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Abstract—This paper investigates the energy efficiency (EE)
of improper Gaussian signaling (IGS) in a K-user interference
channel (IC). IGS allows unequal variances and/or correlation
between the real and imaginary parts, and it has recently been
shown to be advantageous in various interference-limited sce-
narios. In this paper, we propose an energy-efficient IGS design
for the K-user IC, which is based on a separate optimization
of the powers and complementary variances of the users. We
compare the EE region achieved by the proposed scheme with
that achieved by conventional proper signaling and show that
IGS can significantly improve the EE region.

Index Terms—Energy efficiency, improper Gaussian signaling,
interference channels, multiuser.

I. INTRODUCTION

Energy-aware techniques have become more and more
important in the design of modern wireless communication
systems. For instance, energy efficiency is among the main
concerns of future 5G networks [1]. Another primary issue
in modern wireless communication systems, which are funda-
mentally interference-limited, is how to handle interference.
Therefore, interference management techniques play an essen-
tial role in the design of such systems.

Proper Gaussian signaling (PGS) achieves the capacity of
point-to-point, broadcast, and multiple-access channels [2].
However, this is not the case in other interference-limited
systems, such as the K-user interference channel (IC). It is in
these scenarios where improper Gaussian signaling (IGS) has
been shown to bring performance improvements over PGS.
IGS has been used as an effective interference management
tool in various interference-limited systems [3]–[10]. In IGS
schemes, the real and imaginary parts of the signals are
correlated and/or have unequal power [11].

The benefits of IGS as an interference management tool
have been shown using different performance metrics. For
instance, IGS schemes may increase the achievable degrees-
of-freedom (DoF) of the system, which are a proxy for the
sum-rate capacity when the signal-to-noise ratio (SNR) is
large [3]. Also, IGS schemes have been shown to improve the
achievable rate for various interference-limited systems when
the interference is treated as noise at the recievers [4]–[10]. In
[4], [5], it was shown that IGS can increase the achievable rate
of a single-input single-output (SISO) 2-user IC. The paper [8]
showed that IGS can enlarge the achievable rate region of a
multiple-input single-output (MISO) K-user IC.

The energy efficiency (EE) of a user is defined as the ratio
of its achievable rate to its total power consumption [12]–
[15]. There are many works on EE in PGS (see, e.g., [1],
[12] and the references therein). In [12], energy-efficient PGS
schemes were considered for different scenarios such as point-
to-point communications, the K-user SISO IC, relay multiple-
input multiple-output systems, etc. Nevertheless, the number
of works considering EE for IGS systems is small. In [10], we
proposed an energy-efficient IGS for 2-user underlay cognitive
radio (UCR) systems and showed the benefits of IGS for the
secondary user from an EE perspective. In UCR, there are
two types of users with different priority, i.e., primary and
secondary users, which do not cooperate with each other.
This is in contrast with the K-user IC, in which the users
have the same priority and can cooperate to achieve a better
performance.

In this paper, we tackle the optimization of EE of IGS
schemes in the K-user IC, and study the potential benefits
of IGS from this point of view. We aim at deriving the EE
region of IGS for the K-user IC by casting the corresponding
optimization problem as maximizing the weighted minimum
EE (WMEE) [12]. To solve this optimization problem, we
employ a sequential optimization method, in which we first
maximize the WMEE over the powers considering PGS,
i.e., when the complementary variances are zero. We then
maximize the WMEE over the complementary variances for
the given powers. This suboptimal approach guarantees that
the proposed IGS scheme is not worse than the PGS scheme.
Our results show that IGS can substantially enlarge the EE
region of the K-user IC.

The rest of this paper is organized as follows. Section
II describes the system model and formulates the WMEE
problem. Sections III and IV present the energy-efficient
schemes for PGS and IGS, respectively. Section V presents
some numerical results.

II. SYSTEM MODEL

A. Preliminaries of IGS

Let us consider a zero-mean complex Gaussian random
variable x with variance p = E{|x|2} and complementary
variance q = E{x2}. We define the circularity coefficient of x
as κ = |q|

p , where 0 ≤ κ ≤ 1 or equivalently |q| ≤ p [11]. We
call x proper if κ = 0, and improper otherwise. We denote
the probability distribution of such x by CN (0, p, q).



B. Problem Statement

We consider a K-user IC, as depicted in Fig. 1. The received
signal of user k ∈ {1, · · · ,K} is

yk =
∑
j

hkjxj + nk, (1)

where xj , hkj , and nk for j ∈ {1, · · · ,K} are the transmit
signal of user j, channel coefficient of the link between trans-
mitter j and receiver k, and independent zero-mean proper
complex Gaussian noise with variance σ2, respectively. We
treat interference as noise and assume that each user is allowed
to employ IGS. Thus, the rate of user k is [5]
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where pj , and qj are, respectively, the transmission power,
and complementary variance of the transmitted signal of user
j. We can represent the rate of user k in vector form as

Rk(p,q) =
1

2
log2

(
(σ2 + aTk p)

2 − |fHk q|2

(σ2 + bTk p)
2 − |gHk q|2

)
, (3)

where

ak =
[
|hk1|2 |hk1|2 · · · |hkK |2

]T
, (4)

bk = ak −
[
0 0 · · · |hkk|2 · · · 0

]T
, (5)

fk =
[
h2k1 h2k2 · · · h2kK

]H
, (6)

gk = fk −
[
0 0 · · · h2kk · · · 0

]H
, (7)

q = [ q1 q2 · · · qK ]H , (8)

p = [ p1 p2 · · · pK ]T . (9)

We define the energy efficiency function of user k as the
ratio of its data rate to its total transmission power, i.e.,

Uk =
Rk(p,q)

ζpk + Pc
, (10)

where ζ and Pc are the power efficiency and the constant
power consumed by each transmitter, respectively [12]–[15].

In this paper, we aim at deriving the EE region of the K-user
IC, which can be cast as maximizing the weighted minimum
EE (WMEE) as [12]

max
p,q

min
k

{
Uk
αk

=
Rk(p,q)

αk (ζpk + Pc)

}
, (11a)

s.t. 0 ≤ pk ≤ Pk, (11b)
|qk| ≤ pk, (11c)

where (αk)
−1 is the corresponding weight for user k, and∑K

k=1 αk = 1. Moreover, Pk is the power budget of user k.
Solving (11) is not straightforward since it is not a convex
optimization problem. In order to solve (11), we employ a
sequential optimization approach, in which we first obtain the
powers that maximize the WMEE problem for q = 0. To this
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Fig. 1: Channel model for the K-user SISO IC.

end, we employ the PGS scheme in [12]. Then, we derive
the complementary variances by optimizing (11) for the given
power vector.

III. OPTIMIZATION OF THE TRANSMIT POWERS

In this section, we obtain the powers, p, that maximize the
WMEE cost function when users employ PGS, i.e., q = 0. In
this case, (11) can be simplified to

max
p

min
k

{
Upk (p)

αk
=

Rpk(p)

αk (ζpk + Pc)

}
, (12a)

s.t. 0 ≤ pk ≤ Pk, (12b)

where Upk (p) and Rpk(p) = log2(1+γk(p)) are, respectively,
the EE and rate of user k when all users employ PGS.
Moreover, γk(p) is the received signal-to-interference-plus-
noise ratio (SINR) at the receiver of user k, which is given
by

γk(p) =
pk|hkk|2

σ2 +
∑
j 6=k
|hkj |2pj

. (13)

The optimization problem (12) is not convex, but a suboptimal
solution was proposed in [12]. For the sake of completeness,
we describe the solution here. We first apply the generalized
Dinkelbach algorithm (GDA) to (12). Then, we solve the
optimization problem in each iteration of the GDA by a
sequence of convex problems. Due to space restrictions, we
refer the reader to [12], [16] for more details about the GDA.

Applying the GDA to (12) results in the following optimiza-
tion problem at the lth iteration

max
p

min
k

log2 (1 + γk(p))− µ(l)αk (ζpk + Pc) (14a)

s.t. 0 ≤ pk ≤ Pk, (14b)

where µ(l) = Upk (p
(l−1)) is fixed at each iteration, and p(l−1)

is the power vector at the (l − 1)th iteration. Unfortunately,
(14) is not convex and needs further simplification. To this
end, we first approximate the objective function of (14) by a
lower bound by using the following inequality [12]

log2(1 + γk(p)) ≥ a(l) log2(γk(p)) + b(l), (15)



where
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Note that (15) holds with equality at γk(p) = γk(p
(l−1)).

Moreover, the derivatives of the left-hand side and right-hand
side of (15) are equal at γk(p(l−1)). As a result, we can replace
the logarithmic part of the objective function in (14) with its
lower bound and apply sequential convex programming (SCP)
to solve (14). Note that under these conditions, SCP converges
to a point satisfying the Karush-Kuhn-Tucker (KKT) condi-
tions of (14) [17]. Hence, we approximate (14) as [12]

max
p,e

e (17a)
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Now we substitute pk by tk = log2(pk) and rewrite (17) as
[12]
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where t = [t1, t2, ..., tk]. The problem (18) is convex in
{tk}Kk=1 and can be solved efficiently.

IV. OPTIMIZING COMPLEMENTARY VARIANCES

In this section, we maximize the WMEE function over q
for the given p? obtained in Section III. The corresponding
optimization problem is again nonconvex and difficult to solve.
Thus, we employ an iterative algorithm to find a suboptimal
solution. This is accomplished by approximating the original
optimization problem and solving each approximated problem
by a sequence of convex feasibility problems.

For a given power vector p?, (11) is equivalent to

max
q,e

e (19a)

s.t. Rk(p
?,q)≥ αk (ζp?k + Pc) e, ∀k, (19b)

|qk| ≤ p?k, ∀k. (19c)

We can rewrite (19) as

max
q,e

e (20a)

s.t. −
(
(σ2 + bTk p

?)2 − |gHk q|2
)
22αk(ζp

?
k+Pc)e

+ (σ2 + aTk p
?)2− |fHk q|2 ≥ 0, ∀k, (20b)

|qk| ≤ p?k, ∀k. (20c)

The optimization problem in (20) is not convex since (20b)
is not a concave function in q and e. Following along lines
similar to problem (14), we first find a lower bound for (20b),
such that it is a concave function in q for a fixed e. That is, we
approximate the nonconvex part of (20b) by an affine function
of q, using the first-order Taylor expansion at q(m), i.e., [11]

|gHk q|2 ≥ |gHk q(m)|2 + 2R
(
(gHk q(m))HgHk (q− q(m))

)
,

(21)
where q(m) is the solution obtained at the previous iteration,
and R(x) takes the real part of x. Note that the equality holds
only at q = q(m). Furthermore, the derivatives of the left-hand
side and right-hand side of (21) are equal at q(m). Under these
conditions, the approximated problem converges to a point
satisfying the KKT conditions of (20) [17]. By plugging (21)
into (20), the approximated optimization problem at the mth
iteration becomes

max
q,e

e (22a)

s.t. Ẽ(m)(q, e) > 0, ∀k, (22b)
|qk| ≤ p?k, ∀k, (22c)

where
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The optimization problem (22) is not convex, but we can
obtain its optimal solution, e(m), by a bisection method, which
results in a sequence of feasibility problems [18]. That is, we
fix e = e0 and solve

find q (24a)

s.t. Ẽ(m)(q, e0) > 0, ∀k, (24b)
|qk| ≤ p?k, ∀k. (24c)

If (24) is feasible, e(m) > e0. Otherwise, e(m) < e0. As
indicated formerly, the complete algorithm converges to a
point satisfying the KKT conditions of (20).

V. NUMERICAL RESULTS

In this section, we provide some numerical examples to
illustrate the EE improvement achieved by IGS. We set σ2 =
10−4 W, ζ = 3, and Pk = 5 mW for k = 1, ...,K [15].
We average the results over 100 channel realizations. Every
channel realization is drawn from a proper complex Gaussian
distribution with zero mean and unit variance, i.e., CN (0, 1, 0).
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Fig. 2: Symmetric EE of the 2-user IC versus Pc.
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Fig. 3: Symmetric EE of the 3-user IC versus Pc.

In Figs. 2 and 3, we show the fairness point of the EE region
boundary, which is given by αk = 1/K, versus Pc for the 2-
user and 3-user IC, respectively. Notice that at this point the
users achieve the same EE, and therefore it is typically denoted
as symmetric EE. These figures show that IGS provides
higher average symmetric EE than PGS. As expected, the
EE decreases with Pc. In these figures, we also compare our
proposed IGS scheme with an IGS scheme based on exhaustive
search with 5× 105 and 107 randomizations (labeled by IGS-
E) for the 2-user and 3-user IC, respectively. This provides
a hint on how close the proposed IGS suboptimal design is
to the optimal solution. As can be observed, the proposed
IGS scheme performs very close to IGS-E in this scenario. In
particular, for the example in Fig. 2, our IGS scheme performs
only 1.5% and 7.5% worse than the IGS-E at Pc = 1 mW and
Pc = 8 mW, respectively. Similarly, for the example in Fig.
3, the IGS-E is 0.3% and 11.2% better than our scheme when
Pc = 1 mW and Pc = 8 mW, respectively. Note that the
IGS-E can be considered a lower bound for the optimal IGS
solution.

In Fig. 4, we show the improvement in the average symmet-
ric EE by IGS versus Pc for the 2-user and 3-user ICs. As can
be observed, the improvement by IGS increases with Pc. The
reason is that the optimal powers for PGS increase with Pc,
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Fig. 4: Relative improvement by employing IGS for the
symmetric EE versus Pc.
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Fig. 5: Symmetric EE of the K-user IC versus K.

and the EE maximization is simplified to rate maximization
when Pc is very high [1]. Since higher powers result in more
improvement by optimizing over complementary variances
[5], the improvement is also increasing with Pc. We can
also observe in Fig. 4 that the improvement by IGS is more
significant for the 3-user IC. This is due to the fact that the
higher the number of users is, the more interference they cause.
As a result, the benefits of IGS are potentially higher in the
3-user IC.

In Fig. 5, we show the symmetric EE versus the number
of users, K, for Pc = 4 mW. As can be seen, the symmetric
EE decreases with K. In Fig. 6, we show the sum of the
symmetric EE versus the number of users, K, for Pc = 4 mW.
As expected, the sum of the symmetric EE decreases with K,
which implies that the overall EE decreases when more users
employ the same amount of resources. In these figures, we
can observe that IGS significantly outperforms PGS for every
K, where there is 19% and 56% improvement for K = 2 and
K = 4, respectively.

Figure 7 shows the EE region of the 2-user IC for Pc = 5
mW and channel realization

H =

[
1.3997e−i0.3803 1.5401ei1.0127

1.2250ei2.4311 0.9361ei0.8844

]
. (25)

For this channel realization, the interference link of each
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receiver is stronger than its corresponding direct link, which
yields a strong interference regime. As can be observed, IGS
can significantly enlarge the EE region for this example. It
is worth mentioning that IGS does not provide any gain in
noise-limited regimes, for which the interference is negligible.
In other words, not surprisingly the benefits of IGS increase
with the interference level.

VI. CONCLUSION

We have proposed an EE IGS scheme for the K-user IC. By
maximizing the WMEE, the proposed design permits operating
at different points of the EE region. In order to find a sub-
optimal solution to the WMEE problem, we have performed
a separate optimization of the powers and complementary
variances. For the former, we have considered proper signaling
and resorted to GDA and SCP to find a solution to the
original non-convex problem satisfying the KKT conditions.
The resulting solution was then improved by optimizing over
the complementary variances. Again, this has resulted in a
non-convex problem, and a suboptimal solution was found by

using bisection and SCP. Our numerical results show that IGS
is much more energy efficient than its proper counterpart.
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