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Abstract Rising seas coupled with ever increasing coastal populations present the potential for
significant social and economic loss in the 21st century. Relatively short records of the full
multidimensional space contributing to total water level coastal flooding events (astronomic tides, sea level
anomalies, storm surges, wave run‐up, etc.) result in historical observations of only a small fraction of the
possible range of conditions that could produce severe flooding. The Time‐varying Emulator for Short‐ and
Long‐Term analysis of coastal flood hazard potential is presented here as a methodology capable of
producing new iterations of the sea‐state parameters associated with the present‐day Pacific Ocean climate
to simulate many synthetic extreme compound events. The emulator utilizes weather typing of fundamental
climate drivers (sea surface temperatures, sea level pressures, etc.) to reduce complexity and produces
new daily synoptic weather chronologies with an auto‐regressive logistic model accounting for conditional
dependencies on the El Niño Southern Oscillation, the Madden‐Julian Oscillation, seasonality, and the prior
two days of weather progression. Joint probabilities of sea‐state parameters unique to simulated weather
patterns are used to create new time series of the hypothetical components contributing to synthetic total
water levels (swells from multiple directions coupled with water levels due to wind setup, temperature
anomalies, and tides). The Time‐varying Emulator for Short‐ and Long‐Term analysis of coastal flood hazard
potential reveals the importance of considering the multivariate nature of extreme coastal flooding, while
progressing the ability to incorporate large‐scale climate variability into site specific studies assessing
hazards within the context of predicted climate change in the 21st century.

Plain Language Summary Predicting extreme coastal flooding is a present‐day societal need and
will only become more relevant as mean water levels increase due to sea level rise. However, the number
of processes contributing to such events is too high for relatively short observational records to have measured
all of the constructive combinations of waves, surge, wind, and sea level anomalies. We present a framework
designed to create hypothetical combinations of relevant flood hazard potential processes by simulating the
climate and weather patterns that drive coastal flooding. Including large‐scale oceanic and atmospheric
patterns as the drivers of coastal hazards reveals the climate a coastal community is most vulnerable to, which
will be increasingly more important to understand as the climate changes during the 21st century.

1. Introduction

Global mean sea levels have risen ~3 mm/year over the last 25 years of satellite observations (Beckley et al.,
2017). The observed sea level rise (SLR) has already been linked to increases in nuisance flooding (Ray &
Foster, 2016; Sweet & Park, 2014), beach erosion or shoreline retreat (Albert et al., 2016; Wahl & Plant,
2015), and coastal habitat loss (Jankowski et al., 2017). A global SLR acceleration rate of 0.084 mm/year2

has been observed in altimeter data since 1993 (Nerem et al., 2018), and higher rates are expected in the
21st century (Sweet et al., 2017), resulting in numerous studies focused on how the frequency of coastal
hazards will increase into the future (Vitousek et al., 2017; Vousdoukas et al., 2018) as well as associated
increases in vulnerable coastal populations (Neumann et al., 2015).

However, coastal flooding and erosion at any one time is dependent on the total water level (TWL; e.g.,
Barnard et al., 2019), which is a combination of multiple simultaneously occurring processes (i.e., wave
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setup and run‐up, astronomical tides, storm surges, and seasonally and climatically varying mean sea level)
that exhibit variability an order of magnitude greater than the global mean SLR signal (Ruggiero et al., 2001).
Each process is forced by different environmental processes (oceanographic, meteorological, and hydrologi-
cal) acting at varying spatial (local to global) and temporal scales (hours to centuries; Leonard et al., 2014).
Extreme water levels on beaches are underestimated without considering wave run‐up and setup (e.g.,
Marcos et al., 2019), yet wave climates can include both local and distant swell components generated by
faraway storms on the order of weeks prior to arrival (Hegermiller et al., 2017). Similarly, nontidal residuals
are a product of regional wind stresses and barometric pressure anomalies occurring in the weather‐band
timescale, as well as regional processes such as seasonally varying upwelling and downwelling, and large‐
scale climate phenomena affecting basin‐wide circulations (i.e., El Niño Southern Oscillation [ENSO] and
Pacific Decadal Oscillation; Merrifield et al., 2012). Each of these processes are modulated by astronomic
tides, which can amplify or negate the effects of an extreme weather event.

Quantifying the potential for extreme coastal conditions is thus a difficult multivariate spatio‐temporal
problem, which has been approached with a wide range of methodologies depending on the scope of the
research effort and the resources available. A considerable body of literature is focused on the projection
of future extreme sea levels within the context of uncertain global SLR from both statistical and dynamical
modeling perspectives (i.e., Barnard et al., 2019; Hunter, 2011; Le Cozannet et al., 2015; Vousdoukas et al.,
2016). However, uncertainties arising from commonly applied methods for quantifying present‐day
extremes are equal in magnitude to SLR uncertainties (Wahl et al., 2017). Traditionally, engineers designing
coastal infrastructure and coastal managers defining flood zones have quantified the probability of extreme
coastal flooding by applying extreme value analysis (EVA) to tide gauge records and predicting the return
periods and return levels of low probability levels at a specific site (see Haigh et al., 2010 for an overview
of different EVA approaches). Large uncertainties have led to the application of EVA approaches with
varying degrees of complexity, including investigations of univariate or joint probability space for particular
processes that a location is most sensitive to (Rueda et al., 2016), as well as applying nonstationary extreme
value functions with time‐dependent covariates (Méndez et al., 2006; Menéndez & Woodworth, 2010) or
sliding time windows to consider non‐stationary and secular trends (Wahl & Chambers, 2015).

Regardless of the statistical method, quantifying low probability events from a time series of observations is
still dependent on the length of the record. Process‐wise the record would ideally be long enough to have
observed the full range of variability in low probability extremes. Although some observational records
are suitably long enough to quantify the extremes of an individual process, the compound TWL extremes
resulting from multiple low‐probability events co‐occurring requires much longer records than currently
available in observations. Multiple methods have been developed to avoid the problem of historical water
level record lengths while incorporating extreme value theory. Probabilistic methods utilize Monte Carlo
simulations of individual probability distributions for each TWL component to derive artificial or synthetic
records more suitable for EVA (Callaghan et al., 2008; Gouldby et al., 2014; Serafin & Ruggiero, 2014;
MacPherson et al., 2019). Hybrid methods composed of both synthetically extended storm characteristics
and subsequent hydrodynamic modeling have been proposed for coastlines susceptible to large storm events
(Haigh et al., 2014). Other efforts have taken advantage of ever‐increasing computational powers to numeri-
cally hindcast longer records at regional and global scales (i.e., Muis et al., 2016; Vitousek et al., 2017), with
the advantage of deriving both spatial variability in extremes and accounting for the non‐linear interactions
between TWL components.

Unfortunately, the issue of record lengths is also applicable to the climate and weather which produced
historically observed TWLs. Observational records have only captured a limited number of slowly varying
climate oscillations, but correlations between extreme coastal conditions and specific interannual climate
indices have been found around the world (Barnard et al., 2015; Plomaritis et al., 2015). In terms of the
resulting sea levels, Wahl and Chambers (2015) and Marcos et al. (2015) used independent methods to both
find interannual to multidecadal trends of tide gauge‐derived extreme sea levels that exhibited regional
coherence, suggesting large‐scale climate drivers are an important modulator of the probability of coastal
flooding. Although general circulation models (GCMs) can provide an ensemble of possible future changes
in large‐scale teleconnections and associated extreme coastal conditions (e.g., Mentaschi et al., 2017),
questions remain regarding our understanding of present‐day extremes and their dependence on a single
observation of stochastic climate and weather. How variable could our observational record of coastal

10.1029/2019JC015312Journal of Geophysical Research: Oceans

ANDERSON ET AL. 2



TWLs be if different yet equally plausible sequences of climate oscillations and weather had aligned
differently with the tides? Are statistical uncertainty bounds derived from EVA approaches representative
of the range of variability resulting from a stochastic natural world?

This study proposes amethodology for simulating synthetic records of large‐scale climate forcing, generating
plausible progressions of synoptic weather patterns conditioned on the large‐scale forcing, and ultimately
deriving artificial records of the multivariate drivers of potential coastal flooding. The Time‐varying
Emulator for Short‐ and Long‐term Analysis of coastal flood hazard potential (TESLA‐flood) is intended
to better constrain the extrapolation of extreme coastal water levels while maintaining an explicit link
between climate phenomena and the resulting local components of TWLs. Time‐dependent probabilities
due to seasonal, interannual, and long‐term oscillations within the climate system are accounted for,
ultimately creating a framework capable of simulating thousands of years of a representative climate to
generate potential combinations of hydrodynamic boundary conditions which produce sea level variability
not necessarily observed in the historical record. The climate emulator is applied to wave and water level
observations on an open coast sandy‐beach in San Diego, CA described in section 2, necessitating the climate
emulator be built on phenomena relevant to the eastern Pacific Ocean (described in section 3 and the
Appendix). Simulating hourly time scales is accomplished by reducing the multivariate historical observa-
tions to a single parameter (TWLs) with temporal behavior and subsequently increasing the parameter space
using historical joint‐probabilities (described in section 3). Example time series produced by the emulator
are provided in section 4, including a demonstration of extreme events with respect to both constitutive
components and the large‐scale causal climate. Sensitivities, limitations, and the potential for future
methodological developments are addressed in section 5.

2. Wave and Water Level Components in San Diego, CA

The stochastic climate emulator developed in this study is applied to an open coast sandy‐beach setting in San
Diego, CA, USA. Thewestward facing beach is composed of 0.20mm grain size sand on an average 0.03 slope
(Ludka et al., 2015), exposed to annually averaged 2.25 m deep water waves (seasonally varying with smaller
waves in summer, larger in winter), and a diurnal meso‐tidal range. Observations of the still water level
(SWL) were obtained from National Oceanic and Atmospheric Administration tide gauge 9410230 located
on the open coast at a pier in La Jolla, CA (Figure 1). The SWLwas separated into its constitutive components
using the frequency domain‐based approach developed by Serafin and Ruggiero (2014):

SWL ¼ ηMSL þ ηA þ ηSE þ ηMMSLA þ ηSS (1)

where ηMSL is the mean sea level relative to some reference datum, ηA is the astronomical tide, ηSE is an
intra‐annual seasonal water level variation, ηMMSLA is the monthly mean sea level variability, and ηSS is
the storm surge signal resulting from atmospheric pressure variability and wind setup. Local land
subsidence in southern California has contributed to a mean SLR of 2.2 mm/year since 1924. Seasonal
SWL variability of ±8 cm, with a minimum in April and a maximum in September, is due primarily to
seasonal upwelling of cool deep‐ocean water masses. The largest MMSLA events occurred during
canonical El Niño years such as 1982–83, 1997–98, and 2015–16 when 20–30 cm of elevated water levels
persisted for months due to warm water anomalies propagating from west to east across the equatorial
Pacific Ocean.

Coastal erosion during these El Niño years was severe, as winter storms produced anomalously high waves
and run‐up on top of the elevated mean water surface (Barnard et al., 2017; Ludka et al., 2016). Run‐up was
calculated using the empirical formulation of Stockdon et al. (2006):

R2% ¼ 1:1 0:35β HsL0ð Þ0:5 þ HsL0 0:563β2 þ 0:004
� �� �1=2

2

 !
(2)

where Hs and L0 are the deep‐water wave height and wavelength, respectively, and β is the beach slope.
Together, the still water level and run‐up can be combined to create a TWL:
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Figure 1. (a) The Pacific Ocean with wave energy sources relevant to San Diego denoted by averaged travel time for waves to propagate in days. Insets denote the
wave node and SWL gauge used for wave and water level time series provided in (b–f), and the cumulative TWL in (g). Black lines denote hourly values while red
lines are 2‐month moving averages.
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TWL ¼ SWLþ R2% (3)

which provides an approximation for the elevation on the beach that water is interacting with and poten-
tially eroding (Ruggiero et al., 2001; Sallenger, 2000).

R2% values contributing to the TWL calculated in Figure 1 assume the locally averaged beach slope, neglect-
ing seasonal variations and trends in beachmorphology. Thus, the predicted elevation of TWLs is a proxy for
coastal flood hazard potential at the study site. The empirical equation in (2) uses deep‐water wave
characteristics, which were obtained from a global ocean wave (GOW2) hindcast between 1979 and 2015
produced by a multigrid WaveWatchIII model forced with hourly winds from the Climate Forecast
System Reanalysis (CFSR) and validated and bias‐corrected with buoys and altimeter data (Perez et al.,
2017). The wave‐node used here is in 1,200 m of water southwest of San Diego (Figure 1a). Automated
identification of wave spectrum partitions representative of swell waves from the northern hemisphere
(NH) Pacific, southern hemisphere (SH) Pacific, and local coastal ocean sea waves was performed following
Rueda, Hegermiller, et al. (2017) (hereinafter referred to as NH, SH, SEA).

3. Developing a Stochastic Climate Emulator

The stochastic climate emulator proposed in this study is built on the recognition that coastal conditions are
the result of meteorological forcing, and that synoptic‐scale meteorology is in turn a consequence of large‐
scale quasi‐steady atmospheric and oceanic patterns (e.g., Hannachi & Legras, 1995). Figure 2 provides a
conceptual diagram of the emulator as a downscaling framework linking climate patterns at multiple time
scales to plausible sequences of daily weather patterns and ultimately daily variability in TWLs. The
emulator is built on conditional dependencies between climate patterns identified via weather‐type (WT)
classifications (see Appendix A for details regarding automated classification methods, and github page
https://github.com/teslakit/teslakit for open‐source codes used in this work). This statistical downscaling
allows for computationally fast simulations of time‐dependent stochastic weather progression conditioned
on time series of large‐scale forcing. WTs were classified at the annual‐scale (AWTs), the intra‐seasonal scale
(IWTs), and the daily‐scale (DWTs). In the demonstrated application to San Diego, six AWTs are used to
represent the El Nino Southern Oscillation (ENSO), which is an asymmetric cycle of warm surface waters
moving across the equatorial Pacific Ocean that dominates interannual variability and exhibits teleconnec-
tions known to affect weather around the world (Philander, 1983; see Appendix A.1.). IWTs are representa-
tive of the Madden‐Julian Oscillation (MJO), which is a broad region of anomalous atmospheric circulation
and convective precipitation anomalies that propagates eastward around the equator on 1‐ to 2‐month time-
scales (Madden & Julian, 1972) and exhibits correlations with relevant coastal climatology such as tropical
cyclone (TC) genesis (Slade &Maloney, 2013) and surface wind wave anomalies (Marshall et al., 2015, Godoi
et al., 2019; see Appendix A.2.). These two climate oscillations were chosen due to their relevance at San
Diego but conceptually are modular pieces of the emulator that could be replaced with other climate indices
representative of dominant forcing at sites elsewhere in the world.

Synoptic weather was classified on a daily scale using sea level pressures (SLPs) and gradients of SLPs
observed since 1979 in regions of the Pacific that generate both swell and wind waves relevant to the study
site (see Appendix A.3.). TC generation days were withheld from the WT‐classification a priori and instead
classified within six different DWTs depending on the ultimate strength of the TC (depression plus cate-
gories 1 through 5). All remaining days were classified into 36 extra‐tropical DWTs, each representative of
a cluster containing at least 100 days with similar weather from the historical record. The 42 DWTs are pre-
sented in Figure 3a as a matrix analogous to a self‐organized map (Sheridan & Lee, 2011) to ensure that
DWTs with similar spatial patterns are graphically presented adjacent to each other. Figures 3b–3d demon-
strate how DWTs have historically exhibited conditional dependencies on the state of large‐scale climate
phenomena. The most readily discernable conditional dependencies are on seasonal scales (Figure 3d)
where most DWTs exhibit a high probability of occurrence during a particular season and zero chance of
occurring at other times. Although DWT dependencies on IWTs and AWTs are not as stark, probabilities
of daily weather are still clearly affected, most notably with difference between the extremes of El
Niño/La Niña (Figure 3b) and when the MJO is located on opposite sides of the globe (Figure 3c).
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3.1. ALR Model for DWT Sequencing

Simulating sequencing and persistence of synthetic DWTs is accomplished with an autoregressive logistic
model (ALR). ALR models are simultaneously able to account for covariates varying at different timescales
as well as the autocorrelation of those covariates at different orders (Antolinez et al., 2015; Chiri et al., 2019;
Guanche et al., 2013). In this sense, the AWT, seasonality, IWT, as well as the ordering (transitions between
DWTs) and duration (persistence within a DWT) can all be accounted for within a single framework to make
a categorical decision of what the weather pattern should be on any given day. Mathematically, the model is
represented as:

Prob Yt ¼ i Y t−1;…;Yt−e;Xtjð Þ ¼
exp β0;i þ β1;icos ωtð Þ þ β2;isin ωtð Þ þ∑3

j¼1β
awt
j;i APCj tð Þ þ∑2

j¼1β
iwt
j;i IPCj tð Þ þ∑e

j¼1Yt−jγj;i
� �

∑nDWT
k¼1 exp β0;k þ β1;kcos ωtð Þ þ β2;ksin ωtð Þ þ∑3

j¼1β
awt
j;k APCj tð Þ þ∑2

j¼1β
iwt
j;k IPCj tð Þ þ∑e

j¼1Yt−jγj;k
� �

where covariates β1,i and β2,i account for seasonal probability of each weather type i defined by sines and
cosines with 12 month periods, covariates βawtj;i account for each weather type's probability associated with
the leading three principle components used to create the AWTs (see Appendix A.1.), covariates βmjo

j;i

Figure 2. Conceptual flow diagram of the stochastic climate emulator. Multiple datasets (green) are classified via weather‐typing at various time scales (blue) to
identify common patterns that persist within large‐scale climate oscillations. An ALR model is then fit to covariates from the WTs and used to simulate syn-
thetic time series of weather (red). Unique distributions of TWL components are identified for each DWT (orange) and randomly sampled fromGaussian copulas to
generate synthetic time series of local coastal forcing (bottom rows).
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account for the leading two principle components of the MJO (see Appendix A.2.), and Yt − j represents the
DWT of the previous j‐states, γj,i is the parameter associated with the previous j‐state, and the order e
corresponds to the number of previous states that influence the actual DWT. Each of these covariates was
found to be statistically significant by the likelihood ratio (Guanche et al., 2013), where inclusion of a
covariate required an improvement in prediction beyond a penalty associated with the added degrees of
freedom. An iterative method began with the best univariate model (seasonality) and added each
covariate in a pair‐wise fashion to determine the next best model (seasonality + IWT2), continuing this
process until all covariates were added. This method determined the relative importance of the covariates
beginning with most relevant to be seasonality, IWT2, IWT1, AWT1, AWT2, and AWT3.

The ALR model's ability to produce realistic synoptic weather was validated by simulating 100 synthetic
iterations of DWT chronologies forced with 39 years of historical AWT and IWT. The observed probability
of occurrence is directly compared to the mean and standard deviation of simulated probabilities in

Figure 3. (a) The 42 DWTs (36 synoptic weather patterns in color +6 tropical cyclone genesis DWTs in grayscale) graphically presented in a 7 × 6 matrix via a
self‐organized map such that patterns with similarities are presented adjacent to each other (note the large low pressures in the North Pacific grouped along
the right‐hand side of the matrix). b) The 6 AWT patterns are presented in a row, each with a 7 × 6 DWT checkerboard immediately beneath denoting the
probability of DWT in (a) occurring during historical years classified as that AWT. (c) Similar to (b), a 7 × 6 checkerboard for the probability of DWTs occurring
when the IWT is classified in eight different longitudinal bins. (d) A 7 × 6 probability checkerboard for each month to highlight that DWTs on the left side
in (a) occur during the summer and fall while DWTs on the right side of the matrix occur during winter. Example classifications are provided for the weather
observed during (e) the 1982–1983 El Nino and (f) the 2010‐2011 La Nina with color of the bar indicating which weather pattern in (a) was present during the
boreal winters.
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Figure 4a, and the average change in transition probabilities between each DWT and every other DWT is
provided in Figure 4b. The greatest difference in Figure 4b is 3.7% change between observed and simulated,
suggesting the model can reproduce not just overall occurrence but also the sequencing between DWTs
resulting from the Markov chain.

Although the bulk statistics are preserved by the emulator, Figures 4c–4e are provided to demonstrate that
the ALR model can be forced by the same input but produce uniquely different time series of DWTs, thus
simulating the stochastic nature of synoptic weather. Extended synthetic records of AWTs and IWTs (see
Appendix A) allow for longer simulations of DWTs while also introducing new realizations of ENSO and
superimposed MJO activity not observed in the historical records (Figure 4f). Figure 4 is designed to most
readily identify the seasonal variability, but such longer time series also reveal subtle dependencies on
large‐scale climate that are much more difficult to quantify in the historical record. As an example, the
intra‐annual probability of DWT occurrence on any given day during the year is conditionally dependent
on the presence of El Niño and La Niña (note overall differences in orange DWTs during summer, and blue
DWTs during winter in Figures 4g–4h).

3.2. Simulating Waves and Water Levels

Associating each synthetic iteration of synoptic weather with hypothetical local environmental parameters
is a multi‐step process, which emphasizes preservation of joint probability across multiple variables while
maintaining flexibility for high dimensionality (Figure 5). Examples provided hereinafter are focused on
waves and water level output relevant to the calculation of TWLs, but the full dimensionality includes
additional output with respect to atmospheric SLP, wind magnitude and direction, and precipitation. The
methodology is based on the concept that sequences of consecutive daily weather typically contain the same
synoptic weather system, and that the potential for flooding is maximized at some point during that weather
system. In the automated classification of DWTs, this spatial correlation results in several days in a row often
being assigned the same representative cluster. Consecutive days of the same DWT are grouped together and
considered in this study to be a single weather system approaching and passing over San Diego, with
associated ramp‐up and ramp‐down of sea‐state parameters (Figure 5). By defining persistent DWTs as
hydrographs, the 39‐year DWT historical record, containing 14,625 days, reduces to 6,614 separate
hydrographs. The potential for water level in excess of the tide, MSL, and MMSLA was defined by:

TWLproxy ¼ R2% þ SS

where the first term on the right‐hand side is the proxy for run‐up introduced in section 2 (Rueda et al., 2016;
Stockdon et al., 2006). All sea‐state parameters at the time of maximum TWLproxy during each hydrograph
were used to create distributions unique to each DWT (Figure 6). The idealized sketch in Figure 5 demon-
strates that this approach does not always identify the maximum value of each parameter (which often occur
at different times, e.g., Serafin & Ruggiero, 2014). Instead the goal here is to preserve physically realistic joint
dependence of sea‐state parameters, while reducing the problem to a parameter independent of the
deterministic tides.

The fourth row of the DWTmatrix provided in Figure 3a is repeated in Figure 6, with each DWT's associated
sea‐state parameter distributions provided to demonstrate how the automated identification of atmospheric
variability also delineated variability within the local TWL components. Weather patterns identifying large
low‐pressure systems in the north Pacific Ocean contain large, long period swells from the north (right‐hand
columns in Figure 6), while patterns with large SH storms identify times when swells from the south domi-
natewave energy (left‐hand columns in Figure 6). This effectivelymeans that the daily atmospheric, SLPfield
predictor is able to identify the distant storm events responsible for swell waves arriving to San Diego, and
that the objective classification of clusters is able to downscale the large‐scale climate variability to local
sea‐state variability.

The probability of NH, SH, and SEA components being present (1) or not present (0) at the time of observed
peak TWLproxy was used to create eight potential sea‐states within each DWT (000, 100, 010, 001, 110, 101,
011, 111) defined by Bernoulli distributions (Rueda, Hegermiller, et al., 2017). For each hydrograph pro-
duced in the simulations of climate, a random pick from the appropriate Bernoulli distribution determined
which sea state was present during that hydrograph. A subsequent random pick from the assigned sea state's
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marginal distributions defined the waves and water levels at the maximum TWL peak within the
simulated hydrograph.

The marginal distributions of waves and surge levels were associated with each other using multivariate
Gaussian copulas (Rueda et al., 2016). The copulas define the dependence structure or joint probabilities
between each environmental parameter within a sea state by identifying correlation matrices after
transforming each marginal distribution to a uniform distribution. Identifying the correlation across all
parameters through the copulas ensures that realistic combinations of compounding environmental
parameters are present in the hypothetical time series (i.e., large storm waves approach from appropriate

Figure 4. Evaluation of synthetic DWT simulations compared to historic behavior. (a) The color definitions for each DWT in Figure 3a are used to compare
observed historical probability of occurrence to the mean probability and standard deviation across 100 simulations of the historical large‐scale forcing. (b) The
percent change between observed and average simulated transition probabilities. The 42 colored boxes along each axis denote the 42 DWTs as defined in
Figure 3a. Each row provides the percent change of a particular DWT (denoted by color to the left of the row) transitioning to every other DWT (denoted by the color
at the top of the column). (c) Conditional probability of each DWT expressed by stacked color bars for the historical observations between 1979 and 2018
compared to (d) and (e) two different simulations of DWTs driven by the same historical AWT and IWT predictors to highlight the stochastic nature of the
simulations. f) 10,000 years of synthetic AWT and IWT predictors reveal each DWT's average relative probability as captured by the ALR model. Conditional
dependence of DWTs on (g) El Niño (AWT#6) and (h) La Niña (AWT#1) provide further context for the effect that the large‐scale climate drivers have on the daily
synoptic weather's probability of occurrence.
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wave directions; Masina et al., 2015; Corbella & Stretch, 2013). The marginal distributions of wave heights
and storm surge levels were defined by GEVs to allow for simulation of extremes with longer return
periods than the observation period, while wave periods and directions were defined by empirical
distributions constructed from observations (Huang et al., 2008; Rueda, Vitousek, et al., 2017).

Additional parameters including τ (timing of the peak TWL within a hydrograph) and μ (area under the
hydrograph) were also added to each copula and randomly sampled for each simulated hydrograph. The
two parameters effectively define a trapezoidal shape for each simulated hydrograph with the final TWL
of each hydrograph used as the initial boundary condition for the following hydrograph (see Figure 5,
analogous to the storm schematization of other recent works, e.g., Poelhekke et al., 2016). Including these
parameters in the copulas accounts for correlation between storminess and hydrograph shape (peaky
hydrographs are commonly associated with storm conditions while more flat hydrographs typically occur
during calmer conditions). The shape of the simulated hydrograph was then used to interpolate to an hourly
value of the TWLproxy, and subsequently to an hourly value of wave and surge conditions (for simplicity,
storm surge, wave directions, and wave periods were assumed constant within each hydrograph while wave
height was allowed to vary to produce hourly TWLproxy predictions).
3.2.1. SWL Variability
Monthly sea level variability is typically due to processes occurring at longer timescales than the daily
weather. Slowly varying seasonality and anomalies due to ENSO are retained in the climate emulator via
the principal components (PCs) used to develop the AWT (Appendix A.1.). A multivariate regression model
containing amean plus annual and seasonal cycles at 12‐month and 6‐month periods for each APC covariate
was fit to the ηMMSLA + ηSE signal at San Diego (Figure 7). This simple model explains ~75% of the variance
without any specific information regarding local conditions (i.e., local anomalies due to coastal shelf
dynamics, local SSTAs, or local atmospheric patterns, Sheridan et al., 2019) and slightly underpredicts
extreme monthly sea level anomalies by ~10 cm. While this component of the approach is a subject of

Figure 5. Definition sketch for generating Gaussian copulas of historic sea‐state parameters identified as conditions at themaximum flooding potential during each
weather system (producing the distributions provided in Figure 6). The copulas are then used to create synthetic hydrographs during simulations of synthetic
atmospheric variability.
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ongoing research, the regression model produces an additional ~0.35 m of regional SWL variability about
mean sea level, which was deemed sufficient for the purposes of demonstrating the development of the
stochastic climate emulator.

Superimposed on top of all other variables is the deterministic tide signal. Tides were simulated by deter-
mining the leading 64 constituents using the T_Tide package applied to observed water levels at La Jolla,
CA (Pawlowicz et al., 2002). Superimposing the predicted tides as an independent process still inherently
accounts for the timing of events during the calendar year (i.e., king tides in January and February due to
Earth's orbital position are associated with realistic winter weather patterns produced by the emulator).
Tide time series were simulated at present‐day mean sea level. Incorporating future SLR into the presented
framework is straightforward and the subject of ongoing work.

4. Climate Emulator TWL Output

The complete stochastic climate emulator produces output time series for each of the parameters necessary
to calculate a TWL by equations (1), (2), and (3). Example output is provided in Figure 8, including synthetic
climate predictors (Figures 8a and 8b), the resulting synoptic weather (Figure 8c), and time series of the
environmental parameters contributing to creating compound TWLs (Figures 8d–8i). The demonstration
here is with a 100‐year simulation to aid in visualizing timescales of variability in individual components;
however, the methodology can produce output at any desired time scale (decades to thousands of years).
In this example, the wave components from the NH, SH, and SEA have been combined to a single spectrum
composed of multiple JONSWAP spectra, and the presented significant wave heights and peak wave periods
are derived from the integrated spectrum. The results are stochastic both with respect to the choices of

Figure 6. (a) The DWTs from the fourth row of Figure 3a are provided with univariate distributions of their (b) significant wave heights, (c) peak wave periods,
(d) mean wave directions, and (e) storm surge occurring at the peak of TWL hydrographs. In b–d waves from the SH are in red, from the NW are in blue, and
SEA is in green. Wave heights and storm surge have been fit with GEVs, while wave periods and directions are empirical distributions.
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synoptic DWT patterns by the ALR model and the random picks from the Bernoulli sea state distributions
and subsequent copulas of environmental conditions.

Although various metrics with respect to the climate emulator have been validated in earlier sections and in
Appendix A, the final validation of the methodology necessitates comparison of the TWL observations from
section 2 to the emulator output. In Figure 9, 100 synthetic 39‐year simulations are compared to the histor-
ical distributions via quantile‐quantile plots. The one‐to‐one line in the qq‐plots is captured by the envelope
for each of the individual parameters, indicating that the historical record is reproduced despite the
simulated distributions being a combination of 42 separate wave and surge clusters (DWTs). Recovering
the input distributions is also dependent on numerous other steps in the model, such as quality Gaussian
copula correlations and realistic occurrence probabilities of each DWT. The tails of each component are
more variable due to the intentional use of GEVs (for wave height and storm surge distributions), which
allows for some synthetic simulations to contain more extremes.

Synthetic simulations were generated using 500‐year chronologies of ENSO and MJO as input to the
emulator, providing hypothetical chronologies containing new combinations of TWL components and
empirical estimates of extreme TWL events using the count back method (Hawkes et al., 2002).
Confidence in emulator output is further provided by comparing predicted extremes from traditional
methods (Coles, 2001) to extremes obtained during 100 synthetic simulations (Figure 10a). Recurrence
events with <1% probability derived from each synthetic simulation (red dots) mostly fall within 95%
confidence intervals obtained by 1000 bootstraps (Efron & Tibshirani, 1986). The benefit of the presented
methodology is that each extreme in the simulation is associated with its individual TWL components
and the causal climate state. As noted in Figure 10a, the two most extreme TWLs both occurred during
El Niño winters, motivating the need to better understand extremes conditioned on this climate state.
Traditional extrapolation using only a few historical El Niño observations would have little confidence,
but TESLA can directly simulate the extreme tails of conditional distributions with respect to climate.
After 1000 TESLA simulations, annual maximum return during El Niño and La Niña AWTs was isolated
to reveal a consistent 20–25 cm higher water level at all return periods during El Niño years (Figure 10b).
Variability in the return period was assessed by separating the >7,000 years within each AWT into
100‐year blocks and utilizing the count‐back method. The more extreme events contain greater variability
and greater overlap between the two climate states due to an increasing relative contribution from wave
run‐up. The other four AWTs are not presented in Figure 10b, but the means of their 100‐year blocks all
fall between the El Niño and La Niña extremes.

Figure 7. (a) MMSLA observed at the San Diego tide gauge since 1908 (black), with the predicted water level provided by a regression model of APC1(t), APC2(t),
and APC3(t) (red). (b) A 1‐to‐1 comparison of regression predicted water level and the observed.
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The direct simulation of extreme compound TWL events also allows for a greater investigation of the respec-
tive constitutive components. Similar to the findings of Serafin et al. (2017), Figure 11 demonstrates how
annual maxima can occur across a broad range of values within each TWL component. Identifying the 1%
recurrence events (red dots in Figure 11, defined as the fifth largest event in each simulation) reveals the
degree to which this variability is retained in extreme events. The results suggest that annual events can
be either wave or SWL dominated, but that the joint dependence between components becomes
progressively more important at longer return periods. While most of the 1% recurrence events occur when
wave heights are greater than 5 m and wave periods longer than 15 s, there is an infinite combination of
univariate drivers that can combine to generate compound extreme events—even for a simple TWL proxy
such as equation (3). Such different TWL components can lead to different impacts on the open beach
(Cohn et al., 2019; Serafin et al., 2017; Serafin et al., 2019) and different flood extents in the backshore
(Bilskie & Hagen, 2018). The presented framework can be a tool used to make informed decisions for the
input conditions to dynamical numerical modeling studies assessing flood extents and hazard zones contin-
gent on future extremes (Barnard et al., 2019; Erikson et al., 2018).

Figure 8. (a) 100 years of synthetic AWT chronologies with color of the bar synonymous with Figure A1. (b) Daily synthetic IWT chronologies with color of the bar
synonymous with Figure A3. (c) Daily DWT output generated by the ALR model resulting from (a) and (b) as inputs. Color of the bars is synonymous with
Figure 3. (d) deterministic tide derived from T_Tide toolbox in meters and relative to mean sea level. (e) storm surge in meters sampled from copulas. (f) MMSLA
defined by a regression of the AWT's PCs. (g) significant wave height derived from a combined directional spectrum composed of NH, SH, and SEA waves. (h) peak
period from the combined wave spectrum. (i) the resultant compound TWL as defined by equation (1).
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Figure 12 presents the probability of the annual maxima and 100‐year return level events occurring during
each DWT (same grid as Figure 3). Figure 12b reveals which synoptic weather patterns San Diego is particu-
larly sensitive to, highlighting several patterns containing large north Pacific low‐pressure systems. Such
weather patterns are typically indicative of a dip in the jet stream and a steering of winter storms toward
California. Expressing the same 100‐year events with respect to the AWTs further highlights the importance
of considering the interannual climate (Figure 12d). El Niño years are the least common AWT in the total
record, and yet account for almost 40% of 100‐year events simulated in this work.

The conditional probabilities with respect to climate phenomena could be useful for future studies consider-
ing climate change and shifts in weather patterns. Although the presented framework is dependent on a
stationary assumption of climate (i.e., weather pattern probabilities of occurrence during the 39 years of
CFSR data are consistent within simulations), the extension of the stochastic climate emulator to future
emission scenarios is feasible with GCM output. GCMs utilize the same fundamental SLP and SST fields
as the emulator, and previous studies have developed techniques for identifying changing occurrence

Figure 9. Quantile‐quantile plots comparing 39 years of historical observations to 100 synthetic 39‐year simulations of (a) NHHs, (b) NH Tp, (c) SHHs, (d) SH Tp,
(e) SEA Hs, (f) SEA Tp, (g) SS, and (h) TWL. Envelopes of variability are colored gray and the mean across all simulations is the black line.
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probabilities between historical and GCM output (Perez et al., 2015). The change in synoptic weather pattern
probabilities, or of SSTA El Niño activity (e.g. Cai et al., 2014), could be included in the covariates of the ALR
model and would downscale to changes in the sea‐state probabilities and ultimately generate different TWL
component distributions and extremes. This is a natural next step for employing the emulator to assess
future flooding under nonstationary climate change and sea‐level rise.

5. Discussion

The emulator presented in this study combines multiple methodologies into a single framework. Each step
has sensitivities and limitations, which are addressed within the discussion, as well as the broader applicabil-
ity of the methodology to other study sites.

5.1. Sensitivities

Although multiple user decisions are built into the framework, automated tests for statistical significance
can aide in most decisions (i.e., whether a GEV or an empirical distribution should be fit to a subset of data
or how many empirical orthogonal functions (EOFs) to use in creating climate indices). In the first step of
the methodology, an a priori user decision must be made regarding the number of clusters used to create
each of the climate indices. The purpose of the clusters is to separate climate variability and associated
sea‐state variability. Increasing the number of clusters not only identifies greater sea‐state variability but also
results in a trade‐off due to less data contained within each cluster, which can lead to poorly defined mar-
ginal distributions and associated correlations. This problem is a function of the length of the observation
record of sea‐state parameters as opposed to a shortcoming of the ALR approach to simulating weather
chronologies. Two additional DWT configurations fit with the ALR model of AWT, IWT, and seasonality
with 55 clusters and 70 clusters both returned high skill between historical andmean simulated probabilities
(R correlation values of 0.94 and 0.93, respectively). All AWT PCs and MJO PCs retained significance in the
two alternate ALRmodel configurations, suggesting the fundamental linkage of large‐scale climate to a local
tailor‐made atmospheric predictor is a technique insensitive to the specific number of weather types used
in analysis.

The use of Markov chains to generate 1,000s of years of large‐scale climate weather types introduces
uncertainty on the order of ~2–3% change in the probability of transitioning from one WT to another WT

Figure 10. (a) Return periods of annual maxima for the top 5 TWL events from 100 different 500‐year TESLA simulations (red dots ordered by count‐back
method) compared to historic annual maxima (blue dots) and associated GEV extrapolations (black line) and uncertainty bounds by both the delta method (gray
dotted lines) and bootstrapping (gold dotted lines). (b) Annual maxima return periods specific to El Niño years (red) and La Niña years (blue) derived from 10,000
synthetic years of climate and associated TWLs. Bold lines represent the mean across 100‐year blocks with shading representative of the maximum and
minimum TWLs simulated at each return period.
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Figure 11. A 500‐year simulation of (a) AWTs and the derived (b) DWTs with the ALRmodel. Hydrograph peaks expressed as (c) TWLs composed of all still water
level plus run‐up. Blue dots in (c) signify the annual maxima in the 500‐year record, and the red‐dot denotes the 5th largest event (the 1% recurrence event
equivalent). Bottom scatter plots show the variability in annual maxima (blue dots) across 100 500‐year simulations (50,000 years in total) and red dots are the
100 1% recurrence events in those simulations.
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(see Appendices A2 and A3). This affects the sequencing within the synthetic time series and thus a metric
assessing the slowly varying time‐dependent extremes may be sensitive to such large‐scale sequencing. The
synthetic climate sequences are also dependent on the order of the Markov chain used, which in turn
exhibits dependencies on the length of time in the training dataset. This was one of the main
considerations in developing the AWT Markov chain with data from 1880 to 2018 rather than higher
resolution products available in the satellite era that provided fewer transitions to train the Markov and
resulted in greater variability in synthetic time series.

In terms of simulated TWL parameters, the decision to use only the maximum TWL during a hydrograph
was made to reduce complexity by focusing on joint extremes, but also leads to neglecting extremes of indi-
vidual parameters if they were not co‐occurring with the TWLmaxima. The component most affected by the
hydrograph methodology was SH wave characteristics; however, its reduced relevance to historical TWL
maximas relative to NH and local SEA contributions was preserved by the presented methods. The applica-
tion of Gaussian copulas for joint probabilities was another user decision applied after initial random sam-
pling from each univariate distribution resulted in underestimation of the extremes. This element of the
methodology could be improved in the future with an automated goodness‐of‐fit decision choosing which
of the many copula formulations best defines the joint probabilities.

5.2. Limitations

This paper provides a methodology for incorporating climate states into synthetic coastal condition models
and demonstrates how such dependencies on climate states may be useful for studies projecting exposure to
coastal hazards in the changing 21st century climate. However, the appliedmethods incorporate several sim-
plifying assumptions to efficiently derive a univariate TWL, including the assumption of an average beach
slope being representative, the use of an empirical equation for R2%, and the use of linear superposition of
water level components. Local forcing is not dynamically downscaled to specific locations, which

Figure 12. The occurrence probability of (a) annual maxima TWL events and (b) 100‐year events occurring within a specific DWT (weather pattern location con-
sistent with Figure 3). The same (c) annual maxima and (d) 1% recurrence events expressed as probability of occurrence within AWTs. AWT numbering and layout
consistent with Figures 3 and A1.
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inherently neglects nonlinear interactions between surges and tides while also missing the alongshore varia-
bility of the hazard resulting from wave propagation over local bathymetry. This is a common problem asso-
ciated with generating 1,000s of years of conditions, which would necessitate considerable computation
resources to dynamically downscale. Recent developments in hybrid meta‐models, or surrogate models, pro-
vide a promising compromise between process‐based downscaling and efficiency (Bass & Bedient, 2018; Del‐
Rosal‐Salido et al., 2019; Parker et al., 2019), which could allow for statistical studies such as this to derive
transect‐specific process‐based results.

5.3. Future Applications

Themajority of the methods presented in this framework are transferable to any new location via automated
approaches, despite all of the results and the atmospheric predictor being tailor‐made for San Diego.
However, applying this exact framework to locations far from the equatorial Pacific Ocean or regions where
ENSO is not the dominant driver of interannual variability, potentially requires different AWTs to drive the
ALR model. Although a tailor‐made ENSO index was developed in this study, the covariates provided to the
ALR model could be readily replaced with traditional climate indices similar to how this study utilized a
commonMJO index product provided bymeteorology agencies. In this sense, the techniques and philosophy
of correlating large‐scale climate variables with local TWL components are transferable. Once large‐scale
climate drivers are properly defined, and dependencies across timescales are confirmed to be significant,
the framework's computational time is relatively short. Thousands of years of chronological sea‐states can
be produced on the order of hours compared to the months to years that dynamically running a climate
model and subsequent wave/surge model would require. A repository of codes relevant to each of the
methods considered in this study is provided at https://github.com/teslakit/teslakit, as well as Jupyter
notebooks demonstrating application to other sites in the Pacific Ocean.

6. Summary

The Time‐varying Emulator for Short‐ and Long‐TermAnalysis of coastal flood hazard potential is presented
as a methodology for producing robust estimates of coastal flooding risk while accounting for the dependen-
cies of local TWL components on the fundamental drivers of large‐scale climate. The model accounts for
annual external energy input from the sun (seasonality), persistent energy storage in the earth system
(SSTAs representing ocean heat content and ENSO variability), reflected energy emitted back to space
(the outgoing longwave radiation composing the MJO Index), and energy dissipation in the form of spatially
and temporally varying synoptic weather patterns. The emulator additionally quantifies the joint probabil-
ities for TWL components contributing to coastal sea level variability to explore the full dimensionality of
extreme flooding resulting from compound events.

The framework demonstrates the potential for weather typing and auto‐logistic regression as methods to
reduce complexity (dimensionality) of the climate system and simulate dependence across multiple time-
scales and processes. The initial input to the emulator is spatial climate patterns, which results in an explicit
link between climate forcing patterns and TWL variability and identifies which climate and weather pat-
terns San Diego is particularly sensitive to from an extreme perspective. The output additionally includes
the full dimensionality of extreme compound events, revealing the infinite number of multivariate combina-
tions that create compound TWL flooding.

TESLA‐flood is a computationally efficient tool with the potential to identify the composition of extreme
coastal flooding events of the future. The input predictors to the emulator are effectively the output variables
produced by GCMs, which means frameworks such as TESLA‐flood have the potential to statistically
downscale large‐scale climate predictions to local coastal hazard assessments in the Pacific Ocean. Such
assessments are increasingly being performed with high fidelity hydrodynamic and wave models capable
of defining realistic flood extents of historic events (e.g., Barnard et al., 2019). TESLA‐flood's output can
be used as the boundary conditions for these deterministic models, providing a link between state‐of‐the‐
art climate science and state‐of‐the‐art coastal hydrodynamic models for the improvement of future
hazard assessments.
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Appendix

A.1. Weather‐Type Classifications and Chronology

Climatologists have widely accepted classification methodologies that decompose time‐varying spatial data-
sets into a certain number of representative climatic states or patterns as flexible frameworks for assessing
the nonlinear nature of asymmetrical oscillating phenomena (Huth et al., 2008; Philipp et al., 2016). A wide
range of automated techniques exist (i.e., leader algorithms, optimized partitioning, etc.), and the resultant
patterns can be dependent on the technique employed. A tailor‐made climate index was developed for this
study, largely due to a desire to preserve nonlinearity in the climate system and retain more information
than off‐the‐shelf univariate indices provide (Williams & Patricola, 2018). The technique employed is a
WT‐based framework which has been used to explore climate variability in many of the physical processes
relevant to coastal erosion and flooding extremes (e.g., Camus et al., 2014). The weather types in this work
are obtained through a two‐step process of identifying dominate modes of spatial variability through EOFs
and subsequent K‐means clustering with respect to the temporal amplitude of each PCs (Gutierrez et al.,
2013). The resulting centroids for each cluster thus have an amplitude associated with each EOF and can
be remapped to a spatial weather type considered to be representative of all instances associated with that
centroid. Weather‐typing was performed to identity representative states of ENSO (Appendix A.1.), MJO
(Appendix A.2.), and representative daily atmospheric circulation patterns (Appendix A.3.).

A.2. Classifying the El Niño Southern Oscillation

Typical ENSO indices monitor SST data from a region in the equatorial Pacific Ocean as a means of tracking
where anomalously warm water is located (i.e., the Oceanic Niño Index and the NINO3.4 Index). Average
monthly SST anomalies (SSTA) were extracted from the Extended Reconstructed Sea Surface
Temperature v4 (ERSSTv4; Huang et al., 2015) for a rectangular region from 120°E to 280°E and 5°N to
5°S at a resolution of 2.5°. Anomalies were computed by removing 11‐year running averages for each month
at every node. Themonthly longitudinal location of anomalously warmwater and its temporal behavior dur-
ing the year was preserved in the development of AWTs by averagingmonthly SSTA values at each longitude
to construct Hovmöller diagrams (Figure A1, Hovmöller, 1949). Each diagram begins in June and ends in the
followingMay to capture SSTA variability throughout the boreal winter. Weather typing of Hovmöller space
(e.g., K‐means clustering of three dominant PCs from EOF analysis) was used to identify predominant spa-
tial modes and associated temporal behavior. EOF1 explains 48% of the variance, predominantly related to
the seesaw effect of warm water anomalies located either east or west of 165°E. The yearly PC values of
EOF1 strongly correlate with the average annual Oceanic Niño Index (R2 = 0.94) and average annual
NINO3.4 (R2 = 0.91) indices, indicating that the PCA of Hovmöller space captures the same dominant
interannual variability identified by classical ENSO indices. EOF2 (11% of the variance) is predominantly
associated with shifting seasonal anomalies in the east Pacific, while EOF3 (8% of the variance) exhibits a
temporal and spatial pattern akin to a Kelvin wave of an SSTA propagating west to east during NH summer
and fall. The annual PCs of EOF1, EOF2, and EOF3 are henceforth referred to APC1, APC2, and APC3

respectively (Figure A1a–A1c).

The K‐means clustering of APC1, APC2, and APC3 accounts for 19% more variance than classical ENSO
indices based solely upon the leading EOF (Figure A1d). Remapping the representative centroids of each
cluster back to Hovmöller space reveals the multiple flavors of ENSO (Figure A1f). Annual weather type
#6 (AWT#6) clusters years of positive SSTA in the east Pacific, which are representative of canonical El
Niño years and includes the classic examples of 1982–83, 1997–98, and 2015–16 (Figure A1b). AWT#5 clus-
ters Modoki El Niño years, with the largest anomalies slightly further west along the equator than AWT#6,
and identifies such Modoki years as 1994–95, 2002–03, and 2009–10 (Ashok et al., 2007). The opposite end of
the spectrum is AWT#1, which exhibits negative SSTA in the east Pacific representative of La Niña years.
Other ENSO states identified by the clustering method are interpreted as transition years between the El
Niño/La Niña extremes. AWT#4 identifies increasing positive SSTA throughout the year and often occurred
prior to El Niño, while AWT#3 exhibits the opposite SSTA behavior and is a precursor to La Niña.

The designation of six AWTs was a subjective decision weighing howmany clusters were necessary to repro-
duce classical ENSO patterns identified in the literature while creating clusters with enough data points to

10.1029/2019JC015312Journal of Geophysical Research: Oceans

ANDERSON ET AL. 19



FigureA1. The weather‐typing process as amethod for converting temporally continuous PCs into AWTs. (a–c) The temporal PCs associatedwith the leading three
EOF patterns of SSTA variability for each year from 1880 to 2018, which are projected into PC‐space in (d). Color of the points denotes years identified as
belonging to the same cluster by K‐means. (e) Example Hovmöller diagrams for three El Niño years all belonging to the same cluster. (f) The six representative SSTA
patterns defined by the centroid of their cluster and outlined by the same color as the points in (d) which contribute to defining their centroid. (g) Redefining all
years by their respective AWT, with color denoting the corresponding cluster in (f).
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simulate temporal evolution of synthetic records of AWTs. The chronological sequencing of AWTswas found
significant to a second‐order Markov chain, and simulated synthetic time series from the Markov chain
reproduced not only the total probability and transition probabilities but also the average occurrence
interval and persistence of each ENSO state (Figure A2). Synthetic categorical AWTs were then converted
to PC space by defining tri‐variate Gaussian copulas (e.g., Masina et al., 2015; Wahl et al., 2012) for each
AWT using the marginal distributions of its respective three PC components APC1, APC2, and APC3. Each
simulated categorical ENSO is thus defined by a random number generator converted to a triplet of APC1,
APC2, and APC3 from the appropriate copula, effectively providing synthetic AWT time series with the
potential to not only produce new chronologies but also new SSTA behavior (i.e., create El Niño and La
Niña events statistically consistent with observations but not exact replicas of the limited number of
historical observations).

A.3. Clustering the Madden‐Julian Oscillation

The intensity and geographic location of MJO convection are commonly identified by the MJO index based
on the first two EOFs of equatorially averaged outgoing longwave radiation and 850‐ and 200‐hPa zonal
winds (Wheeler & Hendon, 2004). The temporal PCs associated with the same two EOFs contributing to
the MJO index are used in this study, with daily values available since 1975. It is a common practice in
the MJO literature to separate the longitudinal location of the center of convection into eight longitudinal
phases (Wheeler & Hendon, 2004). This convention was preserved in a daily index in this study, intended

Figure A2. Comparison of multiple probabilistic and chronological characteristics for simulated and observed AWT time series. (a) The historically observed
probability directly compared to the average across 100 simulations and the standard deviation about that averaged (whiskers). (b) The change between the
observed Markov transition matrix and the simulated time series.The diagonal is the change in probability of remaining within the same AWT for multiple years,
while the columns in each row are the change of probability in transitioning to each of the other AWTs. (c) The persistence of each AWT is assessed by the
probability of transition or the likelihood of switching to a different AWT in the following year. Observed likelihoods in black and the box plots denote the average,
standard deviations, and outliers across 100 simulations. Colors in (a), (b), and (c) align with the outlined colors of the AWTs provided in Figure 3.
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to be a proxy for intra‐seasonal MJO oscillations by clustering the two leading PCs (henceforth referred to as
IPC1 and IPC2) of outgoing longwave radiation into eight pre‐defined longitudinal phases and further
separating into three categories of low, medium, and high convection strength (analogous to conventions
in Lafleur et al., 2015; Figure A3). A separate cluster was created for times when the location of the MJO
is considered to have low certainty (when the vector magnitude of PC1 and PC2 is less than 1, Wheeler &
Hendon, 2004). Altogether, the 25 clusters of IWTs effectively create categorical MJO states analogous to
the AWT states described above, while preserving the ability to compare results to other studies
investigating MJO teleconnections to ENSO (Henderson & Maloney, 2018) and MJO relationships to
waves and water levels (Marshall et al., 2015).

Synthetic time series of the MJO are obtained with a Markov chain of the predefined IWT categorical states
(statistically significant to the third order) and subsequent sampling from joint distributions of IPC1 and
IPC2 within each cluster identified in Figure A3. A lagged correlation between spring and summertime
MJO activity and autumn and wintertime NINO3.4 index was found during the 1990s but was not

Figure A3. (a) An example of the temporal variability in IPC1 and IPC2 of outgoing longwave radiation. (b) Demonstration of clustering with IPC1 and IPC2 for
global location and strength of MJO convection. (c) The time period from (a) shown by classification color determined by clustering in (b). (d) The historically
observed probability directly compared to the average across 100 Markov simulations and the standard deviation about that averaged (whiskers). (e) The change
between the observed Markov transition matrix and the simulated transition probabilities. (f) The persistence of 6 example IWTs assessed by the probability of
transition, or the likelihood of switching to a different IWT in the following day. Observed likelihoods in black and the box plots denote the average, standard
deviations, and outliers across 100 simulations. Colors in (d), (e), and (f) align with the colored clusters denoted in (b).
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statistically significant in the 1980s and 2000s (Tang & Yu, 2008), and the probabilities and persistence of the
categorical IWT states derived in this study were found to be independent of our AWTs. This suggests that
the two climate processes can be simulated as individual phenomena operating at separate time scales.
When consecutive days in the synthetic record are sampled from the same categorical state, the randomly
picked EOF pairs are ordered to preserve counterclockwise propagation of the MJO around the globe in a
consistent direction. Transition probabilities and persistence within a particular IWT state are provided in
Figure A3, where changes in probability between the historical and synthetic time‐series are less than 2%
and greatest change in the Markov matrix are observed in the much less frequent IWT states.

A.4. Clustering Synoptic Weather

Weather is represented by SLP fields and the squared gradients (SLPG) of those fields obtained from the
CFSR (Saha et al., 2011). SLP fields effectively capture high‐ and low‐pressure systems while SLPG are
related to the strength of the wind stress generating waves and wind induced storm surge. Only the SLPs
and SLPGs in a region considered to influence San Diego were included in the analysis; however, the size
of the region extends to include distant weather systems due to the generation of swell, which propagates
across the ocean and affects the local wave run‐up. The region of influence was defined using the
Evaluation of Source and Travel‐time of wave Energy reaching a Local Area (ESTELA) method (see energies
in Figure 1a; Perez et al., 2014), which identifies the relevant amount of energy directed along great circle
arcs toward the study site using full directional wave spectra in the global IFREMER wave hindcast
(Rascle & Ardhuin, 2013).

The SLP and SLPG fields were further modified to consider the travel time of swell waves, which arrive to the
study site on the order of days to weeks after generation by a distant weather system. An atmospheric pre-
dictor, Pt,x,y, was created dependent on the isochrones of average wave travel time identified by ESTELA:

Pt;x;y ¼ …; SLPt−i;Ωi ; SLPGt−i;Ωi…
� 	

for i ¼ 1;…p (4)

whereΩi represents the spatial domain between isochrones i − 1 and i, and p is the number of isochrones of
the furthest wave generation region (Hegermiller et al., 2017).

Weather‐typing of Pt,x,y was performed at a daily time scale to create a daily weather type (DWT) as a proxy
for synoptic SLP patterns (Camus et al., 2014). The number of clusters in this analysis was set at 36, and the
K‐means was performed iteratively until every cluster contained at least 100 days (sensitivity to these deci-
sions is discussed in section 5). Remapping the centroids of each cluster from PC space to SLP space results in
the top 6 rows of DWTs in Figure 3a. Six additional DWTs were created to represent eastern Pacific tropical
depressions and TC categories 1 through 5 by removing days with TC generation from the initial Pt,x,y dataset
prior to K‐means clustering (bottom most row in Figure 5a; TC generation defined by the HURDAT2
database, Landsea & Franklin, 2013). Separating the TCs as explicit categorical variables ensured that the
probabilities of occurrence and conditional dependencies of the rare events were persevered in the
framework rather than being clustered into extra‐tropical synoptic circulation patterns as the most distance
points from a prescribed centroid.

Acronyms and Abbreviations

AWT Annual Weather Type
DWT Daily Weather Type
ENSO El Nino Southern Oscillation
EOF Empirical orthogonal function
EVA Extreme value analysis
GCM General circulation model
GEV Generalized extreme value function
IWT Intraseasonal Weather Type
MJO Madden‐Julian Oscillation

MMSLA Monthly mean sea level anomaly
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NH Northern hemisphere waves
PCA Principal component analysis
SEA Locally generated wind waves
SH Southern hemisphere waves
SLR Sea level rise
TC Tropical cyclone

TWL Total water levels
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