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Abstract—Improper Gaussian signaling is a well-known tech-
nique that has been shown to improve performance in different
multi-user scenarios. In this paper, we analyze the benefit of
improper signaling in underlay cognitive radio when users are
equipped with multiple antennas. Specifically, we assume that the
primary user is protected by the so-called interference tempera-
ture constraint, which guarantees a prescribed rate requirement.
In this setting, we study how the maximum tolerable interference
power changes when the interference is additionally constrained
to be maximally improper (strictly noncircular, or rectilinear).
We observe that the correlation structure of a maximally im-
proper interference is an additional degree of freedom that can
be exploited to improve the SU performance. Because of that, we
propose two different protection strategies for the PU where this
structure is either constrained or unconstrained, and derive the
interference temperature threshold for both cases. We then focus
on the secondary user and provide designs of the transmission
parameters under the proposed protection strategies.

Index Terms—Improper Gaussian signaling, interference tem-
perature, underlay cognitive radio, MIMO systems, majorization
theory, transceiver optimization.

I. INTRODUCTION

An improper complex random vector is correlated with its
complex conjugate [1], as opposed to a proper one. Improper
complex random vectors can be used to model real-world
communication signals in different contexts. For example,
some digital constellations, such as binary shift keying (BPSK)
or Gaussian minimum shift keying (GMSK), yield an improper
transmit signal. Also, hardware imperfections can be modeled
as additive improper noise [2]. The correlation structure of an
improper signal can be exploited at the receiver by widely-
linear processing [1], [3], [4], which is linear in both the
signal and its complex conjugate. The design of widely-linear
receivers has been widely studied in the literature [5]–[8].

From an information-theoretic point of view, a proper
Gaussian random vector is known to maximize the entropy for
a given covariance matrix, which is known as the maximum
entropy theorem [9]. Because of that, the proper Gaussian dis-
tribution achieves capacity in point-to-point, multiple-access
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and broadcast channels [10]. This is also the reason why
this distribution is a common assumption in the theoretical
analysis of wireless communication scenarios, even though the
capacity-achieving distribution is, in general, unknown except
for some special cases.

The use of improper signals, rather than proper ones, has
recently emerged as an efficient means of improving the per-
formance in multiuser wireless communication networks. The
potential superiority of improper Gaussian signaling (IGS) has
been shown in different interference-limited scenarios, such as
the interference channel [11]–[16], relay channels [17], [18],
and cognitive radio networks [19]–[24], although recent results
indicate that proper Gaussian signaling (PGS) can be sufficient
if appropriate time sharing protocols are considered [25], [26].
The latter will generally not be applicable for cognitive radio
networks, since the required coordinated scheduling for a time-
sharing protocol is probably not feasible in such scenarios.

On another front, cognitive radio (CR) [27], where licensed
or primary users (PU) share the spectrum with unlicensed
or secondary users (SU), has been proposed as a promising
technology to improve the spectrum utilization in 5G wire-
less communication systems [28]. Among the different CR
paradigms (see [27] for an overview), underlay cognitive radio
(UCR) exploits the fact that the PUs are typically not fully
loaded, i.e., they operate below capacity, and thus tolerate
a certain amount of interference. Therefore, SUs can access
the channel provided that the interference level at the PU is
tolerable. This is typically accomplished by constraining the
interference power below a given threshold [29]–[31], the so-
called interference temperature (IT) limit. Because a UCR
scenario is interference-limited (as the performance of the
SU is limited by the interference they cause to the primary
receiver), IGS has also been shown to pay off in this context
[19]–[22]. However, all existing works consider single-antenna
transceivers.

When users have multiple antennas and the PU is protected
by an interference power constraint, the interference power
threshold can be set such that the PU is ensured a prescribed
data rate. As the total interference power does not fully capture
the spatial structure of the interference in the multiple-antenna
case, this threshold has to be determined assuming the worst-
case interference covariance matrix in order to guarantee the
instantaneous rate of the PU [32]. How this threshold changes
when the interference is improper is not straightforward, as it
depends on its degree of impropriety or non-circularity as well
as on its spatial correlation structure. In this paper we aim at
filling this gap by studying how conventional total interference
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power constraints can be combined with additional constraints
that force the interference to be improper. The motivation is
that these additional constraints further limit the structure of
the interference, thus alleviating the impact of the worst-case
interference and in turn permitting a higher interference power
threshold. Similar ideas have been proposed for PGS by addi-
tionally constraining the spatial structure of the interference,
but at the cost of increased cooperation between primary and
secondary networks [33]. This paper is an extension of our
previous work [34]. With respect to that work, we provide here
one additional protection strategy, include detailed proofs for
all results, and analyze the performance of the SU under the
proposed protection strategies.

The rest of the paper is organized as follows. Section II
introduces the system model. Two different strategies based on
IGS are presented in Section III. In Section IV, we derive the
IT thresholds for the two proposed strategies, while Section V
addresses the optimization of the SU. Numerical examples are
provided in Section VI. Section VII presents the concluding
remarks.

A. Preliminaries

We start with some definitions and properties of improper
complex random vectors that will be used throughout the
paper. We refer the reader to [1] for a comprehensive treatment
of the subject.

The complementary covariance matrix of a complex ran-
dom vector x is defined as R̃xx = E{xxT }, where E{·}
denotes expectation. If R̃xx = 0, we call x proper, other-
wise improper. Without loss of generality, the complementary
covariance matrix can be expressed as [1, Section 3.2.3]1

R̃xx = R
1/2
xx FCFTR

∗/2
xx , where Rxx = E{xxH} is the

covariance matrix, F is a unitary matrix, which we call
improper signature matrix, and C is a diagonal matrix con-
taining the circularity coefficients, which measure the degree
of impropriety and belong to the range [0, 1]. If C = I, we
call x maximally improper (or rectilinear). Finally, it is usually
useful to express the second-order statistics of x through the
augmented covariance matrix, which is defined as

Rxx = E{xxH} =

[
Rxx R̃xx

R̃∗xx R∗xx

]
, (1)

where x = [xT xH ]T .

II. SYSTEM MODEL

We consider a UCR scenario, where a multiple-input
multiple-output (MIMO) PU shares the spectrum with a
MIMO SU. For the sake of exposition, we consider an even
number of antennas that is the same at both sides of the
link,2 with N antennas in the PU link and M in the SU link.
The direct links for the PU and SU are Hpp ∈ CN×N and
Hss ∈ CM×M , respectively, while Hps ∈ CN×M is the cross-
channel between the secondary transmitter and the primary

1We use in this paper the unique positive-semidefinite square root for all
matrix square roots.

2Our results can easily be extended to an arbitrary number of antennas.

receiver. The received signals at the primary and secondary
receiver are respectively given by

yp = Hppsp + Hpsss + np, (2)
y′s = H′ssss + Hspsp + n′s, (3)

where np (n′s) is the additive noise at the primary (secondary)
receiver, which is assumed to be proper Gaussian with co-
variance matrix σ2I; and sp (ss) is the signal transmitted by
the primary (secondary) transmitter. To avoid cumbersome
expressions, we consider an equivalent model for the received
signal at the SU, which eliminates the interfering term by
an appropriate scaling of H′ss. In particular, by multiplying
y′s with the inverse square root of the interference-plus-noise
covariance matrix times the noise standard deviation, we
obtain the equivalent model for the SU3

ys = σ
(
HspQpH

H
sp + σ2I

)−1/2
y′s = Hssss + ns, (4)

where ns and n′s follow the same distribution. The primary
transmitter is unaware of the secondary system and thus uses
PGS with an arbitrary and fixed covariance matrix Qp ∈ SN+ ,
where SN+ denotes the set of N × N positive semidefinite
Hermitian matrices. This also means that the PU is unaware of
the SU channel coefficients, number of SUs, etc. Additionally,
the SU does not have access to Qp and Hpp, but can acquire
the cross-channel Hps.

In order to allow the SU to access the channel and at the
same time protect the PU from the secondary transmissions, an
IT constraint (i.e., interference power constraint) is typically
imposed to the secondary network. This way, the performance
of the PU can be guaranteed in spite of the secondary
transmission without requiring explicit cooperation between
secondary and primary systems. The IT constraint imposed
on the secondary transmitter is Tr

(
HpsQsH

H
ps

)
≤ t, where

Qs ∈ SM+ is the transmit covariance matrix of the SU and t
is the IT threshold. The value of t must be determined such
that the instantaneous rate of the PU is ensured [32]. Since the
PU is unaware of the secondary network, the IT threshold has
to be obtained for the most harmful interference covariance
matrix K ∈ SN+ at the PU that permits achieving the required
rate [32]. That is, let K? denote the most harmful interference
covariance matrix and t? its associated IT threshold, so that
the PU rate is guaranteed. Then

R̄ = Rp(K?) ≤Rp(HpsQsH
H
ps ),

∀Qs ∈ {Q � 0 : Tr
(
HpsQsH

H
ps

)
≤ t?}, (5)

where R̄ is the rate constraint, and Rp(K) is the PU rate when
the interference is proper with covariance matrix K, which is
given by

Rp(K) = log2

∣∣I + (σ2I + K)−1HppQpH
H
pp

∣∣ . (6)

This approach, however, is very conservative and may limit
the performance of the secondary system. This is because it
is worst-case oriented (the instantaneous PU rate has to be

3Note that this is possible because the transmit covariance matrix of the
PU is fixed. Additionally, this matrix is only required at the SU receiver to
carry out the optimizations described in Section V, and it can be estimated
by listening to the PU signal prior to transmission.
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guaranteed with probability one), and because there are many
unexploited degrees of freedom in K (as only the trace of
K is constrained). While the former cannot be changed as it
ensures the PU performance, accounting for the latter may help
obtain more suitable protection strategies. That is, by cleverly
imposing additional constraints on the interference covariance
matrix, the tolerable interference power t can increase without
compromising the PU performance. This, in turn, may result,
despite the additional constraints, in a better performance for
the SU. Specifically, we study how an additional constraint
on the degree of impropriety of the interference affects the IT
limit t and the SU performance.

III. PROTECTION STRATEGIES BASED ON IMPROPER
SIGNALING

This section presents the proposed protection strategies.
Even though the foregoing section has introduced a system
model with a single SU, the proposed strategies are valid
for arbitrary secondary networks, as no information about the
secondary system is used, and only a worst-case interference
covariance matrix (which can eventually be caused by one or
multiple SUs) is considered.

In our previous work for single-input single-output (SISO)
UCR networks [19] we have shown that, whenever IGS
permits the SU to achieve higher rate than PGS, maximally
IGS is optimal provided that the power budget is large enough.
When the power budget is not sufficiently high, the opti-
mal circularity coefficient depends on the particular channel
realization of each link. This means that, in order to find
suitable constraint values for the circularity coefficients of the
interference, i.e., for C, the channel matrices involving the
secondary transmitter need to be considered by the PU. Since
this information is not available at the primary node, as the PU
has no knowledge about the secondary network, a fixed choice
or constraint for C has to be considered instead, which must be
suitable for most channel realizations and secondary network
configurations. Based on the optimality of maximally IGS in
the high-power regime, we will constrain the interference to
be maximally improper for the MIMO setup, which will also
simplify the analysis. Hence, the interference complementary
covariance matrix is constrained to be of the form

K̃ = K1/2FpF
T
p K∗/2, (7)

where Fp ∈ UN is the improper signature matrix of the
interference at the primary receiver, with UN being the set
of N × N unitary matrices. This matrix is the key to our
analysis as it represents, along with the covariance matrix K,
the available degrees of freedom for the optimal design of
a maximally improper interference. When the interference is
maximally improper, the PU rate is given by [1]

Rp(K,Fp) =
1

2
log2

∣∣∣∣∣I+

[
σ2I + K K1/2FpF

T
p K∗/2

K∗/2F∗pFHp K1/2 σ2I + K∗

]−1

×
[
HppQpH

H
pp 0

0 H∗ppQ
∗
pHT

pp

]∣∣∣∣ . (8)

We will then consider the following constraints on the
interference:

Tr(K) ≤ t, and K̃ = K1/2FpF
T
p K∗/2,Fp ∈ F, (9)

where F ⊆ UN . The above set of constraints includes,
along with the conventional IT constraint, a maximally im-
proper constraint through a signature matrix Fp that must be
contained within a predefined set, F. Our proposed scheme
consists in the following two steps.

1) The primary receiver obtains the maximum value of t that
ensures its rate by solving

maximize
t

t, (10a)

subject to Rp(K,Fp) ≥ R̄, ∀K ∈ K (t) , ∀Fp ∈ F,
(10b)

where K(t) = {K � 0 : Tr(K) ≤ t} is the set of
admissible interference covariance matrices, and R̄ is the
prescribed rate constraint. Notice that the rate constraint has
to be fulfilled for all the matrices K and Fp that belong
to their respective sets, and therefore the only optimization
variable is the maximum tolerable interference power t.
The primary receiver broadcasts the value of t through a
control channel, or, alternatively, sends its value to a central
unit, so that it can be acquired by the secondary network.

2) The SU optimizes its transmission scheme subject to the
interference constraints by solving

maximize
Qs,Q̃s,Fp

Rs(Qs, Q̃s) =

1

2
log2

∣∣∣∣I +
1

σ2

[
HssQsH

H
ss HssQ̃sH

T
ss

H∗ssQ̃
∗
s HH

ss H∗ssQ
∗
s HT

ss

]∣∣∣∣
(11a)

subject to Tr(Qs) ≤ P, (11b)[
Qs Q̃s

Q̃∗s Q∗s

]
� 0, (11c)

Tr(HpsQsH
H
ps ) ≤ t, (11d)

HpsQ̃sH
T
ps

= (HpsQsH
H
ps )1/2FpF

T
p (HpsQsH

H
ps )∗/2,

(11e)
Fp ∈ F. (11f)

Constraints (11e) and (11f) force the SU to transmit a max-
imally improper signal, such that its improper signature at
the PU receiver is contained in F, while (11d) restricts the
total interference power. Notice that, as long as t is obtained
by solving (10), these constraints ensure that the PU rate is
satisfied.

To perform the proposed scheme there are some issues,
which we address in this paper, namely,

1) What is a good choice for F?
2) Given F, how can we solve (10) to find the optimal t?
3) Given F and t, how can we solve (11) to find the optimal

parameters of the SU?
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A. Constraints on the improper signature

We start with discussing the choice of F, as finding the
solution to (10) and (11) depends on it. In order to find a
suitable choice for F, we need to analyze the impact that
this set has on the value of t that solves (10), as well as
on the maximum rate of the SU that is the solution to (11).
In this regard, it is important to note that each receiver sees
a different improper signature matrix. That is, let the transmit
complementary covariance matrix of the SU be

Q̃s = Q1/2
s FFTQ∗/2s . (12)

The complementary covariance matrix of the received signal
at the PU is given by (11e), and that at the secondary receiver
is

HssQ̃sH
T
ss = HssQ

1/2
s FFTQ∗/2s HT

ss

= (HssQsH
H
ss )1/2FsF

T
s (HssQsH

H
ss )∗/2. (13)

Therefore, we have in general F 6= Fp 6= Fs. Let us first study
the effect of Fs, i.e., the improper signature matrix as seen by
the secondary receiver, on the performance achieved by the
SU. In our previous work [35], we have shown that

Rs(Qs, Q̃
1/2
s FwFTw Q̃∗/2s ) ≤ Rs(Qs, Q̃

1/2
s FFT Q̃∗/2s ) (14)

Rs(Qs, Q̃
1/2
s FbF

T
b Q̃∗/2s ) ≥ Rs(Qs, Q̃

1/2
s FFT Q̃∗/2s ) , (15)

where Fw and Fb, whose subscripts stand respectively for
worst and best, are such that

HssQ
1/2
s FwFTw Q∗/2s HT

ss =(HssQsH
H
ss )1/2VsV

T
s

× (HssQsH
H
ss )∗/2, (16)

HssQ
1/2
s FbF

T
b Q∗/2s HT

ss =(HssQsH
H
ss )1/2VsJVT

s

× (HssQsH
H
ss )∗/2, (17)

where J is the exchange matrix,4 and Vs is the matrix of
eigenvectors of HssQsH

H
ss , arranged such that the respective

eigenvalues are sorted in decreasing order. Expression (14)
states that, when the SU transmits a maximally improper signal
with a given covariance matrix, its rate is minimum if the
improper signature matrix makes each mode fully correlated
with its complex conjugate. By contrast, (15) states that the SU
rate is maximum if the strongest signal modes are correlated
with the complex conjugate of the weakest modes. Equations
(16) and (17) indicate that the improper signature matrices
at the secondary receiver that lead to the worst and best SU
performance, respectively, are Fs,w = Vs and Fs,b = VsJ

1/2.
It is important to note that the bounds in (14) and (15) are

for a fixed covariance matrix Qs. For example suppose that
F = UN , i.e., no specific constraint is imposed on Fp other
than being unitary. By (14) and (15), this means that F = Fb
after solving problem (11). However, the value of t obtained
after solving (10) has to be such that the PU rate is satisfied
for all unitary matrices Fp. Alternatively, if the set F is chosen
to be a specific unitary matrix, the value of t that solves (10)
can be made higher by choosing this unitary matrix wisely,
as the PU rate has to be ensured only for this unitary matrix.

4The exchange matrix is a square matrix with ones on the counterdiagonal
and zeros elsewhere.

However, in this case the SU has no freedom in designing
matrix F when solving (11). We therefore observe a trade-off:
reducing the size of F makes constraints (11e) and (11f) more
stringent but permits increasing the value of t, thus relaxing
constraint (11d).

The relationship between t, F, and the SU rate is difficult to
obtain and depends on all the channel matrices. Additionally,
when the PU computes the value of t by solving (10), this
relationship cannot be exploited due to the unawareness of the
SU. Therefore, we propose two strategies that either impose
no constraint on Fp or reduce its feasibility set to a single
point:

1) Strategy 1. The interference must obey a power con-
straint and be maximally improper:

F = UN , and Tr (K) ≤ tmin. (18)

2) Strategy 2. The interference must obey a power con-
straint and be maximally improper with a specific im-
proper signature matrix at the PU receiver:

F = S ∈ UN , and Tr (K) ≤ tmax. (19)

Strategy 1 is worst-case oriented since no constraints on Fp are
imposed, which means that the PU rate must be ensured for all
Fp ∈ UN . Such an uncertainty translates into an IT threshold
that is more conservative and, thus, lower than that obtained by
Strategy 2. Alternatively, Strategy 2 eliminates the uncertainty
on Fp by imposing a specific improper signature matrix and
is thus best-case oriented. Specifically, if Fp is constrained to
match the least harmful improper signature matrix for the PU,
S, the IT threshold can be higher. Therefore, we denote the
IT thresholds of Strategy 1 and Strategy 2 as tmin and tmax,
respectively, and we have tmin ≤ t ≤ tmax for any other set
F. Next section addresses the solution to (10) for these two
strategies and the computation of S.

IV. DERIVATION OF THE THRESHOLDS

A. IT threshold under Strategy 1

The PU obtains the interference power limit for Strategy 1
as the solution of (10) for F = UN :

maximize
t

t, (20a)

subject to Rp(K,Fp) ≥ R̄, ∀K ∈ K (t) , ∀Fp ∈ UN .
(20b)

Let tmin be its optimal value. It is then clear that
minK∈K(tmin),Fp∈UN Rp(K,Fp) = R̄, otherwise tmin could
increase without violating the constraints and would therefore
not be the optimal solution of (20). Hence, the foregoing
optimization problem can alternatively be solved by finding the
most harmful interference covariance matrix K and improper
signature matrix Fp. These matrices can be obtained as the
solution of the following optimization problem.

minimize
t,K,Fp

t, (21a)

subject to Rp(K,Fp) ≤ R̄, (21b)
K ∈ K (t) , (21c)

Fp ∈ UN . (21d)
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Notice that K and Fp are now optimization variables. In order
to obtain the solution of the above problem, we first present
the following lemma.

Lemma 1: Let φ1 ≥ φ2 ≥ . . . ≥ φN and Vp be the
eigenvalues and the matrix of eigenvectors of HppQpH

H
pp,

respectively. Then,

min
K∈K(t)

Fp∈UN

Rp (K,Fp) =

min∑
θi≤t

θi≥0

N
2∑
i=1

[
log2

(
1 +

φi
σ2 + θi

)
+ log2

(
1 +

φN−i+1

σ2

)]
,

(22)

where the value of Fp yielding (22) is Fp,1 = VpJ
1/2, with

J being the exchange matrix.
Proof: Please refer to Appendix A.

Lemma 1 characterizes the most harmful maximally im-
proper interference under an interference power constraint.
The most harmful improper signature implies full correlation
between pairs of modes exhibiting the highest and lowest
interference levels. This structure is indeed the same as the
one that maximizes the SU rate with a fixed covariance
matrix (see the left-hand side of (15)). Notice, however, that
the improper signature matrix at the primary receiver, Fp,
is in general different than that at the secondary receiver,
Fs. Additionally, the most harmful interference covariance
matrix is rank-deficient, consisting of non-null interference in
the first N/2 modes, and zero interference in the remaining
modes. Consequently, the most harmful maximally improper
interference degenerates to a half-rank proper interference.
This may seem contradictory at first glance, but it is indeed
consistent with our parameterization of complementary covari-
ance matrices in (7). As a matter of fact, there is a thin line
between full-rank maximally improper and half-rank proper.
To illustrate this, assume that the smallest N/2 eigenvalues
of the covariance matrix of a maximally improper signal are
equal to ε, and that the improper signature matrix is as in
Lemma 1. For an arbitrarily small ε > 0, this signal is full-
rank and maximally improper, but it is half-rank proper when
ε = 0.

Since Fp and the eigenvectors of K only affect the rate
constraint in (21), we can make use of Lemma 1 to rewrite
this problem as

minimize
{θi≥0}Ni=1

N∑
i=1

θi, (23a)

subject to

N
2∑
i=1

[
log2

(
1 +

φi
σ2 + θi

)
+ log2

(
1 +

φN−i+1

σ2

)]
≤ R̄. (23b)

Since ∂2 log(1+x−1)
∂x2 = 2x+1

x2(x+1) > 0 for x > 0, the above
problem is a convex optimization problem. Furthermore, it
satisfies Slater’s condition, i.e., the feasible set has a non-
empty interior [36]. Hence, the Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient for optimality, and they
yield the multilevel water-filling solution

θmin,i =

{[√
φi
(

1
4φi + µ

)
−
(

1
2φi + σ2

)]+
,i = 1, . . . , N2 ,

0, i = N
2 + 1, . . . , N,

(24)
where φi is the ith eigenvalue of HppQpH

H
pp and µ is chosen

such that the rate constraint holds with equality. The IT
threshold under Strategy 1 is then

tmin =
N∑
i=1

θmin,i. (25)

B. IT threshold under Strategy 2

In Strategy 2, we constrain the improper signature matrix
Fp to be equal to the least harmful such matrix for the PU,
denoted here as S. We consider this matrix to be a function of
the interference covariance matrix, which is possible because
the SUs know the actual interference covariance matrix pro-
voked by their transmitted signals. Following these lines, the
improper signature matrix is selected such that it maximizes
the interference power limit, which the PU carries out solving
the following optimization problem

maximize
t

t, (26a)

subject to max
Fp∈UN

Rp(K,Fp) ≥ R̄, ∀K ∈ K (t) . (26b)

Let tmax be the optimal solution of this problem. It is
then clear that minK∈K(tmax) maxFp∈UN Rp(K,Fp) = R̄,
otherwise tmax would not be the optimal solution. Therefore,
problem (26) can be rewritten as

minimize
t,K∈K(t)

t, (27a)

subject to max
Fp∈UN

Rp(K,Fp) ≤ R̄. (27b)

In the following, we will derive a lower bound on the op-
timal solution of the above problem, which coincides with
its optimal solution under some conditions that will also be
determined. To this end, we first present the following lemma.

Lemma 2: Let φ1 ≥ φ2 ≥ . . . ≥ φN and Vp be the
eigenvalues and the matrix of eigenvectors of HppQpH

H
pp,

respectively. Then,

min
K∈K(t)

max
Fp∈UN

Rp (K,Fp) =

min∑
θi≤t

θi≥0

N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2θi

)]
, (28)

for t ≥ t̄, where t̄ =
∑N
i=1 θ̄i, with

θ̄i =
1

2

[√
φi

(
1

4
φi + µ̄

)
−
(

1

2
φi + σ2

)]+

, (29)

µ̄ =
φ1φ2

(
1 + φ1

σ2

)(
1 + φ2

σ2

)
σ2
(
φ1φ2

σ4 − 1
)2 . (30)
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If t < t̄, then

min∑
θi≤t

θi≥0

N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2θi

)]
≤ min

K∈K(t)
max
Fp∈UN

Rp (K,Fp) <

min∑
θi≤t̄

θi≥0

N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2θi

)]
.

(31)

Furthermore, the improper signature matrix leading to (28) is
Fp,2 = U, with U being the matrix of eigenvectors of K.

Proof: Please refer to Appendix B.
Lemma 2 states that, at least for t ≥ t̄, the least harmful im-
proper signature implies that the interference at each stream is
maximally improper, while it is uncorrelated with the complex
conjugate of the interference affecting the other streams. This
means that the worst-case interference under Strategy 2 is, at
least for t ≥ t̄, spatially-unconstrained maximally improper,
as opposed to Strategy 1, where the worst-case interference
is spatially-constrained proper. Please note that this result
amends our respective statement in [34], which is herewith
diminished to the conjecture that (28) holds for all t ≥ 0, as
observed through extensive numerical simulations.

As with Strategy 1, we also observe in this case a correspon-
dence with the analysis of the SU performance. Specifically,
the value of Fs that minimizes the rate of the SU (left-hand
side of (14)) resembles the value of Fp,2 in Lemma 2, yielding
the same improper correlation structure but at different receiver
spaces. Again, this does not imply that setting F = S = Fp,2
makes the SU achieve its lower bound in (14), as Fs will
in general have a different structure due to different channel
matrices.

Making use of Lemma 2, we can obtain a lower bound on
the optimal solution of (26) by rewriting (27) as

minimize
{θi≥0}Ni=1

N∑
i=1

θi, (32a)

subject to
N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2θi

)]
≤ R̄.

(32b)

According to Lemma 2, if the optimal solution of this problem
fulfills t? =

∑N
i=1 θ

?
i ≥ t̄, it will be as well the optimal

solution of the original problem, and it will be a lower
bound otherwise. Problem (32) is convex and satisfies Slater’s
condition [36]. Hence, its optimal solution can be obtained
using the KKT conditions, which yields the multilevel water-
filling solution

θmax,i = 1
2

[√
φi
(

1
4φi + µ′

)
−
(

1
2φi + σ2

)]+
, i = 1, . . . , N,

(33)
with µ′ such that the rate constraint holds with equality. We
then obtain the IT threshold under Strategy 2 as

tmax =
N∑
i=1

θmax,i. (34)

V. OPTIMIZATION OF THE SECONDARY USER

In this section, we design the transmission strategy of the SU
for the two proposed strategies. That is, we address problem
(11) for F = UN and for F = S = Fp,2.

For Strategy 1, we will reveal the structure of the optimal
solution. In particular, we will show that it admits a closed-
form expression when only one of the power constraints
(interference power or power budget) is active, which allows
a more efficient computation of the transmission scheme as
explained in the next subsection.

For Strategy 2, we show that an adequate approximation
of the problem allows the application of an efficient modified
steepest decent method [37].

A. Optmization under Strategy 1

Under this strategy, the SU is constrained with a total inter-
ference power tmin but can use an arbitrary unitary improper
signature matrix, F. Therefore, by (15), the improper signature
matrix that maximizes the SU rate is F? = UsJ

1/2 [35],
where Us is the matrix of eigenvectors of Q

1/2
s HH

ss HssQ
1/2
s ,

arranged such that the corresponding eigenvalues are sorted in
decreasing order. The resulting achievable rate is [35]

Rs(Qs) =
1

2
log2

∣∣∣∣I +
1

σ2
Q1/2

s GssQ
1/2
s

+
1

σ2
UsJUT

s (Q1/2
s GssQ

1/2
s )∗U∗s JUH

s

∣∣∣∣ , (35)

where Gss = HH
ss Hss, and we have dropped the dependence

of Rs on Q̃s, as F has already been fixed. Clearly, F? depends
on the eigenvalues of Qs, which makes the problem difficult to
solve. In [35], we proposed a simple but effective alternating
optimization algorithm to find a suboptimal solution. However,
we show in the following that the optimal solution can be
found in closed form when only one of the power constraints
(either power budget or interference power) is active, which
allow us to provide insights into the optimal solution for the
general case. To this end, we express F? = UsΠ

1/2, where
now Us contains the eigenvectors of Q

1/2
s GssQ

1/2
s in an

arbitrary order, and Π is a symmetric permutation matrix. We
analyze in the following the optimal structure of Qs for a fixed
permutation Π, which is the matrix that solves the problem

maximize
Qs�0

1

2
log2

∣∣∣∣I +
1

σ2
Q1/2

s GssQ
1/2
s

+
1

σ2
UsΠUT

s (Q1/2
s GssQ

1/2
s )∗U∗s ΠUH

s

∣∣∣∣
(36a)

subject to Tr(Qs) ≤ P, (36b)

Tr(HpsQsH
H
ps ) ≤ tmin. (36c)

The structure of the optimal solution of this problem is given
in the following lemma.

Lemma 3: The optimal solution of (36) can be written as

Q?
s = X?X?H , X? =

(
HH

ss Hss
)−1/2

VΣ, (37)

where V is a unitary matrix and Σ is a diagonal matrix with
non-negative entries.
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Proof: This result follows from Theorem 1 in [37].
Even though that result is not directly applicable since the
cost function does not have the same form, we can use the
same arguments to prove the lemma. Specifically, we just
need to show that the optimal solution diagonalizes Gss.
To show this, and following the lines of [37], suppose that
there is a solution Qs,1 = X1X

H
1 such that X

1/2
1 GssX

1/2
1

is not diagonal. Now consider the solution X2 = X1R,
where R is a unitary matrix. Notice that, since R is unitary,
Qs,2 = X2X

H
2 = Qs,1. Thus, Tr(Qs,1) = Tr(Qs,2) and

Tr(HpsQs,1H
H
ps ) = Tr(HpsQs,2H

H
ps ). Furthermore, if U1 con-

tains the eigenvectors of X
1/2
1 GssX

1/2
1 we have U2 = RHU1

and the cost function becomes
1

2
log2

∣∣∣∣I +
1

σ2
XH

2 GssX2 +
1

σ2
U2ΠUT

2 (XH
2 GssX2)∗

×U∗2ΠUH
2

∣∣∣ =
1

2
log2

∣∣∣∣I +
1

σ2
RHXH

1 GssX1R +
1

σ2
RHU1

×ΠUT
1 R∗(RHXH

1 GssX1R)∗RTU∗1ΠUH
1 R

∣∣ =
1

2
log2

∣∣∣I
+

1

σ2
XH

1 GssX1 +
1

σ2
U1ΠUT

1 (XH
1 GssX1)∗U∗1ΠUH

1

∣∣∣∣ ,
(38)

where we have used log |I+AB| = log |I+BA| and the fact
that R is unitary. Therefore, if X1 is an optimal solution, so
is X2 = X1R. Finally, R can be chosen such that XH

2 GssX2

is diagonal. The structure of such a solution is given by (37)
[37], which concludes the proof.
Let us first assume that only one of the power constraints is
active, i.e., either the power budget constraint or the interfer-
ence power constraint is active, but not both at the same time.
To this end, we define

A =

{
G−1

ss , if only (36b) is active,
G−1/2

ss GpsG
−1/2
ss , if only (36c) is active,

(39)

where Gps = HH
ps Hps. Let A = VAΛAVH

A be the singular
value decomposition (SVD). By [37] we then have V = VA,
and (36) becomes

maximize
{pi≥0}Mi=1

M∑
i=1

1

2
log2

(
1 +

aipi + aπ(i)pπ(i)

σ2

)
(40a)

subject to
M∑
i=1

pi ≤ γ, (40b)

where π(·) is the permutation performed by Π, a−1
i = (ΛA)ii,

Σ = Λ
−1/2
A diag(

√
p1, . . . ,

√
pM ), and γ = P or γ = tmin

depending on the active constraint. Let us analyze the optimal
solution to this problem. Assuming, without loss of generality,
that ai ≥ aπ(i), we have, for π(i) 6= i,

log2

(
1 +

aipi + aπ(i)pπ(i)

σ2

)
≤ log2

(
1 +

ai
(
pi + pπ(i)

)
σ2

)
.

(41)
Therefore, the optimal power allocation fulfills pπ(i) = 0
for ai ≥ aπ(i). Furthermore, if we assume that a1 ≥
a2 ≥ · · · ≥ aM , it is then clear that the permutation that
maximizes the achievable rate is π(i) = M − i + 1. Hence,

when only the transmit power constraint or the interference
power constraint is active, the optimal maximally improper
transmission degenerates to a half-rank proper one. Notice that
this coincides with the structure of the worst-case maximally
improper interference at the primary receiver derived in the
previous section. This result validates Strategy 1, where the
interference power limit is computed under the worst-case
assumption, or, in other words, assuming that the SU uses
its optimal transmit covariance matrix under a maximally
improper constraint. The optimal solution of (40) is then given
by the waterfilling power allocation

p?i =

{(
ν − σ2

ai

)+

i = 1, . . . , M2 ,

0 i = M
2 + 1, . . . ,M,

(42)

with ν such that
∑M
i=1 p

?
i = γ.

Now assume that both constraints, i.e., transmit power and
interference power, are simultaneously active. By Lemma 3,
(36) can be equivalently written as

maximize
V∈UM ,{pi≥0}Mi=1

1

2
log2

∣∣∣∣I +
1

σ2
ΣΣH +

1

σ2
ΠΣΣHΠ

∣∣∣∣
(43a)

subject to Tr(VG−1
ss VHΣΣH) ≤ P, (43b)

Tr(VG−1/2
ss GpsG

−1/2
ss VHΣΣH) ≤ tmin,

(43c)
Σ = diag(p1, . . . , pM ). (43d)

In order to determine whether or not the structure of the
optimal solution in the single-constraint case also applies to
the general case, we analyze the optimal value of Σ in terms of
V and the permutation Π. To this end, we study the solution
of the above problem for a fixed V, which yields the problem

maximize
{pi≥0}Mi=1

1

2

∑
i=1

log2

(
1 +

bipi + bπ(i)pπ(i)

σ2

)
(44a)

subject to
M∑
i=1

pi ≤ P, (44b)

M∑
i=1

cipi ≤ tmin, (44c)

where b−1
i = [VG−1

ss VH ]ii, ci = [VG
−1/2
ss GpsG

−1/2
ss VH ]ii,

and now Σ = diag(b1
√
p1, . . . , bM

√
pM ). Since the foregoing

problem is convex and satisfies Slater’s condition [36], the
KKT conditions are necessary and sufficient for optimality.
The Lagrangian function yields

pi =
1

ciβ + µ− νi
−
(
σ2

bi
+ pπ(i)

bπ(i)

bi

)
, (45)

pπ(i) =
1

cπ(i)β + µ− νπ(i)
−
(
σ2

bπ(i)
+ pi

bi
bπ(i)

)
, (46)

where β, µ and νi are the Lagrange multipliers associated with
the interference power, transmit power and non-negativity con-
straints, respectively. Combining both expressions, we obtain(
bicπ(i) − φπ(i)ci

)
β+
(
bi − bπ(i)

)
µ = biνπ(i)−bπ(i)νi. (47)



1053-587X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2019.2953665, IEEE
Transactions on Signal Processing

8

From the KKT conditions, pi and pπ(i) are simultaneously
non-zero if νi = νπ(i) = 0. In such a case, (47) yields

β =
bi − bπ(i)

bπ(i)ci − bicπ(i)
µ. (48)

First we observe that, since β and µ are both non-negative,
this condition can only hold if bi ≥ bπ(i) and bπ(i)ci ≥ bicπ(i).
Second, the coefficients bi and ci depend on the channel
matrices Hss and Hps. When these channel matrices are
independently drawn from a continuous distribution, we have
that

bi − bπ(i)

bπ(i)ci − bicπ(i)
6=

bj − bπ(j)

bπ(j)cj − bjcπ(j)
, (49)

almost surely for i 6= j. Because of that, (48) will be satisfied
almost surely for no more than one index i. This means that
the optimal solution will also follow the half-rank structure
except for at most two data streams, which will be pairwise
correlated, thus resembling again the structure of the worst-
case interference covariance matrix under Strategy 1. The opti-
mal permutation, however, cannot be analytically determined.
Therefore, even though we have obtained interesting insights
into the structure of the optimal solution for the general case,
an efficient way to solve (43) is by the algorithm proposed in
[35], although only a suboptimal solution can be guaranteed
in general.

To sum up, we have obtained the following insights into the
structure of the maximally improper scheme that maximizes
the rate of the SU (problem (11)) under Strategy 1:

• When only one power constraint is active, the optimal
scheme degenerates to a half-rank proper one. The op-
timal transmission parameters can then be obtained in
closed form.

• When both power budget and interference power con-
straints are active, the optimal scheme is a half-rank
proper one except for almost surely no more than two data
streams, which are pairwise correlated (in the improper
sense). No closed-form expression is available in this
case, and a suboptimal solution can be obtained by the
alternating optimization algorithm proposed in [35]. This
algorithm has guaranteed convergence to a stationary
point of the original problem [38].

Notice that the optimal structure for the case of one active
constraint can be used as follows. First, the closed form
solutions (42) are used for each power constraint. If each of
them violates the other power constraint, then both constraints
are active and the algorithm in [35] is resorted to. Otherwise,
the solution for which the other power constraint is fulfilled
is the optimal solution to the problem.

B. Optimization under Strategy 2

Strategy 2 forces the improper signature matrix of the
interference to be equal to the eigenvectors of the interference
covariance matrix. Therefore, (11) can be rewritten in this case

as

maximize
Qs,Q̃s

1

2
log2

∣∣∣∣I +
1

σ2

[
HssQsH

H
ss HssQ̃sH

T
ss

H∗ssQ̃
∗
s HH

ss H∗ssQ
∗
s HT

ss

]∣∣∣∣
(50a)

subject to Tr(Qs) ≤ P, (50b)

Tr(HpsQsH
H
ps ) ≤ tmax, (50c)[

Qs Q̃s

Q̃∗s Q∗s

]
� 0, (50d)

HpsQ̃sH
T
ps = (HpsQsH

H
ps )1/2Fp

× FTp (HpsQsH
H
ps )∗/2, (50e)

Fp = eigvect(HpsQsH
H
ps ), (50f)

where eigvect(·) denotes the matrix of eigenvectors. The last
two constraints make the above problem very difficult to solve
optimally. In the following, we propose an efficient algorithm
to find a suboptimal solution, which jointly designs Qs and
Q̃s. To this end, let us first look at the required structure in the
interference covariance matrix. Since the improper signature
matrix of the interference has to be equal to the eigenvectors
of the interference covariance matrix, the non-zero eigenvalues
of the resulting interference augmented covariance matrix are
2λ(HpsQsH

H
ps ) [35, Lemma 1]. Furthermore, by expressing

Q̃s = XXT and Qs = XXH , with X = Q
1/2
s F, F

being the improper signature matrix of the transmit signal,
the non-zero eigenvalues are also equal to λ(XHHH

ps HpsX +
(XHHH

ps HpsX)∗). Therefore, X has to be such that
λ(XHHH

ps HpsX + (XHHH
ps HpsX)∗) = 2λ(HpsXXHHH

ps ),
which means XHHH

ps HpsX = (XHHH
ps HpsX)∗. This can be

satisfied by forcing XHHH
ps HpsX to be diagonal, yielding [37]

X? = (HH
ps Hps)

−1/2VΣ = G−1/2
ps VΣ, (51)

where V is a unitary matrix and Σ is a diagonal matrix with
non-negative entries. Plugging (51) into (50) we obtain the
optimization problem

maximize
V∈UM

{pi≥0}Mi=1

1

2
log2

∣∣∣∣I +
1

σ2
ΣΣH

(
VHAV + VTA∗V∗

)∣∣∣∣
(52a)

subject to Tr(ΣΣHVHG−1
ps V) ≤ P, (52b)

Tr(ΣΣH) ≤ tmax, (52c)
Σ = diag(p1, . . . , pM ), (52d)

where A = G
−1/2
ps GssG

−1/2
ps . The above problem is still

non-convex, but we can find a suboptimal solution using the
modified projected steepest descent algorithm proposed in
[37], which converges to a stationary point.

C. Extension to multiple SUs

Extending the above results to the multiuser case poses
some challenges. First, a good design of the transmission
scheme depends on the specific secondary network configu-
ration. To achieve practical algorithms, distributed approaches
should be aimed for. This poses the interesting question of
how to efficiently and effectively decouple the constraints,
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Fig. 1. Increase in tolerable INR with respect to PGS. We depict the results
for different number N of antennas.

so that each SU has a local constraint on the interference it
causes to the PU. While the total interference power constraint
can be evenly divided among the SUs, how to transfer the
constraint on the improper signature matrix, which has to be
fulfilled by the aggregate interference covariance matrix, to
local constraints is an interesting line of further work.

D. Discussion

In the foregoing analysis we have drawn the following
insights:
• Strategy 1 constrains the interference to be maximally

improper with arbitrary correlation structure. Because of
that, the interference power limit is computed for the most
harmful maximally improper structure, which is half-rank
proper. Under this strategy, the SU designs its transmis-
sion scheme to maximize its rate under the interference
power constraint and such that it is maximally improper.
This optimization also yields a proper transmit signal that
has half rank if only one of the power constraints is
active. When both power constraints are active (power
budget and interference power), the optimal design is
half-rank except for no more than two data streams. This
validates Strategy 1, as the worst-case assumption made
when deriving the interference power threshold t closely
follows the optimal transmission scheme of the SU.

• Strategy 2 increases the interference power threshold
at the cost of an additional constraint on the improper
structure of the interference. Specifically, t is maximized
by forcing the interference to have the improper structure
that is the least detrimental for the primary receiver.
Under this strategy, the SU designs its transmission
strategy under the additional constraint of matching this
specific improper structure. By analyzing the improper
structure that is the least favorable for the SU, we have
observed that the improper structure imposed by Strategy

Step 1:
1) Strategy 1:

• The PU obtains t using (24) and (25).
2) Strategy 2:

• The PU obtains t using (33) and (34).
Step 2:

1) The PU broadcast the value of t and the strategy
index, which are acquired by the SU.

Step 3:
1) Strategy 1:

• The SU solves (36) to find its transmission
scheme. Note that the SU transmits a maxi-
mally improper signal with an unconstrained
improper signature.

2) Strategy 2:
• The SU solves (50) to find its transmission

scheme. Note that the SU transmits a max-
imally improper signal with a constrained
improper signature.

Fig. 2. Workflow of the proposed strategies.

2 does not match the worst improper structure from the
SU standpoint. This means that Strategy 2 allows max-
imizing the interference power threshold t by imposing
an improper structure that is not the least favorable for
the SU.

Finally, a summary of the workflow of the two strategies is
shown in Fig. 2.

VI. NUMERICAL RESULTS

We present in this section some numerical examples to
illustrate our findings. For all the simulations, we set the noise
variance σ2 = 1, and thus the signal-to-noise ratio (SNR)
is equal to the transmit power. The primary transmitter uses
the optimal strategy in the absence of interference, namely,
SVD of the direct link and waterfilling power allocation on
the resulting eigenmodes. The rate constraint of the PU is set
as a percentage of its capacity in the absence of interference,
i.e., R̄ = αRp(0,0), where α ∈ [0, 1] is the loading factor.
Unless stated otherwise, the elements of all channel matrices
are independent and identically distributed (i.i.d.) as proper
complex Gaussian with zero mean and unit variance. All re-
sults are averaged over 1000 independent channel realizations.

A. Interference power limit

We first compare the two interference power limits, tmin and
tmax corresponding to Strategy 1 and Strategy 2, respectively.
Figure 1 depicts the increase in tolerable interference-to-
noise ratio (INR) over PGS, as a function of α and for
different number N of antennas at the PU. We observe that the
difference between tmax and tmin is larger as α decreases and
as the number of antennas increases. It is therefore expected
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Fig. 3. Relative increase in achievable rate for the different IGS strategies
as a function of α. The power budget constraint is not active and the number
of antennas is N =M = 2.
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Fig. 4. Relative increase in achievable rate for the different IGS strategies
as a function of α. The power budget constraint is not active and the number
of antennas for both users is N =M = 4.

that Strategy 2 will outperform Strategy 1 (in terms of SU
performance) in these cases. Indeed, as α approaches 0.5,
tmax goes towards infinity, while tmin remains finite. This is
because the PU can achieve half its maximum performance
by neglecting, e.g., the imaginary part of each stream. Since
Strategy 2 forces such an interference structure at the primary
receiver, the result follows. As the number N of antennas
increases, the threshold increase over PGS is approximately
constant for Strategy 2, while, for Strategy 1, the gap between
IGS and PGS decreases.
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Fig. 5. Average achievable rate for the different techniques as a function of
the gain of the cross-channel, Hps. The number of antennas is N =M = 2.

B. SU performance

We now evaluate the performance achieved by the SU
for PGS and the proposed IGS strategies. In order to better
illustrate the behavior of the two strategies, we first drop the
power budget constraint from the SU optimization, that is, we
assume that the interference power constraint dominates the
power budget constraint and thus it is not active. Figures 3
and 4 show the relative increase in average rate over PGS as a
function of α for N = M = 2 and N = M = 4, respectively.
The relative rate increase is defined as

∆R =
Rimp −Rprop

Rprop
, (53)

where Rimp is the average rate achieved by IGS (either by
Strategy 1 or Strategy 2) and Rprop is the average rate by
PGS. The SNR of the PU is set to 20 dB. We also depict the
performance achieved by an adaptive strategy that chooses the
transmission scheme attaining the highest instantaneous rate.
Such a scheme can be realized if the SU acquires the three
interference power thresholds, e.g., if the PU feeds back these
limits or they are provided by a central node [28].

In these examples, we observe that Strategy 2 outperforms
Strategy 1 for small α, but the former provides lower benefits
as α increases and is even outperformed by PGS when
α is high. While this observation applies to both Figs. 3
and 4, there are also some differences. When the number
of antennas increases, the crossing point between both IGS
strategies occurs at a slightly higher α, while the crossing point
between Strategy 2 and PGS shifts to the left. Furthermore,
the relative rate increase is smaller for 4 than for 2 anten-
nas. It is also worth pointing out that the adaptive scheme
presents an interesting approach, as little additional feedback
is required, but it permits dynamically choosing the optimal
scheme depending on the current system parameters. Notice
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Fig. 6. Average achievable rate for the different techniques as a function of
the gain of the cross-channel, Hps. The number of antennas for both users is
N =M = 4.

that the adaptive scheme chooses the best strategy for each
channel realization, which means that it dynamically selects
the best strategy according to the instantaneous, rather than
average, performance. This means that it may perform better
than the maximum of the two strategies, as observed in Figs.
3 and 4.

For the next examples we fix α = 0.6 and the SNR of both
users to 20 dB. We evaluate the proposed schemes for different
gains of the cross-channel, Hps, measured as the variance of
its coefficients. A higher gain represents a scenario where the
impact of the interference is more significant. The average
achievable rates are shown in Figs. 5 and 6 for N = M = 2
and N = M = 4, respectively. We observed a significant
performance gain of IGS over PGS in both cases, specially
at intermediate cross-channel gains, which reflects again the
effectiveness of IGS to reduce the impact of interference. In
these examples, Strategy 2 outperforms Strategy 1, and the
gap between both increases with the number of antennas.

VII. CONCLUSION

In this paper we have considered a UCR scenario where
users are equipped with multiple antennas. We have analyzed
how to combine interference power constraints with additional
constraints on the improper structure of the interference, such
that an instantaneous rate of the PU is guaranteed. We have
proposed two strategies that force the interference to be maxi-
mally improper, but which consider different restrictions on the
improper correlation structure. Additionally, we have proposed
algorithms to optimize the transmission scheme of the SU
subject to these constraints. We have shown that the proposed
strategies may significantly increase the performance of the
SU compared to conventional PGS strategies. Furthermore,
the advantages of the different transmission schemes can be

leveraged by an adaptive scheme with little feedback increase,
which dynamically chooses the best scheme.

APPENDIX

A. Proof of Lemma 1

Let Sp = HppQpH
H
pp and Sp be the corresponding aug-

mented covariance matrix. Since the interference is con-
strained to be maximally improper, the interference augmented
covariance matrix K is half-rank, i.e., rank(K) = N . Thus,
the left-hand side of (22) is lower-bounded as

min
K∈K(t)

Fp∈UN

Rp (K,Fp) ≥ min
K�0

rank(K)=N
Tr(K)≤2t

Rp(K)

= min
K�0

rank(K)=N
Tr(K)≤2t

1

2
log2

∣∣σ2I + K + Sp

∣∣− 1

2
log2

∣∣σ2I + K
∣∣ ,
(54)

where, with a slight abuse of notation, we use Rp(K) to indi-
cate the PU rate when the interference augmented covariance
matrix is K. Now consider the following property [39, 9.G.2.a]

|Y + Z| ≥
N∏
i=1

[λi (Y) + λi (Z)] , (55)

for Hermitian matrices Y and Z, where λi(·) denotes the ith
largest eigenvalue. Combining (55) with (54) we obtain

min
K∈K(t)

Fp∈UN

Rp (K,Fp)≥ min
K�0

rank(K)=N
Tr(K)≤2t

2N∑
i=1

1

2
log2

(
σ2 + λi(K) + λi(Sp)

)

−
2N∑
i=1

1

2
log2

(
σ2 + λi(K)

)
= min

K�0
rank(K)=N
Tr(K)≤2t

2N∑
i=1

1

2
log2

(
1 +

λi(Sp)

σ2 + λi(K)

)

= min
θi≥0∑N

i=1 θi≤2t

N∑
i=1

1

2
log2

(
1 +

λi(Sp)

σ2 + λi(K)

)

+
2N∑

j=N+1

1

2
log2

(
1 +

λj(Sp)

σ2

)
.

(56)

Since the signal from the PU is proper, each eigenvalue of Sp
has multiplicity two, i.e.,

λ(Sp) = [φ1, φ1, φ2, . . . , φN−1, φN−1, φN , φN ]
T
, (57)

which implies that the eigenvalues of K that minimize the
last lower bound in (56) are also repeated. Therefore, the last
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lower bound in (56) can be simplified to

min
K∈K(t)

Fp∈UN

Rp (K,F) ≥ min
θi≥0∑N
2
i=1 θi≤t

N
2∑
i=1

log2

(
1 +

φi
σ2 + θi

)

+
N∑

j= N
2 +1

log2

(
1 +

φj
σ2

)
. (58)

Now we show that this lower bound is achievable as follows.
Making the eigenvectors of K equal to those of HppQpH

H
pp,

U, and taking Fp = UJ1/2, the PU rate can be expressed as

Rp

(
UΘUH ,UJ1/2

)
=

1

2

N∑
i=1

log2

[
1+

σ2 (φi + φN−i+1) + φiφN−i+1 + θN−i+1φi + θiφN−i+1

σ2 (σ2 + θi + θN−i+1)

]
.

(59)

Taking θi = 0 for i = N
2 + 1, . . . , N , Rp

(
UΘUH ,UJ1/2

)
equals the lower bound in (58).

B. Proof of Lemma 2

Let HppQpH
H
pp = VpΦVH

p be the SVD. The left-hand side
of (28) can be lower bounded by

min
K∈K(t)

max
Fp∈UN

Rp(K,Fp) ≥ min
K∈K(t)

Rp(K,U), (60)

where U is the matrix of eigenvectors of K. In this case, we
can express the rate as

Rp(K,U) = log2

∣∣∣σ2I + Θ + ΥΦΥH
∣∣∣− log2

∣∣σ2I + Θ
∣∣

+
1

2
log2

∣∣∣∣I−Θ1/2
(
σ2I + Θ + Υ∗ΦΥT

)−1

Θ

×
(
σ2I + Θ + ΥΦΥH

)−1

Θ1/2

∣∣∣∣
− 1

2
log2

∣∣∣I− (σ2I + Θ
)−2

Θ2
∣∣∣ , (61)

where Υ = UHVp and Θ is a diagonal matrix containing
the eigenvalues of K. In the following, we will use ≺,
≺log, ≺w, and ≺w to denote majorization, log-majorization,
weak-submajorization, and weak-supermajorization, respec-
tively. We refer the reader to [39] for the definitions.

The third term in (61) can be lower-bounded as follows.
Using [39, 9.H.1.a] we have λ(YZ) ≺log λ(Y) � λ(Z)
for positive semidefinite Hermitian matrices Y and Z, which
implies, by [39, 5.A.2.b], λ(YZ) ≺w λ(Y)�λ(Z), where �
denotes the Hadamard or element-wise product. Furthermore,
using [39, Eq. 1.A.13b] we have 1−λ(YZ) ≺w 1−λ(Y)�
λ(Z). By [39, 3.A.7], we then have

log2 |I−YZ| ≥
N∑
i=1

log2 [1− λi(Y)λi(Z)] . (62)

Applying the above inequality to the third term in (61) we
obtain the lower bound

log2

∣∣∣∣I−Θ1/2
(
σ2I + Θ + Υ∗ΦΥT

)−1

Θ

×
(
σ2I + Θ + ΥΦΥH

)−1

Θ1/2

∣∣∣∣
≥

N∑
i=1

log2

[
1− λi

(
Θ
(
σ2I + Θ + ΥΦΥH

)−1
)2
]
.

(63)

Plugging (63) into (61) we can obtain, after some manipula-
tions,

Rp(K,U) ≥1

2
log2

∣∣∣σ2I + 2Θ + ΥΦΥH
∣∣∣

+
1

2
log2

∣∣σ2I + Φ
∣∣− log2

∣∣σ2I + Θ
∣∣

− 1

2
log2

∣∣∣I− (σ2I + Θ
)−2

Θ2
∣∣∣ . (64)

The first term in (64) can be lower bounded using (55)
as 1

2 log2

∣∣∣σ2I + 2Θ + ΥΦΥH
∣∣∣ ≥ 1

2 log2

∣∣σ2I + 2Θ + Φ
∣∣,

which yields

Rp(K,U) ≥ 1

2
log2

∣∣σ2I + 2Θ + Φ
∣∣+

1

2
log2

∣∣σ2I + Φ
∣∣

− log2

∣∣σ2I + Θ
∣∣− 1

2
log2

∣∣∣I− (σ2I + Θ
)−2

Θ2
∣∣∣

=
1

2
log2

∣∣∣I +
(
σ2I + 2Θ

)−1
Φ
∣∣∣+

1

2
log2

∣∣∣∣I +
1

σ2
Φ

∣∣∣∣ .
(65)

Notice that the above lower bound can be achieved by setting
Υ = I, i.e., U = Vp. Therefore, (60) can be equivalently
expressed as

min
K∈K(t)

max
Fp∈UN

Rp(K,Fp) ≥ min∑
θi≤t

θi≥0

R(VpΘVH
p ,Vp). (66)

Since R(VpΘVH
p ,Vp) is convex in θi, and the feasible set

is non-empty (Slater’s condition), the optimal solution can be
found through the KKT conditions similarly as in [32], which
yields

θ?i =
1

2

[√
φi

(
1

4
φi + µ

)
−
(

1

2
φi + σ2

)]+

, (67)

with µ such that Tr(Θ?) = t, with Θ? = diag(θ?1 , . . . , θ
?
N ).

Let us now consider the upper bound

min
K∈K(t)

max
Fp∈UN

Rp(K,Fp) ≤ max
Fp∈UN

Rp(VpΘ
?VH

p ,Fp) =

max
W∈UN

W=WT

log2

∣∣∣∣∣I+

[
σ2I + Θ? (Θ?)1/2WH(Θ?)1/2

(Θ?)1/2W(Θ?)1/2 σ2I + Θ?

]−1

×
[
Φ 0
0 Φ

]∣∣∣∣ , (68)

where W = VT
p F∗pFHp Vp and Θ? is the optimal solution

to the right-hand side of (66), which is given by (67). Now
we will show that the upper bound in (68) is maximized by
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W = I for t ≥ t̄. To this end, we may express (we henceforth
express Θ? as Θ to avoid cumbersome notation)

Rp(VpΘVH
p ,Fp) = log2

∣∣∣I +
(
σ2I + Θ

)−1
Φ
∣∣∣

+
1

2
log2

∣∣∣I−Θ1/2
(
σ2I + Θ + Φ

)−1
Θ1/2WΘ1/2

×
(
σ2I + Θ + Φ

)−1
Θ1/2WH

∣∣∣− 1

2
log2

∣∣∣I−Θ1/2

×
(
σ2I + Θ

)−1
Θ1/2WΘ1/2

(
σ2I + Θ

)−1
Θ1/2WH

∣∣∣ .
(69)

The above expression is maximized for W = I (and therefore
Fp = Vp) if

log2

∣∣I−D1WD1W
H
∣∣− log2

∣∣I−D2WD2W
H
∣∣

≤ log2

∣∣I−D2
1

∣∣− log2

∣∣I−D2
2

∣∣ , (70)

or, equivalently,

log2

∣∣I−D1WD1W
H
∣∣− log2

∣∣I−D2
1

∣∣
≤ log2

∣∣I−D2WD2W
H
∣∣− log2

∣∣I−D2
2

∣∣ , (71)

where D1 = Θ(σ2I + Θ + Φ)−1 and D2 = Θ(σ2I + Θ)−1.
Recall that Θ is now a function of Φ and µ following (67).
Equivalently, we may use (67) to express Φ in terms of Θ
and µ as

φi(µ) =

(
σ2 + 2θi

)2
µ− (σ2 + 2θi)

, (72)

which makes D1 a function of µ as well, but not D2. Hence
we may write D1(µ). It turns out that φi(∞) = 0 ∀i, so that
D1(∞) = D2. Therefore, in order to show that (71) holds for
any symmetric and unitary matrix W, we have to show

arg max
µ>µmin

{f(µ) = log2

∣∣I−D1(µ)WD1(µ)WH
∣∣

− log2

∣∣I−D1(µ)2
∣∣} =∞, (73)

with µmin = σ2 + 2θ1, so that 0 ≤ φi(µ) <∞ for µ > µmin.
Let us first consider the derivative of f(µ), which is (we drop
the dependence of D1 on µ to simplify notation)

∂f(µ)

∂µ
= Tr

[
2
(
I−D2

1

)−1
D1

∂D1

∂µ
−
(
I−D1WD1W

H
)−1

×
(
∂D1

∂µ
WD1W

H + D1W
∂D1

∂µ
WH

)]
, (74)

where[
∂D1

∂µ

]
ii

=
θi(σ

2 + 2θi)
2

[(σ2 + θi)(µ− σ2 − 2θi) + (σ2 + 2θi)2]
2 .

(75)

Consider the upper bound

Tr

[(
I−D1WD1W

H
)−1 ∂D1

∂µ
WD1W

H

]
=

N∑
i=1

λi

[(
I−D1WD1W

H
)−1 ∂D1

∂µ
WD1W

H

]

≤
N∑
i=1

λi

[(
I−D1WD1W

H
)−1
]
� λi

(
∂D1

∂µ
WD1W

H

)
(76)

≤
N∑
i=1

λi

[(
I−D1WD1W

H
)−1
]
� λi

(
∂D1

∂µ

)
� λi (D1)

(77)

≤
N∑
i=1

λi

[(
I−D2

1

)−1
D1

]
� λi

(
∂D1

∂µ

)
, (78)

where (76) is due to λ(AB) ≺w λ(A) � λ(B), and (77) is
obtained by using x ≺w y⇒ x�u ≺w y�u, for x1 ≥ · · · ≥
xN , y1 ≥ · · · ≥ yN , and u1 ≥ · · · ≥ uN ≥ 0 [39, 3.H.3.b].
Finally, (78) is obtained as follows. First we notice

λi

[(
I−D1WD1W

H
)−1
]

=
1

1− λi (D1WD1WH)
.

(79)
The second derivative of 1

1−x is 2(1−x)
(1−x)4 > 0 for 0 ≤ x < 1,

hence it is convex. Additionally, it is increasing in x, which
implies that

∑N
i=1

1
1−xi

is increasing and Schur-convex [39,
3.B.2]. This, along with λ(D1WD1W

H) ≺w λ(D2
1), yields

(78). Combining (78) with (74) we have

∂f(µ)

∂µ
≥2

N∑
i=1

{
λi

[(
I−D2

1

)−1
D1

∂D1

∂µ

]
−λi

[(
I−D2

1

)−1
D1

]
� λi

(
∂D1

∂µ

)}
. (80)

The above lower bound is equal to zero if the elements of
the diagonal matrices D1 and ∂D1

∂µ are similarly ordered. The
elements in ∂D1

∂µ are in decreasing order if

∂2D1

∂µ∂θi
≥ 0 ∀i ⇒ µ ≥ µ0 =

θ1(σ2 + 2θ1)2

σ4 + 2θ2
1 + 5θ1σ2

. (81)

Notice that µmin > µ0, which means that the elements in
∂D1

∂µ are always arranged in decreasing order. Therefore, the
elements in D1 are in decreasing order for µ ≥ µ̄, with µ̄
such that

θ1

σ2 + θ1 + φ1(µ̄)
=

θ2

σ2 + θ2 + φ2(µ̄)

⇒ µ̄ =
1

σ2

(
σ2 + 2θ1

) (
σ2 + 2θ2

)
. (82)

Thus we can state that f(µ) is non-decreasing in the interval
µ ≥ µ̄, which implies

arg max
µ≥µ̄

f(µ) =∞. (83)

Since the lower and upper bounds coincide for µ ≥ µ̄, we
obtain (28)–(30). For µ < µ̄ we cannot show that the lower
and upper bounds are equal, yielding (31) and concluding the
proof.
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