
Numerical valuation of two-asset options under jump
diffusion models using Gauss-Hermite quadrature

M. Fakharanya, V. N. Egorovab,c,1, R. Companyb

aMathematics Department, Faculty of Science, Tanta University. Tanta-Egypt.
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Abstract

In this work a finite difference approach together with a bivariate Gauss-Hermite

quadrature technique are developed for partial-integro differential equations

related to option pricing problems on two underlying asset driven by jump-

diffusion models. Firstly, the mixed derivative term is removed using a suitable

transformation avoiding numerical drawbacks such as slow convergence and in-

accuracy due to the appearance of spurious oscillations. Unlike the more tra-

ditional truncation approach we use 2D Gauss-Hermite quadrature with the

additional advantage of saving computational cost. The explicit finite differ-

ence scheme becomes consistent, conditionally stable and positive. European

and American option cases are treated. Numerical results are illustrated and

analyzed with experiments and comparisons with other well recognized methods.
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1. Introduction

It is well known that Black-Scholes model does not capture stock price fluc-

tuations and market risks, for instance, features like heavy tails and asymmetries

observed in market-data log returns densities [1]. Jump diffusion models is a

class of alternative ones to improve the lack of jumps in the asset prices which5

are natural for instance when they appear earning surprises or other types of

discrete economic events [2]. With respect to the mathematical formulation of

the option price valuation the main difference is the appearance of an integral

term achieving a partial integro-differential equation (PIDE) instead of a partial

differential equation (PDE). The jumps in the logarithm of the prices may be10

distributed by any finite activity process and depending on it the integral in the

PIDE problem has a different kernel [2, 3, 4]. An overview of different methods

for solving one asset option pricing jump diffusion models may be found in the

introduction of [5].

Two asset American claims under jump diffusion have been priced using a15

Markov chain approach that can be essentially regarded as an explicit finite

difference method in [6]. The jump terms managed in [6] may be regarded

as un extension of the method in [7]. An implicit finite difference method for

two asset jump diffusion option pricing models has been proposed in [5]. The

appearance of dense linear systems in the discretization of the integral part of20

the underlying PIDE is avoided by combining a fixed point iteration scheme with

a Fast Fourier Transform (FFT). The new two asset technique developed in [5]

is able to price options with general types of payoffs and barriers for European

as well as American options.

More recently the authors in [8] employ high-order Galerkin finite element25

discretizations for both two asset option pricing problems and stochastic volatil-

ity models. The resulting semi-discrete systems are solved using exponential

time integration. Difficulties arising in the treatment of two asset jump diffu-

sion PIDE models are similar to those of one asset stochastic volatility jump

diffusion problems. Both two dimensional PIDE problems involve a non local30
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integral term together with the corresponding differential part including a cross

derivative term linked to the correlation between the variables [9, 10].

This paper deals with two dimensional Merton jump diffusion model where

the stochastic differential equations for the underlying assets changes are given

by35

dSi(t)

Si(t)
= (r − qi − λκi)dt+ σidWi + (eJi − 1)dZ(t), i = 1, 2, (1)

where Si, qi, σi, i = 1, 2 are the two assets prices, asset dividend yields, asset

volatilities respectively, r is the risk free interest and Wi are standard Brownian

motions correlated by ρ ∈ (−1, 1). Here J1 and J2 are the jump sizes correlated

by ρJ ∈ (−1, 1), κi represent the expected relative jump sizes (κi = E[eJi−1]), Z

and λ are the Poisson process and its jump intensity [8]. Based on Itô calculus,

the corresponding PIDE for the unknown option price U(x1, x2, τ) takes the

form

∂U

∂τ
=
σ2

1

2

∂2U

∂x2
1

+ ρσ1σ2
∂2U

∂x1∂x2
+
σ2

2

2

∂2U

∂x2
2

+

(
r − q1 − λκ1 −

σ2
1

2

)
∂U

∂x1

+

(
r − q2 − λκ2 −

σ2
2

2

)
∂U

∂x2
− (r + λ)U

+ λ

∫
R2

U(x1 + η1, x2 + η2)g(η1, η2)dη1dη2,

(2)

where (x1, x2) = (ln(S1/E), ln(S2/E)), E is the strike price, τ = T − t is the

time to maturity and g(η1, η2) is the probability density function of a bivariate

normal distribution, given by

g(η1, η2) =

exp

[
− 1

2(1−ρ2J )

((
η1−µ1

σ̂1

)2

− 2ρJ (η1−µ1)(η2−µ2)
σ̂1σ̂2

+
(
η2−µ2

σ̂2

)2
)]

2πσ̂1σ̂2

√
1− ρ2

J

, (3)

such that µ1, µ2, σ̂1 and σ̂2 are the means and standard deviations of the jumps

J1 and J2 respectively [5, 8]. There are several kinds of two asset problems

depending on the nature of the payoff. Here the option gives a holder the right to

receive the maximum or minimum of the two underlying assets at maturity. The

payoff f(x1, x2) for put on the minimum of two asset [5, 12] and the boundary
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conditions are given by

f(x1, x2) = Emax(1−min(ex1 , ex2), 0),

lim
x1→−∞

U(x1, x2, τ) = Ee−rτ , lim
x2→−∞

U(x1, x2, τ) = Ee−rτ ,

U(x1, x2, τ) ≈ f(x1, x2), as x1 →∞ or x2 →∞.

(4)

The cross derivative term in the differential part of the PIDE problem

may involves unsuitable effects in the computations throughout finite difference

schemes due to the appearance of negative coefficient terms in the approxima-

tion of the derivative as well as in the cost of the points stencil schemes. Both

facts favor potential drawbacks arising from the dominance of the convection40

versus the diffusion terms [10, 11, 14]. In order to avoid these numerical draw-

backs it is convenient to transform the original PIDE problem (2) into another

one where the cross derivative one disappears. This technique has been success-

fully developed in [14, 15]. Another strategy to reduce the number of points in

the stencil schemes is based on special approximation of the mixed derivative,45

see [9, 10].

With respect to the numerical treatment of the integral part of the PIDE

problem we use a different approach of those developed in [5] and [8]. In fact,

we use two dimensional Gauss-Hermite quadrature that has the advantage of

obtaining accurate approximations with a very reduced number of quadrature50

nodes that do not need to be mesh points of our numerical domain. Then a

bivariate interpolation is needed to approximate the integral part of the PIDE.

One dimensional Gauss-Hermite quadrature has been used for one asset option

pricing problems in [9] and Gauss-Laguerre quadrature in [16].

This paper is organized as follows. In Section 2, the mixed derivative is55

removed using suitable transformation after an adimensional transformation.

Discretization of the transformed problem is addressed in Section 3. Numerical

analysis issues including positivity, stability and consistency are treated in Sec-

tions 4 and 5. The proposed scheme is extended to cover the American option

case in Section 6. Section 7 includes numerical examples illustrating efficient60

performance of the proposed numerical scheme.
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Let us recall some definitions and notations that will be used along the paper.

Given a vector u ∈ Rn such that u = (u1, u2, . . . , un)T , the infinite norm of u

is denoted by ‖u‖∞ and is defined as ‖u‖∞ = max{uj , 1 ≤ j ≤ n}. The

vector u is said to be nonnegative if uj ≥ 0 for all 1 ≤ j ≤ n, and it is denoted

by u ≥ 0. For a matrix B = (bij)m×n in Rm×n, its infinite norm is given by

‖B‖∞ = max1≤i≤m{
∑n
j=1 |bij |}. Thus, if A is a block matrix with m× n block

entries Aij , then the infinite norm of A is given by, see [13, Chap. 2],

‖A‖∞ = max
1≤i≤m

{‖[Ai1 Ai2 . . . Ain]‖∞}. (5)

Matrix A is said to be nonnegative if aij ≥ 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n , and

we denote A ≥ 0.

2. Uncorrelating transformation

Let us begin this section with the dimensionless transformation of (2)-(4)

given by the substitutions

τ̄ =
τ

T
, Ū =

U

E
. (6)

Also, the non-dimensional coefficients r̄, q̄i, σ̄i, i = 1, 2 and λ̄ are given by

r̄ = rT, q̄i = qiT, σ̄i = σi
√
T , i = 1, 2; λ̄ = λT. (7)

Hence equation (2) takes the form

∂Ū

∂τ̄
=
σ̄2

1

2

∂2Ū

∂x2
1

+ ρσ̄1σ̄2
∂2Ū

∂x1∂x2
+
σ̄2

2

2

∂2Ū

∂x2
2

+

(
r̄ − q̄1 − λ̄κ1 −

σ̄2
1

2

)
∂Ū

∂x1

+

(
r̄ − q̄2 − λ̄κ2 −

σ̄2
2

2

)
∂Ū

∂x2
− (r̄ + λ̄)Ū

+ λ̄

∫
R2

Ū(x1 + η1, x2 + η2)g(η1, η2)dη1dη2,

(8)

and its initial and boundary conditions are given by

f̄(x1, x2) = max(1−min(ex1 , ex2), 0),

lim
x1→−∞

Ū(x1, x2, τ̄) = e−r̄τ̄ , lim
x2→−∞

Ū(x1, x2, τ̄) = e−r̄τ̄ ,

Ū(x1, x2, τ̄) ≈ f(x1, x2), as x1 →∞ or x2 →∞.

(9)
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For simplicity, we write the coefficients and variables without bar. But they still65

represent the dimensionless form of equations (2) and (4).

Now in order to remove the cross-derivative term, let us consider the canon-

ical transformation based on the characteristic curves technique [17]

y1 =
σ2ρ̃

σ1
x1, y2 = x2 −

σ2ρ

σ1
x1, ρ̃ =

√
1− ρ2. (10)

In order to remove also the reaction term, let us consider the transformation of

the unknown variable

V (y1, y2, τ) = exp((r + λ)τ)U(x1, x2, τ). (11)

From (10) and (11), equation (2) becomes

∂V

∂τ
=
σ2

2 ρ̃
2

2

(
∂2V

∂y2
1

+
∂2V

∂y2
2

)
+ a1

∂V

∂y1
+ a2

∂V

∂y2

+
σ1λ

σ2ρ̃

∫
R2

V (φ1, φ2, τ)g(
σ1

σ2ρ̃
(φ1 − y1), φ2 − y2 + m̃(φ1 − y1))dφ1dφ2,

(12)

where

a1 =
ρ̃σ2

σ1
(r − q1 − λk1 −

σ2
1

2
),

a2 =(1− ρσ2

σ1
)r − (q2 −

ρσ2

σ1
q1)− λκ2 +

ρσ2

σ1
λκ1 −

σ2
2

2
+
ρσ1σ2

2
,

φ1 =y1 +
σ2ρ̃

σ1
η1, φ2 = y2 −

σ2ρ

σ1
η1 + η2, m̃ =

ρ

ρ̃
,

(13)

and φ1, φ2 are the new suitable variables for the integral part with the corre-

sponding Jacobian value σ1

σ2ρ̃
.

For the associated boundary conditions (4), one gets

lim
y1→−∞

V (y1, y2, τ) = eλτ , lim
y2→−∞

V (y1, y2, τ) = eλτ ,

V (y1, y2, τ) ≈ f(y1, y2), as y1 →∞ or y2 →∞.
(14)

3. Discretizating

In order to discretize the transformed problem (12), let us choose firstly the

bounded numerical domain following criteria of [19, 20]. Thus, let us take a
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rectangular domain in x1x2− plane with boundaries x1 ∈ [a, b] and x2 ∈ [c, d]

such that eb and ed are about ten times the strike E and ea and ec are close

enough to zero. The values of the endpoints a, b, c and d have an additional

condition in order to obtain the Gauss-Hermite quadrature approximation of the

integral term. This condition will be explained later. Under the transformation

(10), the rectangular domain is converted to a rhomboid domain Ω with vertices

ABCD in y1y2−plane as shown in Fig.1. Let N1 +1 and N2 +1 be the numbers

of mesh points in x1 and x2 directions respectively such that the spatial stepsizes

are hx1 = (b− a)/N1 and hx2 = (d− c)/N2. From (10) the original mesh points

(N1 + 1)(N2 + 1) are mapped into the rhomboid domain with new stepsizes

h1 = σ2

σ1
ρ̃hx1

, h2 = hx2
. Hence the new rhomboid mesh points are (y1,i, y

i
2,j)

where

y1,i = y1,0 + ih1, 0 ≤ i ≤ N1, y1,0 =
σ2

σ1
ρ̃a, (15)

and for each i value,

yi2,j = ŷi,0 + jh2, ŷi,0 = c− σ2

σ1
ρ(a+ ihx1

), 0 ≤ j ≤ N2. (16)

The time variable is discretized by τn = nk, 0 ≤ n ≤ Nτ , k = 1/Nτ .70

B

C

B(
σ2

σ1
ρ̃b, c− σ2

σ1
ρb)

D(
σ2

σ1
ρ̃a, d − σ2

σ1
ρa)

y2 = d − m̃y1

y2 = c− m̃y1

A

A(
σ2

σ1
ρ̃a, c− σ2

σ1
ρa),

C(
σ2

σ1
ρ̃b, d − σ2

σ1
ρb),

D

Figure 1: Rhomboid numerical domain ABCD.

As we mentioned in the introduction we are going to use Gauss-Hermite quadra-

ture to discretize the integral part. So for the sake of convenience if we denote
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by Φ = {(φ1,`, φ2,m), 1 ≤ ` ≤ L, 1 ≤ m ≤ M} the set of all the pairs of zeroes

of Hermite polynomial of degrees L in the first argument and M in the second75

respectively, we select parameters a, b, c, d identifying the rhomboid numerical

domain Ω so that Φ ⊂ Ω after L and M are prefixed.

Let us denote the approximation of V (y1,i, y
i
2,j , τ

n) by V ni,j . Central finite

difference approximations are used for the first and second spatial derivatives

as follows

∂V

∂y1
(y1,i, y

i
2,j , τ

n) ≈
V ni+1,j − V ni−1,j

2h1
;

∂V

∂y2
(y1,i, y

i
2,j , τ

n) ≈
V ni,j+1 − V ni,j−1

2h2
,

(17)

∂2V

∂y2
1

(y1,i, y
i
2,j , τ

n) ≈
V ni+1,j − 2V ni,j + V ni−1,j

h2
1

;

∂2V

∂y2
2

(y1,i, y
i
2,j , τ

n) ≈
V ni,j+1 − 2V ni,j + V ni,j−1

h2
2

,

(18)

and forward finite difference approximation is implemented to approximate the

time partial derivative of V

∂V

∂τ
(y1,i, y

i
2,j , τ

n) ≈
V n+1
i,j − V ni,j

k
. (19)

Once discretized the differential part of (12), we proceed to discretize the inte-

gral part. We recall the Gauss-Hermite quadrature in 2D for a function z(x, y)

given by

WLZWT
M =

L∑
l=1

M∑
m=1

ωlωmzlm ≈
∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)z(x, y)dxdy, (20)

Wα = [ω1 ω2 . . . ωα], α = L, M, (21)

where ωi, i = 1, 2, . . . , L for WL and ωi, i = 1, 2, . . . ,M for WM represent the

corresponding weights for the roots of Hermite polynomial of degrees L and M

respectively. Z = (zlm) is a matrix in RL×M and zlm = z(xl, ym) represents

the value of the integrand function at node (xl, ym) for xl, 1 ≤ l ≤ L and ym,
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1 ≤ m ≤M being the roots of Hermite polynomials of degrees L and M [18].

By applying formula (20) to the improper double integral of (12), one gets

Îni,j =

L∑
`=1

M∑
m=1

ω`ωmC`m(i, j)V n(φ1,`, φ2,m), (22)

where

C`m(i, j) = g(
σ1

σ2ρ̃
(φ1,`−y1,i), φ2,m−yi2,j+m̃(φ1,`−y1,i)) exp[φ2

1,`+φ2
2,m], (23)

and V n(φ1,`, φ2,m) denotes the approximate value of V at point (φ1,`, φ2,m, τ
n).

Note that expression (22) involves evaluation at points that usually are different

from those of the grid (y1,i, y
i
2,j), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, and thus need to be

interpolated. For each value V n(φ1,`, φ2,m) appearing in (22) we want to locate

the pair (φ1,`, φ2,m) in one of sub-rhomboids of the rhomboid grid. Let us denote

such sub-rhomboid as R(i`, j
i`
m) in such way that the point (φ1,`, φ2,m) does not

lie in the right-up sides of the sub-rhomboid. Rhomboid vertices of R(i`, j
i`
m)

are given by (y1,i` , y
i`
2,jm

), (y1,i`+1, y
i`+1
2,jm

), (y1,i`+1, y
i`+1
2,jm+1) and (y1,i` , y

i`
2,jm+1).

Following the idea of the bivariate interpolation four point formula [18, Ch. 25,

p. 882], we modify such approximation for the rhomboid in Fig. 2 as follows,

V n(φ1,`, φ2,m) ≈δ̂i`,2(δjm,2V
n
i`,jm

+ δjm,1V
n
i`,jm+1)

+ δ̂i`,1(δjm,3V
n
i`+1,jm+1 + δjm,4V

n
i`+1,jm),

(24)

where

δ̂i`,1 =
φ1,`−y1,i`

h1
; δ̂i`,2 =

y1,i`+1−φ1,`

h1
; δjm,1 =

φ2,m−y
i`
2,jm

h2
;

δjm,2 =
y
i`
2,jm+1−φ2,m

h2
; δjm,3 =

φ2,m−y
i`+1

2,jm

h2
; δjm,4 =

y
i`+1

2,jm+1−φ2,m

h2
.

(25)

Consequently, the approximation of the integral part is obtained by substituting

(24) into (22) (Ini,j ≈ Îni,j). Hence

Ini,j =

L∑
`=1

M∑
m=1

β
(i,j)
i`,jm

V ni`,jm + β̂
(i,j)
i`,jm+1V

n
i`,jm+1

+ β̃
(i,j)
i`+1,jm

V ni`+1,jm + β̆
(i,j)
i`+1,jm+1V

n
i`+1,jm+1,

(26)
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where

β
(i,j)
i`,jm

= ω`ωmC`m(i, j)δ̂i`,2δjm,2,

β̂
(i,j)
i`,jm+1 = ω`ωmC`m(i, j)δ̂i`,2δjm,1,

β̃
(i,j)
i`+1,jm

= ω`ωmC`m(i, j)δ̂i`,1δjm,4,

β̆
(i,j)
i`+1,jm+1 = ω`ωmC`m(i, j)δ̂i`,1δjm,3.

(27)

P2(y1,iℓ+1, y
iℓ+1
2,jm

)

P3(y1,iℓ+1, y
iℓ+1
2,jm+1)

•(φ1,ℓ, φ2,m)

P4(y1,iℓ, y
iℓ
2,jm+1)

P1(y1,iℓ, y
iℓ
2,jm

)

Figure 2: Neighbor coordinate points to (φ1,`, φ2,m).

Note that given Φ we can always choose values of h1 and h2 such that coeffi-

cients in (25) are nonnegative and thus the resulting 2D interpolation formula

is also nonnegative. From (18)-(26), the corresponding finite difference scheme

becomes

V n+1
i,j = α1V

n
i−1,j + α2V

n
i,j−1 + α3V

n
i,j + α4V

n
i,j+1 + α5V

n
i+1,j +

kλσ1

σ2ρ̃
Ini,j , (28)

V ni,0 = eλτ
n

, V n0,j = eλτ
n

, V nN1,j = fN1,j ,

V ni,N2
= fi,N2 , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2,

(29)

where

α1 = k
2h1

(
σ2
2 ρ̃

2

h1
− a1); α2 = k

2h2
(
σ2
2 ρ̃

2

h2
− a2);

α3 = 1− kσ2
2 ρ̃

2( 1
h2
1

+ 1
h2
2
); α4 = k

2h2
(
σ2
2 ρ̃

2

h2
+ a2);

α5 = k
2h1

(
σ2
2 ρ̃

2

h1
+ a1).

(30)
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4. Positivity and stability

Dealing with prices, reliable numerical solution needs to be nonnegative. In

this section we study the positivity of the numerical solution of the problem

computed throughout the scheme (28). As we show at the end of the previous

Section, the quadrature and interpolation procedure achieving the approxima-

tion Ini,j appearing in (28) provide nonnegative values. Thus in order to guaran-

tee positivity of the numerical solution computed throughout the scheme (28),

it is sufficient to show that coefficients αi, i = 1, . . . 5, are nonnegative together

with nonnegativity of the initial and boundary conditions (14). From (30), it is

easy to check that under the conditions

k <
h2

1h
2
2

σ2
2 ρ̃

2(h2
1 + h2

2)
, h1 <

σ2
2 ρ̃

2

|a1|
, h2 <

σ2
2 ρ̃

2

|a2|
, (31)

the coefficients of αi, 1 ≤ i ≤ 5 are nonnegative. For the sake of clarity in the80

presentation we recall the definition of stability used in this paper previously

used in [15].

Definition 1. Consider a numerical solution {V ni,j} of the PIDE computed

from the scheme (28)-(30) with stepsizes h1 = ∆y1, h2 = ∆y2 in a rhomboid

computational domain and k = ∆τ . From one hand it is said that {V ni,j} is

strongly uniformly ‖.‖∞ stable, if the vector solution Vn satisfies

‖Vn‖∞ ≤ Υ‖V0‖∞, 0 ≤ n ≤ Nτ , (32)

where Υ > 0 does not depend on the stepsizes h1, h2 and k.

On the other hand it is said to be conditionally stable when Υ is obtained under

a certain condition on the stepsizes.

Following the technique of block matrices [21, 15], the finite difference scheme

(28)-(30) is written in the following form.

Vn = [Vn0 Vn1 . . .VnN1
]T , Vni = [V ni,0 V

n
i,1 . . . V

n
i,N2

]. (33)

The matrix representation of scheme (28)-(30) is given by

Vn+1 = (A+ B)Vn, (34)
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where A and B are square matrices of size (N1 + 1)(N2 + 1)× (N1 + 1)(N2 + 1)

representing the discretization of the differential and integral operators. The

matrix A is given by

A =



ekλI Θ Θ Θ . . . . . . Θ

Ă A Â Θ . . . . . . Θ

Θ Ă A Â Θ . . . Θ
... Θ

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . .
...

...
... . . . Θ Ă A Â

Θ Θ . . . . . . . . . . . . I


, (35)

where I and Θ are the identity and zero matrices of size (N2 + 1) × (N2 + 1).

The block entries Ă = (ăij), A = (aij) and Â = (âij) are (N2 + 1) × (N2 + 1)

matrices such that

ăij =


α1, i = j = 2, 3, . . . N2 − 1,

1, i = j = N2 + 1,

0, otherwise.

,

âij =


α5, i = j = 2, 3, . . . N2 − 1,

1, i = j = N2 + 1,

0, otherwise.

,

aij =



ekλ, i = j = 1,

α2, j = i− 1, i = 2, 3, . . . N2 − 1,

α3, j = i, i = 2, 3, . . . N2 − 1,

α4, j = i+ 1, i = 2, 3, . . . N2 − 1,

1, i = j = N2 + 1

0, otherwise.

(36)

The square matrix B is a sparse block matrix containing (N1 + 1) × (N1 + 1)

block entries of size (N2 + 1)× (N2 + 1). From the Gauss-Hermite quadrature

together with the bivariate interpolation technique used, the nonzero blocks of B85

are located at block positions with row indices i1, i1 +1, i2, i2 +1, . . . , iL, iL+1
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and column indices j1, j1 + 1, j2, j2 + 1, . . . , jM , jM + 1. Let B(i`) = (bl1l2(i`))

and B(i` + 1) = (bl1l2(i` + 1)) denote the non zero blocks in the matrix B with

entries given by

bl1l2(i`) =


λ̂β

(i,j)
i`,l2

, l1 = 2, 3, . . . , N2, l2 = j1, j2, . . . , jM ,

λ̂β̂
(i,j)
i`,l2

, l1 = 2, 3, . . . , N2, l2 = j1 + 1, j2 + 1, . . . , jM + 1,

0, otherwise,

bl1l2(i` + 1) =


λ̂β̃

(i,j)
i`+1,l2

, l1 = 2, . . . , N2, l2 = j1, j2, . . . , jM ,

λ̂β̆
(i,j)
i`+1,l2

, l1 = 2, . . . , N2, l2 = j1 + 1, . . . , jM + 1,

0, otherwise,

(37)

where λ̂ = kλσ1

σ2ρ̃
. Note that the indices (i, j) change depending on the corre-

sponding indices in V n+1
i,j . By calculating the infinite norm for matrix A under

the positivity conditions (31), we have

‖A‖∞ = max{ekλ,
5∑
i=1

|αi|} = max{ekλ, 1} = ekλ. (38)

Infinite norm of the matrix B verifies

‖B‖∞ =

N̂∑
l2=1

|bif l2 | = λ̂

L∑
`=1

M∑
m=1

(β
(if ,j)
i`,jm

+ β̂
(if ,j)
i`,jm+1 + β̃

(if ,j)
i`+1,jm

+ β̆
(if ,j)
i`+1,jm+1), (39)

where if denotes the rank of row that contains the highest sum, N̂ = (N1 +

1)(N2 + 1). From equations (27) and (25), the coefficients δ̂i`,1, δ̂i`,2, δjm,1,

δjm,2, δjm,3 and δjm,4 do not exceed 1. Consequently,

‖B‖∞ ≤
4kλσ1

σ2ρ̃

L∑
`=1

M∑
m=1

ω`ωmC`m(if , j). (40)

The double summation in (40) is an approximation to the double integration of

g( σ1

σ2ρ̃
(φ1− y1,if ), φ2− yif2,j + m̃(φ1− y1,if )) with respect to φ1 and φ2, hence for

arbitrary small ε > 0 there exist large enough values L and M such that

L∑
`=1

M∑
m=1

ω`ωmC`m(i, j)

< ε+

∫
R2

g(
σ1

σ2ρ̃
(φ1 − y1,i), φ2 − yi2,j + m̃(φ1 − y1,i))dφ1dφ2.

(41)

13



Taking into account that the value of the improper integral in (41) is σ2ρ̃
σ1

, norm

of matrix B is bounded since

‖B‖∞ ≤ 4kλ

(
1 +

σ1ε

σ2ρ̃

)
= 4kλ∗. (42)

By taking the infinite norm in equation (34), we have

‖Vn+1‖∞ ≤ (‖A‖∞ + ‖B‖∞)‖Vn‖∞, n = 0, 1, . . . , Nτ − 1, (43)

‖VNτ ‖∞ ≤ (ekλ + 4kλ∗)Nτ ‖V0‖∞ = eλ(1 + 4kλ∗e−kλ)Nτ ‖V0‖∞.

≤ eλ(1 + 4kλ∗)Nτ ‖V0‖∞ ≤ eλ+4λ∗‖V0‖∞,
(44)

and from definition 1, a conditional strong uniform stable scheme is established.90

5. Consistency

The proposed scheme (28) is said to be consistent with PIDE (12), if the

exact theoretical solution approximates well the difference scheme as the dis-

cretization stepsizes tend to zero [22]. Let us denote vni,j = V (y1,i, y
j
2,i, τ

n)

the exact solution of the PIDE at point (y1,i, y
i
2,j , τ

n). The associated local

truncation error Tni,j(V ) is given by

Tni,j(V ) = L(V ni,j)− I(V ni,j), (45)

where L(V ni,j) and I(V ni,j) are the truncation errors for the differential and inte-

gral parts respectively denoted by

L(V ni,j) =
vn+1
i,j − vni,j

k

− σ2
2 ρ̃

2

2

(
vni+1,j − 2vni,j + vni−1,j

h2
1

+
vni,j+1 − 2vni,j + vni,j−1

h2
2

)
−
(
a1

(
vni+1,j − vni−1,j

2h1

)
+ a2

(
vni,j+1 − vni,j−1

2h2

))
−
(
∂V

∂τ
− σ2

2 ρ̃
2

2

(
∂2V

∂y2
1

− ∂2V

∂y2
2

)
− a1

∂V

∂y1
− a2

∂V

∂y2

)∣∣∣∣
(y1,i,yi2,j ,τ

n)

,

(46)
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I(V ni,j) =
σ1λ

σ2ρ̃

(
I(vni,j)− F (y1,i, y

i
2,j , τ

n)
)
, (47)

where

F (y1,i, y
i
2,j , τ

n) =∫
R2

V (φ1, φ2, τ
n)g(

σ1

σ2ρ̃
(φ1 − y1,i), φ2 − yi2,j + m̃(φ1 − y1,i))dφ1dφ2,

(48)

I(vni,j) denotes the corresponding value by replacing in the expression of Ini,j

appearing in (28), the value of the numerical solution at the vertices of each

R(i`, jm) by the exact solution value v at the corresponding nodes. Thus con-

sistency of scheme (28) with the PIDE (12) means that local truncation error

Tni,j tends to zero as the stepsize discretization h1, h2 and k tend to zero and

the degree of Hermite polynomials tend to infinity.

Assuming that the exact solution is twice continuously differentiable with re-

spect to τ and four times for the spatial variables y1 and y2 and using Taylor

expansion about (y1,i, y
i
2,j , τ

n), it is not difficult, see [15], to show that

L(V ni,j) = O(h2
1) +O(h2

2) +O(k). (49)

With respect to the discretization error of the integral part, one gets

I(V ni,j) =
σ1λ

σ2ρ̃

[(
I(vni,j)− Îni,j(v)

)
+
(
Îni,j(v)− F (y1,i, y

i
2,j , τ

n)
)]
, (50)

where Îni,j(v) represents the value of (22) by replacing the value V n(φ1,`, φ2,m)

by the exact solution value V (φ1,`, φ2,m, τ
n). The first bracket of (50) de-

notes the difference between the quadrature formula evaluated at root points

(φ1,`, φ2,m) of Hermite polynomial and the formula using linear bivariate inter-

polation with respect to the vertices of the rhomboid R(i`, j
i`
m) that contains

this point (φ1,`, φ2,m). From [18],

I(vni,j)− Îni,j(v) = O(h2
1) +O(h2

2). (51)

The second bracket in the right hand side of (50) represents the associated

quadrature error of the 2D Hermite-Gauss quadrature formula and from [23],
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one gets

Îni,j(v)− F (y1,i, y
i
2,j , τ

n) = ε1(L) + ε2(M) +O(ε1ε2), (52)

with

ε1(L) = L!2 maxφ2
f̂([φ1,1, φ1,1, φ1,2, φ1,2, . . . , φ1,L, φ1,L, ξ1], φ2),

ε2(M) = M !2 maxφ1
f̂(φ1, [φ2,1, φ2,1, φ2,2, φ2,2, . . . , φ2,M , φ2,M , ξ2]),

(53)

where f̂ denotes the integrand function in (48) and f [x1, x1, x2, . . . , xm, xm, ξ] is

the divided difference with respect to variable x. For smooth enough integrand

functions the error takes the form [23]

|Îni,j(v)−F (y1,i, y
i
2,j , τ

n)| = (L!)2

2L!

∣∣∣∣∣∂2Lf̂

∂φ2L
1

∣∣∣∣∣
(ξ1,φ2)

+
(M !)2

2M !

∣∣∣∣∣∂2M f̂

∂φ2M
2

∣∣∣∣∣
(φ1,ξ̂2)

+O(ε1ε2).

6. The American option case

Since the option of American type can be exercised during any time until

the maturity date, the model is constituted by a linear complementary problem

(LCP) [24, 25] given by

L[V ] ≥ 0, V ≥ f(x1, x2), L[V ](V − f(x1, x2)) = 0, (54)

where

L[V ] = ∂V
∂τ −D[V ]− I[V ],

D[V ] =
σ2
2 ρ̃

2

2

(
∂2V
∂y21

+ ∂2V
∂y22

)
+ a1

∂V
∂y1

+ a2
∂V
∂y2

,

I[V ] =

σ1λ
σ2ρ̃

∫
R2 V (φ1, φ2, τ)g( σ1

σ2ρ̃
(φ1 − y1), φ2 − y2 + m̃(φ1 − y1))dφ1dφ2.

(55)

Solving LCP (54) numerically using explicit scheme requires a large amount of

computations. Here we propose an alternative way to discretize the derivative of

V with respect to time. Firstly we use the semi-discrete formulation of problem

(55) as follows

D[V ] ≈ α̃1Vi+1,j − α̃2Vi,j + α̃3Vi−1,j + α̃4Vi,j+1 + α̃5Vi,j−1, (56)
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where

α̃1 =
(
σ2
2 ρ̃

2

2h2
1

+ a1
2h1

)
, α̃2 = σ2

2 ρ̃
2
(

1
h2
1

+ 1
h2
2

)
, α̃3 =

(
σ2
2 ρ̃

2

2h2
1
− a1

2h1

)
α̃4 =

(
σ2
2 ρ̃

2

2h2
2

+ a2
2h2

)
, α̃5 =

(
σ2
2 ρ̃

2

2h2
2
− a2

2h2

)
.

(57)

The integral operator I[V ] is discretizated in space analogously as in (26). Let

F be a (N1−1)(N2−1)× (N1−1)(N2−1) matrix containing the coefficients of

the differential and integral operators approximations. Hence the semi-discrete

approximation of (54) takes the form

∂V

∂τ
+ FV ≥ b; V ≥ f ;

(
∂V

∂τ
+ FV − b

)T
(V − f) = 0, (58)

where

V = [V1, V2, . . . ,VN1−1]T , Vi = [Vi,1, Vi,2, . . . , Vi,N2−1],

f = [f̆1, f̆2, . . . , f̆N1−1]T , f̆i = [fi,1, fi,2, . . . , fi,N2−1],

i = 1, 2, . . . , N1 − 1,

b = [V0,0, . . . ,0,VN1
]T , Vi = [Vi,1, Vi,2, . . . , Vi,N2−1],

i = 1, N1, 0 ∈ RN2−1.

(59)

Three or more time-level schemes can be used to achieve some advantage versus

two-level schemes, such as better stability behavior, more accurate local consis-

tency or transforming a nonlinear problem into a linear one [22]. Here the three

time-level scheme is used to solve the full discretization of (54), that leads to

the sequence of LCPs denoted by

LCP (F̂ , Vn+1, Ṽn, f), (60)

and given by

F̂Vn+1 − Ṽn ≥ 0, Vn+1 ≥ f ,
(
F̂Vn+1 − Ṽn

) (
Vn+1 − f

)
= 0, (61)

where

F̂ =

 I + kF n = 0,

I + 2k
3 F n ≥ 1,

(62)

Ṽn =

 V0 + kb, n = 0,

4
3Vn − 1

3Vn−1 + 2k
3 b n ≥ 1.

(63)
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Note that in order to solve (60) using three time-level, the first two level so-

lutions V0 and V1 must be known. The vector V0 corresponds to the initial

condition which is given while V1 is an unknown vector. So before implementing95

the three time-level, this vector must be obtained using another method, here

the implicit Euler approximation has been used as shown in the first branch in

(62) and (63). Note that F̂ is an M-Matrix.

The arising LCP is solved using two different methods; the projected successive

over relaxation (PSOR) and multigrid (MG) techniques. In PSOR introduced100

by Cryer [26], the solution vector components are relaxed several times with a

projection to any component has a value less than the payoff. This relaxation

process can be accelerated using a parameter ω ∈ (0, 2). Using MG techniques,

the initial guess is improved using coarser and finer grids. The problem is

mapped to the coarse grid, after that the iteration is done to obtain the vector105

solution [27, 28, 29, 30].

7. Numerical Examples

Results of the proposed schemes are illustrated with four examples compar-

ing and discussing the results for European and American put options on the

minimum of two asset. The numerical examples are executed using Matlab on110

a Microprocessor 2.8 GHz Intel Core i5.

Example 1. Here we compare the value of European put options obtained

using scheme (28)-(30) with the reference values in [5]. Consider an Euro-

pean put option with parameters T = 1, E = 100, r = 0.05, q1 = q2 = 0,

σ1 = 0.12, σ2 = 0.15, ρ = 0.3, λ = 0.6, µ1 = −0.1, µ2 = 0.1, σ̂1 = 0.17,115

σ̂2 = 0.13, ρJ = −0.2 and the boundaries x1x2−plane are x1, x2 ∈ [−3, 3].

The root mean square relative error (RMSRE) for S1, S2 belonging to the

set {90, 100, 110} is calculated for L = M = 3 and 5. The reference val-

ues are taken from [5] and the RMSRE is obtained for three groups Ŝ1 =

{(90, 90), (90, 100), (90, 110)}, Ŝ2 = {(100, 90), (100, 100), (100, 110)} and Ŝ3 =120

{(110, 90), (110, 100), (110, 110)}. Table 1 reports the associated RMSRE, ra-
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Ŝ1 Ŝ2 Ŝ3 CPU

(N1, N2, Nτ ) RMSRE Ratio RMSRE Ratio RMSRE Ratio (sec)

(64,32,50) 4.188e-3 – 3.561e-3 – 4.755e-3 – 0.17

(128,64,100) 1.247e-3 3.11 1.197e-3 2.97 2.016e-3 2.36 2.63

L
=
M

=
3

(256,128,200) 8.836e-4 1.41 7.158e-4 1.67 7.241e-4 2.78 10.72

( 512,256, 400) 2.480e-4 3.48 1.742e-4 4.11 6.901e-5 3.64 59.17

(64,32,50) 2.611e-3 – 3.558e-3 – 2.752e-3 – 0.31

(128,64,100) 7.854e-4 3.32 8.205e-4 4.34 7.326e-4 3.76 2.72

(256,128,200) 5.392e-4 1.45 4.916e-4 1.67 4.388e-4 1.67 11.12

( 512,256, 400) 1.369e-4 3.94 1.267e-4 3.88 1.040e-4 4.22 64.39

L
=
M

=
5

Table 1: The RMSRE for European put option on the minimum of two assets for several grids.

tio and CPU time for several grids.

The next example shows the importance of positivity conditions (31) getting

wrong results when they are broken.

Example 2. Here the parameters for European put option are T = 1, E = 100,125

r = 0.1, q1 = q2 = 0, σ1 = 0.15, σ2 = 0.2, ρ = 0.4, λ = 0.2, µ1 = −0.2,

µ2 = 0.15, σ̂1 = 0.2, σ̂2 = 0.3 and ρJ = 0.4. The option surface is plotted as

a function of S1 and S2 for (N1, N2, Nτ ) = (480, 240, 400) and (480, 240, 100).

The first ordered triplet represents the grid when the positivity conditions hold

as shown in Fig. 3 while the second one does not satisfy them, see Fig. 4.130

Figure 3: European put option: the positivity

conditions hold.

Figure 4: European put option: the positivity

conditions are broken.

Next example shows the associated truncated error of the integral part (52)

for several values of L and M .
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Errors for grids

(L,M) (ξ̂1, ξ̂2) (60,30,50) (240,120,200) (480,240,400)

(3,5) (-0.74,-1.85) 7.483e-3 2.186e-4 1.366e-6

(0.58,-1.23) -5.278e-3 7.214e-5 -8.349e-7

(1.12,1.67) 8.769e-4 4.156e-5 1.227e-7

(10,10) (-2.82,2.82) -2.395e-6 6.238e-7 2.588e-10

(-1.56,-1.56) 8.723e-8 -5.742e-9 -7.386e-11

(2.63,3.15) 3.544e-8 -1.299e-9 4.715e-11

(15,20) (-3.94,-5.18) -3.148e-11 4.391e-13 -5.782e-15

(-2.48,-4.37) 7.287e-12 -5.136e-14 6.394e-16

(3.26,1.79) 2.157e-12 1.319e-14 -2.915e-16

Table 2: The truncated error for the integral part

Example 3. Based on equation (52) and (53) the associated error with the

integral part approximation for given values of L and M can be controlled by

using suitable values of ξ̂1 and ξ̂2 (53). Here the parameters are T = 1, E = 100,135

r = 0.1, q1 = q2 = 0, σ1 = 0.25, σ2 = 0.15, ρ = −0.5, λ = 0.25, µ1 = −0.1,

µ2 = 0.1, σ̂1 = 0.17, σ̂2 = 0.13, ρJ = −0.2 and the boundaries x1x2−plane

are x1, x2 ∈ [−6, 6]. Table 2 reports the truncated error of the integral part for

several grids, L and M . Moreover, the error can be minimized using suitable

values of ξ̂1 and ξ̂2. In Table 2, we show accurate approximations for small140

numbers L and M of Hermite polynomials zeroes.

In next example 4 one performs a comparison between PSOR and MG methods

for American options under jump diffusion on two assets.

Example 4. The prices for American put options are computed using scheme

(60)-(63) and compared with the reference values in [5]. Here the parameters145

are the same as in Example 1, with x1, x2 ∈ [−6, 6]. Tables 3 and 4 report the

errors solving scheme (60)-(63) by using PSOR and MG respectively. Also

ratio and CPU time are shown.

Note that the ratios in Tables 3 and 4 are about 4. This fact is according

with the second-order accuracy in both space and time due to the central ap-150

proximations in space and the three time level discretization. The use of the first

implicit Euler time step does not affect significantly the overall convergence.

In Fig. 5 the efficiency graph of the PSOR and MG methods is presented
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Ŝ1 Ŝ2 Ŝ3 CPU

(N1, N2, Nτ ) RMSRE Ratio RMSRE Ratio RMSRE Ratio (sec)

(64,32,32) 1.087e-2 – 1.460e-2 – 1.153e-2 – 0.36

(128,64,64) 3.056e-3 3.56 4.247e-3 3.44 3.521e-3 3.27 5.62

L
=
M

=
6

(256,128,128) 7.255e-4 4.21 1.123e-3 3.78 7.767e-4 4.53 40.48

(512,256,256) 1.349e-4 5.38 2.147e-4 5.23 1.510e-4 5.14 220.17

(64,32,32) 6.139e-3 – 9.476e-3 – 7.618e-3 – 0.44

(128,64,64) 1.695e-3 3.62 2.885e-3 3.28 2.092e-3 3.64 6.25

(256,128,128) 3.537e-4 4.79 6.110e-4 4.72 5.037e-4 4.15 52.37

(512,256,256) 6.646e-5 5.32 1.104e-4 5.53 9.829e-5 5.12 247.68

L
=
M

=
1
0

Table 3: The RMSRE for American put option on the minimum of two assets for several grids using PSOR.

Ŝ1 Ŝ2 Ŝ3

(N1, N2, Nτ ) RMSRE Ratio RMSRE Ratio RMSRE Ratio CPU

(sec)

(64,32,32) 3.837e-3 – 2.108e-3 – 1.866e-3 – 0.28

(128,64,64) 9.183e-4 4.18 5.916e-4 3.56 5.343e-4 3.49 2.11

L
=
M

=
6

(256,128,128) 1.982e-4 4.63 1.213e-4 4.88 1.117e-4 4.78 13.66

(512,256,256) 3.590e-5 5.52 2.217e-5 5.47 1.923e-5 5.81 72.39

(64,32,32) 1.055e-3 – 1.714e-3 – 1.338e-3 – 0.35

(128,64,64) 2.456e-4 4.29 4.503e-4 3.81 3.412e-4 3.92 2.64

(256,128,128) 5.401e-5 4.55 9.523e-5 4.73 7.467e-5 4.57 16.28

(512,256,256) 9.372e-6 5.76 1.756e-5 5.42 1.252e-5 5.96 77.85

L
=
M

=
1
0

Table 4: The RMSRE for American put option on the minimum of two assets for several grids using MG.
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taking into account the CPU time and the RMSRE for the set Ŝ2 in Tables 3

and 4. Because of a large range of quantities the logarithmic scale is used. MG155

tecnique shows more efficiency in terms of RMSE/CPU.

-1 -0.5 0 0.5 1 1.5 2 2.5

log CPU

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
lo

g 
R

M
S

R
E

PSOR

MG

Figure 5: Efficiency graph of the PSOR and MG methods for L = M = 6.
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