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Classical interpretation of the Debye law for the specific heat of solids
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We derive the Debye law for the specific heat of solids within the realm of stochastic electro-
dynamics (i.e., classical electrodynamics with the assumption of a real zero-point Geld). Random
lattice vibrations are generated by the Planck radiation including zero point, which is absorbed by
the ions. The equilibrium is accomplished by a fluctuation-dissipation mechanism due to the emis-
sion of radiation by the ions in accelerated motion.

I. INTRODUCTION

The quantum theory of the specific heat of solids, ini-
tiated by Einstein' in 1907 and developed later by
Debye, was historically the third large success of quan-
tum theory, after the interpretation of the blackbody
spectrum and the photoelectric effect. It is usually con-
sidered a typically quantum phenomenon that cannot be
explained by any classical theory. It is therefore in-
teresting to show that this is not the case, by developing a
classical theory which reproduces the quantum predic-
tions. The framework of the present approach is stochas-
tic electrodynamics, a theory for the interaction of elec-
tromagnetic radiation and charged particles developed in
the last 30 years. Stochastic electrodynamics is just
classical electrodynamics with the assumption of a real
random zero-point radiation filling the whole space, this
radiation having precisely the spectrum of the zero-point
fIuctuating field of quantum electrodynamics, i.e., an en-
ergy —,'Ace per normal mode of the electromagnetic field

with frequency co.
With this assumption one can show that the spectral

distribution of the electromagnetic zero-point radiation
energy is such that

po(co)=fico /2ir c

where c is the velocity of light and Planck's constant 2~%
is the parameter which gives the intensity of this back-
ground radiation. It is easy to show that po(co) has the
interesting property of being Lorentz invariant. '

The origin of this classical Auctuating zero-point radia-
tion is not very clear yet. However, there are physically
appealing propositions which regard the zero-point elec-
tromagnetic fields as the radiation emitted by the ac-
celerated charges existing in the matter that fills the
universe. '

In this way stochastic electrodynamics is able to ex-
plain, within an entirely classical context, many phenom-
ena considered to belong to the exclusive domain of
quantum theory. As examples we have the blackbody
radiation, ' '" the microscopic properties of the harmonic
oscillator, ' ' the diamagnetic behavior of free and har-
monically bound charges, ' '" the paramagnetic behavior
of a rigid magnetic dipole, ' the Casimir forces between

macroscopic objects, ' ' and also other phenomena. '

As far as we know nobody has been able to obtain the
spectrum of the hydrogen atom within the realm of sto-
chastic electrodynamics. There are indications that the
ground state of atoms could be considered classically
stable, due to the equilibrium ' between the energy em-
itted by the accelerated electron and the energy absorbed
from the zero-point electromagnetic fields. However, the
calculations performed until now do not lead to a stable
stationary state of the hydrogen atom.

We want to show here that the random zero-point and
thermal radiation of stochastic electrodynamics are ex-
actly what is needed to obtain the specific heat of solids
within the realm of such a classical theory. The idea is
very simple to understand. At temperature T the spectral
distribution (1.1) must be replaced by '

Ace 1 1
pz. (co)= —+

ir c 2 exp(fico/kT) —1
(1.2)

II. REVIEW OF THE QUANTUM THEORY

For not too high (and also not extremely low) tempera-
tures, the specific heat of a solid can be associated with
the motion of nuclei, the electrons giving a negligible
contribution. A more physical picture is to consider ions,
instead of bare nuclei, in view of the fact that the inner
electrons follow the motions of the nuclei quite closely.
If there are X atoms in the solid body, we need 3X coor-

where k is the Boltzmann constant. Of course the ions in
the lattice of the solid body have some kind of classical
Brownian motion due to the inAuence of the random elec-
tromagnetic fields. Therefore, the thermal energy of the
solid body is simply the mechanical energy associated
with that classical Brownian motion. Then the specific
heat will be easily obtained from the mechanical energy
of the vibrating ions in the lattice.

In order to achieve this goal our paper is arranged as
follows. In Sec. II we review the quantum theory of the
specific heat of solids in a form appropriate for our pur-
poses. Section III is devoted to a presentation of our
classical model. Hence, the proof of our main result is
made in Sec. IV. Finally we discuss the results obtained
and point out perspectives for future work.
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dinates x, to describe the motion. However, we are al-
lowed to consider only small displacements g, around the
position of equilibrium a, , so that the classical equation
of motion for the coordinate x; =a, + g'; can be written

the force constants K," depend on the lattice structure of
the body and the nature of the binding between ions. A
good approximation to the sum (2.7) is usually obtained
by an integral in the form

3N

mg;= —g K;g, , (2.1)
3N eo/a+ dt's co

2~ v v1

(2.9)

(m, /m)'~ g, =g, mk, . /(m;m~)' =k,
~

(2.2)

leads again to Eq. (2.1).
In general, it is possible to perform a coordinate

transformation
3N

where we assume that g; =0 corresponds to the position
of equilibrium. In practice, all constants K, are zero ex-
cept for coordinates of neighbor ions. We have assumed
that the ions have the same mass m. If the masses are not
equal, the change of variables

where V is the volume of the solid, U&(U, ) the velocity of
longitudinal (transverse) waves of sound, and 8 the De-
bye temperature. This replacement, which is a complete-
ly classical procedure, has the advantage that it gives a
universal expression for the specific heat as a function of
g /O~

III. SOLID BODY IMMERSED
IN BLACKBODY RADIATION

giving a decoupled set of equations of motion of the form

Ql= ~lQi (2.3)

where co& are the frequencies of the normal modes of vi-
bration. The equations of motion (2.1) can be derived
from the Hamiltonian

3N 2
i 3N

+—gK;g;g (2.4)

In terms of the new coordinates Q, and the canonical
conjugate momenta P&, the Hamiltonian can be written

3N P2
H= g + ,'men(Q(—

2fPl
(2.5)

6'; =
—,'A'co;cath(%co; /2kT) .

Therefore the total energy will be
3N

6 =
—,
' g fico;coth(Ace;/2kT),

(2.6)

(2.7)

whence the specific heat can be obtained by

dC
dT- (2.8)

This gives the general expression for the specific heat
of a solid body. The particular form depends on the
normal-mode frequencies ro;, which can be obtained from
the K, entering in the equa"tion of motion (2.1). In turn,

In quantum mechanics, the starting point is a Hamiltoni-
an operator with the same form as (2.5), except that the
coordinates and momenta are operators fulfilling the usu-
al commutation rules.

The Hamiltonian (2.5) shows that the set of ions in the
solid body can be treated formally as a set of independent
harmonic oscillators. If these oscillators are in thermal
equilibrium with a bath at a temperature T, each one
possesses an average energy

3N

mg, (t)= —g K; g (t)+F~+e,E (a„t),
j=1

(3.1)

where the vectors a, denote the equilibrium positions of
the ions in the lattice (s =1,2. . .N). We call E (a„t)
the a component (a =0,1,2), with respect to three orthog-
onal axes, of the random electric field in the equilibrium
position a, of the ion s. In this study i =3s —a.

Three forces are considered in Eq. (3.1). The first two
represent the purely electromagnetic interaction with all
the other charges in the solid. The first term consists of
the instantaneous Coulomb force, plus the efT'ect of the
electronic clouds. The second term, F, , includes the ra-
diation reaction self-force plus the retarded force pro-
duced by the other ions. Both are written in the approxi-
mation of small displacements around the equilibrium po-
sitions. An explicit expression for F,- will be given below
in the case of nonrelativistic motion. The last term in
(3.1) is the random force on ion s produced by the ffuc-
tuating electric field of zero point and thermal radiation.
We have neglected the magnetic force and also the

We shall now consider a solid body which has a given
lattice structure consisting of a set of pointlike ions with
the charges e, and the same mass rn, immersed in a ran-
dom electromagnetic radiation having the Planck spec-
trum (1.2). If the masses are diff'erent, the change of vari-
ables introduced after Eq. (2.1) leads to a system of equal
masses and new charges (m /m, )' e, =e,'. We think that
this model is appropriate for ionic solids, where we can
use the dielectric constant (and therefore the velocity of
light) of vacuum. However, in other types of solids, the
electrons not tightly bound to nuclei should be explicitly
taken into account, and our model is not adequate.

We shall show that the mechanical energy of the ions is
given by the same expression as in the quantum theory,
namely, Eq. (2.7), plus corrections of order e /A'c =—„', .
The classical equation of motion for the component x, ( t)
(i =1,2. . .3X), associated with the vector position
x, (t) =a, +f, (t) of the ion s, immersed in random radia-
tion is
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dependence of the electric field on the small displacement
g', (but we keep the dependence on a, ), This is known in
the literature as the dipole approximation and it is well
known that it is consistent with nonrelativistic motion.

Our purpose is to calculate the average total energy of
the ions, which we may write as

(3.2)

F, =F,(acc)+F, (vel), (3.3)

where ( ) means both time and ensemble average (or ei-
ther one if we assume ergodicity). The exact calculation
of (3.2) starting from (3.1) is very complex. Fortunately a
good approximation can be obtained taking the limit of
small charges (e /A'c «1), and this calculation is rather
simple.

To obtain the above mentioned-approximate solution
of (3.1), we need the expression for the force F, which
appears in that equation. As we have already said this
force has the contribution of radiation reaction and also
the delay efI'ect of the fields of the other charges on the
ion s. Then we are going to denote

where F, (acc) is the contribution from the "acceleration
electric fields" and F, (vel) is the contribution from the
"velocity electric fields" of the other ions. The explicit
nonrelativistic expression for F, (acc) is

2es..F,(acc)=— V, (t)
c

es n„X [n,„Xv,.(t —~„.)]
c (~ ) a& a&

where

(3.4)

and

is the acceleration of ion s' in the retarded time
t —~a, —a, .~/c. The first term in (3.4) is the usual nonre-
lativistic expression for the radiation reaction or "self"-
force. The second term has the contribution of the other
ions. Also well known is the nonrelativistic expression
for F, (vel. ). In the small displacement approximation
we get

e, e,.
F, (vel) = g, (t) g, (t —~„—) n„.v, .(r ~„,)

a, —a, .
~

c
v, {t—~„,)

(3.5)

where we are using the same notation as in (3.4), that is,
v, .(t ~„)=g,,(t —~„.) with ~„=~a, —a, .~/c.

In Eq. (3.5) the instantaneous Coulomb force has been
removed because it is supposed to be included in the first
term of Eq. (3.1). The first and the second terms in (3.5)
are simply corrections to the Coulomb force due to small
( ~g,

—g, .~/ a, —a, . ~
&&1) displacements from the equilib-

rium positions. The retardation is, of course, due to the
fact that electromagnetic signals travel with finite veloci-
ty c. The last two terms in (3.5) are simply retarded rela-
tivistic corrections to the velocity electric fields. Terms
of order U /c have been neglected. We want to stress
that each of the above-mentioned terms, which contrib-
utes to F, , has a precise role in the dynamic equilibrium,
which is supposed to give the stationary regime in which
the average solid energy is given by (3.2). We are going
to explain this point in detail in Sec. IV.

The most important ingredient of our model is the ran-
dom force e,E(a„t), which is present in the equation of
motion (3.1). This force is generated by the fiuctuating
electric field of zero point and thermal radiation, charac-
teristic of stochastic electrodynamics. Within this classi-
cal theory it is usual to write the electric field, in point I
at time t, as a superposition of plane waves with frequen-
cies co=c~k~ where k is the wave vector. Namely, we
have

E (x, t)= g Jd k e (k, A)

3 1/2
c pT{co)

4o)

(c(k, A, )) =0, (c(k, A, )c(k', k')) =0,
( (k, X) *(k',X'))=5(k —k')6

(3.7)

pT(co) is the spectral distribution (1.2) and the unit vec-
tors e(k, A, ) give the transverse polarization of the waves.

Now we can have a precise idea of our model. It is ob-
vious that, despite the fact that Eq. (3.1) is linear on the
variables g, (t), the exact solution of (3.1) is not trivial.
Therefore, we are going to find a stationary solution for
(3.1) which is valid up to first order in e /A'c =—„',.

Before we pass to the discussion of the above-
mentioned stationary solution, it is convenient to display
a useful property of the random fields (3.6). We shall use
this property in order to obtain the average energy (3.2).
From (3.6) and (3.7) we can obtain the correlation func-
tion between the components E (x, t) and E&(x', t) at ar-

X Ic (kA)ex, p, [i (k x —cot)]+c.c. I,
(3.6)

where c (k, A, ) are statistically independent Gaussian com-
plex random variables with the two first moments given
by
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bitrary separation x—x'. This can be calculated using
the standard procedure explained before by many au-
thors. In the case in which x and x' are two arbitrary
points a, and a, . in the solid lattice we get

e, e, , (E ( a„t) E&( a, , t) )

= f dco pT(co)B;J(co~a, —a, . ~
/c), (3.8)

0

3N

[K;1+R,.(co)—mco 5, ]g (co)=e,E, (c.o). ,
j=l

which has the exact solution

(4.6)

The exact expression for the elements R;~(co) will be
presented below. In terms of the matrix elements R,"(co)
the equation of motion becomes

where i =3s —a, j =3s' —P, and E are the three Carte-
sian components of the electric field. The matrix 8, is
such that any 3X3 submatrix corresponding to fixed
values of s and s' can be obtained by a straightforward
rotation of the diagonal matrix

3N

g;(co) = g [L '(co)];~E~(co)e~,

in terms of the inverse of the matrix

L(co)=K+R(co) mco —I,

(4.7)

(4.8)

b„(u) =8rre, e, ,
sinu

u

u —= co~a, —a, .~/c,

b (u) =b (u) =4~e, e,
sinu cosu

u u

cosu
u

sinu

u

(3.9) 3N 3N
~=-,'m g (j', (t))+-,' y K,, (g, (tg, (t)), (4.9)

can be written in a closed form as

where I is the identity matrix (I);~ =5;~ and (K),J =K~.
Since we have the exact solution (4.7) the ensemble aver-
age total energy, namely,

where now the direction labeled z is parallel to a, —a, .
and the directions x and y are perpendicular to each oth-
er and to z. [For u =0 take u —+0 in (3.9).]

We shall see below how the correlation function (3.8)
combines itself with the contribution of the force F, (3.3)
to the average solid energy (3.2), in order to preserve the
fluctuation-dissipation relation so common to classical
theories of Brownian motion.

IV. TOTAL AVERAGE SOLID-BODY ENERGY

g, (co)= f dt g (t)e' '. (4.1)

Hence the equation of motion (3.1) becomes
3N—mco g;(co) = —g K; g (co)+F, +e,E; (co) . (4.2)

j=1
For consistency in the notation we write from now on e,.
instead of e„.see discussion following Eq. (3.1).

In (4.2) the Fourier transform of the force F; is

e)F R( )— dt F~(t)e' '
277

(4.3)

and the Fourier transform of the o component of the
electric field is

E;(co)= f dt E (a„t)e' ', (4.4)
277 oo

where, as before, i =3s —a, s =1,2, . . . , N, and
n =0,1,2.

It is convenient to introduce a matrix R (co) whose ele-
ments R;J(co) are defined as

3N
F, (co)= —g R;, (co)g, (co) . (4.5)

j=l

The first step to obtain the energy of the whole set of
coupled oscillators is to solve the equation of motion
(3.1). One can do this by using a Fourier transform
defined by

3

f dcopT(co)Tr([L '(co)]
0

X(mco I+K)B(co)L '(co) I,

Im[R;J(co)]= co B; (co)
1

4m.
(4.11)

where the matrix B(co) was defined in (3.8). This result
will be very useful, as we shall see below. The real part of
R; (co) is zero for s =s'. For diff'erent given s and s' the
corresponding 3 X 3 submatrix is related by a rotation to
the diagonal matrix,

e, e, cu
3

(1—cosu —u sinu +u cosu),
c u

e, e, co3

2(cosu +u sinu —1),
c u

u =co~a, —a, ~/c,

(4.12)

where the directions x,y, z are as in Eq. (3.9).
In order to obtain the average energy we must calcu-

late the trace indicated in (4.10). For this a diagonaliza-

(4.10)

where we have used expression (3.8) for the correlation
function of the random electric field between two points
a, and a, in the lattice.

In order to calculate the total average energy by in-
tegrating (4.10) we need the expression for the matrix ele-
ments of R (co) which appears in (4.8) and, consequently,
in (4.10). The elements R; (co) can be obtained directly
from its definition [(4.5)] in terms of the Fourier trans-
form of the force F . It has many terms, as one can see
from (3.3), (3.4), and (3.5), but the detailed calculation is
straightforward. We only give the final result. The ele-
ments R; (co) are complex functions of the argument and
we can show that the imaginary part is such that
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m ( co + co J. )B~J

J = i [m (co —co )] + [ImRJJ. ]
(4.13)

if we neglect terms of second order in e /A'c. Here the
matrices B'—:A B A and R'—= A R A (see Appendix for
the definition of A ) are both first order in e /iiic, as we
can see from (3.8) and (4.11). The frequencies co, which
are the eigenvalues of the matrix K=K+Re(R ), differ
from the normal-mode frequencies co, eigenvalues of K,
by a negligible radiative correction of order

Re(Ri'J )/meri —(e /Ac)(fico~ /mc .) &&1,

since we expect Ace to be about a few electron volts and
the ion masses are such that mc = 10' eV.

The average energy (4.10) becomes in this approxima-
tion

CO +CO B. CO pT C9

pl co~ co + ImR~~

and the integral can be calculated easily as follows. The
integrand in (4.14) has very sharp peaks for co close to the
normal-mode frequencies co . This happens because the
denominator in (4.14) is very small for frequencies co close
to co due to the fact that

Im(RJ', )/mao. —(e /A'c)(A'co /mc ) ((1 .

Therefore the integrals which remain to be performed in
(4.16) are essentially like

QO

dx
Qj. 2+ y2 y

(4.15)

since yj—:~lm[R~~(coi)]/men ~

((co . Note that the ap-
proximation (4.15) is equivalent to taking the limit e ~0
in (4.14). The resulting expression for the average energy
is therefore

3 3N B', (co )

ImR' (co )

where the coefficients B-' can be shown to be positive.
Moreover, we have

/
ImR&'z(co~)f. 4m

CO.

(4.17)

because ImR; and B,, obey the simple relation (4.11).
Then we finally obtain

3N
6'= g A'co, —+

] 2
I

exp(RcoJ /kT) 1—(4.18)

tion procedure is convenient, giving, as shown in the Ap-
pendix,

Tr[(L ') (mco I+K)BL ']

reasoning, namely, (2.8) and (2.9), which are essentially
classical.

V. DISCUSSIQN

We have considered a system of classical charged parti-
cles subject to forces given by the Hamiltonian (2.4) plus
damping and retarded forces as given by (3.4) and (3.5),
which includes the self-force of radiation reaction, the ra-
diative eFects due to the other charged particles, and also
the action of an isotropic random radiation with spectral
density given by the Planck formula (1.2). We have
shown that this system has a total average energy given
by (4.18) where the co. are the normal-mode frequencies
of the Hamiltonian (2.4). This completes our derivation
of the specific heat of solid bodies. The question whether
this derivation uses only classical postulates deserves
some attention. The answer is clearly affirmative if there
exists an independent classical derivation of the Planck
spectrum for blackbody radiation, as has been claimed
many times. ' ' In our opinion, a classical uncontrover-
sial derivation does not exist. ' ' In spite of this, the
present derivation of the Debye specific-heat law, using
classical equations of motion for Brownian charged parti-
cles, serves to clarify many points.

(i) It provides a classical interpretation of the specific
heat as being due to a continuous distribution of energies
of the normal-model vibrations. The spectral distribution
of these vibrations is given by (1.2). In particular, no as-
sumption of discreteness is needed for the energies of the
solid vibrations. The conventional classical equipartition
description (leading to the Dulong and Petit law) is ob-
tained only in the high-temperature limit.

(ii) It shows that the close connection (discovered by
Einstein in 1907) between the Planck blackbody spectrum
and the specific-heat law is maintained even if both are
interpreted along classical ideas. This is the main result
of our paper.

(iii) It gives another interesting example of the validity
of the Auctuation-dissipation relation, in a classical
theory of Brownian motion with colored noise. Our re-
sult (4.18) is a direct consequence of (4.11) in which the
left-hand side is connected with the forces (3.4) and (3.5),
and the right-hand side is due to the correlations of the
random fields in diFerent points in the lattice. In our
opinion this reinforces previous propositions ' which
consider that the charged-particle Brownian motion gen-
erates the random electromagnetic radiation, and this in
turn provides a source of noise in the form of a self-
regenerating feedback cycle.

(iv) It may allow the calculation of the corrections of
order e /Rc to the specific-heat law in a simpler manner
than the conventional quantum electrodynamics calcula-
tion (not yet made to our knowledge).

(v) It may be the starting point for further elaboration
of the theory of solids along classical ideas, thus allowing
the classical interpretation of other properties.
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Now, by using (A7), (AS), and (A9), a simple calculation
gives

L"=M 'L'M

=K ' m—a) I+ t ( ImR ') +K 'C —C IC '+ 0 ( e )

(A10)

APPENDIX whence, for i',
We want to calculate the trace appearing in Eq. (4.10).

Since we need to invert the matrix L, the simplest way
consists in diagonalizing this matrix. First of all we write
Las

and

L,'=i (ImR )+ma);C; —mC;~a))~+0(e )

L,
"
, =L,', +0 (e ) .

(Al 1)

(A12)

L =E+i ImR —me@ I (A 1)

with

K =K+ReR . (A2)

Since K and R are symmetric matrices, so is K. Conse-
quently we can diagonalize it by means of an orthogonal
transformation, that is, there exists a matrix 3 fulfilling

Consequently, the matrix 2 M diagonalizes L up to order
e . Note that the last step indicates that the off-diagonal
elements of ImR', which are in principle of order e, in
fact contribute to the trace with terms of order e .

The calculation of (4.13) can be made much easier after
the transformation with 3 M

Tr[(L ') (ma) I+K)BL ']

3 K A =K '—= m diag(. . .co;. . . ), (A3)

(A4)

=Tr[(L" ') (ma) I+K")B"L ']

= g(L *) '(ma) 5; +K ')B", (L,", ) (A13)

The transformed matrix L ' is given by

L ' = 3 L A =K '+i ImR ' —m. co2I

in terms of the transformed matrix R '

R'—:AR 3

(AS)

(A6)

As can be seen in the text the matrix K ' differs from K"
in terms that do not contribute to the final expression.
This is because we are interested in the terms that are of
lowest order in the charges. Consequently we can write
(A13) as

These new matrices L' and R' are not in general diago-
nal. However, we can achieve an approximate diagonali-
zation if we only keep terms of order e . To do that let
us define the matrix

g (L,", *) '(mco +K,', )B,", (L,", )

m (co +a); )B;
[m (a); —a) )] +(ImR;)

(A14)

M=I+C (A7)

with

i', C,, =O.

M '—=I—C. (A9)

(We assume that all frequencies are different. See below
for the case of degeneracy). Since R'=0 (e ), then

which is the desired result. In this expression we have
taken into account (AS) and (A12).

If not all the frequencies were different we may diago-
nalize ImR' in each subspace corresponding to equal fre-
quencies, which leaves the matrices K and m~ I invari-
ant. In other words, we could choose the matrix 3 such
that ImR' has vanishing elements for indices with equal
frequencies. Consequently, the expression (A14) remains
valid in any case. This ends the proof of Eq. (4.13).

On leave from Instituto de Fisica, Universidade de Sao Paulo,
Sao Paulo, Brazil.

A. Einstein, Ann. Phys. (Leipzig) 22, 180 (1907);34, 170 (1911).
P. Debye, Ann. Phys. (Leipzig) 39, 789 (1912).

3M. Born, Atomic Physics (Hafner, New York, 1961),Chap. 8.
4T. H. Boyer, Phys. Rev. D 11, 790 (1975); see also the review

paper in Foundations of Radiation Theory and Quantum Elec
trodynamics, edited by A. Barut (Plenum, New York, 1980),
p. 49; Sci. Ann. 293, 56 (1985).

5P. W. Milonni, Phys. Rep. 25, 1 (1976).
L. de la Pena, in Stochastic Processes Applied to Physics and

Other Related Fields, edited by B. Gomez, S. M. Moore, A.
M. Rodriguez-Vargas, and A. Rueda (World Scientific,
Singapore, 1982), p. 428.

7T. W. Marshall, Proc. Cambridge Philos. Soc. 61, 537 (1965).
sE. Santos, in Proceedings of the Einstein Centennial Symposium

on Fundamental Physics, edited by S. M. Moore, A. M.
Rodnguez-Vargas, and A. Rueda (Universidad de los Andes,
Bogota, 1979), p. 213.

9H. E. Puthoff, Phys. Rev. A 40, 4857 (1989).
ioT. H. Boyer, Phys. Rev. 182, 1374 (1969); 186, 1304 (1969).

J. L. Jimenez, L. de la Pena, and T. A. Brody, Am. J. Phys. 48,



43 CLASSICAL INTERPRETATION OF THE DEBYE LAW FOR. . . 699

840 (1980).
T. W. Marshall, Proc. R. Soc. London 276, 475 (1963).
E. Santos, Nuovo Cimento B 19, 57 (1974).
T. H. Boyer, Phys. Rev. D 11, 809 (1975)~

' A. V. Barranco, S. A. Brunini, and H. M. Franca, Phys. Rev.
A 39, 5492 (1989).

I T. W. Marshall, Nuovo Cimento 38, 206 (1965).
~7T. H. Boyer, Ann. Phys. (N.Y.) 56, 474 (1970).

T. W. Marshall and E. Santos, Found. Phys. 18, 185 (1988);
Phys. Rev. A 39, 6271 (1989); see also A. V. Barranco and H.
M. Franca, Phys. Essays 3, 53 (1990), for a qualitative discus-
sion of the Compton effect within the realm of classical sto-
chastic electrodynamics.

' H. E. Puthoff, Phys. Rev. D 35, 3266 (1987).
T. W. Marshall and P. Claverie, J. Math. Phys. 21, 1819

(1980).
'P. Claverie, L. Pesquera, and F. Soto, Phys. Lett. A 80, 113

(1980).
H. Goldstein, Classical Mechanics (Addison-Wesley, New
York, 1980), Chap. 6.
J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975), Chap. 14.

E. Santos, Nuovo Cimento B 22, 201 (1974).
25T. H. Boyer, Phys. Rev. D 27, 2906 (1983); 29, 1096 (1984);

Found. Phys. 19, 1731 (1989).
R. Blanco, L. Pesquera, and E. Santos, Phys. Rev. D 27, 1254
(1983);29, 2240 (1984).

H. M. Franca and G. C. Santos, Nuovo Cimento B 86, 51
(1985).


