner

space distributions, which are so popular in other parts ofgnresentation the essential ingredients in order to interpret
quantum optics. For instance, phase-space distributions prgse experiments. In Sec. Il we describe the light beam. In
vide the standard method for the study of parametric ampligec. 1| an explicit expression for the Wigner fields produced
fication[5], closely related to PDC. Obviously, the reason isin the process of PDC is obtained. Section IV is devoted to
that the Hilbert-space formulation seems more suitable Whefhe Study of correlations among these beams as a conse-
the photon number is the relevant observable, as in PDGuence of the correlations present in the vacuum field. Ex-
while phase-space representations seem better when the figigessions for the single and joint detection probabilities are
amplitudes are the relevant quantities, as in the case of pargemputed in Sec. V. In Secs. VI-IX we study a representa-
metric amplification. Here we shall show that the Wignertive set of the experiments.
representation is also quite efficient for analyzing experi- In a previous papef7] we have studied in the Wigner
ments involving PDC photon pairs. representation several experiments with parametric down-
Furthermore, this formulation stresses the role played byonverted light involving single counts. These experiments
the vacuum fields incident on the crystg8]. Quantum showed second-order interference. In the present paper we
theory does not allow for a picture with entitiésither pure  study experiments that show fourth-order interference and
particles or pure wavépropagating in space and time. Nev- therefore involve coincidence detections.
ertheless, the Hilbert-space formulation emphasizes the par-
ticle aspect. Photons are created at some point, propagate, Il. DESCRIPTION OF A LIGHT BEAM
and are eventually annihilated by detectors. Of course the IN THE WIGNER REPRESENTATION
photons are not classical particles and, for instance, their
In the Hilbert-space representation of the light field, the
electric vector is represented as a sum of two mutually con-
*Permanent address: Departamento dgicBl Aplicada, Escuela jugate operators
Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain.
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A ﬁwk 1z ~ .
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whereL? is the normalization volume ara, ,(t) is the an- V————— NLC
nihilation operator for a photon whose wave vectok iand e \\
whose polarization vector ig, , , and w,=c|k|. Equations Eq, E,

(1) and (2) correspond to the Heisenberg picture, where all
time dependence goes in the creation and annihilation opera-
torsay ,(t) anday ,(t). For a free field this dependence has
the form

FIG. 1. The process of parametric down-conversion.
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but for interacting fields it is complicated and contains all theTn® crucial property of the Wigner function is that the en-
dynamics of the process. In this picture the state of the fiel$€MbPle average of any polynomial of the random variables
is represented by a time-independent density opegator ¢ and @ weighted by the Wigner density exactly corre-
In this paper we shall always consider electromagnetiSPOnds to the Hilbert space expectation of the corresponding
fields corresponding to narrow light beams and we shall nofYMmetrized product of the annihilation and creation opera-

study experiments involving polarizing devices. In thesetorsa anda'. That is,

conditions it is convenient to use a scalar approximation well

knowp in classicql optips_. We assume that the light beam (P(a,a*))ZJ P(a,a* )W(a,a* )dMa
contains frequencies within a range betwegp,, and oy

and wave vectors whose transverse components are limited ~at

by a small upper value, that is, =Tr{pSP(a,a"]}, (10

. where M is the number ofa, variables defined and ]
Omin< Ok< Omax, | K<€ —. (4  means symmetrization, which consists of taking the average
¢ over all orderings of the operators, for example,

We shall ignore polarization and therefore multiply the am- o 1. . o
plitude (2) by 2. Hence the “relevant” component of the S[E(HE(*)]:E(EH)E(*)*‘ ECE™)). (11)
electric vector is

B V2 Another useful piece of information is the transformation of
EOr =i (# A (e (5)  the Wigner field amplitudes in a beam spliti@Ss). If a,b
’ m L ' are the incoming channels amdgd the outgoing ones, and

T (R) is the transmissiofreflectior) coefficient, we have
where the square brackets in the summation symbol indicate
that the sum is restricted to the setlokatisfying Eq.(4). ECV(r)=TES"(r,) +iREY(r 1),
In the Wigner representation the operatét(§)(r,t) and
E()(r,t) becomec numbers, the annihilation operators

a(t) being replaced by random variableg(t) and their  \we have assumed thRtandT are real numbers ardis the

Hermitian conjugatesal(t) by complex conjugates (t). point where the center of the BS is placed. These relations

The field amplitudes are are the same as between the corresponding field operators in
the Hilbert-space formalism and also between field ampli-

E{P(r,t)=TEL ) (r,t) +iRE{ (1, 1). (12

) ] fiwy | 2 ke tudes in classical optics. This agreement is a straightforward
E (r,t)=|[zk] L3 a(t)e™. ®) consequence of the linearity of Eq42).
The Wigner density associated with a state whose density ll. THE PROCESS OF PARAMETRIC
matrix is p is [8] DOWN-CONVERSION
W(a,a*) =T p®(a,a*)] (a={ay) R0 In this section we are going to study the process of para-

metric down-conversion of light in the Wigner representa-
tion. In Fig. 1 we show a sketch of the setup used for PDC.
A nonlinear crystal is pumped by a laser beshygiving rise
1 to a rainbow of colored cones around the axis defined by the
ot * * 2 H i
d(a,a*)=]] _ZJ efk@— @)~ ag2g, . (8)  pump. In experimental practice two narrow correlated
SR beams, called “signal’Es and “idler” E;, are selected by
means of pinholes, filters, or just the detectors.

For instance, the Wigner function of the vacuum state is the The process of PDC may be formalized using a Hamil-
Gaussian tonian of the form

where
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~ g 1\ . To second-order in the coupling constait that is, tak-
at+ E) +Hint, (13 ing the second term of the right-hand side of Etp) as a
perturbation and retaining terms up to ordéf, we get(set-

where ting g'At=gq)

H:E ﬁ(,()k
k

At
7(w0_wk_wk’)

Am=ig’' VY, f(kk' e *dajal,+He., (14 ak(o):aOk(O)"'gV% f(k,k")u
k,k’
.. . X"T 0)+ 2|V|22 2 f(kkVF* (k' K"
and we have taken the origin of the coordinate system at the ag(0)+9 L 2 Tk, )f* (kK"
center of the crystal. In Eq14) we have treated the pump Kook

beam as an intense monochromatic plane wave represented,
in the scalar approximation, by Xu

At
7(a)k, + Wyn— a)o)

V(r,t)=Ve ko)t ¢ c (15)

Xu éok”(o), (19)

t
- (00—
It is not quantized because it is much more intense than the
outgoing beams. The coupling constaptis defined so that where
the producty’V has dimensions of frequency, afik,k’) is
a dimensionless symmetrical function of the wave vectors
inside the crystal. This function, which is related to the func-
tion f(k,s;r,t) introduced in Eq(15) of Ref.[4], is different
from zero only when the following matching condition is After t=0, 5k(t) evolves as a free-field mode
fulfilled:

u(x)= ?e‘x. (20)

a(t)=a,(0)e e, (21)
ko~k-+k'. (16)
In the derivation of Eq(19) we have considered the free
As is well known[4], there is in addition a matching condi- evolution of operatoréOk (zeroth-order solution
tion for frequency that is fulfilled much more rigorously,
namely, ag(0)=ag(—At)e At al (0)=al (—At)e' .
(22)
wo= Wkt wyr. (17 . o . .
The perturbative approximation used to get Ek®) is valid
We now obtain the Heisenberg equations of motion forProvided that
a,(t) during the interaction, using the Hamiltonian given by glVv|<1. (23
Eq. (13,
From now on we shall usg, instead ofg’, as an effective
coupling constant. Equatiori16) implies k"~k in the
second-order contribution to Eq19). Finally, taking into
account that commutation rules are preserved in a unitary
evolution, it is not difficult to see thdfrom Eg. (21)]

A 1. .
ak:E[aKiH]_)

ag=—iwgag+g'Vvy f(kk e iwoal, . (19 o
K’ [ak(ty),ax (t2)]=0,

In order to calculia\ték(t) for all t we shall take into account [ék(tl)ié-lr(tz)]: 5k]k,e—iwk(tl—t2), t,,t,>0. (24

that the operatop,(t) evolves as a free-field mode before

entering the crystal and after coming out. We shall integrateCommutatorg24) will be used in Sec. 1V, in order to relate
Eq. (18 from t=— At to t=0, whereAt is the time taken different correlations.

for the radiation to cross the crystal. The initial condition is  In order to go to the Wigner representation, we shall use
a (— At)=ag (—At), whereag (—At) is the destruction the fact that the evolution equations of the Wigner field am-
operator of the modé in the incoming vacuum field. We plitudes are the same as Heisenberg equations of motion of
shall assume that the coherence time of the laser is large ifie corresponding quantum field amplitudes, whenever the
comparison with most of the times involved in the process/atter are linear. The linearity of the Heisenberg equations is

so that we may ignore the time dependenc¥ @f. Because & consequence of the fact that the Hamilton(ad) is qua-
the detection probabilities are of second-order in the coudratic in the creation and/or annihilation operators. Hence we

pling constany’, we need, in general, to calculag(t) to  simply replace operatora, (af) by complex variablesyy
second-order irg’. This fact plays an essential role in the () in expression$19) and(21).

calculation of probabilities in the Wigner representation. Now, let us consider two narrow correlated beams, called
However, we shall show that where, as in this article, onlysignal and idler, with average frequencies, »; and wave
joint probabilities are calculated, all second-order terms mayectorsk,k;, respectively, fulfilling the matching condi-
be expressed in terms of first-order ones. tions
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kS+ ki = ko . (25)

wst wi=wg,

From expression&l9), (21) (as functions ofx, a*), and
(6), we obtain

EC(r,t)=ESD(r,t) +e eolgVGEy (r,t)

+g?|VI2IER(r,1), (26
EF(r,)=EG ) (r,) +e7 “dlgVGEy(r,1)
+?VI2PIES (1 1). (27)

Here Eos and Ey; are the incoming vacuum field ani
(E;) the outgoing signalidler); see Fig. 1. We have

112
oo (r, t)—lz ( ) (ke ag,(0),  (28)

where the square brackets in the summation symbol indicate [k]

that the sum is restricted to the set lofpertaining to the
signal beam, and similarly foE{;). For brevity we have

introduced the linear operato&andJ, which are defined as

ho 1/2_ )
GEE)i_)(r,t)=i%s<T3rk) gkrelzeomwdtg (29
with
Bk—[kZ] f(k,k"u —(wo o= o) | ag(0), (30
and
JESH(r,t) I[k]s (ﬁwk) v efrelely, (3D
with

ye=2 > f(kk)f*(k',k")u

—(wkr-l—wku (1)0)

(K] [K"Ts
At
Xu 7(wkn—wk) aOku(O). (32)

From Eq.(26) we see that the outgoing signal, to order

g2, consists of three partgi) a zero-point radiation with

amplitude Eg;’), which passes through the crystal without
any changefii) a radiation produced by the nonlinear inter-
action(mediated by the crystabetween the laser beam, with
amplitudeV, and the zero-point radiation, with amplitude
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in the Wigner representation, the signal and idler beams are
linearly related to the incoming vacuum. Therefore, they are
Gaussian stochastic processes of zero mean. The reason is
that the vacuum amplitudes are Gausdisee Eq.(9)] and

this property is preserved by linear transformations. In the
Heisenberg picture that we are using, the Wigner distribution
is time independent and given by E®), which is positive.

If we pass to the Schdinger picture the linearity of the
evolution equationg18) implies that the Wigner function
remains positive at all times.

In the work that follows it proves convenient to substitute
slowly varying amplitudes (")(r,t) [F()(r,t)] for the am-
plitudesE()(r,t) [E(7)(r,t)] defined in Eq(6), the relation
between them being

FOO(r,t)=e'“a'E(F)(r 1)

=i

haoy )\ Y? I
( k) ak(o)em.rel(a}a—mk)t, (33)

where w, is some appropriately chosen average frequency
midway betweenw i, and wmax [S€€ Eq(4)].

In the study of the experiments of the following sections
the dependence of the field amplitudes on position will be
essential. It is easy to obtain the amplituBe€™)(rg,t) in
terms of the amplitudd=(*)(r,,t) at another point of the
light beam. Using the scalar approximation of the electric
field, we readily have

F<+>(rB,t):F<+>(rA,t—ré—E‘)e‘wa“AB/C), (34)
whererag=rg—r andrag=|rag|-

We point out that the expressions for the detection prob-
abilities (see Sec. Yremain valid when the slowly varying
amplitudesF(") or F(*) are substituted for the usual ones
E() or E(7). Consequently, we shall use only the ampli-
tudesF(*) andF(7) in the rest of this paper.

In terms of the slowly varying amplitudes, Eq&6) and
(27) may be written

FOO(r,t)=(1+g?VI2)FLD(r,t) +gVGRy (r,1),

FIOn0 =1+ g V2R (r, 0+ gVG Ry (r),

(39

where

1/2
Fg“rt)_@( ) elkrelles—ety o (0)  (36)

ES”), entering the crystal in the direction of the idler beam;and similarly forFG(r,1).

and(iii ) one part that modifies the amplituég’ just a little

(to orderg?). The idler beam is constituted in a similar man-

ner.

IV. SIGNAL AND IDLER FIELD AUTOCORRELATIONS
AND CROSS CORRELATIONS

In order to compute the detection probabilities in the
Wigner representation, we now calculate the correlation

properties of the fields. From Eq®6) and(27) we see that,

A. Autocorrelations

For the field at a given point and two different times
andt’ we have to ordeg?

(FO HF () —(FLD(r ) FS(r,t'))
=g?|VIH(GFy (r,)G* i (r,t")) +(Fid(r,1)J*
XFG (1)) +(F (r 1) IFGD ()}, (37)
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where () denotes averaging by the Wigner density corre- Now we are going to apply again the conservation of
sponding to the vacuum state. We have taken into accoumommutation rules, but by considering the signal and idler
thatF{}) andF{") are uncorrelated. There are contributionsfield operators at different times. By taking into account the
of all terms of the expansio(85) of the field. Now, we are same considerations as above, we have

going to relate these contributions by using the preservation

of commutation rules. If we consider the signal beam emerg-

ing from the crystal_ at different timesandt’, from Egs. [ESO (), B ) 1=[FSD(r, ), FSP(r t)]=0—

(24) and (5) we obtain

[FS7(r 0, F ) ]=[Foe (), Fos (rt)], (38) (FSO(r DGR (r 1))y =(F§)(r' 1) GRS (r.1).

. (44)
whereF{") is the fieldoperatorin the Heisenberg picture.
Taking the expectation value in the vacuum for the latter

expression and working in the Wigner representation, wd he s.econd conmutator is zero because i'.[ contains only de-
obtain struction operators. From Eq&l3) and (44), it follows that

(F&s (r ) I*Fo(r ) +(F& (r t)IFGE(r b))

B (FLDO,0FM(0,t))y=gVu(t' —t). (45)
=(GFS(r,HG*FLO(r,t"). (39 ° |

Therefore The corss-correlation for andr’ different from0 may be

) - . - obtained using Eq(34). The function»(7) defines a coher-
(Fs(rHFg(r, 1)) —(Fos (r,t)Fog '(1,t")) ence timer; between signal and idler. By a similar argu-

_ ment, it can be proved that
=2¢%|VIXGFg (r ) G*Fy (1 t) =% VIus(t' — 1), P
(40)

(PSR ) =(FS (Lo R (1) =0.

where we have used that the processes involved are station- (46)

ary and so the field correlations depend only on the time
difference.u¢(7) is a correlation function that we will not
write explicitly, but t.hat may be. calpulated'if the function V. DETECTION PROBABILITIES
f(k,k’), introduced in the Hamiltoniari14), is known. It
goes to zero when is greater than the correlation time of the  In the Hilbert-space formalism, the usual theory of detec-
signal 7. Similarly, tion (by photon absorptionis based on normal ordering.
Single and joint detection rates are given by
(FIP(r DRt —(F6(r HFG ()

=g2|V|?u;(t’ —1). 41 . .
GIVEm =Y 4y Pa(ra,t)=K(O|E 7 (r, ,)EM(r,0)|0), (47
The following autocorrelations, and their complex conju-
gates, are zero: 2y 2y
Pap(Fa,t;rp,t’ ) =K'(O|E 7 (ra ,t) E ) (rp,t")
(FLr RSt =(FDF () =0, o ) "
(42 XEM(ry t)EM)(r,,1)]0) (48

B. Cross correlations in the Heisenberg picture, whekeandK' are two constants

Also the cross correlation may be calculated. Taking therelated to the efficiency of the detectors.

signal and idler fields at two points,t) and ¢',t"), respec- We now formulate the quantum theory of detection in the
tively, we have Wigner representation. The corresponding probabilities are
now

(FO R 1)) =1+ g3 VIR)FL(r,b)
+gVGF; (r,t)} Pa(ra,t)=K{I(ra,H)—lo(ra), (49)

x{(1+g?VI2)FG (1 t")
Vot g Pab(Fa tirp,t" ) =K' {1 (ra,t) =lo(ra) {1 (rp,t") = lo(rp)}),
+gVGFR (r',t)}) 50
= gVI(F& (r,)GFLS (' t")
L 0 where 1(r,t)=|E(M)(r,1)|2 and 1o(r)=(|[EM)(r,— A1)|?),
+(Fo!(r',t)GF (r,0)] ECO(r 1) being defined by Eq6).
(43 We prove Eq.(49) as follows:
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. . 1 . . . .
(O|E)(ro ,HHE M) (r,,1)|0) = §(0|E(+>(ra,t)E(’)(ra,t)+ EC)(ra,)EM)(r,,1)]0)
1 . . . .
= 5 (0B (ra, DE(ra, ) =B (ra HE(r4,1)]0)

. . 1 .

=(0IS{E"(ra,HE " (14,1)}[0) = 5 (OJUT(t+At)
X[EM)(ry,—At),EC)(ry, —AD)]U(t+A1)|0)

=(E(ra  HE T (ra ) — %<OI[E(“(ra,—At),I“E<*)(ra,—At)]|0>

=(1(ra, )~ (O|S[E (s, ~ ADE (1, — AD)}[0)

=<|(I’a,t)>—<|(ra,0)>=<|(I’a,t)—|0(I'a)>, (51

where U(t+At) is the evolution operator. The third equality follows because the commutatdt(©o{r,,—At) and

IAE(‘)(ra ,—At) is ac number(that does not change during the evolujichhe fourth follows because the vacuum expectation
of a normally ordered product vanishes, and this allows us to replace the commutator by the anticommutator and then write it
in terms of symmetrical ordering.

Equation(50) is a little more involved. After some tedious algebra it can be proved that

(O[E)(ra . HE (1 tHE(ry, .t’)E<+><ra.t)|0>=<0|S{ ( E“)(ra.t>E<‘>(ra,t)—%[@“(ra,t),E<‘>(ram)])

X

E“)(rb,t')@>(rbm')—%[@”(rb,t'),@><rb,t'>])}|0>

+%<0|[E<+><ra,t>,é<*>(rb,t'>][S(@>(ra,t>é<>(rb,t'>)

_[E(_)(ra,t),é(_)(rbvt’)]} |0)+ ;(|[E(‘)(rb,t’),E(+)(ra,t)]

s

+%<I[é<‘>(ra,t>£<+><rb,t’>]{S

E<+><rb,t'>é<><ra,t>)—[é<“<rb,t'>,é<)<ra,t>]]|0>

E“)(ra,t)E(‘)(rb,t’))

—[E(“(ra,t),é()(rb,t')]}|0)+%<0|[é()(rbat’),é()(raat)]

s

E<+>(rb.t’)é<+>(ra,t>)—[E<*>(rb,t'>,E<*><ra,t>]] 0).

(52



55 FOURTH-ORDER INTERFERENCE IN THE WIGNE. . . 3885

which is similar to Wick’s theorenf[9], but in this case it
establishes the relation between normal and symmetrical or-
dering instead of normal and time ordering.

By the same argument as that used in form{@a), for v
transforming the anticommutator into the intensity of the
vacuum field, the two commutators can be written as

1. .

STEC(ra ), E7(ra H]1=([EM(ra, = A0 2) =14(ry),
FIG. 2. Experiment of interference on a screen by Ghosh and

Mandel.

1. R

ZTEM) ' (=) "] = (+) _ 2\ _

S [E (o 1), BV (rp t) J=([E(rp, =A%) =1o(ry). VI. EXPERIMENT ON THE INTERFERENCE
(53) OF SIGNAL AND IDLER PHOTONS

, The coherence properties of PDC photon pairs were in-
On the other hand, the rest of commutators are zero in PDC_ . .
experiments because they involve different modes of the rayeshgated by Ghoslet al. [10]. They directed degenerate

diation field. Then the resu(60) follows by taking into ac- signal and idler beams towards a screen by means of two

count these two facts in Eq52) and writing the vacuum mirrors (see Fig. #, where “degenerate” means that the di-

expectation values of the remaining symmetrical operators arsecuons of the signal and idler beams are so chosen that

the corresponding averages with the Wigner density. @s=w;=wol2. If one detector is put on the screen, no

For the purpose of applying E60) to the experiments, it change is ob_s_erved in the counting rate _when the detector
is convenient to write it in a more compact form. We use theCham;Jes position. This shows that there is no second-order
fact, proved in Sec. IV, that the Wigner field amplitudes arelnterference between the two beams. _In _contrast, Whgn two
Gaussian processes. For four Gaussian random variables Qetectors are put on the screen, the_ commdgnce counting rate
B C. andD. the weII'-known ropert is observed to depend on the relative position of the detec-

T ’ property tors. This shows a fourth-order, or intensity-intensity, inter-

ference.

The explanation of these results, in the Wigner represen-
tation, is straightforward. In the scalar approximatiealid
because the angle between signal and idler beams is)small

, , , the field at a point, on the screeffsee Fig. 2is, using Eq.
Pas(a tifs ) =K/ ({1 (ra ) 1ol {1 (1.t~ 1o(r)}) (32 Pt ’ 9
=Pa(ra,t)Pp(ry,t")
+K(EM (ra, DE T (rp, 1))

+K EM (ra , HED (rp t')]2. (55

(ABCD)=(AB)(CD)+(AC)(BD)+(AD)(BC) (54)

allows us to write the coincidence probability as

FOOrg, )=F{ (ra ) +F M (ra )
=F{7(0,t—rg/c)elwors®

+F{7(0,t—r;/c)elwoi’, (58)
On the other hand, from Sec. IV it can be easily seen that _ _
the first two terms are fourth-order @ while the last termis  The vectorr, has componentsx{,y,,d), d being the dis-

second-order imy. This means that we may discard the first tance from the center of the crystal to the screen. The optical
two terms and finally obtain path lengths of the signals and idlerr; beams from the
center of the crystal to the detectors are

Pab(fa tirp t ) =K [(EM(rg HES (ry,t))[2 (56)

re=v(2b—x,)2+y2+d?, r;=4(2b+x,)%+y2+d?,
(59
In actual experiments there is always a detection window , , . .
w and we should perform the time integral of E§6) within whereb is the distance from the axis of the pumping to the

this window. We have mirrors. _ _ _ .
For the calculation of the single detection probability, us-

2 ing Eqg. (49), we need the average

77 w w ,
Pz, 87, 470t e ey e 12
a®b 0 0 <|(rayt)_|0(ra)>:<|F (raat)| >_<|F (ravo)| >
XE(rp 7)) (7 =(IFS(ra ) = (IFC(ra,0?)
We have assumed that radiation modes where the amplitude +{([FI(ra 01D = (|F{(r,01%)
differs significantly from the zero-point value are concen- +)
trated in narrow bands aroung, and w;,, respectively. For +2R4(F(0t—rs/c)

simplicity we have assumed also that the two windows are X EC)(0t—r, I¢))elwolrs ]
identical and that both detectors have the same efficiency ! ' : '

7. (60)
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The last term is zero becau&™ andF{™) are uncorrelated ~ The coincidence probability in two detectors placed at
[see Eq.(46)]. The other four terms give no dependence onf, andry, is given by Eq(56). The amplitude=(*)(r, t) was

r,, that is, we get no interference between signal and idlergiven in Eq. (58) and a similar expression is valid for
F()(ry,t"). Then, we have

Pan(Ta t+ 75, t+ 7 ) =K' [(F{ (rg t+ 1) FS (rp t+ 7))+ FU (rg t+ D) F (g t+77)
FE (rg t+ D F I (rp t+ 7))+ FU (g t+ D) FS (14 7)) 2
=[(F{ (o t+ D)F T (rp t+ 7)) +FU (g t+ D F S (ry 1+ 7)) |2

=(F(0,t+ 7—r5/c)F (0t + 7/ — 1/ [c) el wolrstri)ize

+(FIO,t+ 7= 1 [0)F{P(0,t+ 7 —rl/c))eieolrs T2, (61)

where we have used E@6) in the first equation and Eq. the same coloffrequencyw;, different fromws). One of the

(34) in the second. signal beams and one of the idler beams go to a mirror put
Now, expandingrs andr; (r, andr/) to first order in  above the pumping beam axis and the other two at another
Xa (Xp) and using Eq(57) we get mirror put below(see Fig. 3 The two signals are recom-
bined at one beam splitter and the two idlers at anofimer
27\ oz [V wo practice, the authors used two differents points of the same
Pan(Xa;Xp)~ ﬁ_wo) 9°|V| fo deo dr beam splitter. Two detectors were put in appropriate places
to detect the signal and the idler, respectively. Two control-
X (|v[ 7' — 7—b(X4+Xp)/cd]|? lable phase shifters were introduced in the lower beams, so

that the phase of the signal was increasedshyand that of

+[v[ 7= 7" =b(xa+xp)/cd]|? the idler by ¢,. The result of the experiment was that the

+2 R V[ 7' — 7= b(Xa+xp)/cd] coinciden_ce det.e<.:ti.o_n probability had a cosine variation with
$a— ¢p With a visibility close to 100%. In the actual experi-

Xv*[ 17— 7" —b(Xa+Xp)/cd] ment the signal and idler detectors were placed near each

x gloobxalca ) 62 other, but, in principle, it is possible to send the signal and

idler beams to two distant regions of space by using appro-
priate mirrors placed near the crystal. For this reason the
experiment has been interpreted as a violation of a Bell in-
equality[11].

which shows a cosine dependence ab(x,—x,)/cd
=h(x,—Xa)/\od. It is easy to see that if the detection win-

dow w is much bigger than the correlation time »f7) and In the Wigner representation the field amplitudes arriving
this is bigger than the quantity(x,+xp)/cd, then this quan- 4t the signal and idler detectofslaced atr, andr,, respec-
tity may be neglected in the argument of the functiann tively) will be, using Eq.(12),

these conditions, becaujsg 7)| is an even function of (see
[10]), the visibility of the interference pattern given by Eq. F(s+)(fa,t):iRsF(sI)(fa,t)+TsF(sz+)(fa,t),
(62) becomes close to 100%.
FiP (g t)=TiF D (rp t)+iRF I (rp,t'), (63

VII. THE EXPERIMENT OF RARITY AND TAPSTER () Y (15,1 U2 (1.1 63

In 1990 Rarity and Tapsté¢f1] performed an experiment where we have labeled(2) the upperlower) beamsTg and
to test Bell's inequality using phase and momentum of phoR, (T; and R;) are the transmission and reflection coeffi-
ton pairs(instead of polarization as in previous experimgnts cients of the signalidler) in the beam splittefsee Fig. 3.
The experiment consisted of selecting two signal beams dlow we take Eq(34) into account and write
the same coloffrequencyw,) and two idler beams also of _

Fo (1 ) =€ sat XIeED(0t—r, /c+ sxic),

FU (1 t) =€/ os'a® 190t =1, /c+ dal wg),

Fi(rp t) =gl IR0t —ry /c+ ox/c),

FiO(rp,t') =€ /SH R0t —rp /et ¢yl wy).
FIG. 3. Experiment of Rarity and Tapster. (64)
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We have labeled, (ry,) the path length of the lower signal
(idler) beam from the center of the crystal to the detectors. In L toug
the actual experiment both upper paths are modifie@by
because the upper and lower mirrors are not at exactly the
same distance from the pumping beam axis. However, in our
calculation we shall sefx=0 andr,=r,=r for the sake of
simplicity.

The coincidence detection probability is given by Eg.
(57). We need the cross correlation

{FCI (ra t+ DF T (g t' + 7))

=[RsTie"%o(FL7 (0t +7—r/c)

FIG. 4. Experiment of Franson.

XFO +7 —ric—dplw)

+RTe P(FU (0t + 7= r/c— gl wg) VIIl. THE EXPERIMENTS OF FRANSON
XEE(Ot + 7 —rlc In 198_9 Fransfon proposed an e>§periment in order to test
"1 ( T ) “a Bell's inequality for energy and time’[12]. The experi-
=|RT;€ u(7' — 7— Pyl w;) ment consists of the followingsee Fig. 4 A signal and an
S . ' idler beam are passed each through a Mach-Zehnder inter-
+RTE %av(r' — 7= dal wg)|, (65  ferometer, that is, an arrangement of two beam split@8

and two mirrors. The signal beam is divided at the first

?Sl and two outgoing beams travel by different routes, one

along and the other one short, until a second, Bere they

are recombined. One of the outgoing beams at thigs ®fes

and alsoF{; is correlated withF{,"), butF{") is uncorre- o a detector. A similar thing happens with the idler beam.

lated with F{*) (j=1 or 2), these pairs not fulfilling the We shall labelAL (AL;) the length difference between the

matching cojnditions(25). The second equality of Ed65) long gnd th‘_e _Sho” route of the S|gr?(atﬂler) beam_. In the

follows from Eq.(45). If we take into account that the time experiment it is observed that the smgle_detectlon ratgs do

intervals ¢,/ ws and ¢,/ w; are small in comparison to the not depe_n_d omL, or AL;, but the coincidence detection

coherence time of signal and idler, given by the functionat€ xhibits a cosine dependence amALs+wiALj)/c,

v(7), we obtain which shows a fourth-order interference. In _the past few

years several groups have performed experiments of that

type, the most recent one by Tapst¢al.[13] (references to

oz [V W, , N previous experiments may be seen in that paper

gV fo deo dr'|v(' = 7)] In order to compute the joint detection probability, we
must write the fields at the detectors as functions of the out-

where in the first equation we have taken into account th
the signal field={" is correlated with the idler field{ "

2

Pt ba160)~ 77

WsW;j

X{(RiTe)?+ (RsT{)?+ 2R TR T coming fields from the crystal. Without a loss of generality
66 we shall neglect the distances from the crystal to Mach-
X cos o~ )} (66)  Zehnder interferometers in order to simplify notatitsee
Fig. 4).

We get a fourth-order interference with a visibility close to  If we call r, (r,) the position of detectoD, (Dy), r;
100% provided that the reflection and transmission in ther,) the position of B (BS,), Ls jong (Li,10ng the length of
beam splitter fulfillR;/T;=Rs/Ts. A similar expression is the long arm of the interferometer, ahg sort (Li shor) the
obtained if both detectors are placed below the pumpindength of the short arm of the interferometer for the signal
beam axis. If one of the detectors is placed above and thédler) beam, then

other below we obtain

1 ra—r L
. w o (w F{(ra =5 Fé”(o,t—M—%”g)
Pas(das )~ 07V [ e dr|uir P L
Rhadl| —
—iFH)(O,t— a_ ‘2] s,IOﬂQ) g @s(Ls long/C)
X{(TsT)?+ (RR)? ’ c c
[ Ira—ral Lssn
+ 2R TR Ticos o= ). (67) + Fé“(o,t—%—%t
_HFH) 0 t_|ra_r2| _Ls,short
In this case the 100% visibility requirdgT;=R.R; . If we v ' c C

want high visibility in both Eqgs.(66) and (67), we need _ _
T=T,=R=R=1//2. x el ws<Ls,shorr’C>] elesllra=ralie), (68)
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|rb_ré| I-i lon
FF%QV————————E
C Cc

1
F?“(rb,t’):E[

|rb_ I’é| I-i,Iong
C Cc

AFﬁ%QV——————

X eiwi(l-i,long/c)

I"'o=r2l L short
+Fﬁ{QV——————Ji&
c c
FIG. 5. Experiment of induced coherence without induced emis-
|rb_ré| L short sion.
+iF ot - ——
v c c
i0i(Li shor/©) } miwi([rp—ral/c) P.o(ALg,ALj) = i g2|V|2deTJ'WdT'[|V(T )|?
iwi(L; c iwi([rp—rsllc s )= —
X @ @ilkishor!©) p @l @ilITp~THl/C) (69 ab s i 4ﬁ2wswi 0 0
, AM—ALﬂZ
+vl 7 —T17t+t——
F(") andF{}’ are the positive parts of the vacuum incoming

beams at Bgand BS, respectively.

Now, by ta_king into account the correlation relatiqd$) ) Re{ (17 ) ( S AL; _ALS)
and supposing th_atALSELS,,Ong— Lsshot (ALi=L iong c
—.Li,sho_rg is much bigger that the coheren(_:e length of the @O @sALe+ ALy 71
signal(idler) in order to avoid second-order interference, we '
get
) ) which shows a fourth-order interference. KI(;—AL)/c is
[(Fs"(0,t+ n)F{ 7 (0,t+7'))] small in comparison to the coherence time between signal
and idler, it is possible to neglect this term in the argument of
— v(7' — 1) and we get a visibility close to 100%.
=2'_1’<|:(S+) O,H_T_M_L%ong) ( ) J Y

IX. INDUCED COHERENCE

S E| 045 — [ro—ral Li,Iong)> AND INDISTINGUISHABILITY
! ! c IN TWO-PHOTON INTERFERENCE
In 1991 Zhouet al. performed an experimertl4] in
% @l (@s/0)(Ls tong+ [Fa=r2l) +i wi/c (L ong™ [Tp=T5]) which fourth-order interference is observed in the superposi-
tion of signal photons from two coherently pumped PDC
ra—ry L crysta_ls, when _the path_s o_f the idler _phot_ons are alig_ned. The
+<F(S+) Ot+r——2 2 Lhort) experimental situation is illustrated in Fig. 5, in which two
c similar nonlinear crystalX; andX, are optically pumped by
two mutually coherent, classical pump waves of complex
Iro—r5  Li short amplitudesV;=V,=V, and PDC occurs at both crystals,
XFEMot+7 — ——=— T) each with the emission of a signal photon and an idler pho-

ton. We look for the joint detection probability in the detec-

tors D, and D, when the trajectories of the two idlers,»

are aligned and the path difference between the two signals

s, ands, is varied slightly. Fourth-order interference disap-

pears when the idlers are misaligned or separated by a beam
(70) stop. This experiment has been qualified as “mind bog-

gling” [15], but the analysis in terms of the Wigner function

is straightforward.

) o) To start with, let us express the fields at the detectors
w(h+e)re we have taken into account that the fighd$’ and  p_andD, as a function of the incoming fields on the crys-
F, ' are uncorrelated among themselves and With’ and  tals. If f, d, h, and| are the distances of; to X,, X; to

F(*)_ We finally obtain D., X, to D,, andX, to Dy, respectively, then

¢ @l (@5/0)(Ls shortt [Ta=T2l) +i(wj /C) (L shore™ Irp=ral)
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1
Fe(rat)=—=[iF{(ra H+FL (o, 0]

V2

1 ) .
= _{iF(+)(01,t—d/C)elwsd/C+igz|V|2J Ffs-li-o)(ol,t_d/c)elwsd/c

\/E S10

+igVGF{_)(0y,t—d/c)e'*s¥*+F{)(0,,t—h/c)e'se+ g7 V|2
X IFL)(0,,t—h/c)el s+ gVGH_[0y,t—(f+h)/c]ellwsh—eihe

+g?2|VI2GG R0yt (f+h)/c]e!(esh—einley, (72

Fi (g, t')=F{ [0,t' = (I+f)/c]le ! Do+ gVGF [0yt — (1 +f)/clel i T Pe
+g?VIPIF{ [0yt — (1 +F)/c]el ! D+ gVG R, )(0,,t —1/c)e'il’®
+g?VI2IF{ [0y, t — (1 + f)/clel i D, (73
By using Eq.(56) to compute the coincidence probability, we get

o?|V|?

Pap(Fa,t+ 7ry t4 1) =K' = |ellesterele 0iermai(B (0, t+ r—d/c) GFL (0, t+ 7

—( +f)/c)>+<|:i<l+o>(ol,t+ ' —(1+f)/c)G F§;}>(ol,t+ r—dlc))}
+ellesher el (FL(0,,t+ 7—h/e)GFL J(0,,t+ 7' —I/c))

+(F{I0t+ 7' = (1+£)/c]GF{_[0y,t+ 7= (f+h)/c])}|. (74)

Finally, by using Eqs(44) and(57), the resulting coinci- PDC photon pairs. The results agree with those obtained us-
dence probability is ing the more common Hilbert-space formulation, both being
just two equivalent forms of quantum optics.

The Wigner representation is specially suited for PDC
because the Wigner function is Gaussian and positive defi-
nite in this case. The Gaussian character simplifies notably

+|v(r— 7' +1l/c—h/c)|>—Im[v(7— 7' +1/c+flc the calculation of autocorrelations and cross correlations for
. the various fields involved. On the other hand, positivity
—d/c)v*(r— 7' +l/c—hic)e'losd=Mreillle] - (75)  makes possible a picture in terms of pure waves during the

. ) L o ropagation, which may aid the intuition in the study of these
which, as expected, shows an intensity-intensity interferenceyyneriments. However, the detection problem remains and
As in the experiments of the previous sections, the visibilityy;q prevents a straightforward interpretation only with

may be made close to 100% by making the signal and idlefayes. Also the role played by the vacuum field is stressed
path lengths coincide to within their coherence lengths.  , this representation.

_ gV

Pap 8h°w.w;

0 0
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