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Casimir interaction between a microscopic dipole oscillator and a macroscopic solenoid
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We discuss the interaction between a microscopic electric dipole oscillator and a long solenoid which are
separated by a small distance. The solenoid belongs to a simpleRLC circuit and the zero point and thermal
current fluctuations within the solenoid coils are taken into account. We describe how they affect the equilib-
rium state and the excited states of the oscillator, thus providing a description of the Casimir interaction of the
system. We calculate the modification in the lifetime of the oscillator excited states as a function of the
parameters of the circuit, the dipole orientation, and the distance between the dipole and the solenoid. The
Casimir force between the solenoid and the electric dipole is calculated, and it is shown that this Casimir
interaction always exists, that is, it occurs even when the macroscopic current in the solenoid iszero. We
suggest experiments which can exhibit these effects related to the electromagnetic interactions between atoms
or molecules and simple circuits.@S1050-2947~98!00401-6#

PACS number~s!: 03.65.Sq, 05.40.1j
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I. MOTIVATION AND DESCRIPTION
OF THE PHYSICAL SYSTEM

Two interesting phenomena have motivated us to st
the electromagnetic interaction between a macroscopic s
noid and a polarizable molecule or atom. The first one is
Casimir force, which manifests itself between macrosco
objects. This force was predicted theoretically by Casimir@1#
in a seminal paper, published in 1948, and entitled ‘‘On
Attraction between two Perfectly Conducting Plates.’’ T
experimental confirmation of the Casimir prediction w
made by Sparnaay@2# in 1958. The Casimir force is nowa
days attributed to the existence of fluctuating electrom
netic fields which pervade ‘‘empty’’ space or vacuum. T
second phenomenon is the Aharonov-Bohm effect@3# which
was also anticipated theoretically in 1959 and confirmed
perimentally by Mo¨llenstedt and Bayh@4# in 1962.

We plan to discuss the influence of the current fluct
tions on the Aharonov-Bohm effect elsewhere. Neverthel
motivated by several controversial approaches related to
phenomenon@5#, we have decided to use a bound charge
study the dynamical effects of the fluctuating electrom
netic fields in the exterior region of a long solenoid which
part of a simpleRLC circuit. It should be noticed, howeve
that there is already a very large literature describing
perturbative coupling of an oscillator to an electromagne
cavity @6#, but as far as we know, our detailed study of t
Casimir interaction between a dipole oscillator and the
ductor of the circuit is an original contribution to this field o
research.

In order to achieve our goal we shall consider, in det
the interaction of a long solenoid with an electric dipo
placed close to it~a neutral atom or molecule for instance!.
The electric dipole is a microscopic one-dimensional osci
tor ~oscillating chargee, massm, and frequencyv0) which
is oriented along thex axis and is placed at the origin of th
coordinate system. At a distancey ~in the y axis! there is a
long solenoid~inductanceL) whose axis is oriented paralle
to thez direction. We shall consider that the solenoid ha
571050-2947/98/57~2!/724~7!/$15.00
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large numberN of circular coils with radiusa, and that the
solenoid extends from2 l /2 to l /2 in the z direction (L
54p2N2a2/c2l ). We shall also assume thata! l , that is, the
solenoid can be considered thin and very long~‘‘infinite’’ ! as
far as the interaction with the oscillator is concerned~see
Fig. 1!.

In order to incorporate the various radiative effects pre
sented by the system, our calculation must be based on qu
tum electrodynamics~QED! or stochastic electrodynamics
~SED! @7,8#. It is well known that, for linear systems, the
results of SED agree with those of QED@7–10#. For the sake
of simplicity our approach will be based on SED, which is
very convenient for studying many phenomena associat

FIG. 1. Schematic picture of the electric dipole at a distancey
from the solenoid axis. The relevant fields generated by the sol

noid (EW sol) and the oscillating dipole (BW dip) are indicated. The so-
lenoids used by Mo¨llenstedt and Bayh@4# are such that 1.5
31024 cm<d1<431024 cm, d2.331024 cm, and a.7
31024 cm. The number of coils isN.103 and the solenoid length
l varies from 0.5 to 0.7 cm.
724 © 1998 The American Physical Society



-

Eq
n

n

r-
q
i-

al
s
th
ra
te
t

to
tri
so
en
pli

-
th
-
c

,

ll

c-

le

he
-

ing

q.
ure
um

tic

er
um

-
n

r
y,

57 725CASIMIR INTERACTION BETWEEN A MICROSCOPIC . . .
with electromagnetic fluctuations.
The nonrelativistic equation of motion for the micro

scopic oscillator is@7,8#

mẍ52mv0
2x1eEx~ t !1mt x̂, ~1.1!

wheret52e2/3mc3 andEx(t) is the total fluctuating electric
field which acts on the charged particle. The last term in
~1.1! is the radiation reaction force which has an importa
role in SED@9#. Within the dipole approximation~which we
shall use throughout this paper! the fieldEx(t) will be con-
sidered only a function of time, independent of the positiox
of the charge~we are also assuming thatuxu!y). In our
example there are two contributions toEx(t) which will be
denoted by

Ex~ t !5EVF~ t !1Esol~ t !, ~1.2!

whereEsol(t) is thex component of the electric field, gene
ated by the fluctuating current within the solenoid. In E
~1.2! EVF(t) is thex component of the electric field assoc
ated with the free space vacuum fluctuations~see Ref.@9#!.

In order to facilitate the exposition of our results we sh
give, within Sec. II, a brief description of the fluctuation
associated with the electric circuit and we also introduce
notation used in our paper. The detailed study of the inte
tion between the solenoid and the oscillator will be presen
in Sec. III. This section will be divided into three parts trea
ing, respectively, the properties of the microscopic oscilla
the Casimir force which the solenoid exerts on the elec
dipole, and the modification in the spectral distribution as
ciated with the voltage fluctuations. The possible experim
tal observation of our predictions and other theoretical im
cations will be given in Sec. IV.

II. FLUCTUATIONS ASSOCIATED WITH ELECTRIC
CIRCUITS AND WITH THE VACUUM

ELECTROMAGNETIC FIELDS

We shall denote the Fourier transform ofEVF(t) by
ẼVF(v), that is,

EVF~ t ![E
2`

`

dvẼVF~v!e2 ivt. ~2.1!

According to the SED approach@7,8# ẼVF(v) is a random
variable such that its ensemble average^ẼVF(v)&50 and

^ẼVF~v!ẼVF~v8!&5
\v3

3pc3 cothS \v

2kTD d~v1v8!,

~2.2!

where\ is the Planck constant andT is the temperature~zero
point and thermal fluctuations are taken into account!.

The electric field (x component! generated by the sole
noid at the position of the dipole can be calculated in
standard manner@11#. The retardation effects will be negli
gible because we shall assume that the relevant frequen
are such thatlv!c. Therefore, assuming alsoy! l , the re-
sult for Esol acquires a simple familiar expression, namely
.
t

.

l

e
c-
d

-
r,
c
-
-

-

e

ies

Esol~ t !52
1

c

]Asol

]t
.2

b~y!

c2 İ ~ t !, ~2.3!

where AW sol is the vector potential,b(y)[2pa2N/ ly , and
I (t) is the total current within the solenoid coils. We sha
discuss first the case in which^I (t)&5^ İ (t)&50, that is, the
circuit is disconnected from a battery.

The correlation function associated with the current flu
tuations of the circuit~Nyquist-Johnson noise@12#! is well
known in the particular situation in which the electric dipo
is very far from the circuit~no interaction!. In the case of an
RLC circuit we have

Ĩ ~v!5
Ẽ~v!

Z~v!
, ~2.4!

whereZ(v)5R2 i (vL21/vC) is the impedance, andẼ(v)
and Ĩ (v) are, respectively, the Fourier transforms of t
random voltageE(t) and I (t). Assuming that the character
istic wavelength of the emitted radiation (l52pcALC) is
larger than the dimensions of the circuit, that is, neglect
retardation, it is possible to show that@12,13#

^ Ẽ~v! Ẽ~v8!&5
R\v

2p
cothS \v

2kTD d~v1v8!. ~2.5!

The zero point and thermal fluctuations are included in E
~2.5!. Moreover, we are assuming that the circuit temperat
T is equal to the temperature associated with the vacu
electromagnetic field@see Eq.~2.2!#. The result~2.5! follows
from the fact that theRLC circuit is quite similar@13# to a
harmonic oscillator with frequencyV5(LC)2 1/2, that is, the
current obeys the equation:

Lİ ~ t !1RI~ t !1
1

CE
t

I ~ t8!dt85E~ t !, ~2.6!

and the average circuit energy at zero temperature is\V/2 in
the limit R/LV→0.

The spectral distribution of the vacuum electromagne
fluctuations@see Eq.~2.2!# will be modified by the presence
of the solenoid. We shall calculate this modification und
the assumption that the voltage fluctuations and the vacu
electromagnetic fluctuationsEVF(t) are statistically indepen
dent, i.e.,^ẼVF(v) Ẽ(v8)&50. In the absence of interactio
~electric dipole removed! the statistical properties ofEsol can
be obtained from Eqs.~2.3!–~2.5!. In this case the Fourie
transform of the total fluctuating electric field, namel
Ẽx(v)[ẼVF(v)1Ẽsol(v), is such that

^Ẽx~v!Ẽx~v8!&5
2p

3
r~v,y!d~v1v8!, ~2.7!

and is characterized by a spectral distributionr(v,y). Using
Eqs.~2.2!–~2.5! it is possible to show that

r~v,y!5
\v3

2p2c3 cothS \v

2kTD @11b~v,y!#, ~2.8!

where
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b~v,y!5
3

2

R~2pNa2/ ly !2

cuZ~v!u2
. ~2.9!

The electromagnetic spectral distribution~2.8! is quite
different from that observed in free space@see Eq.~2.2!# due
to the presence of solenoid . As a matter of fact, the mod
cation in r(v,y) is significant for frequenciesv which are
close to the circuit frequencyV. This modification will be
essential in order to understand the Casimir interaction
tween material particles and the solenoid~see Milonni@8# for
several other examples of Casimir interactions!. This is one
of the relevant results of our study. It should be stress
however, that neither the modification of the spectral den
nor the role it plays in the radiative interaction is remote
surprising. This is exactly the essence of the problem as
understood by Purcell@14# in 1946, when he proposed alte
ing the spontaneous radiation rate~at radio frequencies! by
coupling magnetic dipoles to a cavity and was abunda
expounded by Barton@15# in his many beautiful papers o
the subject.

III. STUDY OF THE INTERACTION BETWEEN
THE SOLENOID AND THE OSCILLATOR

Let us consider now that the electric dipole is in the orig
of the coordinate system at a distancey from the solenoid.
The oscillating charge will generate electromagnetic fie
which propagate in space and will reach the solenoid~see
Fig. 1!. Neglecting retardation, thez component of the mag
netic fieldBW dip at the point (0,y,z) will be given by @11#

~BW dip!z.
yeẋ~ t !

cr3 , ~3.1!

wherer 25y21z2 andx(t) is the solution of Eq.~1.1!. This
time dependent magnetic field will produce an additio
fluctuating voltage in each coil of the solenoid because of
fluctuations inx(t). As a consequence, the electromoti
force acting in the circuit will be different fromE(t) @see
Eqs.~2.5! and ~2.6!#. The resulting total electromotive forc
is

Etot~ t !.E~ t !1
e

c2 b~y!ẍ~ t !, ~3.2!

when retardation effects are negligible~see Ref.@11#!. Notice
that the geometric factorb(y) is thesamefactor that appears
in Eq. ~2.3! which describes the reverse process, that is,
action of the solenoid on the dipole.

In terms of the Fourier transform ofx(t), the Eq.~1.1!
becomes

~v0
22v22 i tv3! x̃ ~v!5

e

mF ẼVF~v!2
ivb~y!

c2 Ĩ ~v!G ,
~3.3!

where the last term in Eq.~3.3! corresponds toẼsol(v).
Equations~2.6! and ~3.2! lead to

Z~v! Ĩ ~v!5 Ẽ~v!2
e

c2 v2b~y! x̃ ~v!. ~3.4!
-
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The above linearly coupled equations,~3.3! and~3.4!, can
be solved exactly and are the main result of this section.
shall discuss below several new dynamical effects which
governed by Eqs.~3.3! and ~3.4!.

A. Properties of the microscopic oscillator

In order to see the new properties of the oscillator, g
erated by the presence of the cloud of electromagnetic ra
tion surrounding the solenoid, it is necessary to obtainx̃ (v).

From Eqs.~3.3! and ~3.4! we get

x̃ ~v!5
~e/m! @ẼVF2 i ~vb/c2Z! Ẽ#

D~v!
. ~3.5!

The functionD(v) introduced above can also be written

D~v!5v0
21tv3D~v,y!2v22 i tv3@11b~v,y!#,

~3.6!

where

D~v,y!5
vL

R S 12
V2

v2 Db~v,y!. ~3.7!

Notice that the functionb(v,y) is the same function which
appears in Eq.~2.8!.

In equilibrium, the mean square displacement can be
culated from Eq.~3.5!. We shall first show that the familia
result for^x2& is obtained ifD(v,y) andb(v,y) are smooth
functions ofv and if tv0!1. According to a standard pro
cedure~see Milonni and the second paper by Boyer in R
@8# for a similar calculation! it is possible to show that

^x2&.
4p

3

e2

m2E
0

`

dv

3
~\v3/2p2c3!coth~\v/2kT!@11b~v,y!#

~v22v08
2!21t2v6@11b~v,y!#2

.
\

2mv0
cothS \v0

2kTD , ~3.8!

where we have used Eqs.~3.5!, ~3.6!, and ~2.8!. It is also
easy to show thatv08/v0.11tv0D(v0 ,y)/2.1.

The result~3.8! is essentially thefree spacevalue for an
oscillator in equilibrium with zero point and thermal radi
tion. This is remarkable because the electric dipole is
mersed in the electromagnetic noise generated by the ci
which, however, does not appear in the final expression.
factor 11b in the denominator of the integral~3.8! counter-
balances the factor 11b which appears in the spectral dis
tribution r(v,y). A simple consequence of this fact is th
the average value of the oscillator energy atT.0 is pre-
cisely (1/2)\v0 coth(\v0 /2kT). This is, therefore, a striking
example of the fluctuation-dissipation mechanism in SE
Another impressive example of this fluctuation-dissipati
mechanism, associated with coupled mechanical oscillat
was considered by Blancoet al. @16# in their ‘‘Classical in-
terpretation of the Debye law for the specific heat of solids
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We are going to study now the response of the oscilla
to avoltage excitationapplied to the circuit. We shall assum
that it is generated by a deterministic disturbanceVd(t) in
the circuit voltage and we shall describe it replacingẼ(v) by
Ẽ(v)1Ṽd(v) in Eq. ~3.5!. For simplicity we shall assume
that Ṽd(v) has a constant valueA0 /2p. This hypothesis cor-
responds to generating a deterministic voltage pulse into
circuit which has the simple formVd(t)5A0d(t). Therefore
according to Eq.~3.5! the average position of the oscillato
will be given by

^x&5
e

mE
2`

`

dve2 ivt
~2 ivb! ~A0/2p!

c2Z~v!D~v!

.
2pNa2

ly

A0

c2L

e/m

r1r2
F2V sin~Vt !expS 2

R

2L
t D

1v0sin~v0t !expS 2
G8

2
t D G , ~3.9!

where r6[A(V6v0)21@(R/2L)2G8/2#2 and G85G@1
1b(v0 ,y)#. Notice that G[2e2v0

2/3mc3 is the damping
constant in free space. The above result was obtained
assuming thatG8!v0, R/L!V and that the poles in the
integrand are6v02 iG8/2 and6V2 iR/2L.

An interesting remark is that the damping constants
both terms in Eq.~3.9! are different from the free spac
damping constantG due to the presence of the soleno
According to Eq.~3.9! we see that the lifetime of the osci
lator states can be ‘‘controlled’’ by the experimentalist w
can modify the parameters associated with the circuit.

To have a qualitative idea of the lifetime associated w
the first term in Eq.~3.9!, as compared with the free spac
value, let us assume thatv0.1011 sec21 and tv0.10216.
These two values are characteristic of the oscillations a
ciated with a simple molecule such as the NH3, for instance.
Therefore, using the numerical values forR and L consid-
ered in Ref. @4#, namely R.4310210 sec/cm andL.5
310220 sec2/cm, we get R/LG5R/Ltv0

2.1015. Such a
huge value, obtained in this particular example, implies t
the radiation emitted by the electric dipole will have a bro
spectral distribution in comparison with the free space ca
In our opinion, this theoretical prediction is quite interesti
and deserves further attention from the experimental poin
view. The anisotropy in the radiation emitted by the oscil
tor may be experimentally detected. It is also possible
show that G8/G.1110a2/y2. Therefore, the result~3.9!
shows that we have an enhancement in the spontan
emission by the oscillator. A similar situation is encounter
when the oscillator is between two parallel mirrors@17,18#.
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B. Casimir force

The electromagnetic force~nonrelativistic Lorentz force!
which the solenoid exerts on the microscopic electric dip
pW (t) is given by the ensemble average~see Ref.@19#!

FW .^~pW •¹W !EW sol&1K pẆ

c
3BW solL . ~3.10!

The electric dipole has only the componentpx(t)[ex(t) and
x(t) has the Fourier transform given by Eq.~3.5!. The sole-
noid electric fieldEW sol(t) was obtained before and itsx com-
ponent is given by Eq.~2.3!. The magnetic fieldBW sol5¹W

3AW sol is in thez direction and one can show that it gives
negligible contribution toFW despite the fact thatuBW solu
5uEW solu.

The force~3.10! is in they direction and can be written a

F[^@~pW .¹W !EW sol#y&52p
a2N

c2ly2 e^xİ&. ~3.11!

The currentI (t) has a Fourier transformĨ (v) such that

Z~v! Ĩ ~v!5
v0

22v22 i tv3

D~v!
Ẽ~v!2

3

2

tv2cb~y!

D~v!
ẼVF~v!,

~3.12!

in agreement with the coupled Eqs.~3.3! and ~3.4!. Taking
into account Eqs.~3.5!, ~3.12!, ~2.2!, and~2.5! it is possible
to show thatF can be expressed as the integral

F523p~tv0!~\v0!
N2a4

l 2y3 ~cR!

3E
2vmax

vmax
dv

v3 coth~\v/2kT!

v0
2ucZ~v!u2uD~v!u2

3F ~v0
22v2!1tv

Lv

R
~V22v2!G , ~3.13!

wherevmax is the maximum frequency compatible with th
long wavelength approximation used within this pap
(vmax.c/l).

The integral in expression~3.13! can be calculated for any
value of the temperatureT. We shall comment first on the
result for kT!\V and kT!\v0 which can be obtained
from Eq. ~3.13! by replacingv3 coth(\v/2kT) by uvu3. In
this case the result is
F52e
3

4p

a2

y3 S c\

l D H 2ge8lnS c

lv0
D 1

p~12g2!

~12g2!21e82g2

1
2g3e8~22g22e82!ln g14g3@g2~12e82/2!2 ~e8424e8212!/2#c~e8!

~12g2!21e82g2 J , ~3.14!
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where c(e8)[(42e82)2 1/2 arctan(A42e82/e8). The di-
mensionless parameterse, e8, andg are defined by

e[tv0 , e8[
R

LV
, and g[

V

v0
. ~3.15!

The result~3.14! is valid up to first order ine and provided
that v0 andV are much less thanc/ l . See the Appendix for
the calculation details.

In the particular casee8!1, the expression within the
curly brackets in Eq.~3.14! acquires a very simple form
namely,p@11g2/(11g)#. It is remarkable that this is true
for u12gu@e8 and u12gu.e8.

Another interesting case occurs when the temperatur
such that kT@\vmax. One can, therefore, replac
\v coth(\v/2kT) by kT in Eq. ~3.13! and the Casimir force
will be given by a much simpler expression in comparis
with Eq. ~3.14!, namely,

F52
3

4

tca2

ly3 kT. ~3.16!

According to this result the force is repulsive, increases
early with the temperature, and is independent of the os
lator frequencyv0 provided thatv0!vmax5c/l.

Finally, if v0@vmax, the force calculated from Eq.~3.13!
becomes very small.

C. Spectral density of the voltage fluctuations
in the RLC circuit

According to Eq.~3.2! the spontaneous fluctuation of th
total electromotive forceEtot(t) acting in the circuit has two
main contributions. The first one, indicated byE(t) in Eq.
~3.2!, is simply the thermal and zero point noise voltage
the resistive circuit@12,13#. Its spectral density is propor
tional to the resistanceR of the circuit @see Eq.~2.5!#. The
second one is generated by the fluctuations of the ele
dipole and is proportional toẍ(t).

The Fourier transform ofEtot(t) has a spectral densit
SV(v) which can be written in a standard form, name

^ Ẽtot(v) Ẽtot(v8)&5SV(v)d(v1v8). The two contributions
to SV(v) can be easily obtained from our previous equatio
~2.5!, ~3.2!, and~3.5!. Therefore it is straightforward to show
that

SV~v!.
\v

2p
cothS \v

2kTD H R1
~tv!2

c

3

2 S 2pa2N

ly D 2

3
v4@11b~v,y!#

~v0
22v2!21t2v6@11b~v,y!#2 J , ~3.17!

whereb(v,y) is given by Eq.~2.9!.
The second term in Eq.~3.17! is caused by the fluctuatin

magnetic field generated by the random oscillations of
charge in the electric dipole@see Eq.~3.1!#. This contribution
to the spectral densitySV(v) is small, in a wide range of the
spectrum, due to the factor (tv)2. However, it should be
mentioned that, for frequencies very close tov0, the second
is

-
il-

ric

,

s

e

term in Eq. ~3.17! has a very sharp peak which is of ze
order in t. The possible experimental observation of th
sharp peak will be discussed in the following section.

IV. DISCUSSION

An experimental test of our prediction for Casimir forc
Eqs. ~3.14! and ~3.16!, might be performed measuring th
deviation of an appropriate molecule passing near the s
noid. A similar procedure has been used for the measurem
of the Casimir-Polder force on atoms passing through
micrometer-sized parallel-plate cavity@20#. In our case, we
should use a molecule with a characteristic vibration of f
quencyv0 smaller thanc/ l .

A good candidate is the inversion of the ammonia m
ecule, whose frequency correspond to a radiation wavelen
l51.3 cm. However, the Casimir force in these conditio
is extremely small and is probably beyond the capabilities
present-day technology. Using Eq.~3.16! for room tempera-
ture, we have estimated the anglea of deviation of a mol-
ecule passing close (y.a) to the solenoid to be

a.
p

8

tc

l

kT

Mv2 .531028v22, ~4.1!

where v is the velocity in cm/sec. We have takent
5(2/3)(e2/mc3).10227 sec becausee is the proton charge
and m the reduced mass of the NH3 molecule~about three
times the proton mass!. Moreover,M was assumed to be th
mass of the entire molecule~17 times the proton mass!.

It is interesting that Eq.~4.1! gives a deviation which is
inversely proportional to the mass and does not depend
the vibration frequency~ except thatv0!c/ l and \v0
!kT). This suggests that the Casimir force between a f
electron and a solenoid might give a measurable deviat
much bigger than Eq.~4.1!. The experiment would be simila
to and no more difficult than the standard experimental
of the Aharonov-Bohm effect@3–5#. A calculation of the
Casimir force between a solenoid and a free electron is
progress.

Another prediction that can be tested experimentally
rives from Eq.~3.17!, namely, the measurement of the effe
of the dipole oscillator on the voltage~or the current! fluc-
tuations in theRLC circuit. Some of these fluctuations hav
already been measured@12#. As the producttv0 is extremely
small, we may write Eq.~3.17! in the simplified form

SV~v!.
\v

2p
cothS \v

2kTDLV

3H e81
3p

4
~tv0!

v0ca2

V ly2 d~v2v0!J , ~4.2!

whered is Dirac’s delta. We predict a very sharp peak in t
spectrum atv5v0 but the width and height of the peak wi
be determined by the resolution (Dv) in the measurement o
the frequency. Averaging the terms of Eq.~4.2! that are
within curly brackets, in the interval@v02(Dv)/2,
v01(Dv)/2# we get

e81
3p

4
~tv0!

v0

~Dv!

c

V l

a2

y2 , ~4.3!
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if v lies inside the interval. Even in the closest approach
the oscillator to the solenoid~i.e., y.a) we get for the sec-
ond term of Eq.~4.3! a value of about 10214 to be compared
with e8(.1/20) using (Dv)/v0.1022, and the parameter
of the Möllenstedt and Bayh solenoid plus an ammonia m
ecule. This is too small to be measurable. Nevertheless
may consider a large number of molecules by immersing
solenoid in a cylinder of radiusl and heightl filled with
ammonia gas. In this case, a straightforward calcula
shows that the second term of Eq.~4.3! should be multiplied
by

2p

3
na2l lnS l

aD , ~4.4!

where n is the number of molecules per unit volume (2
31019 cm23 at room temperature!. We predict a pro-
nounced peak~about five times bigger than the backgroun!
whenv approaches the ammonia inversion frequency.

As a final remark we want to suggest that the above
sults~Secs. III C and IV! may be useful in the study of ‘‘sto
chastic resonance’’ effects. These phenomena@21#, observed
in various nonlinear systems including electronic circuits,
characterized by the presence of an~optimal! noise ampli-
tude which can enhance the detection of weak periodic
nals. Therefore we believe that our analysis may also
useful application in this wide context.
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APPENDIX

We give below a brief description of the method we ha
used in order to obtain the result~3.14! for the Casimir force
at zero temperature. The calculation of the mean square
placement̂ x2&, of the average oscillator energy, and also
calculation of the Casimir force in the high temperature lim
(kT/\@vmax5c/l), are similar.

Introducing the variablex5v/v0 the expression~3.13!
will be given by

F52
3

2pS a2

y3D S c

lv0
D\v0eI , ~A1!

where
f

-
e
e

n

-

e

g-
d

,

is-
e
t

I[E
0

c/v0l

dx
P~x!

De~x!

[E
0

c/v0l

dxFex7~x22g2!1e8gx5~x221!

De~x! G , ~A2!

the functionDe(x) being

De~x!5@~x22g2!21e82g2x2#@~12x2!21e2x6#

12xex4~12x2!~x22g2!1e2~2xge81x2!x8. ~A3!

The parameterse, e8, andg were defined in Eq.~3.15!
andx53a2c/2y2lv0.

The ratioP(x)/De(x) can be written in a form which is
convenient for the integration in Eq.~A2!, namely,

P~x!

De~x!
5

Ax

e2x21r2 1S (
j 51

4
a j

x2Zj
1c.c.D . ~A4!

The constantsA, r, a j , andZj will be calculated only up
to first order ine5tv0!1. Notice that we shall assume th
vmax5c/l!1/t. One can show that

A5eS 12
ee8g@12g2~22e822g2!#

z D1O~e3!, ~A5!

wherez5(12g2)21g2e82, andr512xe1O(e2).
Moreover, we have

a j5
P~Zj !

De8~Zj !
, ~A6!

with j 51,2,3,4 and the values ofZj are

Z1[2Z2511e
x~12g2!

2z
1

i

2
eS 11

xge8

z D1O~e2!

~A7!

and

Z3[2Z45gA12
e82

4
1

i

2
e8g1O~e!. ~A8!

The substitution of Eq.~A4! into Eqs.~A2! and~A1! leads
to the result~3.14! for the Casimir force.
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