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PREFACE 
 

 

This doctoral dissertation was elaborated as a compendium of papers published in scientific 

journals. The following four papers constitute the core of the thesis:  

 

1. Cobo, S.; Dominguez-Ramos, A.; Irabien, A. From linear to circular integrated waste 

management systems: A review of methodological approaches. Resour. Conserv. 

Recycl. 2018, 135, 279-295. <https://doi.org/10.1016/j.resconrec.2017.08.003>. 

2018 Journal Impact Factor: 7.044. 

 
2. Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Minimization of resource consumption 

and carbon footprint of a circular organic waste valorization system. ACS Sustainable 

Chem. Eng. 2018, 6, 3493-3501.  

<https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b03767>. 

2018 Journal Impact Factor: 6.970. 

 
3. Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Trade-offs between nutrient circularity 

and environmental impacts in the management of organic waste. Environ. Sci. 

Technol.  2018, 52(19), 10923-10933. 

<https://pubs.acs.org/doi/full/10.1021/acs.est.8b01590>. 

2018 Journal Impact Factor: 7.149. 

 
4. Cobo, S.; Levis, J.W.; Dominguez-Ramos, A.; Irabien, A. Economics of enhancing 

nutrient circularity in an organic waste valorization system. Environ. Sci. Technol. 

2019, 53(11), 6123-6132. <https://pubs.acs.org/doi/full/10.1021/acs.est.8b06035>. 

2018 Journal Impact Factor: 7.149. 

 

The journal Resources, Conservation and Recycling is ranked within the first decile (D1) of the 

2018 Journal Citations Report (Science Citation Index) in the Environmental Sciences category, 

ACS Sustainable Chemistry & Engineering belongs to the D1 in the Chemical Engineering 

category, and Environmental Science & Technology is within the D1 of the Environmental 

Engineering and Environmental Sciences categories.   

https://doi.org/10.1016/j.resconrec.2017.08.003
https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b03767
https://pubs.acs.org/doi/full/10.1021/acs.est.8b01590
https://pubs.acs.org/doi/full/10.1021/acs.est.8b06035
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RESUMEN 
 

 

El concepto de la economía circular surgió en respuesta a la contaminación y al agotamiento de 

los recursos naturales asociados a nuestro modelo de producción y consumo. En una economía 

circular, los residuos son considerados un recurso que debe ser valorizado antes de ser 

reintroducido de nuevo en los ciclos productivos, con lo que se consigue minimizar la extracción 

de recursos y la acumulación de residuos. Como consecuencia de las políticas de la Unión 

Europea que priorizan la valorización de los residuos sobre su eliminación, se ha conseguido 

reducir progresivamente el promedio europeo de residuos sólidos municipales enviados a 

vertedero, e incrementar las tasas de incineración, reciclaje y compostaje. No obstante, no todos 

los Estados Miembros siguen la misma tendencia; solo el 30% de los residuos sólidos municipales 

generados en España fueron reciclados o compostados en el 2016, lo cual constituye una 

desviación significativa respecto al objetivo impuesto por la Unión Europea de alcanzar una tasa 

de reciclaje del 50% en el año 2020.  

 

Las herramientas de la ingeniería de procesos y sistemas pueden contribuir al diseño de 

estrategias de gestión de residuos óptimas que satisfagan los criterios de una economía circular. 

Sin embargo, todavía no se ha demostrado que la implementación de una economía circular 

conlleve una disminución en el consumo de recursos y los impactos ambientales, o que no 

desacelere el crecimiento económico. Consecuentemente, los objetivos de esta tesis son dos: 

desarrollar un marco metodológico que permita determinar la configuración óptima de sistemas 

integrados de gestión de residuos y recursos bajo una perspectiva del ciclo de vida, e investigar 

si la adopción de una economía circular es una medida efectiva para incrementar los beneficios 

económicos y reducir el consumo de recursos y los impactos ambientales. 

 

El marco metodológico desarrollado – presentado en el primero de los artículos que constituyen 

esta tesis – está basado en la expansión de los límites de los sistemas integrados de gestión de 

residuos para incluir los subsistemas involucrados en las etapas previas del ciclo de vida de las 

sustancias residuales, desde la extracción de recursos hasta la generación de los desechos. Estos 

sistemas, denominados en la tesis sistemas circulares integrados de gestión de residuos (SCIGR), 

permiten evaluar las consecuencias de recircular los componentes recuperados de los residuos. 

Con el objetivo de cuantificar la circularidad de estas sustancias en un SCIGR, se propuso un 
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nuevo indicador de circularidad, descrito en la tercera publicación de la tesis. En el segundo 

artículo que compone la tesis se examinó la viabilidad del marco metodológico propuesto 

aplicándolo a un caso de estudio, la gestión de nutrientes y residuos orgánicos municipales en 

la Comunidad Autónoma de Cantabria. Para ello, se definieron los límites del sistema y se diseñó 

una superestructura con procesos unitarios alternativos. El modelo del sistema describe cómo 

los fertilizantes industriales y los productos que pueden ser recuperados de los residuos 

orgánicos municipales (compost, material bio-estabilizado, digestato, estruvita y sulfato de 

amonio) son aplicados al suelo como producto fertilizante para cultivar maíz – el principal cultivo 

forrajero en Cantabria – de acuerdo a diferentes estrategias, dependiendo de su contenido en 

nutrientes. Por último, la cuarta publicación recoge un análisis económico del sistema. 

 

El modelo mecanístico del sistema se desarrolló combinando diferentes tipos de software para 

llevar a cabo el análisis de flujo de materiales y el análisis de ciclo de vida (ambiental y 

económico) de los procesos unitarios, y para modelar la distribución de nutrientes en el sistema. 

Se formuló un problema multi-objetivo de programación lineal entera mixta basado en las 

ecuaciones del modelo. El problema está sujeto a las restricciones del caso de estudio y a las 

impuestas por la legislación europea. Las funciones objetivo identificadas se clasifican en:  

- Funciones objetivo que miden el progreso realizado en la consecución de una economía 

circular: los indicadores de circularidad de carbono, nitrógeno y fósforo.  

- Funciones objetivo que cuantifican diferentes aspectos asociados a la sostenibilidad del 

sistema: i) uso de recursos: consumo de materias primas no renovables y área de vertedero, 

ii) impactos ambientales: calentamiento global y eutrofización marina y de agua dulce, iii) 

rentabilidad económica: costes anuales totales del subsistema de gestión de residuos.  

 

Las soluciones a los problemas de optimización planteados – basadas en la integración de 

múltiples procesos unitarios – indican cuáles son los procesos unitarios seleccionados y los flujos 

de materia que deben entrar a cada uno de ellos. Los resultados – sujetos a las hipótesis 

formuladas – sugieren que mejorar la circularidad de los recursos no implica necesariamente 

una reducción en el consumo total de recursos naturales o la emisión de cargas ambientales del 

sistema. Asimismo, puede conducir a un aumento en los costes de gestión de residuos, los cuales 

se podrían minimizar mediante la cooperación de los diferentes actores que forman parte del 

sistema circular. Por tanto, el éxito de la economía circular dependerá del equilibrio entre la 

circularidad de los recursos y sus implicaciones sobre diferentes aspectos de la sostenibilidad; 

las consecuencias de mejorar la circularidad de los recursos deben ser analizadas caso a caso.  
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ABSTRACT 
 

The concept of the circular economy arose in response to the pollution and the depletion of 

natural resources related to our production and consumption model. In the context of a circular 

economy, waste is viewed as a resource that must be upgraded before being reintroduced back 

into the production cycles, thereby minimizing resource extraction and waste disposal. As a 

consequence of the European policies that prioritize waste valorization over disposal, the 

average fraction of municipal solid waste disposed of in landfills within the European Union has 

steadily decreased in recent years, as the incineration, recycling and composting rates have 

risen. Nonetheless, these statistics vary widely among Member States; only 30% of the municipal 

solid waste generated in Spain was recycled or composted in 2016, which constitutes a 

significant deviation from the 50% recycling target set by the European Union for year 2020.  

 

Process systems engineering tools can contribute to the design of optimal waste management 

strategies that fulfill circular economy criteria. However, it has not been demonstrated yet that 

the implementation of a circular economy will decrease resource consumption and 

environmental impacts, or that it will not hamper economic growth. Therefore, the objectives 

of this dissertation are twofold: to develop a methodological framework capable of selecting the 

optimal configuration of integrated waste and resource management systems under a life cycle 

perspective, and to investigate whether adopting a circular economy is an effective measure to 

attain increased economic benefits and a reduction in resource consumption and environmental 

impacts.   

 

The developed framework – presented in the first paper compiled in this thesis – is based on the 

expansion of the boundaries of integrated waste management systems to include the upstream 

and midstream subsystems involved in the previous life cycle stages of the waste components, 

from resource extraction to waste generation. These systems, categorized as Circular Integrated 

Waste Management Systems (CIWMSs) in the dissertation, enable assessing the consequences 

of the recirculation of the recovered waste components into the upstream subsystems. To 

quantify the circularity of these substances within CIWMSs, a new circularity indicator was 

proposed and described in the third publication comprised in the dissertation. In the second 

paper included in this thesis, the developed framework was tested on a case study: the 
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management of municipal organic waste and nutrients in the Spanish region of Cantabria. The 

system boundaries were defined and a superstructure containing alternative unit processes that 

could be integrated into the system was designed. The system model describes how industrial 

fertilizers and the products that could be recovered from municipal organic waste (compost, 

bio-stabilized material, digestate, struvite and ammonium sulfate) are applied to the soil to grow 

corn – the main fodder crop in Cantabria – according to different strategies depending on their 

nutrient composition. Finally, the economic analysis of the studied system is carried out in the 

fourth publication.  

 

The bottom-up mechanistic model was developed combining different pieces of software to 

perform the material flow analysis, life cycle assessment and life cycle costing of the unit 

processes, and to model the distribution of nutrients within the system. A mixed integer linear 

programming multi-objective optimization problem was formulated based on the equations of 

the model. The problem is subject to the restrictions of the case study and those imposed by the 

European waste legislation. The identified objective functions are classified as:  

- Objective functions that measure the progress toward the achievement of a circular 

economy: the circularity indicators of carbon, nitrogen and phosphorus. 

- Objective functions that quantify different aspects of sustainability: i) resource use: the 

consumption of non-renewable raw materials and the landfill area, ii) environmental 

impacts: global warming, marine eutrophication and freshwater eutrophication, iii) 

economics: the total annual costs of the waste management subsystem.  

 

The results of the optimization indicate the selected unit processes and the material flows that 

must enter each of them; the solutions to the multi-objective optimization problems were based 

on the integration of multiple unit processes.  The findings of the research – subject to the 

formulated hypotheses – suggest that improving resource circularity does not necessarily entail 

a decrease in the overall consumption of natural resources or the emission of environmental 

burdens. Likewise, it can lead to increased waste management costs, which could be minimized 

through the cooperation of the different actors involved in the circular system. Thus, the 

successful implementation of a circular economy must rely on a proper balance between 

resource circularity and its sustainability implications; the consequences of enhancing resource 

circularity should be analyzed on a case-by-case basis. 
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CHAPTER 1 
 

GOALS AND SCOPE 
 

“Pollution is nothing but the resources we are not harvesting. We allow them to be 

dispersed because we’ve been ignorant of their value.” 

 

Richard Buckminster Fuller, American architect (1895-1983) 

 

  

The imprint that humans are leaving on the planet is so deep that many experts agree that a 

new geologic era, characterized by substantial irreversible chemical and biological changes 

derived from human activities, should be defined: the Anthropocene.1,2  

 

The release of 555·109 metric tons of carbon (C) to the atmosphere since the beginning of the 

Industrial Revolution has led to a steep increase in the CO2 atmospheric concentration to over a 

third above preindustrial levels.1,2 Setting aside the economic costs of the natural catastrophes 

associated with the consequential rise in global temperatures, such as coastal flooding,3 the 

detrimental effects of climate change are quantifiable on the natural ecosystems4,5 and human 

health.6  The World Health Organization estimates that between 2030 and 2050 global warming 

will cause around 250,000 annual deaths, approximately 40% of which are due to childhood 

undernutrition.7   

 

Climate change poses a risk to the stability of the global food system because of the lower crop 

productivities related to warmer temperatures, changes in rain patterns and the increased 

frequency of extreme weather events.8 On the other hand, according to the IPCC,9 the sector of 

the economy that encompasses agriculture, forestry and other land uses (e.g. the cultivation of 

bioenergy crops) emits almost a quarter of the anthropogenic greenhouse gases. Thus, 

agriculture could be at the core of a positive feedback loop exacerbated by the forthcoming 

increase in the global demand for food: as agriculture intensifies because of the poorer crop 

yields, more greenhouse gases are emitted, worsening those yields. 
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Moreover, the large amounts of nitrogen (N) and phosphorus (P) required by industrialized 

agriculture are a significant source of environmental pollution that is perturbing the global cycles 

of these elements. Around 120 million metric tons of molecular N (N2) are converted annually 

into reactive forms for fertilization purposes.10 In fact, anthropogenic sources contribute double 

the natural rate of terrestrial N fixation.11 The N use efficiency of the most cultivated crops is 

typically below 40%; the remaining N ends in the atmosphere as N2O, a powerful greenhouse 

gas, or leaches into the water bodies causing eutrophication, i.e. excessive biological 

productivity that may result in oxygen depletion and eventually, decreased biodiversity in the 

aquatic ecosystems.11 Regarding the P flows, out of the 20 million metric tons that are annually 

mined from phosphate rock, around 9 million metric tons are transferred to the ocean each 

year, contributing to eutrophication.10  

 

The disruption of the major biogeochemical cycles combined with the extensive land-use 

conversion – agriculture alone occupies about 38% of the Earth’s terrestrial surface –12 has 

triggered an unprecedented biodiversity loss that some scientists have labeled as the start of 

the Earth’s sixth mass extinction.13  

 

As Figure 1.1 shows, the human-driven perturbations in the CO2 atmospheric concentration, the 

rate of biodiversity loss, the land use and the N and P cycles have already transgressed the 

planetary boundaries defined by Rockström et al.14 as the thresholds above which abrupt 

irreversible environmental change with potentially disastrous consequences for humans could 

occur. 

 

Figure 1.1. Planetary boundaries (adapted from Steffen et al.15)  
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The challenge of maintaining the Earth system within a safe operating space while complying 

with the moral imperative of covering the basic human needs will be aggravated by the 

projected increase in the world population, which is expected to reach 9.7 billion in 2050.16  

 

 

Revisiting the sustainability concept 

Some authors have suggested that in the light of the research that indicates that the stable 

functioning of the Earth subsystems is a prerequisite for social prosperity, the concepts of 

sustainability and sustainable development established in the 1987 Brundtland report17 should 

be reformulated.18–20  

 

Griggs et al.18 consider the three pillars of 

sustainability – economic, social and 

environment – a nested concept, as depicted in 

Figure 1.2: the economy fulfills a function for 

society, which lies within the Earth’s life-

support system. Therefore, they defined 

sustainable development as “Development that 

meets the needs of the present while 

safeguarding Earth’s life-support system, on 

which the welfare of current and future 

generation depends”. 

  

 

Holden et al.19 go one step further and claim that “sustainable development constitutes a set of 

constraints on human behavior, including constraints on economic activity”.  They conclude that 

economic growth cannot be the priority of sustainable policies, which should focus on satisfying 

human needs, ensuring social equity and respecting environmental limits.  

 

Nonetheless, economic growth is one of the 17 Sustainable Development Goals proposed by the 

United Nations for their 2030 agenda.21 Recent studies have found that despite the multiple 

synergies between the Sustainable Development Goals, there are also trade-offs between 

them;22,23  pursuing social goals is usually associated with higher environmental impacts.23,24  

 

Figure 1.2. New sustainability paradigm 
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The results of the analysis performed by O’Neil et al.24 suggested that it is possible to meet the 

basic universal human needs without transgressing planetary boundaries if the level of resource 

use per capita decreases. Thus, they recommended a deviation of the Sustainable Development 

Goals agenda from economic growth, under the implicit assumption that economic growth is 

intrinsically coupled to resource use, which is supported by other studies.25,26  

 

However, given the global trends in resource 

extraction, shown in Figure 1.3, neither the 

dematerialization of the economy, (i.e. “the 

reduction in the quantity of materials used 

and/or the quantity of waste generated in 

the production of a unit of economic 

output”,27 nor the stabilization of the global 

demand for materials at the expense of a 

halt in the economic growth, are likely to 

occur in the near future without the 

appropriate incentives.28  

 

 

Figure 1.3. Global flows of resource extraction 
(adapted from Krausmann et al.29)

Therefore, a novel economic model based on reduced resource consumption and capable of 

operating within the decision-making space where the environmental and social objectives 

overlap is needed to attain this new sustainability paradigm. 

 

 

The coordinated management of waste and resources  

The advocates of the transition toward a circular economy claim that the pressure on the natural 

ecosystems to meet the demand for natural resources could be minimized if the dominant linear 

trend of extracting, processing, consuming or using and then disposing of raw materials was 

reversed, so that the materials that are typically considered waste can gain back the status of 

resource, after undergoing the pertinent upgrading processes.30,31  

 

One of the main organisms that seeks to promote the circular economy by collaborating with 

businesses, government and academia, is the Ellen MacArthur Foundation.32 It shares its vision 

with other international initiatives, like the Circle Economy,33 in which several international 

businesses and institutions participate, or, at the national level, the Spanish Circular Economy 

Foundation.34  
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The seminal thinkers and supporters of the circular economy were inspired by the high efficiency 

of the systems found in nature.35 As an illustration, the average terrestrial ecosystem recycles P 

roughly 50 times before it is lost in freshwaters.36 

 

The cradle-to-cradle design philosophy proposed by McDonough and Braungart,37 which 

envisions production systems where materials emulate the cyclical biological metabolism of 

nutrients, contributed to setting the foundations for the circular economy concept. 

 

Furthermore, the principles of the circular economy are interwoven with those of the industrial 

ecology discipline,38 which views industrial systems as entities analogous to the natural 

ecosystems, whose exchange of resources with the surrounding environment can be 

optimized.39 Nonetheless, whereas the focus of industrial ecology is on the industrial 

performance, the scope of the circular economy is broader. 

 

Some authors have taken a critical stance toward the theoretical basis of the circular economy, 

under the premise that the natural ecosystems work sub-optimally. The detractors argue that in 

accordance with the second law of thermodynamics, the subsystems that conform the 

biosphere generate disorder or waste.40,41 As in nature, the inefficiencies of the recycling 

technologies do not allow completely closed loops of materials. Throughout this thesis, the term 

“circular economy” is not taken literally as a perfectly closed system that does not rely on the 

consumption of external virgin resources. Instead, it refers to an economic model that 

simultaneously optimizes waste and resource management to minimize the consumption of 

natural resources.  

 

Another argument against the basis of the circular economy is that natural ecosystems require 

a continuous supply of solar energy to maintain their complexity. Likewise, energy is required to 

create value from downgraded materials.40,41 The skeptics reason that, unless technologies 

capable of efficiently harvesting energy from renewable sources are implemented, the better 

environmental profile of circular systems with respect to the traditional linear systems is 

questionable. Hence, the adoption of circular practices for the management of natural resources 

should be  parallel to the expasion of renewable energy sources, whose barriers, according to 

recent studies  that explored the feasibility of a 100% renewable energy mix, ”are primarily social 

and political, not technological or economic”.42–44 
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Regarding the connection of the circular economy with the sustainability concept, it has not 

been well established yet. It is widely assumed in the literature – without solid substantiation – 

that the improvement in resource efficiency derived from the implementation of a circular 

economy will decouple environmental impacts from economic growth,45,46 whereas the social 

implications of the circular economy, like more manual labor, are often overlooked.47–49 Clearly, 

more research is needed in this area.  

 

Therefore, the efforts to achieve sustainability should not focus solely on enhancing the 

circularity of resources. The 7 Rs rule – Regulation, Reducing, Reusing, Recycling, Recovering, 

Rethinking and Renovation – summarizes the available tools to minimize the dependence on 

raw materials.50 The sale of services rather than products,51 waste prevention,52 the promotion 

of reuse and product life extension strategies,53 measures to minimize product weight and the 

design of products for disassembly35 should be simultaneously encouraged. In this respect, the 

commitment of companies to sustainability should not be underestimated. 

 

For instance, Adidas® has accomplished a sustainable business model manufacturing running 

shoes and other sportswear made from upcycled plastics that Parley’s Ocean PlasticTM collects 

from the ocean.54  

 

The exchange of resources between traditionally separate industries – also known as industrial 

symbiosis –55 is another approach to the collective minimization of resource consumption. The 

first industrial symbiosis network reported in the literature is the eco-industrial park of 

Kalundborg (Denmark),45 where four companies (a power plant, an oil refinery, a biotech and 

pharmaceutical company and a producer of plasterboard) exchange water and steam.56  

 

These examples illustrate how the key to implementing successful strategies for resource 

recovery lies on the supply chain design.57,58 Indeed, most of the environmental impact of 

companies comes from their supply chain or from the consumers’ use phase.59 Thus, a significant 

reduction in the overall environmental impacts of businesses would require coordinated global 

policies, which private companies cannot control.  

 

On the contrary, the public sector is in a privileged position to coordinate the sustainable 

management of waste and resources. Some efforts have already been made to develop new 

policies that promote the circularity of resources and a framework to quantify the performance 

of a circular economic model.  
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Monitoring the circular economy 

The European Commission recently proposed a set of ten indicators to measure the progress 

toward the attainment of a circular economy.60 The indicators belong to the following thematic 

areas: production and consumption, waste management, secondary raw materials and 

competitiveness and innovation. The value of these metrics for the European Union and Spain 

are compiled in Table 1.1.  

 

The production and consumption indicators include waste generation rates, the self-sufficiency 

for raw materials – which reveals how independent the European Union is from the rest of the 

world in terms of raw materials – and the investment in green public procurement, which has 

not been quantified yet.  

 

Regarding the indicators associated with the use of secondary raw materials, they are divided 

into two categories: the contribution of recycled materials to the demand of raw materials, and 

the trade in recyclable raw materials. The end-of-life recycling input rates and the circular 

material use rate belong to the first sub-category. The end-of-life recycling input rate indicates 

how much of the input of materials into the production system comes from recycled materials, 

whereas the circular material use indicator measures the share of material recovered and fed 

back into the economy. Although these indicators provide insight into the materials metabolism, 

they do not deliver any information about the flows of raw materials that are prevented from 

being extracted as a consequence of the reintroduction of the secondary materials into the 

production cycles. Because of the typical worse quality of the secondary materials,61,62 a given 

amount of a secondary material cannot replace the same amount of virgin material to perform 

the same function. On the other hand, the indicators that show the trade in recyclable raw 

materials illustrate how the exports of secondary materials significantly exceed the imports, 

which gives rise to questioning the capacity of the European Union to absorb the secondary 

materials that it generates.  

 

The competitiveness and innovation indicators comprise the private investment in tangible 

goods, job creation, the gross value added and the number of patents related to the circular 

economy. Finally, the waste management indicators are based on the recycling rates of specific 

waste streams. 
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Table 1.1. Indicators to monitor the progress toward a circular economy (source: Eurostat63) 

 

 

INDICATOR EU Spain 
 

PRODUCTION AND CONSUMPTION    

1. Self-sufficiency of raw materials  36.4 N/A % (2016) 

2. Green public procurement N/A N/A 
 

3. Waste generation 
   

Generation of municipal waste per capita  487 462 kg per capita (2017) 

Generation of waste excluding major mineral 
wastes per GDP unit  

66 62 kg per 103 € (2016)   

Generation of waste excluding major mineral 
wastes per domestic material consumption  

13.3 17.3 % (2016) 

4. Food waste  80 N/A x106 metric ton(2016)      

WASTE MANAGEMENT 
   

5. Recycling rates 
   

Recycling rate of municipal waste  46.4 33.5 % (2017) 

Recycling rate of all waste excluding major 
mineral waste  

55 46 % (2014) 

6. Recycling/recovery for specific waste streams 
   

Recycling rate of overall packaging  67.2 70.3 % (2016) 

Recycling rate of plastic packaging  42.4 45.5 % (2016) 

Recycling rate of wooden packaging  39.8 67.1 % (2016) 

Recycling rate of e-waste  35.6 37.4 % (2015) 

Recycling rate of bio-waste  81 71 % (2017) 

Recycling rate of construction and demolition 
waste  

90 79 % (2016) 

 

SECONDARY RAW MATERIALS 
   

7. Contribution of recycled materials to raw 
materials demand 

   

End-of-life recycling input rates  12.4 N/A % (2016) 

Circular material use rate  11.7 8.2 % (2016) 

8. Trade in recyclable raw materials 
   

Imports from non-EU countries  5.90 0.58 x106 metric ton (2017) 

Exports to non-EU countries  36.72 1.30 x106 metric ton (2017) 

Intra EU trade  52.23 5.65 x106 metric ton (2017) 

    

COMPETITIVENESS AND INNOVATION    

9. Private investment, jobs and gross value 
added related to circular economy sectors 

   

Gross investment in tangible goods  0.12 0.09 % of GDP (2016) 

Persons employed  1.73 2.02 % of employment 
(2016) 

Value added at factor cost  0.98 1.02 % of GDP (2016) 

10. Number of patents related to recycling and 
secondary raw materials  

338.17 20.52 (2014) 
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Although these metrics are intended to reflect the implications of the circular economy at the 

macro level, waste management takes place at the local or regional level. Thus, municipalities 

are at the center of the logistic interplay between the different actors that could benefit from 

the adoption of circular economy strategies (waste managers, citizens, manufacturers, etc.).  

 

 

Policy development for the management of municipal solid waste 

The city of San Francisco constitutes the paradigmatic example of this vision. It has set into 

motion an ambitious plan to divert zero waste to landfills by 2020. In 2014 the city had already 

accomplished an impressive 80% recycling and composting rate through the implementation of 

measures such as financial incentives (the more mixed waste the residents generate, the more 

they pay for the waste management services), the ban on styrofoam, polystyrene foam and 

plastic water bottles, or the mandatory recycling and composting for all residents and 

businesses.64  

 

Unfortunately, San Francisco constitutes the exception rather than the rule. Around a third of 

the 2.01 billion metric tons of municipal solid waste generated worldwide in 2016 was openly 

dumped,64 and it is estimated that over 250,000 metric tons of waste plastic particles is floating 

at sea.65 This is evidence that although waste management is crucial to achieve sustainable local 

communities, it also has global consequences; in fact, it accounts for about 5% of global 

greenhouse gas emissions.64  

 

The annual municipal solid waste generation is expected to reach 3.40 billion metric tons by 

2050, as a result of the rise in the world population and the income levels.64 Hence, waste 

management will become a progressively pressing issue, and as such, it is tackled by different 

international institutions, such as the United Nations, which consider waste management the 

transversal connector of Sustainable Development Goals 11, focused on sustainable cities and 

communities, and 12, which targets responsible consumption and production.21  

 

These objectives are aligned with the Europe 2020 strategy,66 the Raw Materials Initiative67 and 

the EU action plan for the circular economy,68 which pursue sustainable growth within a 

“resource efficient Europe”. To facilitate the transition to more sustainable material 

management and a circular economy model within the European Union, Directive 2018/85269 

establishes that at least 70% of packaging waste must be recycled by 2030, whereas Directive 

2018/85070 bans landfilling separately collected waste and establishes that the fraction of 
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municipal solid waste that is landfilled must be reduced to 10% by 2035. Moreover, Directive 

2018/851,71 which amends Directive 2008/98/EC72 on waste, lays down measures aimed at 

preventing waste, reducing the adverse impacts of waste generation and management and 

improving resource efficiency.  

 

Although municipal solid waste represents only between 7% and 10% of the total waste 

generated in the European Union, its mixed composition makes it particularly challenging to 

manage.71 Directive (EU) 2018/85171 encourages the application of the waste hierarchy 

(depicted in Figure 1.4), which was designed to prioritize waste prevention and management 

options.  

 

As Figure 1.5 shows, the mean rates of waste disposal and material and energy recovery in the 

European Union follow the waste hierarchy. However, that is not the case for all the Member 

States. In Spain only 30% of the municipal solid waste generated in 2016 was recycled or 

composted, although the municipal solid waste generation rate (1.21 kg·person-1·day-1) was 

slightly lower than the average of the European Union (1.30 kg·person-1·day-1).73 These statistics 

vary widely even within the same country. For instance, in the Spanish region of Cantabria, 41% 

of the municipal solid waste generated in 2014 (at a rate of 1.49 kg·person-1·day-1) was recycled 

or composted.74  

 

 

       Figure 1.4. Waste hierarchy 
 

Figure 1.5. Landfill, incineration and recycling 
(material recycling, composting and anaerobic 
digestion) rates in the EU-28 and Spain in 2016 

(source: Eurostat73)

 

The cases of Sweden and Belgium are particularly remarkable. They have developed a strong 

incineration infrastructure; approximately half of the municipal solid waste generated in these 

countries is incinerated, whereas the other half is recycled. Consequently, they send to landfill 

below 1% of municipal solid waste.73  



Goals and scope 

19 
 

Figure 1.6 displays how in the period 1995-2016 the fraction of municipal solid waste disposed 

of in landfills within the European Union decreased as the incineration, recycling and composting 

rates rose, an indication of the progressive adoption of the waste hierarchy. 

 

Figure 1.6. Evolution of the municipal solid waste management alternatives in the EU-28 
(source: Eurostat75) 

 

The gradual improvement of the recycling rates is compulsory for the Member States; Directive 

(EU) 2018/85171 set increasingly high recycling targets (shown in Figure 1.7) for the municipal 

solid waste generated in the period 2020-2035. Based on the comparison of these targets with 

the recycling rates of several European regions, they seem ambitious but attainable goals. 

Whereas some countries – like Spain – must make a considerable effort to catch up with the 

recycling rates of the rest of the European Union, Germany – with a 66% recycling rate in 2016 

– already surpassed the 2035 recycling objective.76  

Figure 1.7. Recycling targets set by Directive (EU) 2018/85171 (blue) and 2014 recycling rates (grey),  

including material recycling, composting and anaerobic digestion 

 

Despite the fact that the motivation for this policy is clear, the term “recycling rate” is rather 

dubious and usually misconceived by the public. According to Directive 2008/98/EC,72 “recycling 

means any recovery operation by which waste materials are reprocessed into products, 

materials or substances whether for the original or other purposes. It includes the reprocessing 

of organic material” Additionally, Directive 2008/98/EC72 establishes that waste ceases to be 
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waste after it has undergone a recovery operation, if it can fulfill a function without adverse 

environmental or human health impacts and there is a market or demand for it.  

 

Essentially, this means that Member States are allowed to report recycling rates on the basis of 

the output of sorting facilities – instead of the actual recycling processes – as long as there are 

buyers willing to purchase the sorted items. This definition opened the door to massive 

exportations; 90% of the plastic and 65% of the paper collected for recycling in Spain in 2011 

was exported to China.77,78  

 

After the Chinese 2018 import ban on materials recovered from solid waste – alleging 

environmental concerns and the poor quality of the imported materials – the global markets are 

struggling to adjust. Considering China’s substantial capacity to absorb these materials – it has 

imported a cumulative 45% of total plastic waste since 1992 –79 this ban will have global 

cascading effects on the recycled materials market, and it will certainly hamper the attainment 

of the recycling targets set by the European Union.  

 

The European Union cannot pretend that waste diversion equals recycling any more. This should 

be seized as an opportunity to invest in new European recycling facilities and improved quality 

standards, as opposed to finding new markets.   

 

To reduce the contamination levels of the secondary raw materials, the source separation of the 

different waste fractions that compose municipal solid waste is mandatory within the European 

Union; Member States are obliged to set up separate collection systems for paper, metal, plastic 

and glass since 2015.71 

 

In addition to that, Directive 2018/85171 states that bio-waste (“biodegradable garden and park 

waste, food and kitchen waste from households, offices, restaurants, wholesale, canteens, 

caterers and retail premises and comparable waste from food processing plants”) must be either 

separated and recycled at source (e.g., by means of home or public composters) or separately 

collected from other types of waste by the end of 2023. Furthermore, as from the beginning of 

2027, municipal bio-waste entering aerobic or anaerobic treatment will only count as recycled 

if it has been separately collected or recycled at source.71 The divergence in the dates indicates 

that the policy-makers are aware that it is highly unlikely that all Member states will effectively 

put into practice a bio-waste source separation and collection system in such a short period of 

time. Although there are not any reliable statistics on the average bio-waste source separation 
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rates, a study (summarized in Figure 1.8) found that the mean bio-waste source separation rate 

across the capitals of the European Union was 16% in 2014.80  

Figure 1.8. Bio-waste source separation rates in the EU-28 capital cities in 2014  
(adapted from BIPRO/CRI80) 

 
Nonetheless, Directive 2008/98/EC72 already encouraged Member States to ensure the separate 

collection of bio-waste prior to composting or anaerobic digestion. To that end, the Spanish Law 

22/201181 about waste and polluted soil, made a distinction between the bio-stabilized material 

generated in the composting process of the bio-waste collected in the mixed waste stream, and 

the compost produced from the source-separated bio-waste. Since the application of this law, 

waste managers are not allowed to sell bio-stabilized material as compost.   

 

It has been demonstrated that the source separation of bio-waste reduces the risks associated 

with the subsequent agricultural application of the stabilized organic material, like the transfer 

of heavy metals and organic pollutants to the soil.82–84 Moreover, since fewer pretreatment 

operations are required for the source-separated bio-waste, the generation of bioaerosol and 

malodor – which is usually abated with biofilters –85 is minimized.83  

 

 

State-of-the-art processes for bio-waste recycling    

Composting is the most widespread process for bio-waste recycling, in which aerobic 

microorganisms decompose organic matter, releasing CO2, water and heat.86 The resulting 

compost is a product rich in nutrients and used for soil amendment; i.e., it can improve soil 

quality and support plant life by increasing the soil nutrient levels.  

 

The most typical composting systems are windrow and tunnel composting. In windrow 

composting, the bio-waste is laid out in parallel rows and periodically turned to enhance the 
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oxygen diffusion through the material.86 Tunnel composting is a more controlled process that 

consists of a conveyor enclosed inside a sealed casing that moves the waste across a tunnel, 

through which air is blown.86  

 

The alternative bio-waste recycling process is anaerobic digestion. In this process, 

microorganisms degrade organic matter in the absence of oxygen, generating biogas, a mixture 

of approximately 65% vol. CH4 and 35% vol. CO2.87  

 

The digestate (the remaining product) is dissolved in water in varying proportions, depending 

on whether the digester is operated in wet (total solids below 15% wt.) or dry conditions.88 The 

advantage of wet operation is that it facilitates the contact between the microorganisms, the 

organic matter and the compounds generated in the successive biochemical reactions. However, 

the costs of dry anaerobic digestion are lower, because of the more energy-intensive product 

dehydration and the larger reactor volumes related to wet anaerobic digestion.  

 

On the other hand, anaerobic digesters can operate either in the range of thermophilic (55 oC - 

60 oC) or mesophilic (35 oC - 40 oC) temperatures. The former accelerates the kinetics of the 

process and reduces the presence of undesired pathogens in the digestate.88 Nonetheless, the 

energy required to heat up the reactor, especially in wet systems, could be substantial in the 

thermophilic regime.89   

 

The high moisture content of the digestate increases its transport and spreading costs, which 

makes it less attractive than compost for its soil amendment and fertilizing properties, although 

in some cases it is also hard for waste managers to find farmers interested in purchasing 

compost.90–92  

 

The main advantage of anaerobic digestion over composting is that it also enables energy 

recovery, usually through the direct combustion of biogas, although it has been suggested that 

upgrading the biogas to biomethane for the transport sector is more environmentally 

beneficial.93 However, the most efficient route to recover energy from bio-waste is incineration; 

the primary energy replacement of incineration is up to 16 times higher than that of anaerobic 

digestion.94  

 

Germany is the European country where anaerobic digestion is more prevalent; the biogas 

produced from the anaerobic digestion of different organic matrices represented 51 TWh of the 
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German primary energy production in 2011, whereas it only accounted for 0.96 TWh of the 

Spanish primary energy supply.95  

 

Although there are several small-scale plants for the anaerobic digestion of sewage sludge, 

manure and other wastes from the agro-food industry in Spain, only six anaerobic digestion 

plants for the valorization of the organic fraction of municipal solid waste are documented. They 

are compiled in Table 1.2. 

 

Table 1.2. Spanish anaerobic digestion plants that handle the organic fraction of municipal solid waste 

Plant Location Capacity 
(metric ton·year-1) 

La Paloma96 Madrid 108,175 

Las Dehesas97 Madrid 161,000 

Ecoparc de Barcelona98 Barcelona 12,725 

Ecoparc 2 de Montcada i Reixac99 Barcelona 100,000 

Can Barba100 Barcelona 25,000 

Ecoparque Gran Canaria Norte101 Gran Canaria 21,000 

 

To maximize nutrient recovery from the products derived from anaerobic digestion, several 

technologies in different stages of development are currently being investigated.102–104 Among 

them, the recovery of ammonia (NH3) as ammonium sulfate ((NH4)2SO4) by air stripping, and 

struvite (NH4MgPO4·6H2O) precipitation by means of the addition of magnesium compounds, 

are deemed feasible methods to recover nutrients from the liquid digestate (the liquid phase 

that is separated from the solid fraction of the digestate).104 The latter has been proven 

successful at the recovery of P and N from the anaerobic digestion effluents of the potato 

processing and dairy industry.105  

 

 

The potential of nutrient recovery  

It has been estimated that the nutrients present in the food waste collected in municipal bio-

waste and half of the food waste generated by other sources could replenish 4% of N, P and 

potassium (K) used in chemical fertilizers worldwide.35 That is a minor fraction compared to the 

total flows of N, P and K contained in food, animal and human waste streams, which altogether 

represent 2.7 times the nutrients present in the industrial fertilizers currently used.106  

 

Therefore, nutrient recovery constitutes an opportunity to restore the natural fluxes of the 

biogeochemical cycles, reducing the excessive removal and release of nutrients at different 
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stages.48 Moreover, the proper management of the nutrients recovered from organic waste 

could play a significant role in securing the food supply for the growing population, which will 

become progressively challenging as the global phosphate reserves diminish.107    

 

Recent studies concluded that the optimization of the current nutrient management practices 

is a condition to feeding the future generations in a sustainable manner, although the synergistic 

combination of multiple strategies, such as dietary shifts, precision agriculture, increasing water 

use efficiency and reducing food waste will be required.108–110  

 

Mueller et al.110 found that closing the yield gaps of agricultural systems to 100% of attainable 

yields could increase the worldwide production of corn, wheat and rice 64%, 71% and 47% 

respectively. Figure 1.9 shows the predominant factors – fertilizer use and irrigation – that deter 

different regions from reaching the maximum yield of corn; 73% of the underachieving areas 

could close cereal yield gaps by increasing nutrient inputs. 

 

Nonetheless, they estimated that by eliminating fertilizer overuse, the global N and P application 

on corn, wheat and rice could be reduced by 28% and 38% respectively without decreasing 

current yields.  

 

Figure 1.9. Management factors limiting yield-gap closure to 75% of the attainable yield of corn in 
different regions (adapted from Mueller et al.110) 

 

These results corroborate that sustainable agriculture relies on a delicate equilibrium: too few 

nutrients lead to low crop productivity, but too many nutrients are the cause of environmental 

pollution.108  
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Thus, to fully understand the implications of the exchange of nutrients between food and waste 

systems, robust systems engineering tools that enable the comprehensive design, analysis, 

simulation and optimization of complex systems are needed.  

 

 

THE CONTRIBUTIONS OF PROCESS SYSTEMS ENGINEERING TO SUSTAINABILITY  
 

A system is an entity encompassing a set of interacting parts and delimited from the 

environment by its boundary. The inputs to the system represent the influence of the 

environment on the system, and the outputs reflect the behavior of the system.111  

  

Process systems engineering applies systems thinking, which provides a holistic framework to 

address complexity, to the engineering of systems comprising physical, chemical and/or 

biological processing operations.112 Analysis and synthesis are the cornerstone of process 

systems engineering.111,112 Systems analysis aims at understanding the behavior of systems,113  

whereas process synthesis consists in integrating a process flowsheet that will convert the given 

inputs into outputs to meet a series of specifications.113  

 

Some of the standard process systems engineering methods, like process integration – a 

common practice in the industrial sector to minimize resource consumption by reusing 

secondary streams carrying residual heat, cold, mechanical work or water – could be easily 

applied to further exploit the value of waste materials and components.114  

 

The automation of process integration by means of the combination of life cycle assessment 

(LCA) – the methodology that quantifies the environmental impacts of products, processes and 

services throughout their entire life cycle – and optimization-based process synthesis should 

guarantee, as long as the problem is properly formulated, the minimization of the overall 

environmental impacts of the designed processes.115,116 Failing to account for the environmental 

impacts of a process across its entire life cycle may lead to solutions that decrease the local 

environmental impacts of the process at the expense of increasing the environmental burdens 

in other stages of its life cycle.116  

 

Since environmental improvements usually entail economic costs, a compromise between the 

economic and environmental performance of systems is desirable. The combination of LCA and 

multi-objective optimization – a mathematical programming technique to concurrently optimize 



Chapter 1 

26 
 

multiple objective functions – enables decision-makers to balance the environmental and 

economic objectives.117,118  

 

Solving such complex multi-criteria problems was computationally impossible a few decades 

ago; it is now feasible because of the recent advances in optimization theory and software 

applications.115 The first published paper describing how the LCA methodology is embedded 

within an optimization framework dates back to 1995.119 Two years later the same authors 

applied multi-objective optimization to determine the optimal design and scheduling of 

processes from the dairy industry.120 This early research demonstrated that LCA can successfully 

be combined with optimization techniques to satisfy different sustainability criteria.  

 

The improvement in the computer-aided systems engineering capabilities, and specially the 

development of novel optimization algorithms capable of solving increasingly more complex 

problems, is likely to accelerate the synthesis of sustainable processes in the future.112,116  

 

Furthermore, experts agree that the research frontiers in process systems engineering will 

broaden the scope of the systems under study beyond those that are traditionally considered to 

pertain to the chemical engineering discipline. Therefore, the process systems engineering tools 

aimed at finding model-based solutions to systems problems could play a major role in 

addressing some of the challenges faced by humanity today.111,112  

 

The development of models that simultaneously describe the behavior of natural and technical 

systems is a particularly hard task, because of its multi-disciplinary nature, but it could 

significantly improve our understanding of the consequences of human activities on the 

environment. Examples of this type of comprehensive models are the REMIND-R model, which 

comprises a macroeconomic, an energy and a climate module,121  or the MAgPIE model, which 

links agricultural production to its impact on the environment,122 both developed at the Potsdam 

Institute for Climate Impact Research.  

  

Planning for the sustainable and coordinated management of waste and resources will require 

a consistent methodological framework – still not developed – that reflects the interactions 

between the natural ecosystems that provide resources and receive environmental impacts and 

the technical systems where resources are processed, consumed and managed as waste.  
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OBJECTIVES OF THE THESIS 
 

This dissertation, motivated by the urgent need to find sustainable solutions to the problems 

described in this chapter, pursues two main objectives:  

 

- To propose a methodological framework to determine the optimal configuration of 

integrated waste and resource management systems under a life cycle perspective, 

facilitating the decision-making processes.  

 

- To test the hypothesis that the implementation of a circular economy is a valid strategy to 

achieve a more sustainable production and consumption model in terms of resource 

consumption, environmental impacts and economic benefits.  

 

The second objective will be accomplished by means of the application of the proposed 

methodological framework to a case study: the management of municipal organic waste  (the 

bio-waste generated by households and private businesses and collected by municipalities) in 

the Spanish northern region of Cantabria, which has a population of 580,300 and an area of 

5,326 km2.123 The selected case study is of interest because at the time of writing the regional 

waste management system needs to be retrofitted to comply with the European legislation. 

 

To attain these two main objectives, five specific objectives were set:  

 

1. To define the characteristics and boundaries of “Circular Integrated Waste Management 

Systems” (CIWMSs) aiming at resource recovery. 

 

2. To identify the strengths and weaknesses of the methodologies deployed for the design 

and analysis of integrated waste management systems that handle municipal solid 

waste, and how they can be applied to the design and analysis of sustainable CIWMSs.  

 

3. To design a superstructure containing alternative unit processes for the treatment and 

valorization of municipal organic waste and nutrient management.   

 

4. To formulate an optimization problem based on the model of the superstructure that 

quantifies the resource consumption and the environmental and economic 

performance of the unit processes. 
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5. To propose an indicator to measure the circularity of waste components within CIWMSs. 

 

Regarding the structure of the document, Chapter 2 covers the followed methodological 

approach and the basics of the applied tools. Each subsection of Chapter 3 (Chapters 3.1 – 3.4) 

correspond to one of the four published papers. 

 

Chapter 3.1 is based on the findings of a critical literature review, and it addresses specific 

objectives 1 and 2. The practical implementation of the methodological framework proposed in 

Chapter 3.1 is described in Chapters 3.2 – 3.4; the basic model of the system under study is first 

introduced in Chapter 3.2, and it is progressively improved in Chapters 3.3 and 3.4, fulfilling 

specific objectives 3 and 4. The circularity indicator targeted by specific objective number 5 is 

presented in Chapter 3.3. 

 

The problem formulated in Chapter 3.2 aims at minimizing the carbon footprint, the land use 

and the consumption of raw materials of the system, whereas Chapter 3.3 explores the trade-

offs between the minimization of the climate change and eutrophication impacts, and the 

maximization of nutrient circularity within the system. Chapter 3.4 focuses on the economic 

dimension of the model; it investigates how improving nutrient circularity affects the 

profitability of the system. Finally, Chapter 4 summarizes the conclusions and limitations of the 

research. 
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CHAPTER 2 
 

METHODOLOGY AND FUNDAMENTALS 

 

“If I have seen further, it is by standing upon the shoulders of giants.” 

 

Isaac Newton, English physicist and mathematician (1642-1727) 

 

 

 

The methodology followed to attain the objectives of the thesis is based on these steps:  

 

− Definition of the system boundaries. 

− Development of a model that describes the system behavior. 

− Formulation of the optimization problem. 

− Interpretation of results. 

 

The tools applied throughout the thesis and the basic concepts on which they rely are described 

in this section.  

 

 

MATHEMATICAL PROGRAMMING  

 

To optimize the synthesis of a process system, a superstructure – a representation containing 

all the alternative designs of the system –1 must be developed. The model describing the 

superstructure must satisfy the mass and energy balances and the capacity constraints imposed 

by the topology of the superstructure. The solution of the optimization problem will determine 

the value of the variables that optimize the defined objective function. They are either discrete 

variables that represent the unit processes within the superstructure that should integrate the 

flowsheet, or continuous variables that indicate the size and the operating conditions of the unit 

processes.1  
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This type of problem formulation leads to MIP (Mixed Integer Programming) problems, which 

can be linear (MILP) or non-linear (MINLP). The disadvantage of working with non-linear 

programming (NLP) problems is that they may be non-convex, which gives rise to multiple local 

optima instead of a single global optimum. NLP problems are convex if they have a convex 

objective function and a convex feasible region.2 The difference between convex and non-

convex functions is illustrated in Figures 2.1 and 2.2. In the latter, where a convex non-linear 

function is represented, the global minimum can be clearly identified.  

 

 

 

 

 

 

 

 

 

 

 

Most methods to solve MIP and NLP problems rely on the branch and bound algorithm,2,3 which 

divides the feasible region of continuous variables into sub-regions. The sub-problems 

associated with each sub-region are sequentially solved. Then, the solutions to each sub-

problem are compared and the non-optimal solutions are eliminated. 

 

There is a variety of commercial modeling platforms for the optimization of problems based on 

algebraic equations, such as GAMS, AMPL or AIMMS.3 The model presented in this dissertation 

was implemented in GAMS (General Algebraic Modeling System) 24.7.1.,4 which offers a wide 

range of solvers, i.e., computer codes for solving specific types of optimization problems. 

 

The CPLEX solver, deployed in this research, is a variation of the branch and bound algorithm in 

which the branching of the variables is performed using cutting planes to restrict the size of the 

solution domain.5  

 

 

Figure 2.2. Convex function 

 
 
 

Figure 2.1. Non-convex function 
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Multi-objective optimization 

Multi-objective optimization is a mathematical programming tool that finds, among the entire 

set of feasible solutions of the problem, those that are better than the others in at least one 

objective.6 The solutions of a multi-objective optimization problem are known as Pareto-

optimal, Pareto-efficient, non-inferior or non-dominated solutions. The image of the efficient 

solutions is called Pareto front, Pareto curve, or Pareto surface, and its shape indicates the 

nature of the trade-off between the objective functions.6  

 

The Pareto front resulting from the minimization of two hypothetical objective functions is 

shown in Figure 2.3, where the points that delimit the curve, A and B, are the solution to the 

single-objective optimization of objective functions f1 and f2 respectively. The region below the 

Pareto curve comprises the set of infeasible solutions (among which is the ideal point that 

minimizes both objective functions), whereas the region above the Pareto front contains the 

sub-optimal solutions. The worst possible solution, the Nadir point, represents the upper 

bounds of the objectives in the Pareto-optimal set.6  

 

Figure 2.3. Pareto front 

 

There are numerous strategies to solve multi-objective optimization problems. The Ɛ-constraint 

method, applied in this thesis, is one of the most commonly used methods.7 To solve a multi-

objective optimization problem with k objective functions by means of the Ɛ-constraint method, 

first each objective function is optimized separately. The solutions to these k single-objective 

optimization problems (points A and B in Figure 2.3) show the ranges of values that each 

objective function can take within the set of Pareto-optimal solutions.   
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Then, one objective function is selected, and the others are transformed into inequality 

constraints. The set of Pareto-optimal solutions is obtained solving this single-objective 

optimization problem n times, for different equally spaced values of the upper bounds of the 

inequality constraints within the ranges of values that the objective functions can take.  

 

The number n of single-objective optimization problems that must be solved for a multi-

objective optimization problem with k objective functions, in which p values are provided for 

the upper bound of each inequality constraint, is calculated with Equation 2.1:7  

𝑛 = 𝑘 + 𝑝𝑘−1 (Equation 2.1) 

 

Therefore, the computational complexity of the Ɛ-constraint method grows exponentially with 

the number of objectives. Another drawback of this method is that some of single-objective 

optimization problems may lead to unfeasible or repeated Pareto solutions, which is the reason 

it is increasingly hard to visualize the trade-offs between the objective functions as the number 

of objective functions increase.   

 

 

LIFE CYCLE THINKING 

 

Life cycle thinking is the conceptual framework that provides a system-level holistic view of the 

production and consumption processes involved in the life cycle of products and services. 

Several methodologies based on the life cycle thinking approach have been developed to 

address the different sustainability dimensions, the most applied of which is life cycle 

assessment (LCA).  

 

LCA is a standardized systematic and iterative method to quantify the emissions, resource 

consumption and environmental impacts associated with goods and services throughout their 

entire life cycle; i.e., from the cradle (resource extraction) to the grave (waste disposal).8-10 

Figure 2.4 summarizes the phases of an LCA and the iterations between them.  

 

The first step of an LCA, the goal and scope definition, requires establishing the functional unit 

(the reference to which all the inputs and outputs of the life cycle inventory and the subsequent 

analyses are related), the time and space limits of the analysis and the unit processes comprised 

within the system under study.  This stage also involves selecting an LCA modeling approach 
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(attributional or consequential), and strategies to address multi-functionality (if needed), which 

are discussed in Chapter 3. After the emissions and resources consumed by each unit process 

are quantified in the life cycle inventory, an impact assessment is performed.9 

 

 

Figure 2.4. Overview of the LCA phases (adapted from ISO 140408) 

  

In the life cycle impact assessment phase, the environmental burdens emitted and the resources 

consumed by the studied system are aggregated into impact categories, according to the 

substances ability to contribute to each impact category, and they are then converted into 

indicators (e.g., kg CO2-eq) by means of characterization methods. These characterization 

methods model the impact of each emission according to the underlying environmental 

mechanisms. They are based on the definition of substance-specific and time-dependent 

characterization factors that express the impact of elementary flows in terms of the unit of the 

category indicators.10 

 

The existing characterization methods are not fully harmonized yet, and different 

characterization methods do not consider the same impact categories. Many methods make a 

distinction between midpoint indicators, which focus on single environmental problems (climate 

change, eutrophication, acidification, ozone depletion, etc.), and endpoint indicators, which 

show the environmental impact on higher aggregation levels, such as the effect on human 

health, biodiversity or resource depletion.11  

 

The impact categories analyzed in this dissertation by means of ReCiPe 1.11, one of the most 

common characterization methods, are climate change, marine eutrophication and freshwater 

eutrophication. This method lets the life cycle practitioner select one of the three pre-defined 
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cultural perspectives (individualist, hierarchist and egalitarian) associated with different time 

horizons (20, 100 and 500 years), according to which the characterization factors are 

calculated.11 The most frequently used  hierarchist perspective was applied in this thesis. 

 

Several LCA models of waste management systems have been developed since the 1990s 

(ORWARE, WRATE, WISARD, etc.).12 The EASETECH (Environmental Assessment System for 

Environmental Technologies) model, implemented in the EASETECH 2.3.6 software,13 was 

selected to perform the LCA of the waste management unit processes studied in this 

dissertation. It is one of the most widely used waste LCA models, and besides providing LCA 

results based on the waste composition, it can perform material flow analyses (MFA);14 i.e., it 

determines the quantity of each component in all the elementary flows of the system. 

 

Regarding the application of the life cycle thinking framework to economic and social analyses, 

life cycle costing (LCC)15,16 and social LCA17 methodologies have been developed, although they 

are still not standardized. They rely on the quantification of costs and social indicators in all the 

stages of the life cycle.  

 

Nonetheless, the definition of the goal and scope of the LCC analysis might differ from those of 

the LCA, since several stakeholders with opposed economic interests might be involved in 

different stages of the life cycle. Beyond considering the divergent economic interests of the 

actors involved in the case study, the social dimension of sustainability was not directly assessed 

in this thesis. The economic analysis of the studied system was based on the LCC models 

implemented in SWOLF (Solid Waste Optimization Lifecycle Framework), developed by 

researchers at North Carolina State University.18 

 

 

BIOGEOCHEMICAL MODELING 
 

The biogeochemical cycle of a chemical element comprises all its transport and transformation 

pathways throughout the ecosystems. According to Li,19 a biogeochemical model is a 

mathematical expression of the spatially and temporally differentiated environmental forces 

that drive biogeochemical reactions in ecosystems. 

 

Modeling biogeochemical cycles is extremely challenging because of the large number of 

environmental variables causing biogeochemical reactions, and the complex feedbacks and 
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interactions between them.19 Moreover, many soil emissions are the result of microbial 

processes that exhibit a high degree of temporal and spatial variability.20 The main 

biogeochemical processes relevant to this dissertation are outlined here.  

 

When the soil organic C decomposes, C is partially lost as CO2. Dissolved organic carbon (DOC) 

is produced as an intermediate during decomposition, and it can be immediately consumed by 

the soil microbes as the basic material for cell synthesis and energy. Meanwhile, the 

decomposed N is partially  mineralized by microbes to NH4
+, which is then subject to nitrification. 

NH4
+ and NO3

- are subsequently taken up by plants as they grow.21  

 

Nitrification – the main soil process contributing to the production of NO and N2O – is the 

microbial oxidation of NH4
+ to NO2

- and NO3
- under aerobic conditions, whereas under the 

anaerobic conditions caused by rainfall or irrigation, NO2
- and NO3

- are reduced to N2 by 

denitrifying bacteria.19  

 

On the other hand, CH4 is a product of the biological reduction of CO2 or organic carbon 

mediated by anaerobic microbes that are only active when the soil redox potential is very low. 

Conversely, CH4 is oxidized by aerobic methanotrophs in the soil.19  

 

A few models describing nutrient biogeochemical cycles have been developed in the last three 

decades (DAYCENT,22 Daisy,23 etc.) Among them, DNDC (Denitrification-Decomposition) has 

been reported to be extensively tested.24  

 

The DNDC 9.5 graphical interface was used in this thesis to predict the crop yield, C 

sequestration, nitrate and P leaching losses and emissions of C and N gases that arise from 

different nutrient management strategies. DNDC is a process-oriented simulation model of C 

and N biogeochemistry in agroecosystems first described in 1992 by Li et al .25 The model does 

not account for the complete P biogeochemical cycle; however, it describes the daily soil P 

profile, the crop demand and uptake of P, and the P loss through leaching flows.24  

 

The model consists of two components. The first component is composed of three sub-models: 

soil climate, crop growth and decomposition, whose input parameters are the characteristics of 

the ecological drivers (climate, soil, vegetation and farming practices). The integration of these 

sub-models predicts daily soil temperature, moisture, pH, redox potential (Eh) and substrate 

concentration profiles (DOC, NH4
+, NO3

- and NO2
-).  
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The second component, consisting of the nitrification, denitrification and fermentation sub-

models, predicts daily fluxes of CO2, CH4, NH3, NO, N2O and N2 based on the soil environmental 

variables calculated in the first component of the model.  

 

The model, whose structure is depicted in Figure 2.5, is based on physico-chemical and biological 

equations, as well as empirical equations generated from laboratory studies.  

 

 

Figure 2.5. Overview of the DNDC model structure (adapted from the DNDC user’s guide26) 
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METHODOLOGICAL SEQUENCE 
 

To integrate the tools and methodologies described in this chapter within the same framework, 

a bottom-up mechanistic model of the studied system was developed combining the selected 

MFA, LCA, LCC and biogeochemical modeling tools, and an optimization problem based on the 

model was subsequently formulated. The flows of information between the software, which 

were not automated, are summarized in Figure2.6. 

 

 

Figure 2.6. Data flow diagram 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 

 

“We cannot solve our problems with the same thinking we used when we created them.” 

 

Albert Einstein, German/American physicist (1879-1955) 

 

 

 

The system analysis tools applied to design and assess the performance of linear Integrated 

Waste Management Systems were reviewed in Chapter 3.1 in order to identify the weak spots 

of these methodologies, the difficulties of applying them to Circular Integrated Waste 

Management System (CIWMSs), and the topics that could benefit from further research. The 

findings of the literature review provided the basis to develop a methodological framework for 

the analysis of CIWMSs. 

 

This methodological framework was subsequently applied to a case study, the management of 

municipal organic waste in Cantabria. Figure 3.1– elaborated with the STAN (subSTance flow 

ANalysis) 2.6.801 software –1 depicts the configuration of the mechanical biological treatment 

plant located in Cantabria in 2014, and the estimated flows of carbon (C), nitrogen (N) and 

phosphorus (P) associated with the mixed waste processed in the facility. 

 

The model of a superstructure comprising alternative unit processes to manage the municipal 

organic waste generated in Cantabria was presented in Chapter 3.2. The flows of organic waste 

that are sent to each unit process were optimized according to these objective functions, which 

were minimized: the carbon footprint of the system, the occupied landfill area and the 

consumption of non-renewable raw materials. The multi-objective optimization of the problem 

proved that increasing the circularity of resources does not necessarily entail that the overall 

consumption of natural resources and the emission of environmental burdens of the system 

decrease. 
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Figure 3.1. Flows of C (Figure 3.1.A), N (Figure 3.1.B) and P (Figure 3.1.C) in the Cantabrian mechanical 
biological treatment plant (ton·year-1). Estimation performed with the data from the Cantabrian waste 

management plan2 and the elemental composition of the waste components provided by the EASETECH 
(Environmental Assessment System for Environmental Technologies) 2.3.6 software.3  
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This idea was further investigated in Chapter 3.3, where an indicator that quantifies the 

circularity of waste components was proposed. In this section the model was expanded to 

include different unit processes for the application of the recovered products as soil 

amendment. The problem was optimized according to six objective functions: the circularity 

indicators of C, N and P, which were maximized, and their associated environmental impacts 

(global warming, marine eutrophication and freshwater eutrophication), which were minimized.  

 

Finally, the economic consequences of enhancing nutrient circularity within the studied system 

were analyzed in Chapter 3.4. The model was optimized to find the system configurations that 

minimize the total annual cost and the global warming impacts, and maximize the circularity 

indicators of N and P. 
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CHAPTER 3.1 

CIRCULAR INTEGRATED WASTE MANAGEMENT SYSTEMS 

 
“There are no separate systems. The world is a continuum. Where to draw a boundary 

around a system depends on the purpose of the discussion.”  

 

Donella H. Meadows, American environmental scientist (1941-2001) 

 

 

Chapter 3.1 corresponds to the following paper:  

 

Cobo, S.; Dominguez-Ramos, A.; Irabien, A. From linear to circular integrated waste 

management systems: A review of methodological approaches. Resour. Conserv. 

Recycl. 2018, 135, 279-295; DOI: 10.1016/j.resconrec.2017.08.003. 

 

 

“Resources within planet Earth are finite by nature. Natural resources whose formation roots in 

other geologic periods, like mineral deposits, cannot be renewed in human timescales and thus 

their reservoirs are bound to eventually become depleted if their consumption continues.1, 2 On 

the other hand, natural stocks subject to biological cycles (a population of trees for example) 

yield a sustainable flow of valuable goods and services (such as wood and CO2 removal from the 

atmosphere) on a continuous basis.3 Nonetheless, since the early 1970s some renewable natural 

resources are being exploited faster than they can be renewed.4 As a matter of fact, it would 

take 1.64 planets to regenerate in one year the natural resources consumed in 2016.5 This figure 

is expected to worsen because of the projected population increase and the improved 

acquisition levels of the emerging economies.6,7 

 

If the consumption of raw materials rises, so does waste generation.8 Around 1.3 billion metric 

tons of Municipal Solid Waste (MSW) are annually produced in cities all over the world,9 and a 

significant amount of the waste produced in low and lower-middle income countries is disposed 

of in open dumps9 lacking measures to prevent safety and environmental hazards. Under the 

assumption that every metric ton of MSW generated in cities worldwide could be stored in 1 m3 

of sanitary landfill,10 a landfill volume equivalent to that of 347,000 Olympic swimming pools 

would be required every year. Accordingly, policies against landfills are mostly motivated by a 
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lack of space, particularly in the highly populated areas of Europe and Asia, where landfills are 

more likely to interfere with other land uses like agriculture.11  

 

In fact, waste valorization might help us overcome one of the most pressing global challenges: 

securing the food supply. Waste has been suggested as a plausible source to recover 

phosphorus,12,13 an essential nutrient to the metabolism of plants and by extension to 

agriculture, whose  remaining accessible reserves could run out as soon as 50 years from now.14 

 

Hence, as the principles of industrial ecology dictate, resource and waste management are key 

to meeting the future needs of society in a sustainable manner. Waste prevention activities or 

policies such as restricting planned obsolescence in electronic products and measures like 

minimizing product weight or design for disassembly15 will contribute to tackle these issues.  

 

A reduction in the consumption of natural resources and the amount of waste generated could 

also be accomplished if a shift to circular economic and production systems, mimicking the self-

sustaining closed loop systems found in nature, such as the water cycle, was put into practice. A 

circular economy aims at transforming waste back into a resource, by reversing the dominant 

linear trend of extracting, processing, consuming or using and then disposing of raw materials, 

with the ultimate goal of preserving natural resources while maintaining the economic growth 

and minimizing the environmental impacts.16,17  

 

In a circular economy the reduction in the environmental impacts, such as global warming, is 

due to the improvement in resource and energy efficiencies. For instance, it has been 

demonstrated that the production of secondary aluminum from scrap consumes less than 5% of 

the energy needed in the production of primary aluminum;18 this entails that the emission of up 

to 19 metric tons of equivalent CO2 to the atmosphere could be avoided per metric ton of 

aluminum that is recycled instead of produced from the mineral ore.19  

 

Given all the benefits that the circularity of resources has to offer, the reasonable question to 

pose is how society and industry can successfully transition to a circular economy. The 

straightforward answer from an engineering point of view is through the design of efficient 

Circular Integrated Waste Management Systems (CIWMSs) that link resource processing and 

waste treatment, and allow the potential of waste to be fully exploited. A CIWMS is expected to 

produce not only materials, but also energy and nutrients; additionally, it could deliver certain 

chemicals.  
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Therefore, a trade-off between the functions of a CIWMS is unavoidable. A thorough analysis 

must be carried out prior to the design stage of a CIWMS so that it can assist in the decision-

making process. As the analytical framework supported by systems thinking can provide a 

holistic view on the sustainability challenges that arise from the interconnections between the 

components of an Integrated Waste Management System (IWMS),20,21 so far manifold papers 

applying a systems-oriented approach to waste management have been published.  

 

That is the reason only the most recent papers focusing on the analysis of IWMSs have been 

addressed in this study. The aim of this chapter is to conduct a critical and comprehensive review 

of the studies published since 2011 that analyze IWMSs whose input is MSW, in order to gain 

insight into the strengths and shortcomings of the methodologies currently being applied, and 

to identify their applicability to a sustainable CIWMS targeting resource recovery. To the best of 

the authors’ knowledge, an IWMS has never been analyzed from the perspective of a circular 

economy before. The novelty of this review is that the characteristics of a CIWMS are defined, 

the potential pitfalls of applying the current methodologies deployed in the analysis of linear 

IWMSs to a CIWMS are identified and possible methodological improvements are proposed.   

 

This review is structured as follows: first, the methodology applied in the selection of the 

reviewed papers is described. Second the state-of-the-art technologies and processes for IWMSs 

are outlined, along with their potential restraints to the development of a circular economy. 

Third, the characteristics of a CIWMS are defined. Next, the methodologies currently applied to 

analyze IWMSs are briefly described and the hottest topics regarding the methodological 

aspects of the analysis of IMWSs are subsequently identified. Finally, the conclusions drawn 

from the findings of the study are summarized, with special emphasis on the Life Cycle 

Assessment (LCA) methodology.  

 

 

METHOD 

 

77 papers analyzing IWMSs that treat MSW and published after 2010 were identified by means 

of the Scopus database.22 They are listed in Table 3.1.1 (at the end of the chapter). The 

systematic review method was conducted applying three different keyword strings: i) municipal 

solid waste, integrated, system and analysis, ii) municipal solid waste, integrated, system and 

methodology, iii) municipal solid waste, integrated, system and (sustainable or sustainability). 
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The papers focusing on the analysis of scenarios regarding alternative waste treatment 

technologies or processes were excluded from the review.  

 

Once the technological obstacles faced by CIWMSs and the limitations of the methodologies 

applied for the analysis of IWMSs were detected in the reviewed studies, the search criteria 

were expanded to cover the specific topics of interest. Those additional papers are listed 

throughout the document. 

 

 

TECHNOLOGICAL BACKGROUND 

 

Prior to the proposal of guidelines for the analysis of CIWMSs that enhance the circularity of 

resources and enable the transition to a circular economy, it is mandatory to recognize the 

technological restrictions to the implementation of such a system. They are outlined in this 

section. 

 

 

Quality and value of recycled materials 

The market penetration of recycled materials is highly dependent on their physical and chemical 

characteristics, which will determine their price. However, not all the existing recycling 

technologies enable a fair competition between virgin and secondary materials, because their 

quality might differ.    

 

Recycling technologies either downgrade or upgrade the materials in respect to the quality of 

the virgin materials. Downgrading implies that the properties of the recycled material are not as 

good as those of the virgin material. Instead, upgrading technologies improve the quality of the 

waste materials at least up to the quality of the virgin materials. 

 

In closed-loop recycling, the material is recycled into the same product system and the inherent 

properties of the recycled material are maintained virtually identical to those of the virgin 

material.  Oppositely, in open-loop recycling the material is recycled into a different product 

system and its inherent properties may or may not differ to those of the virgin material.23 Closed-

loop recycling is not equivalent to infinite recycling; materials can be used and later recycled 
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within a closed-loop system for a number of times, until microstructural changes in the material 

or the accumulation of chemical elements and compounds hamper its further reuse.24  

 

A case of closed-loop recycling occurs when a glass bottle is recycled into a glass jar, because 

the glass jar could be recycled back into a glass bottle with the same functionality as the original 

one,25 whereas recycling PET bottles into PET fibers is an example of open-loop recycling;26 it is 

an irreversible process.  

 

Recycling processes can be further classified as downcycling or upcycling processes.  

Downcycling has been defined as the recycling of materials into lower value products.27 The use 

of wrought scrap in cast products, due to their ability to accommodate higher silicon 

contamination, is considered downcycling. On the contrary, if the waste materials are recycled 

into products of higher value, the recycling process is called upcycling.28 Upcycling involves a 

change in the fundamental properties of the material, like its physical structure or its chemical 

composition. Novel approaches to upcycling described in the literature entail chemical28, 29 or 

biological transformation.30 Figure 3.1.1 compiles the types of recycling processes according to 

the quality of the recycled materials and the value of the resulting recycled products in respect 

to the original materials and products.  

 

 

Figure 3.1.1. Classification of recycling processes 
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Although downgrading and upgrading are often used as synonyms of downcycling and upcycling, 

Figure 3.1.1 shows that is not necessarily true: a waste material may be upgraded to maintain 

its original function, and later used to manufacture a product of lower value than the original 

one. The confusion regarding the terminology has recently been intensified by Geyer et al.,31 

who question the usefulness of making a distinction between open and closed-loop recycling.  

 

 

State-of-the-art technologies and processes for IWMSs 

Regarding the technical and economic factors that hinder the complete separation and recycling 

of materials,32-34 the concentration of the valuable materials in the discarded products and 

wastes is one of the critical parameters that will determine the feasibility of the recovery 

process;35 several authors agree that the unrecyclability of some materials stems from the 

combination of small quantities of multiple materials in one product, like a smartphone.36, 37 

Hence the need to design systems that contemplate the valorization of all the materials within 

a given product. Clearly, the solution to this challenge relies on the development of more 

efficient sorting and disassembly technologies, along with the implementation of policies that 

promote the separate collection of these wastes.   

 

One strategy that has been proposed to tackle the limitations of the current recycling 

technologies is to store in landfills the waste that cannot be properly separated or recycled until 

the pertinent technologies have been developed up to the point that they enable the recovery 

of the remaining secondary raw materials in waste,38 which is the prime purpose of landfill 

mining, along with energy recovery from the stored waste.39 Although several environmental 

and economic assessments of landfill mining have been performed so far,40-42 more applied 

research is needed before the most sustainable pathway to landfill mining is agreed upon.43  

 

Even though recycling efficiencies reached their full potential in the future, MSW is a complex 

heterogeneous mix of materials, and that prevents it from being treated by a single 

technology.44 It is important to make a distinction between waste treatment; i.e, the set of 

processes seeking to minimize the environmental impacts of waste in order to comply with the 

pertinent regulations, and waste valorization, which concerns the transformation of waste into 

a product capable of providing society with a valuable service. However, a given waste 

management system can provide both functions, i.e., waste treatment and waste valorization.  
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An MSW management system focused on valorization must include a subsystem for materials 

sorting. The paper, cardboard, plastics, glass, aluminum and iron present in MSW are usually 

sorted in material recovery facilities and sent to recycling industries, where they are upgraded 

to be reintroduced into the market. For further information about the quality of recyclables and 

their recovery efficiencies in commingled and single-stream waste, the reader should refer to 

Cimpan et al.45 There are several options for the valorization of both the inorganic and organic 

remaining materials. The alternative treatments to recycling the inorganic fraction of waste such 

as leftover plastic or textiles are the waste-to-energy processes like incineration, gasification or 

pyrolysis; the most developed and widespread of which is incineration.46 These thermochemical 

processes can also be applied to the organic fraction of waste. The biological processes of 

anaerobic digestion and composting enable the organic matter to be looped back into the 

system as fertilizer (digestate or compost);47 thus, they are considered recycling processes. In 

fact, anaerobic digestion is a strategy to simultaneously recover nutrients from the solid 

digestate and energy from the biogas produced by the microorganisms.48  

 

Furthermore, new processes to valorize the organic fraction of waste are being proposed. The 

fermentation of organic waste has been suggested as a method to produce hydrogen.49 Another 

example is the enzymatic liquefaction process proposed to separate the solid non-degradable 

materials that can be upgraded to Refuse Derived Fuel from a bioliquid that can be digested to 

produce biogas.50 In addition to those, a number of processes to produce valuable chemicals 

such as levulinic acid51 from organic waste or Refuse Derived Fuel have arisen; these are 

upcycling processes that fall within the category of waste refineries. Several authors propose to 

gasify waste in order to obtain syngas, a precursor to either the catalytic synthesis of methanol 

or the production of hydrocarbons via the Fischer Tropsch process.52-55 Of the above-mentioned 

processes, the only one at large scale is operated by the company Enerkem, with a production 

capacity of 38,000 m3 of methanol per year.56   

 

 

Materials recycling or energy recovery? 

In the specific case wherein the current state of the technologies allows a residual material to 

undergo either a recycling or an energy recovery process, materials recovery is usually 

encouraged; the Waste Framework Directive57 states that, unless adequately justified by LCA, 

the EU Member States must follow the waste management hierarchy, according to which 

materials recycling takes precedence over energy recovery.  
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However, whereas the vast majority of studies agree that landfill is the least desired waste 

management alternative from an environmental point of view,58-64 and there is also consensus 

on the claim that waste prevention and reuse are the cleanest and most efficient policies, the 

performed literature review reveals an ongoing debate on the final destination of the recyclable 

fractions of waste:65-67 Should they be reintroduced into the production cycles, as new products 

or compost, or be sent to energy recovery facilities? The answer will greatly depend on the 

composition of the waste stream, which will determine its heating value and thus, its energy 

recovery potential. Furthermore, the assumptions made in the analysis, the system boundaries 

set and the local characteristics of the specific case study, will determine the optimal valorization 

strategy.  

 

Cossu68 analyzed the reasons behind the promotion of recycling. It causes the preservation of 

natural resources inasmuch as they are being extracted to a lesser degree. Moreover, a 

reduction in the amount of waste that needs to be properly managed or disposed of gives rise 

to cost savings in treatment processes. Nevertheless, the assumption that the economic costs 

and environmental impacts of material recycling are lower than those related to the extraction 

and processing of the virgin raw materials cannot be substantiated without a thorough analysis.  

 

In the context of a globalized market, one of the factors that play a key role to the detriment of 

materials recycling is the long transport distances that they must go through to reach their end-

users,67 which has both environmental and economic drawbacks. Additionally, Massarutto et 

al.69 proved that if a critical recycling rate (the ratio between the recycled materials and the 

waste generated) is exceeded, the economic benefits from recycling do not compensate its 

costs. Their study was based on the assumption that the quality of the collected materials 

worsens as the separation levels (the ratio between the source separated waste and the total 

amount of generated waste) increase, which was verified with data from waste management 

systems.  

 

Several other authors have emphasized the importance of assessing the effect of increasing the 

recycling rates on the quality of the materials.68,70-72 Some studies concluded that higher 

separation levels are not indicative of better materials quality.72,73 On the contrary, systems 

focusing on quality rather than on quantity are likely to outperform the others.  

 

An example of the damaging effects of recycling can be found in the steel manufacturing 

industry. The increased use of secondary materials in the steel making process causes an 



Circular Integrated Waste Management Systems 

59 
 

accumulation of elements such as copper, which hardens steel decreasing its quality and making 

it necessary to dilute the amount of recycled scrap.71 The counter-effect of dilution is that it 

reduces the market demand for recyclables.74 Hence, as Loughlin and Barlaz75 pointed out, 

recycling policies must make sure that the supply of recycled materials matches the demand. 

 

Particular attention must be paid to the potential hazards of recycling because of human 

exposure to pollutants and toxic compounds. Bisphenol A was found in an array of waste paper 

samples, possibly as a consequence of the recycling of secondary waste paper.76 Recycling has 

also been recently pointed as a potential source of phthalates in plastics;77 as a consequence, 

the application of recycled plastics in products sensitive to phthalate content, such as toys and 

food packaging, must be restricted.  

 

The risk for human health is in fact the main argument that the detractors of energy recovery 

technologies hold, despite the fact that the thermochemical processes and anaerobic digestion 

are a means to simultaneously reduce the volume and mass of solid waste and produce heat 

and electricity. Incineration has been traditionally regarded by the public opinion as a threat to 

human health and the environment, because of the high concentrations of heavy metals, dioxins 

and furans present in the flue gases prior to the development of the current sophisticated Air 

Pollution Control Systems.78 However, with the state-of-the art technologies, these pollutants 

do not pose a risk any longer, since they are well below the air emission limit values established 

by the European legislation, which are quite restrictive in comparison to those of other 

countries.79  

 

Furthermore, several studies report that savings on the environmental impacts can be achieved 

displacing conventional energy sources by MSW.80,81 Hence the importance of linking the 

analysis of the energy and waste management systems,82 as Eriksson and Bisaillon83 and 

Münster et al.84 did. 

 

The competition between materials recycling and energy recovery is of particular interest for 

those materials such as cardboard and plastic with high calorific values,67 which make them 

attractive fuels for heat and electricity production, whereas deliberately subjecting the 

incombustible materials, i.e. metals and glass, to energy recovery processes seems pointless. 

However, a fraction of the metals that cannot be separated by mechanical and magnetic 

methods can be recovered after the incineration process, because of their enhanced 

concentration in the residual ash.85 
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Taking into account all the considerations described above, it is reasonable to conclude that 

materials recycling and energy recovery should complement each other to meet the local 

demands; even in the utopian scenario wherein it is technologically and economically feasible 

to completely close the material loops, there might still be a demand for virgin materials, not 

only because of their higher quality, but also because of social objections. 

 

 

FRAMEWORK FOR THE ANALYSIS OF CIWMSs 

 

The precise definition of a CIWMS is instrumental to the development of a framework that relies 

on that concept. The previously discussed barriers to the development of CIWMs should provide 

a basis for the delimitation of their system boundaries and the definition of their functions. 

These notions, which are based on the principles of the cradle-to-cradle design,86 are explored 

to a greater extent in this section. 

 

 

Previous application of the circular economy approach to the design of IWMSs 

Although specific guidelines for the design and assessment of CIWMSs from a systems 

perspective have not been found in the literature, Arena and Di Gregorio70 proposed a series of 

principles, consistent with the targets of the circular economy, that IWMSs should follow: “An 

integrated and sustainable waste management system should be defined and developed 

according to the following criteria: i) to minimize use of landfills and ensure that no landfilled 

waste is biologically active or contains mobile hazardous substances (…);  ii) to minimize 

operations that entail excessive consumption of raw materials and energy without yielding an 

overall environmental advantage; iii) to maximize recovery of materials, albeit in respect of the 

previous point;  and iv) to maximize energy recovery for materials that cannot be efficiently 

recycled, in order to save both landfill volumes and fossil-fuel resources”.  

 

 

Proposed definition of CIWMSs 

A description of the concepts of IWMSs and CIWMSs is provided in this section. An IWMS 

denotes a system whose main input is waste and comprises a number of processes to sort this 

waste and give each waste fraction the most appropriate treatment according to its chemical 

composition and the desired function of the system outputs. However, this definition 
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corresponds to that of a linear IWMS, like the one shown in Figure 3.1.2. If an IWMS is to be 

studied from the perspective of a circular economy and waste prevention, this definition is 

incomplete. A CIWMS is a type of IWMS that seeks to enhance the circularity of resources by 

strengthening the link between waste treatment and resource recovery. Thus, CIWMSs can be 

considered an instrument that enables fulfilling the goals of a circular economy. The definition 

of CIWMSs could also apply to a system that focuses on just one waste fraction, such as organic 

waste.  

 

The purpose of a sustainable CIWMS is to achieve the maximum economic profit and benefits 

for society at the expense of the minimum environmental impacts and consumption of natural 

resources. Under this perspective, materials upcycling is favored over downcycling. To 

accomplish these sustainability goals, the maximum amount of waste is expected to be valorized 

to expand its lifetime, so that it can serve a function to society. This entails that the amount of 

waste sent to landfill is minimized, although landfills cannot be totally replaced87 because all the 

other subsystems generate certain amount of waste that the current technologies cannot 

valorize.  

Figure 3.1.2. Configuration and boundaries of a linear IWMS 

 

A CIWMS can be as complicated as the designers wish, but a CIWMS that manages mixed MSW 

would ideally deliver materials, energy and nutrients. It could also supply some chemicals, a 

relatively novel approach to waste management. The waste refinery concept, analogous to that 



Chapter 3.1 

62 
 

of an oil refinery but taking waste as a feedstock, has gained popularity in recent years.88 A waste 

refinery is a type of IWMSs wherein chemical reactions take place to upcycle mixed waste or a 

fraction of waste into marketable chemicals. 

 

 

Configuration and boundaries of a CIWMS 

A CIWMS should encompass the subsystems that connect the transformation of raw materials 

into waste with the waste treatment subsystems, so that the consequences of the recirculation 

of the materials into the upstream subsystems can be fully accounted for. A CIWMS that relies 

to a lesser extent on the consumption of virgin raw materials would result from the connection 

of the upstream subsystems with those of a traditional linear IWMS, as shown in Figure 3.1.3. 

As many transport subsystems as necessary should be added to the system depicted in Figure 

3.1.3 for each particular case under study. From an LCA perspective, the subsystems 0-2, which 

comprise the upstream and midstream processes, constitute the background system of the 

model, whereas the remaining downstream subsystems, which concern those processes under 

the control of the decision-maker,89 belong to the foreground system. 

 

These system boundaries intend to capture the whole life cycle of the materials that compose 

waste, including the stages concerning the consumption of the services derived from the 

transformation of the natural resources extracted from the ecosystems. Once consumed, some 

products such as food or cosmetics leave the system as air emissions or wastewater. On the 

other hand, many products like textiles and furniture provide a service for a time period without 

being consumed. It is worth mentioning that the primary raw materials delivered by subsystem  

0 cannot be compared to the secondary materials produced in subsystem 6 on a mass basis; the 

comparison must be based on the functions provided by those materials. For instance, 1 kg of 

primary aluminum might not be functionally equivalent to 1 kg of recycled aluminum, because 

of their different chemical composition and physical properties.  
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Figure 3.1.3. Configuration and boundaries of a CIWMSs
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Figure 3.1.4 illustrates the exchanges between a CIWMS and the surrounding ecosystems, and 

how a CIWMS can transform one type of environmental burden (waste) into a resource that 

might displace the consumption of virgin resources that would provide the same function.  

 

The scope of a CIWMS that manages mixed MSW is so broad that the only systems within the 

technosphere that it might be related to are the wastewater and the industrial waste treatment 

systems. Those systems are outside the scope of the study of the CIWMS shown in Figure 3.1.3 

and thus, the consequences of the decisions affecting those systems will not be considered 

 

 

 

 

Figure 3.1.4. Overview of the exchanges between a CIWMS and the ecosystems 

 

 

Link between industrial symbiosis and CIWMSs 

According to Chertow,90 industrial symbiosis engages traditionally separate industries in a 

collective approach to competitive advantage involving the physical exchange of materials, 

energy, water, and/or by-products. The keys to industrial symbiosis are collaboration and the 

synergistic possibilities offered by geographic proximity. Thus, the proposed CIWMS is 

analogous to an industrial symbiotic system, in the sense that a resource exchange network can 

be stablished. Nonetheless, although industrial symbiotic systems could play a major role in the 

circular economy, the concept of a CIWMS is much broader; it is not restricted to nearby 

industrial systems, but it also includes waste managers, consumers and the supply chains.  

 

Hence, the generic methodological approaches proposed in the literature to assess the 

performance of industrial symbiotic systems91, 92 should not be, a priori, extended to CIWMSs.  
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Recommended tools for the analysis of CIWMSs 

Because of the wide range of existing technologies to manage waste, process engineers must 

carefully study the available possibilities at the design phase of a CIWMS. The superstructure 

that might emerge after considering process integration could be quite complex. Thus, the 

selection of the optimum configuration of the system is not a trivial matter, and it might require 

mathematical programming techniques. Moreover, since the chemical composition of waste will 

determine the type of processes that it can be subjected to, it can be concluded that the design 

of a CIWMS should be based on mathematical programming and Material Flow Analysis (MFA), 

so that the circularity of materials is warranted. The combination of these tools with scenario 

analysis techniques that assess the consequences of changes in waste composition and 

quantities or possible technological improvements, could be a valid strategy to account for the 

dynamic variables that might fluctuate during the studied time horizon. 

On the other hand, the assessment of the performance of a CIWMS must analyze all its 

sustainability dimensions. The sustainability criteria regarding the economic and social 

dimensions of CIWMSs are at least as important as the environmental aspects and must be 

likewise assessed; nonetheless, they will not be deeply discussed in this critical review. 

 

 

METHODOLOGIES APPLIED IN THE LITERATURE 
 

Regarding the methodological approaches reported to be applied in the literature, Chang et al.21 

and Juul et al.82 classified the system analysis tools that have the potential to assist in the design 

of IWMSs and the decision-making processes as:   

- System engineering models, which focus on supporting the design of the system. These are 

simulation models, optimization models, forecasting models, cost-benefit analysis or multi-

criteria decision-making (MCDM).  

- System assessment tools. They focus on assessing how an existing system performs. LCA, 

MFA and risk assessment are examples of such tools. 

 

Coupling these two types of methodologies is recommended not only because it will lead to a 

better understanding of the IWMS,93 but also because the sustainability analysis of an IWMS 

requires an integrated approach; the applied methodologies should complement each other so 

that all the sustainability dimensions can be properly evaluated and the economic, 

environmental and social objectives are balanced.  
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Another strategy that has been suggested to support the decision-making process is taking a 

participatory approach. This can be done by either asking multiple stakeholders to participate in 

the analysis,65 or by applying a game-theoretic approach that seeks the fair distribution of 

benefits and costs.94  

 

The methodological approaches applied in the 77 reviewed papers are shown in Figure 3.1.5. 

Whereas over one third of the reviewed papers focus solely on the environmental impacts 

associated with the IWMS (all of them by means of LCA), only one study relies solely on an 

economic assessment, based on Life Cycle Costing (LCC).69 More information on the application 

of LCC to waste management systems can be found in Martinez-Sanchez et al.’s paper.95  

  

Over one fifth of the reviewed studies assessed more than one sustainability dimension. A few 

papers,84,96-98 combine the LCA methodology and optimization techniques to broaden the scope 

of the study and include other sustainability criteria. Mirdar-Haridani et al.99 combined 

optimization and social LCA. Multi-objective optimization, applied in some of the reviewed 

papers,96,100-105 is possibly the most adequate technique to take into account all the sustainability 

criteria. Oppositely, other authors63,106 combined LCA with a set of indicators to account for the 

other sustainability dimensions of an IWMS. 

 

Figure 3.1.5. Methodological approaches applied in the reviewed studies 

 

On the other hand, MFA and/or Substance Flow Analysis (SFA) enable us to explicitly consider 

the waste characteristics and thus provide a more detailed description of the system under 

study and track each waste fraction throughout the system. Additionally, Energy Flow Analysis 

(EFA), which was applied in two studies,107,108 might prove useful to determine the most suitable 

valorization treatment to each waste fraction.  
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So far, the theoretical framework required to combine LCA, multi-objective optimization and 

MFA techniques has only been described by Vadenbo et al.104,105 although the methodology was 

not applied to an IWMS.  

 

 

HOT TOPICS 

 

The most discussed methodological aspects in the reviewed studies and the challenges and 

possibilities of their application to the design and assessment of CIWMSs are presented in this 

section aiming at providing some helpful and critical insights into the development of a 

theoretical framework for the analysis of CIWMSs. 

 

 

Accounting for waste prevention 

Wastage of goods and products is a tremendous global challenge; taking the food supply and 

consumption chains as an example, around one third of the food produced for human 

consumption worldwide is currently lost or wasted.109  

 

Waste prevention stands at the top of the waste management hierarchy, as a strategy to be 

implemented in the life cycle stage prior to waste generation that seeks to minimize the 

depletion of natural resources and its subsequent environmental burdens. The term waste 

prevention refers to any measures taken before a substance, material or product become waste, 

that reduce: a) the quantity of waste, b) the adverse impacts of the generated waste and c) the 

content of harmful substances in materials and products.57  

 

Nevertheless, the analysis of waste prevention activities in the framework of LCA has not been 

normalized yet; only a few studies outline the methodological steps to follow,110-112 concurring 

that this is an active area of research.  

 

LCA models of waste management typically calculate the environmental burdens on a waste 

mass basis. This is the most straightforward option to choose the functional unit. However, it 

makes this approach inadequate for the comparison of scenarios including waste prevention 

strategies, given that the amount of waste produced varies among them.113 Moreover, these 

models usually rely on the “zero burden approach”, which does not include the upstream 
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processes within the system boundaries because it is assumed that their primary function is not 

to produce waste and thus none of the environmental burdens generated in the upstream 

processes are associated with it. Nonetheless, if different amounts of waste are produced in 

each scenario, the zero burden approach cannot be considered because the contribution of the 

upstream processes to the overall environmental impacts of the system will differ.114 

Consequently, a proper methodological approach to deal with waste prevention activities from 

a life cycle perspective should define: 

- A functional unit that accounts for the amount of waste prevented. 

- System boundaries that include the upstream processes involved in waste generation.  

 

Another issue that must be considered when waste prevention activities are being accounted 

for is the allocation procedure of the environmental impacts among the products or services 

delivered by the IWMS. Applying the direct substitution approach in order to avoid allocation 

among several products is not recommended, given that negative results might be obtained, 

leading to the erroneous conclusion that a greater amount of waste leads to less environmental 

impacts.115  

 

Cleary110 recommends an attributional approach with system expansion to account for the 

upstream processes associated with waste production, arguing that a consequential approach 

does not consider waste prevention as a waste management strategy functionally equivalent to 

the others in the waste management hierarchy, since no environmental burdens are attributed 

to waste prevention activities; that is to say, it simply quantifies the consequences of reducing 

the waste inputs in the system. Only Gentil et al.111 claim to apply a consequential LCA model. 

These authors expand the system boundaries to the upstream processes related to the waste 

generation processes, although they acknowledge that the cascading effects of waste 

prevention should have been further assessed.  

 

All of the above-mentioned studies define the functional unit as the sum of the waste managed 

through conventional methods and the amount of waste prevented, although nuances in the 

applied approach can be found among the studies. 
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Quantifying biogenic carbon 

Whether biogenic CO2 emissions are considered neutral or an environmental burden to an IWMS 

will have a significant influence on the results and conclusions drawn from the analysis. Since 

studies relying on different assumptions are hard to compare, it is imperative to standardize this 

matter, not only within the waste management sector.  

 

The EPA116 defines biogenic CO2 emissions as CO2 emissions related to the natural carbon cycle, 

as well as those resulting from the combustion, harvest, digestion, fermentation, 

decomposition, or processing of biologically based materials. It is worth remarking that the 

origin of fossil fuels, produced millions of years ago, is also biological.117  

 

The first difficulty that arises when calculating the carbon footprint of a given IWMS is the 

differentiation between biogenic and fossil carbon. A rigorous MFA should be performed in 

order to trace back the carbon source and identify the carbon sinks. Carbon (biogenic or not) 

may be released as an environmental burden or remain in the anthroposphere, in any of the 

following forms: 

- Emissions to the atmosphere. In the presence of oxygen, carbon is oxidized to CO2. Under 

anaerobic conditions carbon is reduced to CH4.  

- Wastewater pollution and landfill leachate wherein carbon is present in a variety of organic 

compounds.   

- Sequestered carbon in landfills or in soil amendment products (compost and digestate). 

 

It must be highlighted that the distinction between an environmental burden and the 

accumulation of a substance in the IWMS under study is often unclear; the system boundaries 

need to be precisely established at the definition of the scope of the work.  

 

Within an efficiently designed IWMS water is not considered a final carbon sink. After the 

adequate treatment, the carbon present in the leachate leaves the liquid phase as CO2 or CH4,
118 

whereas the carbon in wastewater is distributed between the gaseous emissions and the 

sludge,119 being the latter subsequently treated as solid waste. Even though Griffith et al.120 

estimate that up to 25% of the carbon content in wastewater is of fossil origin, it is widely 

assumed that the totality of carbon is biogenic, and thus it is typically not accounted for.119 

 

Although emissions from leachate treatments are estimated in some of the reviewed papers,62, 

96 none of them made express reference to the carbon source. The reviewed articles that 
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accounted for biogenic CO2 are shown in Table 3.1.2. The procedure followed to determine the 

carbon origin is not clearly stated in many cases. Whereas Tabata et al.98 and Vergara et al.121 

consider that biogenic CO2 is derived from the biogenic fraction of waste, only Manfredi et al.62 

and Turner et al.122 explicitly consider the fraction of biogenic carbon in the input waste. 

 

Regarding the stored carbon in landfills and the carbon emissions to the atmosphere, for the 

specific case in which an LCA is performed with the objective of comparing different scenarios 

but there is no interest in knowing the values of their individual carbon footprints, Christensen 

et al.123 proved that, provided that the assumptions concerning biogenic CO2 emissions and 

carbon sequestration are consistent (considering biogenic CO2 emissions either neutral or not 

neutral) and the system boundaries are clearly established, the emission ranking of scenarios 

remains the same.  

 

As can be seen in Table 3.1.2, biogenic CO2 emissions are assigned a GWP factor (expressed as 

kg of equivalent CO2 per kg of emitted CO2) of zero in most studies, which implies that no 

environmental impacts in terms of climate change potential are attributed to them. Applying 

this GWP is analogous to expanding the system boundaries to include the upstream processes 

of photosynthesis. Thus, unless biogenic CO2 is being stored, the CO2 that is captured during the 

growth of biomass and comes into the system, is balanced with the biogenic CO2 that leaves the 

system, achieving carbon neutrality. For the sake of coherence, a negative GWP must be 

assigned to the carbon that is captured in the photosynthetic processes and remains 

sequestered in the system. Nonetheless, as Vergara et al.121 point out, by applying this 

procedure only the environmental benefits of the upstream processes are being taken into 

account, disregarding their environmental burdens. As a consequence, this approach might lead 

to higher environmental credits than burdens, entailing that landfills and soil amendment 

products contribute to climate change mitigation.122 

  

To correct this incoherence, the carbon flows that connect the system to the environment 

(primarily as CO2 and CH4) must be inventoried. If the system boundaries are expanded to 

include the upstream processes, once the elemental composition of the waste and products is 

known, the incoming carbon flows can be easily calculated: every mole of biogenic carbon 

present in the products, waste and emissions originates from a mole of CO2 that was absorbed 

by biomass in the photosynthetic process. Afterward, the carbon flows that come into the 

system must be subtracted from the carbon flows that leave the studied system.  
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This systematic approach allows applying the same GWP (1 kg CO2-eq·kg CO2
-1) to CO2 emissions 

from scenarios with different system boundaries, regardless of the CO2 origin.  

 

The proposed procedure, which relies on the waste composition provided by the MFA, ensures 

that the CO2 removed from the atmosphere, whose carbon eventually leaves the system as CH4, 

is accounted for. The studies compiled in Table 3.1.2 make no express reference to a correction 

in the GWP of biogenic CH4, when CH4 constitutes a significant fraction of the outlet stream of 

some technologies that process biogenic waste, such as anaerobic digestion. 

 

Table 3.1.2. GWP and other methodological considerations regarding biogenic carbon in the reviewed 
papers 

 Biogenic CO2  Stored biogenic carbon  Specified 

carbon 

source? 

Zero 

burden 

approach? 

 Value 

(kg CO2-eq·kg CO2-

1) 

 Value Unit  

Aghajani 

et al.124 

0  - -  No Yes 

Blengini 

et al.65 

1  -1 Unspecified  No Yes 

Chang et 

al.96 

0  - -  No Yes 

Manfredi 

et al.62 

0  -44/12 kg CO2-eq·kg C-1  Yes Yes 

Minoglou 

et al.125 

0  - -  No Yes 

Tabata98 0  - -  Yes Yes 

Turner et 

al.122 

0  0 or      

-44/12 

kg CO2-eq·kg C-1  Yes Yes 

Vergara 

et al.121 

0 

1 

 -1 

0 

Unspecified 

Unspecified 

 Yes 

Yes 

No 

Yes 

 

 

Accounting for uncertainty 

Models aiming at describing complex systems carry a level of uncertainty whose effect on the 

outcome might be hard to predict without the right methodology. There are plenty of sources 

of uncertainty within an IWMS, such as waste composition, the efficiency of the treatment 

processes, the substitution ratio of virgin materials or the effect that the seasonal changes in 

weather may have on the waste degradation rate. For a detailed compilation of uncertainty 
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sources, the reader should refer to Clavreul et al.126 However, the paramount variable with 

which uncertainty is associated, regardless of the complexity of the model, is waste composition.  

 

As Laurent et al.127 pinpointed in their review, LCA studies do not usually account for waste 

composition very accurately. This asseveration could be further extended to waste management 

models in general, even though waste composition will determine the results of the subsequent 

analysis, simulation or optimization, given that the available treatment options and the type and 

amount of emissions resulting from the different waste treatment alternatives strongly depend 

on the elemental composition of waste.  This is the reason coupling MFA with other analysis 

tools is the precursor to identifying the optimal configuration of an IWMS. Nevertheless, 

adequately characterizing the waste composition is a difficult task because of the heterogeneity 

of the material flows, and it might require complex statistical analysis. Thus, representative data 

of the average waste composition inevitably brings uncertainty into the model. 

 

The elements that are excluded from the analysis without a clear justification also represent a 

source of uncertainty. For instance, the environmental impacts related to capital goods might 

have a significant influence on the results of an LCA,128 but they are often not modeled.127,129,130  

 

Stochastic modeling, which relies on the propagation of probability distributions, is the most 

frequently deployed methodology to consider the effect of uncertainties on the LCA results, 

although scenario analysis is more commonly applied for the LCA of waste management.126  

Sensitivity analysis to investigate the effects of a change on an assumption or the value of a 

parameter are routinely performed in many of the reviewed studies.50,53,60-62,65,80,81,115,121,122, 

129,131-139 Massarutto et al.69  also carried out a sensitivity analysis in their LCC analysis. 

Notwithstanding only three of the above-mentioned studies50,53,131 analyzed the impact that 

different waste compositions would have on the results.  

 

Hanandeh and El-Zein140 considered the uncertainty related to the input waste composition, 

among other parameters. Comparing the results of the stochastic model of an IMWS with those 

of a deterministic model, they found that when uncertainty is taken into account, the 

environmental burdens of one of the studied impact categories became environmental credits, 

proving that the uncertainty of the data in their case study was definitely not negligible.  

However, Clavreul et al.126 claim that probability distributions, which are oftentimes dependent 

on incomplete information, should be applied cautiously. Instead, they proposed a systematic 
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sequential approach to quantify uncertainty in LCA models of waste management systems that 

comprises a number of complementary methodologies for uncertainty analysis. 

 

Regarding the quantification of uncertainty in the models aiming at optimizing IWMSs, two 

methodologies can be differentiated in the reviewed literature: 

- After the initial optimization of the objective functions a sensitivity analysis is performed to 

check the effect of a change in the input parameters or the assumptions made on the 

optimal solution. Tabata et al.,98,141 and ThiKimOanh et al.142 apply this methodology.  

- A methodology to quantify uncertainty is embedded in the model or the optimization 

technique. Table 3.1.3 compiles the modeling and optimization methodologies applied for 

that purpose in the reviewed studies.  

As can be seen in Table 3.1.3, some studies apply a combination of techniques. Interval 

programming, in which uncertainties are expressed as interval values, is the most common 

programming technique to quantify uncertainty. Stochastic and fuzzy programming are also 

popular; the difference between them is that in stochastic programming uncertainty is modeled 

through discrete or continuous probability functions, whereas fuzzy programming considers 

random parameters as fuzzy numbers and constraints are treated as fuzzy sets.143 

 

Finally, an approach to quantify uncertainty within MCDM models was proposed by Pires et al.144 

They developed a MCDM framework that integrates an interval-valued fuzzy method with the 

analytic hierarchy process (AHP) and the technique for order performance by similarity to ideal 

solution (TOPSIS) in order to help decision-makers prioritize waste management scenarios. 

 

The extensive amount of methodologies developed to account for uncertainty makes it hard for 

the non-experts to choose the most appropriate one for the analysis of their IWMS. Two trends 

have been observed in the literature: the performance of sensitivity analysis and the 

combination of several methodologies. The former risks not capturing the complexity of the 

model, while the latter may become a time-consuming process that considerably increases the 

researchers’ effort. 

 

In any case, a meaningful uncertainty analysis must be based on the correct identification of the 

parameters and assumptions that will bring uncertainty into the model, which are not always 

clearly listed in the reviewed studies.  
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Table 3.1.3. Methodologies to quantify the effects of uncertainty in the reviewed optimization models 

 Fuzzy 

programming 

Stochastic 

programming 

Interval 

programming 

Factorial 

design 

Minimax 

regret 

analysis 

Cui et al. 145   x  x 

Chang et 

al.100 

x     

Dai et al.146   x   

Li and 

Chen147 

x x x   

Srivastava 

et al.148 

x     

Wang et 

al. 149 

x x x   

Zhai et 

al.150 

  x x  

Zhou et 

al.151 

 x    

Zhu and 

Huang152 

 x    

 

 

Dynamic modeling 

Most of the reviewed models, with the exception of multi-period optimization models,97,103,141, 

145-148,152-154 describe static IWMSs that do not account for changes in the system variables 

throughout time. Oppositely, multi-period optimization models assume that the constraints and 

the parameters remain constant within a given time period, although they may differ between 

different stages. Hence, in spite of being time dependent, the outputs of these models are not 

a function of time, but a function of the time period. In fact, models introducing time series have 

been classified as quasi-dynamic,155 under the argument that the results of one period do not 

determine the results of the next period. The implementation of dynamic models whose outputs 

are a function of time would bring a higher degree of complexity into the analysis; for instance, 

modeling the behavior of markets throughout time would add realism to an LCA, but because of 

the large data requirements, it is not usually considered a feasible option.155  

  

Thus, the definition of time stages appears to be the most straightforward and practical route 

to account for the time-dependent changes in the system, such as the need to manage obsolete 

goods after they have provided the expected service. The shorter the established time periods, 
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the more reliable the model will be. The time periods should be established so that the seasonal 

variations in waste composition are accounted for. Of the reviewed studies, only Levis et al.156 

took into account the changes in waste composition in the studied time period. If the study aims 

at quantifying the environmental impacts and the consumption of natural resources of the 

system, successive LCAs should be performed for each time period in which the input waste 

composition varies. Accordingly, different functional units referring to each specific time period 

should be defined.  

 

The seasonal changes in waste composition (proven for example by Castrillón et al.157 pose a 

challenge to the design of CIWMSs, given that they must be flexible enough to adjust to the 

changes in the feed composition. Furthermore, since manufacturers cannot count on a steady 

supply of secondary materials, the fluctuations in waste composition hamper the shift to a 

circular economy.  

 

It is important not to confuse the duration of the supply of goods and services provided by the 

system, which is identified by the functional unit, with the time horizon of the LCA,114 which is 

the time length during which the flows that connect the IWMS with the environment are 

accounted for. Additionally, the selected time horizon determines the value of the 

characterization factors used to calculate the contribution of the different substances exiting 

the system to each of the impact categories studied on the LCA.158 Thus, the time horizon must 

be long enough to include all the relevant emissions to the environment. This guideline is of 

particular interest for modeling landfills, since their emissions may prevail for a long time in the 

order of thousands of years.159  

 

For the defined time period in which a CIWMS is analyzed, certain waste fractions might travel 

within the system for a number of times; depending on the time at which the system is being 

described, some materials may be part of the waste or the products. In fact, the products into 

which a material is transformed might even be different if they undergo an open-loop recycling 

process. A methodology to calculate the average number of times a material is used was 

proposed by Yamada et al.160 

 

The disparities in the material flows within a given time period can only be solved by assuming 

that the model concerning each time period is a steady-state model; i.e, that the incoming 

natural resources and the flows of waste and products within the system are constant and 

homogeneously distributed along the studied time period. Following this methodology, 
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materials should be counted as both waste and products as many times as cycles they describe 

within the system in the defined time period. 

 

   

APPLICATION OF THE CRADLE-TO-CRADLE APPROACH 

 

The boundaries of a CIWMS do not allow the implementation of the traditional linear cradle-to-

grave LCA; thus, a cradle-to-cradle approach must be applied.  In this section the adjustments 

to the LCA scope that this new perspective requires will be discussed, focusing on the modeling 

framework, the multi-functionality problem and the definition of the functional unit, all of which 

are intrinsically related to one another and will be determined by the goal and scope definition.   

 

 

Goal and scope definition 

The goal of the LCA of a given CIWMS might differ among studies, which makes it hard, if not 

impossible, to compare their results. The proposed methodology discussed in this section will 

be coherent with this goal: to identify possible improvements in the design of a CIWMS wherein 

waste prevention activities are implemented, so that its environmental impacts and its 

consumption of natural resources can be minimized. Hence, the analysis is intended to assist the 

decision-makers in the design of a CIWMS.   

 

 

Multi-functionality problem 

The LCA practitioner might come across a multi-functionality problem: how to allocate the 

environmental impacts between all the functions that the system supplies if the further 

subdivision of the subsystems that configure the CIWMS cannot be applied to avoid allocation, 

because of the interconnection between them. To deal with this multi-functionality problem, 

two strategies, which depend on the selected modeling approach, can be applied:23, 161 system 

expansion or allocation. According to ISO 14044,23 system expansion should be deployed 

wherever possible in order to avoid partitioning the environmental burdens.  

 

Most studies analyzing IWMSs apply the direct substitution (also called avoided burden) 

method; 50,53,58,61-63,65,80,81,106,111,115,121,122,129-132,134,139,162-174 they consider that the primary aim of 

their system is to treat waste, and they expand the system boundaries to include within the 
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system the other products and services supplied, like materials and energy, and subtract their 

environmental impacts from those of the original system. However, a CIWMS does not operate 

under the assumption that waste needs to be treated in order to minimize its negative impacts, 

but valorized, so that the consumption of natural resources is reduced.  

 

Functions of a CIWMS  

According to the system boundaries set in Figure 3.1.3, the functions fulfilled by a CIWMS are 

twofold: 

- To supply the services that society demands, regardless of the origin of the raw materials.  

- To exploit the maximum amount of the generated waste, by either producing new products 

from it or recovering its energy, with the ultimate goal of minimizing the consumption of 

natural resources. 

 

The second function is a consequence of the first one, and the first one can be partially achieved 

due to the accomplishment of the second function. However, if waste upgrading and energy 

recovery processes were not implemented, the supply of the services demanded by society 

could still meet the demand, relying solely on the extraction of natural resources. Thus, it can 

be agreed that the primary function of a CIWMS is waste exploitation. 

 

According to the definition of the system functions, it is not necessary to disaggregate any of 

them by the type of services and products provided in order to solve the multi-functionality 

problem. This way, the uncertainty brought into the model by the choice of the allocation 

procedure is reduced. Moreover, the problem of allocation in open-loop recycling, which is a 

recurrent discussion in the LCA literature,26,159,160,175,176 is avoided.  

 

System expansion approach 

If the LCA practitioners are interested in analyzing the overall environmental impacts of the 

whole system, the system expansion approach must be followed. The studied CIWMS should be 

compared to a functionally equivalent system whose functions are provided by alternative 

subsystems;159 for instance, a linear IWMS that depends exclusively on virgin raw materials.The 

environmental benefits of the complete CIWMS could be estimated as the difference in the 

environmental impacts of the linear and circular IWMSs. 

 

If on the contrary, the study aims at investigating the environmental impacts derived from the 

primary function of the CIWMS, the direct substitution or avoided burden approach could be 
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applied by expanding the system boundaries to include alternative subsystems responsible for 

the secondary function, based entirely on virgin raw materials. Their environmental impacts 

should be subsequently calculated and subtracted from the environmental impacts of the 

studied CIWMS. Accordingly, the resulting environmental impacts are assumed to be due to the 

primary function of the system. This might result in overall negative environmental impacts and, 

as a consequence, the system could be mistaken for a sink of environmental burdens.  

 

If system expansion is applied, a choice between marginal and average data must be made to 

model the system functions. Marginal data is used to model systems whose outputs change in 

response to decisions regarding the life cycle of the system under study, for example a decrease 

in the demand for the electricity produced from natural gas as a consequence of the supply of 

electricity from waste-to-energy processes. Average data, on the other hand, represents the 

mean data in a region; the average electricity mix refers to the grid mix of that region, and it 

does not reflect any changes in fuel consumption because of the changes in the electricity 

demand. Although average data might lack accuracy, it is more appropriate if the effects that 

the decisions taken have on the surrounding systems are not certain. The selection of the data 

is closely related to the LCA modeling framework applied. Whereas “attributional LCA focuses 

on describing environmentally relevant physical flows to and from a life cycle, consequential LCA 

aims at describing how the environmentally relevant physical flows to and from the life cycle 

will change in response to possible decisions”.161 

 

Allocation approach 

Heijungs and Guinée177 are firm advocates of allocation procedures because the assumptions on 

which the direct substitution approach is based are likely to introduce considerable uncertainty 

into the model. Whereas they recognize that the allocation approach is subject to essentially 

arbitrary allocation factors, they argue that it is extremely hard to predict what system would 

be affected if the secondary function of the studied system was meant to replace one of the 

functions of another system, and up to what extent the environmental impacts caused by the 

other system would be avoided. Although the selection of a 100% substitution ratio is common, 

several authors suggest that a complete displacement is unlikely.31,178-180 

 

In addition to that, if the substituted function was produced in a multi-functional system, the 

system boundaries would have to be further expanded until mono-functional systems were 

found, significantly increasing the complexity and the uncertainty of the system. Ekvall and 

Finnveden176 also acknowledged the importance of the uncertainty caused by system expansion; 
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they stated that system expansion is an adequate procedure to solve the multi-functionality 

problem as long as data for the competing production of the secondary function is available, 

and the data uncertainties are not too large, which agrees with the guidelines of ISO 14044.23     

 

This argument can be easily extrapolated to the case of a CIWMS aiming at valorizing MSW. The 

resources transformation subsystem, responsible for the secondary function of a CIWMS, 

comprises many production subsystems; modeling the alternative processes relying on virgin 

raw materials would bring multiple sources of uncertainty into the model, not to mention that 

it would be an extremely time-consuming task. 

 

If an allocation procedure is selected to solve the multi-functionality problem, it must be borne 

in mind that except when physical causal relationships are deployed as a basis for allocation, the 

property according to which the allocation is performed depends entirely on the choice of the 

LCA practitioner.  

 

The chemical composition of the flows within a CIWMS, determined by the MFA, is a valid causal 

criterion to allocate the input-specific environmental impacts. However, given that the 

composition of the recycled materials should be, a priori, identical to the composition of the 

virgin materials, this criterion could only be applied in the cases wherein either the recycled 

materials carry pollutants accumulated in the recycling process, or certain materials cannot be 

recycled and thus the environmental impacts derived from the processing of those materials are 

due to the incoming virgin materials into the system. Furthermore, the environmental impacts 

caused by the process specific emissions, such as dioxins and furans produced in the incineration 

processes,181 which are dependent on the operating conditions and the applied technologies, 

cannot be allocated according to the chemical composition of the input flows.   

 

Hence, a different allocation factor that enables partitioning all the environmental impacts 

between the system functions must be defined. There are basically two types of approaches to 

perform the allocation of environmental impacts in the cases wherein causal relationships 

cannot be found, those relying on a physical parameter, such as mass or volume, and those that 

are based on socioeconomic criteria. Even though both approaches are internally consistent as 

long as the selected physical property or socioeconomic indicator is also applied to quantify the 

performance of the system and used to calculate the functional unit, different results will be 

obtained for different allocation factors, and they might show opposite trends. Therefore, the 
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choice of the allocation factor should never be made based on an arbitrary decision, it should 

respond to the goal and scope of the LCA instead.182 

  

One of the reasons for not including socioeconomic parameters in the LCA is that if more than 

one of the sustainability dimensions (economy, environment and society) are studied jointly, 

some of the trends in the results might be overlooked. For instance, the objective of the study 

of the carbon footprint of a CIWMS wherein the functional unit is defined as the revenues 

generated in a given time period, could be to detect what changes in the configuration of the 

CIWMS would result in a minimization of the ratio kg CO2-eq·€-1. Expressing the results as a ratio 

between those two variables might make it harder to identify if only the environmental impacts, 

only the economic revenues or both the environmental impacts and the economic revenues are 

improved as a consequence of a change in the technical parameters of the system.  

 

Moreover, since the goal of the LCA was defined at the beginning of this section from a technical 

perspective, making no reference to economic criteria, a physical parameter is more appropriate 

to allocate the environmental impacts. The different material fractions emerging from the 

materials sorting subsystem will be transformed into a variety of goods and services, which 

hinders the selection of a single allocation factor based on a physical property that enables 

assessing the multiple functions of the goods and services delivered. Nonetheless, the mass of 

waste before it has been transformed into products or supplies any services could be viewed as 

an indicator of its potential. Hence, mass seems to be the most appropriate physical parameter 

to perform the allocation of the environmental impacts of a CIWMS.  

 

In the context of a CIWMS, MSW is a substitute for natural resources; in particular, for raw 

materials.  If the amount of energy, materials and products derived from waste that enter SS 1 

rises, the incoming raw materials to subsystem 0 decrease in order to maintain the functions 

delivered by the CIWMS constant. Therefore, the allocation factor of the environmental impacts 

to the primary function of the system (AF) could be defined as the ratio between the mass of 

the MSW that is valorized in subsystems 6 and 7 (MSW6,7), and the mass of raw materials (RM) 

and the valorized MSW, as shown in Equation 3.1.1. 

AF=
MSW6,7

RM+MSW6,7
 

(Equation 3.1.1) 

 

 

 



Circular Integrated Waste Management Systems 

81 
 

Summary of approaches to solve the multi-functionality problem 

The LCA practitioner should ponder the disadvantages of each approach and apply the one that 

fits the best the goal of the study and the data availability. Table 3.1.4 sums up the main 

disadvantages of the application of the different methodological approaches to the LCA of a 

CIWMS. 

 

Table 3.1.4. Summary of the drawbacks of alternative methodological approaches 

 Attributional Consequential 

Allocation By mass a Not applicable 

By economic value a, b 

 

System  

expansion 

Average data Comparison c, e Not applicable 

Substitution d, e 

Marginal data Comparison Not applicable c 

Substitution d 

a. Consequences on the exported functions of alternative systems not considered 

b. Hard to separately identify the response of revenues and environmental impacts to 

changes in the IWMS 

c. Environmental impacts of the overall system; specific environmental impacts of the 

primary function not known   

d. Negative results not coherent with waste prevention activities 

e. Data uncertainty modeling alternative processes 

 

 

Functional unit 

Regarding the functional unit, it must describe the performance of the CIWMS in terms of the 

fulfillment of the primary function of the system; its aim is to quantify the performance of a 

system so that it can be used as a reference unit.183  

 

Two thirds of the reviewed LCA studies deployed a round functional unit (1 metric ton or 1,000 

metric tons of MSW), which, as highlighted by Laurent et al.,127 simply quantifies a waste flow, 

without describing the performance of the IWMS. On the other hand, the functional unit of 

several of the reviewed studies was the incoming amount of waste into the system. 

Notwithstanding, the shift in the perspective of the analysis from waste (in a typical linear IWMS) 

to resource (in the defined CIWMS) should be reflected on the functional unit. Therefore, since 

the ultimate goal of a CIWMS is to reduce the extraction of raw materials, the mass of the 

incoming raw materials into the system could be accounted for in the definition of the functional 

unit of a CIWMS.  



Chapter 3.1 

82 
 

Furthermore, if waste prevention activities are considered one of the targets of a CIWMS, the 

amount of raw materials prevented as a consequence of the waste prevention activities should 

also be taken into account in the definition of the functional unit, so that scenarios with and 

without waste prevention activities can be compared on the same basis.  

 

Thus, the functional unit of a CIWMS could be defined as the sum of the incoming raw materials 

into the system in the selected time period and in a given region plus the amount of raw 

materials that would have been consumed if waste prevention policies had not been 

implemented in that time period in that geographic area.  

 

These recommendations are provided for a generic CIWMS that manages the variety of 

materials present in MSW. The discussion would be different if the system under study aimed 

at valorizing a specific type of waste and sending it back to the subsystem where it was 

generated. In this scenario, the selected functional unit could be a parameter different from the 

mass of the raw materials that reflects the precise primary function of the system.  

 

Taking a CIWMS that focuses on the management of food waste as an example, its functions are 

to provide food for the population of a given region, and to valorize the generated organic waste 

into a fertilizer that is looped back into the food production subsystem. One parameter that 

could quantify the primary system function (waste valorization into a fertilizer) better than the 

incoming mass of raw materials into the system would be the area of land that is fertilized.  
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CONCLUSIONS 

 

Based on the insights gained in the literature review, it was concluded that some of the 

shortcomings that applying the current methodological approaches to a CIWMS would entail 

could be solved by expanding the boundaries of a traditional linear IWMS to include upstream 

subsystems that link the transformation of raw materials into MSW with the waste treatment 

subsystems. This approach is also helpful for the analysis of waste prevention activities and the 

quantification of the biogenic carbon present in waste. 

 

Waste composition will determine the functions fulfilled by the CIWMS. A CIWMS managing 

mixed MSW could deliver materials, energy, nutrients and even chemicals. Because of the wide 

range of technologies that each waste fraction can be subjected to, mathematical programming 

and MFA are essential to the design of CIWMSs. However, these techniques must be combined 

with system assessment tools, such as LCC and LCA.   

 

Unarguably, the benefits derived from the implementation of CIWMs are due to the reduction 

in the consumption of natural resources. However, the economic and environmental benefits of 

CIWMSs are not self-evident and need to be proven by an in-depth analysis.   

 

One of the challenges of performing the LCA of a given CIWMS lies on the multiplicity of 

materials that the system can handle, which translates into the great variety of services supplied 

and makes it hard to select the functional unit, which should reflect the shift in the perspective 

of the analysis from waste to resource. 

 

Nonetheless, the main difficulty that will arise from the recommended approach will probably 

not stem from the integration of different methodologies, but from the upstream subsystems; 

considering their large size, their detailed analysis will increase the complexity of the model and 

the researchers’ efforts needed in the modeling phase.  
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Table 3.1.1. Reviewed studies and applied methodologies 

Reference Methodology 
 

Abeliotis et al.162 
 

LCA 

Aghajani et al.124 MCDM 

Akbarpour et al.184 Optimization 

Allesch and Brunner185 Review 

Antonopoulos et al.164 LCA 

Arena and Di Gregorio70 MFA and SFA 

Belboom et al.58 LCA 

Blengini et al.65 LCA 

Boesch et al.80 LCA 

Bovea et al.132 LCA 

Chang et al.21 Review 

Chang et al.96 LCA and optimization 

Chang et al.100 Optimization 

Chi et al.129 LCA 

Consonni et al.66 Review 

Consonni and Viganò73 Material and energy analysis 

Cui et al.145 Optimization 

Dai et al.146 Optimization 

Eriksson and Bisaillon83 LCA 

Eriksson et al.166 LCA and financial cost calculation 

Erses Yay64 LCA 

Falzon et al.186 LCA 

Fernández-Nava et al.187 LCA 

Fiorentino et al.61 LCA 

Ghiani et al.188 Review 

Giugliano et al.115 LCA 

Herva et al.107 EFA, MFA and Ecological footprint 

Ionescu et al.189 Environmental indicators 

Jovanovic et al.190 LCA and MCDM 

Juul et al.82 Review 

Karmperis et al.94 Review 

Koci and Trecakova135 LCA 

Koroneos and Nanaki136 LCA 

Laurent et al.127, 191 Review 

Levis et al.97, 156 LCA and optimization 

Martinez-Sanchez et al.95 LCA and optimization 

Li and Chen147 Optimization 

Massarutto et al.69 LCC 

Menikpura et al.106 LCA, economic and social assessments 

Menikpura et al.168 LCA 
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Mirdar-Harijani et al.99 
 

Optimization and social LCA 

Münster et al. 84 LCA and optimization 

Ng et al.192 Optimization 

Niziolek et al.52 Optimization 

Pandyaswargo et al.170 

Pires et al.171 

LCA 

LCA 

Pires et al.93 Review 

Pressley et al.53 LCA 

Rada et al.172 LCA 

Rigamonti et al.173 LCA 

Rigamonti et al.193 Materials recovery, energy recovery and costs indicators 

Sadhukhan et al.51 Techno-economic analysis 

Santibáñez-Aguilar et al.101 Optimization 

Santibáñez-Aguilar et al.102 Optimization 

Satchatippavarn et al.194 Optimization 

Song et al.138 LCA 

Srivastava et al.148 Optimization 

Srivastava et al.103 Optimization 

Suwan and Gheewala130 LCA 

Tabata et al.98 LCA and optimization 

Tan et al.141 Optimization 

ThiKimOanh et al.142 Optimization 

Tonini and Astrup50 LCA 

Tonini et al.131 LCA 

Tonini et al.108 MFA, SFA, EFA, optimization 

Tulokhonova and Ulanova63 LCA, economic and social assessments 

Tunesi174 LCA 

Vadenbo et al.104, 105 MFA, LCA, optimization 

Wang et al.139 

Wang et al.149 

LCA 

Optimization 

Zaccariello et al.195 

Zhou et al.151 

MFA and efficiency indicators 

Optimization 

Zhu and Huang152 Optimization 
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CHAPTER 3.2 

RESOURCE USE AND CARBON EMISSIONS 

 

“Remember that all models are wrong; the practical question is how wrong they have to be 

to not be useful.”   

 

George Box, English mathematician (1919-2013) 

 

 

Chapter 3.2 is constituted by this paper:  

 

Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Minimization of resource consumption and 

carbon footprint of a circular organic waste valorization system. ACS Sustainable Chem. 

Eng. 2018, 6, 3493-3501; DOI: 10.1021/acssuschemeng.7b03767. 

 

 

“The transition to a circular economy could relieve the pressure on the ecosystems to meet the 

demand for natural resources. Thus, the implementation of systems that strengthen the 

connection between waste management and the transformation of raw materials, hereafter 

referred to as Circular Integrated Waste Management Systems (CIWMSs), should be promoted.1 

CIWMSs provide a solid framework to assess the consequences of the recirculation of the waste 

components.  

 

The application of the concept of CIWMSs to the management of organic waste, also known as 

bio-waste, is particularly challenging because of the diversity of materials that it may contain 

and its high moisture content. Nevertheless, due to its carbon (C) rich composition and the 

presence of nutrients such as nitrogen (N) and phosphorus (P), energy and nutrients can be 

produced from organic waste. State-of-the-art research focuses on the production of chemicals 

and fuels from organic waste.2-4 

 

Closing the loop of nutrients to a certain extent would help us secure the food supply. N and P 

are essential to the metabolism of plants, and by extension, to agriculture and food production 

systems. Paradoxically, human tampering with the N and P biogeochemical cycles, mostly due 

to the inefficient production and use of fertilizers, leads to eutrophication problems that affect 
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the aquatic food chains,5 whereas the remaining accessible reserves of clean phosphate rock 

could run out as soon as 50 years from now.6 Although N is an abundant element in the 

atmosphere, the synthetic production of N-based fertilizers is an energy intensive process.7 

Hence, the substitution of the N recovered from waste for N-fertilizers could potentially 

contribute to climate change mitigation.  

 

Despite the benefits that a circular economy of nutrients offers, without policies to support the 

circularity of resources, this is not likely to become the priority of the stakeholders involved in 

waste management. One of the local resources that has more influence on the configuration of 

integrated waste management systems is land. Moreover, the ecosystem around the area that 

has been used as a landfill is severely degraded and the site has very limited applications. 

Although landfills can never be completely avoided,8 a well-designed CIWMS should minimize 

their use.  

 

This discussion is of interest for the region of Cantabria, located in the northern coast of Spain, 

since the government is studying the possibility of expanding the existing landfill to guarantee 

its lifespan. The municipal organic waste generated in Cantabria is sorted out from the inorganic 

fraction of mixed household waste and composted at a mechanical-biological treatment facility. 

The agricultural application of the resulting bio-stabilized material entails certain environmental 

risks associated with the transfer of heavy metals and organic pollutants to the soil.9 After the 

application of Directive 2008/98/EC,10 which was transposed into the Spanish Law 22/2011 

about waste and polluted soil,11 a distinction between the bio-stabilized material and the 

compost generated from the source-separated organic waste is made; the former cannot  be 

applied to land. However, the Cantabrian waste managers were granted an authorization to 

continue with this practice.12 Its expiration in early 2018 poses the unanswered question of how 

to manage the organic waste generated in Cantabria.  

 

The objective of this work is twofold: i) to propose a methodological framework to address some 

of the sustainability challenges related to the management of organic waste, and ii) to assist 

decision-makers in selecting the optimal configuration of a CIWMS that aims at valorizing the 

organic waste generated yearly in Cantabrian households. The optimal configuration of the 

system is defined as the combination of nutrient and energy recovery technologies that 

minimize these three objective functions: climate change impacts, land use and consumption of 

raw materials.  
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The potential of systems engineering to establish a connection between resource and waste is 

recognized in the literature.13-15 However, most of the studies that seek to optimize waste 

management systems only consider environmental criteria.16-20 The novelty of this research is 

that the problem is also approached from the perspective of the minimization of the 

consumption of natural resources. To the best of the authors’ knowledge, waste management 

has never been analyzed from the viewpoint of a CIWMS that includes within its boundaries the 

upstream processes responsible for the delivery of waste and the transformation of the 

recovered waste components. 

 

The chapter is structured as follows. First, the system under study is described. Then, the 

methodological approach is defined, and the hypothesis regarding the life cycle model and the 

problem formulation are provided.  Finally, the results are presented and discussed. 

 

 

SYSTEM DESCRIPTION 
 

The superstructure shown in Figure 3.2.1 accounts for the alternative technologies to handle 

organic waste within the studied CIWMS. The unit processes whose input flow is a decision 

variable have been shaded in green.  The solution to the optimization problem will determine 

the flows of organic waste that must be sent to each unit process to achieve optimal results. The 

CIWMS described in Figure 3.2.1 also includes the agricultural application of the products 

recovered from organic waste, and the remaining Cantabrian food production and consumption 

subsystem, responsible for the generation of organic waste. The dotted line in Figure 3.2.1 

represents the boundary that separates the CIWMS from the environment. They are connected 

through the consumption of natural resources and the emission of environmental burdens of 

the system, which have not been shown in Figure 3.2.1 because of their large number. 

 

Over half of the organic waste generated in Cantabria is food waste (see waste composition in 

Appendix A of the Supporting Information). It ends up in the Cantabrian bins mixed with other 

organic materials (yard waste and wood) and inorganic residues. The CIWMS comprises two 

waste collection systems: commingled waste and source separated organic waste (SS-OW).  

 

The organic waste recovered from the mixed waste stream (mix-OW) is separated from the 

inorganic materials via trommel screen. Ferrous and non-ferrours metals are previously sorted 

from the mixed waste stream with magnetic and Eddy current separators respectively. The  
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Figure 3.2.1. System boundaries and superstructure 
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processing of the metals and the rest of the inorganic materials is outside the scope of this study. 

The SS-OW does not require any pretreatment, except for the fraction that is subjected to 

anaerobic digestion,21-25 which requires a trommel screen to remove the inorganic materials and 

avoid the transfer of toxic elements from the digestate to the soil. The composting technologies 

do not require any specific pretreatment, because the rejects are screened after the final curing 

or maturation phase. 

 

Two types of composting technologies were studied: enclosed windrow and tunnel composting. 

Both technologies count with a biofilter to treat the gases and a turner that agitates the 

feedstock to ensure its aerobic degradation.  

 

The modeled anaerobic digestion process was based on a wet one-stage thermophilic anaerobic 

digestor. The generated biogas is combusted to produce electricity, and the digestate is 

dewatered through a screw press. The nutrients in the resulting liquor can be recovered via 

ammonia stripping and absorption (as ammonium sulfate) or struvite precipitation. 

Alternatively, the liquor may be sent to an existing wastewater treatment plant for sewage 

water, which can also receive the residual liquid from the above-mentioned unit processes.   

 

The organic waste can also be incinerated or disposed of in a non-hazardous landfill, along with 

the rejects of the composting processes and the organic waste rejected at the pretreatment 

stage of the anaerobic digestion. Incineration is modeled as a grate furnace with wet flue gas 

cleaning, SNCR and activated carbon to treat the flue gas. The released energy is sold as 

electricity. The fly ash undergoes a solidification/stabilization process with cement and water 

prior to its disposal in a mono-landfill, whereas the bottom ash is disposed of in the non-

hazardous landfill after the removal of metals with magnetic and Eddy current separators. The 

landfill has systems for leachate collection and treatment and biogas combustion and treatment 

for power generation.  

 

The products generated from the organic waste (compost, digestate, struvite and ammonium 

sulfate) are applied to land to grow corn. This cereal was selected because it is the main fodder 

crop in Cantabria.26 The nutrients recovered from the organic waste are not enough to fertilize 

the land available in Cantabria for corn production. Hence, the use of industrial fertilizers is 

imperative. However, as the circularity of nutrients increases, the need for industrial fertilizers 

decreases.  
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The produced corn enters the food production and consumption subsystem, which accounts for 

all the food commodities. It is mainly used as forage for livestock, but it may also be processed 

by the food industry or directly sold to consumers.  

 

 

METHODS 
 

Once the superstructure of the system and its boundaries were established, a mass balance 

model was developed in GAMS 24.7.1. Figure 3.2.2 provides an overview of the sequence of 

methodological steps taken. 

 

The Life Cycle Assessment (LCA) methodology was followed to account for the consumption of 

natural resources and the emission of environmental burdens of the system. An individual LCA 

was carried out for each unit process, and the results were exported to GAMS as model 

parameters. The EASETECH (Environmental Assessment System for Environmental 

Technologies) 2.3.6 software27 enabled i) obtaining LCA results for the unit processes concerning 

the treatment of solid organic waste and the land application subsystem, which are  dependent 

on the waste composition, and ii) performing a material flow analysis (MFA) of the system. 

Appendix B compiles the parameters and assumptions made, including the data taken from the 

literature to model the trommel separation,12,28,29 anaerobic digestion,30,31 struvite 

precipitation,32,33 ammonia stripping and absorption34 and transport35 unit processes.  

 

The DNDC (Denitrification-Decomposition) software models the C and N biogeochemical cycles 

in agricultural ecosystems.36 DNDC 9.5 was used to predict corn yield, C sequestration, nitrate 

leaching losses and emissions of C and N gases associated with corn production and the 

application of the fertilizing products to land. These data were subsequently introduced in 

EASETECH, to be translated into environmental impacts. More information about the modeling 

procedure for these subsystems can be found in Appendix C, which includes the DNDC input 

parameters taken from the literature.37-40 

 

Modeling in detail the Cantabrian food production and consumption subsystem is outside the 

scope of this work. It was described with the data provided by Ivanova et al.41 in their study on 

the environmental footprints of European regions.42  
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Figure 3.2.2. Simplified methodological steps  

 

 

LIFE CYCLE MODEL  
 

The goal of a CIWMS is not waste treatment, but waste valorization through the recirculation of 

the waste components to the upstream subsystems. Thus, the primary function of the studied 

system is land fertilization (which is achieved by means of the combined application of industrial 

fertilizers and the products obtained from the valorization of organic waste), whereas the 

secondary system function is energy generation. The selected functional unit to perform the LCA 

of the system is the area available to grow corn in Cantabria (4810 ha).43 

 

The direct substitution method is applied by expanding the system boundaries to include the 

generation of electricity from the Spanish grid mix. The Spanish legislation prioritizes electricity 

from renewable resources over electricity derived from fossil fuels. Although the biogas 

produced at landfills and anaerobic digestion facilities is considered a renewable energy source, 

the electricity generated from waste incineration does not have priority access to the grid.44 

Nonetheless, foreseeing the consequences of connecting another power source to the grid is 

outside the scope of the study, whose modeling framework is based on an attributional 

approach. Hence, a 100% substitution ratio was assumed.  

 

The model applied to characterize the impact of each emission was the hierarchical 100-year 

perspective of ReCiPe 1.11. The results of the global warming impact category strongly rely on 

the hypothesis that only the biogenic C present in animal and vegetable food waste is considered 

neutral. Neutrality implies that the CO2 that is withdrawn from the atmosphere during 

photosynthesis is accounted for as negative CO2 in the life cycle inventory. Since the upstream 
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processes concerning the production of other materials present in the organic waste, such as 

paper, were not modeled, it is not correct to consider the environmental benefits associated 

with the life cycle stage involved in the capture of CO2 by biomass, while the environmental 

impacts of the other life cycle stages of these materials are not quantified.  

 

One of the main limitations of the proposed model is that the life cycle impacts related to capital 

goods were not considered. The study performed by Brogaard and Christensen45 concluded that, 

although capital goods should always be included in the LCA modeling of waste management, 

their contribution to the results of the global warming impact category may be negligible.  

 

 

PROBLEM FORMULATION  
 

A Mixed Integer Linear Programming problem was formulated for the optimization of the 

material flows that enter each unit process in Figure 3.2.1, according to the following indicators 

that were considered as objective functions to be minimized:  

- The global warming impacts of the system (GW).  

- The consumption of non-renewable raw materials required for the operation of the system 

(NR-RM). This definition excludes the raw materials used for energy production, such as 

coal.   

- The landfill area where household organic waste and the rejects and ashes generated from 

the management of organic waste are disposed of (LFA).  

 

For the set i of indicators and the set j of unit processes, the objective functions (𝑂𝐹𝑖) were 

calculated multiplying the amount of waste that each unit process handles (𝑊𝑗) by the 

indicators (𝑆𝑖𝑗) related to the treatment of 1 metric ton of waste by each unit process, as shown 

in Equation 3.2.1. 

𝑂𝐹𝑖 = ∑ 𝑊𝑗 · 𝑆𝑖𝑗

𝑛

𝑗=1

 (Equation 3.2.1) 

 

The problem is subject to these restrictions: 

- The maximum amount of biodegradable waste sent to landfill. Directive 1999/31/EC46 

establishes that biodegradable municipal waste going to landfills must be reduced to 35% 

of the total amount produced in 1995. 
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- The minimum amount of organic waste recycled. One of the objectives set by the 

Cantabrian waste management plan is to recycle 50% of organic waste before 2020.12 

- A waste stream of a given composition cannot be split between tunnel and windrow 

composting.  

- SS-OW and mix-OW cannot be mixed in the composting process. 

 

The Ɛ-constraint method was applied for the multi-objective optimization of the problem.47  

 

 

PERFORMANCE INDICATORS 
 

The fraction of the N present in waste that is recovered and assimilated by corn could be an 

appropriate indicator to measure the circularity of N within the system. However, its value does 

not only rely on the efficiency of the technological system, but also on the ability of plants to 

capture nutrients from the soil. Thus, a circularity indicator based solely on parameters under 

the control of the decision-makers was developed: the fraction of N that is recovered from waste 

and applied to land with respect to the N present in the collected waste. It is hereafter referred 

to as N recovery, and it is expressed as kg of recovered N per kg of N in waste.  This indicator 

was not selected as an objective function because the consequences of increasing the circularity 

of N cannot be foreseen a priori; it might not lead to a minimization of the environmental 

impacts and the consumption of natural resources.  

 

Another indicator was developed to compare the circularity of N to the wasted N within the 

system: the efficiency of the corn N uptake (η). It was defined as the fraction of N that is 

absorbed by corn with respect to the available N for corn production within the system, which 

is the sum of the N that comes into the system via fertilizers intended for corn production, and 

the N present in the collected waste. The amount of available N that is not taken up by corn (1 

– η times the available N) is lost throughout the system. These losses can be stored in soil or 

released to the environment as gas emissions or leachate. The fractions of N that end up in each 

sink depend on the type of product that is applied to soil, as shown in Appendix C. The N losses 

of the food production and consumption subsystem, which are not quantified, may also come 

into other systems as sewage sludge or industrial waste.  

 

 



Resource use and carbon emissions 

109 
 

DEFINITION OF SCENARIOS 
 

The collection of SS-OW requires the active participation of citizens, which is the reason it is hard 

to estimate the extension of its implantation. It is assumed that the composition of the SS-OW 

is 98% organic matter and 2% impurities.48 Different source separation rates (SSRs) were 

assessed: 20%, 50% and 80%. For each studied SSR, a pre-Directive and a post-Directive scenario 

(before and after the expiration of the Cantabrian authorization to apply to land the compost 

produced from the mix-OW) were analyzed.  

 

The expiration of this authorization implies that only SS-OW can be recycled. Thus, the recycling 

objective of 50% of the organic waste will not be achieved unless at least a 50% SSR is 

implemented in the post-Directive scenarios. Consequently, only two of the six studied scenarios 

comply with the legislation and all the restrictions of the model: the post-Directive scenarios 

with 50% and 80% SSRs.  

 

   

RESULTS AND DISCUSSION 
 

The GW and the consumption of NR-RM of the food production and consumption subsystem 

(excluding corn production) are assumed to be constant (1.56 million metric tons of CO2-eq and 

0.69 million metric tons of NR-RM, according to the references)41,42 regardless of the value of 

the optimized variables. Their values are three orders of magnitude larger than those of the 

remaining system. Hence, the results presented in this section do not include the values 

associated with the food production and consumption subsystem. 

 

Figure 3.2.3 shows the normalized values of the objective functions obtained as a result of the 

three single-objective optimizations performed for each scenario. The minimal values of each 

objective function are obtained for the highest SSR, because the flows of waste that the system 

manages are smaller compared to those of lower SSRs, on account of the fewer inorganic 

materials that the waste streams contain. 

 

The minimal GW is achieved at the expense of maximizing the consumption of NR-RM and the 

LFA. In the pre-Directive scenarios the minimization of the consumption of NR-RM requires an 

increase in the LFA and vice versa, whereas in the post-Directive scenarios the model responds 
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similarly to the minimization of the NR-RM and the LFA. These results demonstrate that it is 

pertinent to use the multi-objective optimization technique to solve the problem. 

  

Figure 3.2.4 shows the combination of technologies required for the minimization of the 

objective functions in all the scenarios, as well as the flows of solid organic waste processed by 

each of them. The flows of processed organic waste are lower for scenarios with low SSRs 

because part of the organic waste present in the mixed waste ends up in the inorganic waste 

stream after the trommel separation required for the pretreatment of mixed waste.  

 

The ranking of the unit processes according to their GW agrees with the results found in the 

literature for organic waste,49-52 although the specific values of their carbon footprints differ 

among publications, given that they are highly dependent on the assumptions made and the 

waste composition.53 Regarding the management of the liquid digestate, the ammonia stripping 

and absorption unit was selected as the best alternative to minimize the GW of the system.  

 

 

Figure 3.2.3. Normalized results for the minimization of the objective functions 

 

As Figure 3.2.4 shows, the shift from pre-Directive to post-Directive scenarios is mostly reflected 

on the fact that, since the mix-OW cannot be composted, it is incinerated instead. Figure 3.2.4 

also depicts the performance indicators of the studied scenarios. Since the production of 

fertilizers is very energy intensive, the system configuration that minimizes its GW achieves the 

highest N recovery rates, which leads to a decrease in the reliance on industrial fertilizers.  

 

The scenarios with the lowest N recovery rates, which rely on incineration to a greater extent, 

minimize the consumption of NR-RM because of the consumption of NR-RM that is avoided as 

a result of the electricity from the grid mix that is assumed to be displaced.  
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Figure 3.2.4. Mass flows of organic waste to each unit process and performance indicators 
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The N recovery and the η increase as the SSR increases, although these parameters are not 

directly proportional. As the simplified N flow analysis illustrated in Figure 3.2.5 proves, the 

scenario with the highest N recovery is not necessarily the scenario with the highest η; i.e., the 

N losses throughout the system may be larger for the scenario with the highest N recovery. This 

happens because, as noted by Yoshida et al.54 it is easier for crops to absorb N from fertilizers 

than from the products derived from organic waste. 

 

The Pareto optimal solutions for each studied scenario are shown in Figure 3.2.6. Each Pareto 

point corresponds to a given system configuration. The system configurations corresponding to 

the points with the minimal values of the objective functions are those depicted in Figure 3.2.4.  

 

It can be seen in Figure 3.2.6 that, as the SSRs increase, the range of values of the objective 

functions increases too; i.e., the minimal values of the objective functions decrease as the SSRs 

increase, but this improvement is accomplished increasing the values of the other objective 

functions associated to those Pareto points.  

 

Figure 3.2.5. N flow analysis of different scenarios (metric ton) 
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Figure 3.2.6. Pareto optimal solutions 
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The consumption of NR-RM is lower in the post-Directive scenarios because the fraction of 

organic waste that is incinerated is larger than in the pre-Directive scenarios, and thus, the 

avoided consumption of NR-RM, is also larger.  

 

The worse performance of the post-Directive scenarios in terms of the values of the GW and the 

LFA can be attributed to the fewer possible system configurations available in comparison to the 

pre-Directive scenarios, because of the additional restrictions of the model. 

 

 

Research relevance and shortcomings 

This research demonstrates that the proposed methodological approach provides a valuable 

framework for the consideration of circularity and sustainability criteria in the design of CIWMSs. 

Furthermore, it provides a basis to further investigate the consequences of nutrient looping.  

 

Multiple optimal system configurations for the management of organic waste in Cantabria were 

presented; it is up to the regional decision-makers to weigh the importance of the identified 

objective functions and select the desired range of operation values. Although the retrofit of the 

existing Cantabrian facilities is essential to abide by the current legislation, it is imperative that 

future work includes an economic evaluation and an assessment of the uncertainty of the 

results. Furthermore, other waste fractions should be integrated within the developed model so 

that the restrictions related to the capacity of the unit processes that are not exclusive of organic 

waste can be taken into account. Alternative system configurations that contemplate new 

applications for bio-stabilized materials are also worth exploring.  

 

Beyond the applicability of the results to solve a real problem, the interest of the research 

resides in the conclusions about the connection between the circularity of resources and other 

sustainability aspects that can be drawn. The complete circularity of the nutrient flows within 

any CIWMS is infeasible, because it does not only depend on the efficiency of the recovery 

technologies, but also on the ability of plants to capture nutrients. Since crops absorb N from 

fertilizers more efficiently than from the products recovered from organic waste, a system 

configuration with a high N circularity might have larger N losses (and consequently, higher 

eutrophication impacts) than a system that consumes more industrial fertilizers.  

 



Resource use and carbon emissions 

115 
 

Moreover, in this case study the minimization of the consumption of the NR-RM leads to the 

system configuration with the lowest N recovery rates. Hence, this work proves that closing the 

material loops to a greater extent does not necessarily go hand in hand with a decrease in the 

overall consumption of resources or the emission of environmental burdens; such claims must 

be supported by a thorough analysis.”  
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CHAPTER 3.3 

CIRCULARITY AND ENVIRONMENTAL ASSESSMENT 

 

"If you cannot measure it, you cannot improve it." 

 

Lord Kelvin, British physicist and mathematician (1824-1907) 

 

 

 

This subsection contains the following paper:  

 

Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Trade-offs between nutrient circularity and 

environmental impacts in the management of organic waste. Environ. Sci. Technol.  2018, 

52(19), 10923-10933; DOI: 10.1021/acs.est.8b01590.  

 

 

“In the context of a boom of initiatives promoting a circular economy within the European 

Union,1-3 it is the responsibility of researchers to provide policy-makers with the data and tools 

needed to make informed decisions. Measuring the circularity of resources is key to assessing 

the performance of a circular economy. 

 

Several approaches have been presented to tackle this challenge. One study defined a global 

circularity indicator as the share of material inputs into the global economy that are cycled, 

subsequently estimating that the global economy was 9.1% circular in 2015.4 Although this 

indicator provides insight into the global materials metabolism, policy implications cannot be 

directly derived from it. Instead, an indicator that can be applied to systems design and 

operation is of more interest to the policy makers.  

 

Some authors suggest that circularity indicators should capture how the differences between 

the physico-chemical properties of the recovered waste components and the primary resources 

they displace affect their substitution ratio.4-7 Accordingly, Moriguchi5 pointed out that the 

reduction in the requirement for primary resources could be a good indicator of circularity. 
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However, this does not necessarily entail that more waste components are being recovered; it 

could be the consequence of an increase in the eco-efficiency of the system.  

 

Haupt et al.6 suggested that open-loop and closed-loop recycling rates that reflect the efficiency 

of the recycling processes and the type of application of the recycled components in their next 

life cycle stage should be used as performance indicators for a circular economy.  

The duration of material retention within a system has also been recommended as an indicator 

of circularity.7 Following this line of thinking, the Ellen MacArthur Foundation proposed the 

lifetime of a product as one of the parameters used to calculate its circularity indicator.8 

Although this indicator is useful for companies, it does not provide information about the 

circularity of the components of the product, since it does not consider their entire life cycle.   

 

The described indicators do not correlate with the quality of the recovered components and 

they do not reveal how much of the recovered components are consumed again; i.e., to what 

extent the loop is closed.   

 

The methodology proposed by Cobo et al.,9 which enables us to track waste components within 

a Circular Integrated Waste Management System (CIWMS), might contribute to overcome these 

limitations, since CIWMSs encompass not only waste management, but also the processing and 

consumption of the components recovered from waste and the external raw materials that 

eventually become waste. 

 

This framework is applied to the study of the management of municipal organic waste in the 

region of Cantabria, in the north of Spain. The organic waste generated in Cantabria (83.5·103 

metric ton in 2014) is collected with other discarded household inorganic materials. The organic 

waste that is sorted out at the regional mechanical-biological treatment facility is subjected to 

a windrow composting process. Nonetheless, Directive 2008/98/EC10 does not allow the land 

application of the bio-stabilized material derived from the composting of the organic waste 

separated from the mixed waste stream (mix-OW); only the organic waste that has been source 

separated (SS-OW) can be recycled. The expiration of the regional authorization that permitted 

the sale of the bio-stabilized material as compost until 201811 makes it impossible for the current 

waste management system to comply with the legal restraints. The need to retrofit the system 

represents an opportunity to implement new circularity practices. The interest of recycling lies 

in the nutrients it contains.  
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This study focuses on three essential nutrients to soil amendment: carbon (C), nitrogen (N) and 

phosphorus (P). Enhancing the circularity of these nutrients within a CIWMS a priori seems to 

be a strategy that will contribute to closing their natural biogeochemical cycles by avoiding the 

accumulation of nutrients in one of the Earth’s subsystems (atmosphere, hydrosphere, 

biosphere or lithosphere) at a rate faster than the ecosystems can sustain. Thus, the relevance 

that a circular economy of nutrients might have to global sustainability challenges should not be 

underestimated. On the one hand, the forthcoming peak P production, due to the depletion of 

the global rock phosphate reserves, threatens future food security;12 on the other, the 

anthropogenic interference with the C and N biogeochemical cycles to meet the energy and food 

demands has already caused the transgression of the estimated climate change and N cycle 

planetary boundaries within which humanity is expected to operate safely.13 

 

Since the nutrient cycles interact with each other,14 promoting the circularity of one nutrient 

might have consequences on the biogeochemical cycles of the others. For instance, increasing 

Soil Organic Carbon (SOC) stocks may exacerbate N2O emissions,15 and an increased availability 

of reactive N may lead to C sequestration because of biomass growth.16 Another counter-effect 

related to the land application of the products recovered from organic waste is the accumulation 

of surplus P in agricultural soils, because the N:P ratio in organic fertilizers is lower than the N:P 

ratio required by crops.17-19 

 

The circularity of C, N and P within a CIWMS and the main impacts associated with the emissions 

of these elements to the environment – global warming (GW), marine eutrophication (MEU) and 

freshwater eutrophication (FWE) – must be jointly analyzed. Although the recovery of nutrients 

is a subject that is drawing the attention of the scientific community,20-24 the trade-offs between 

these indicators have not been systematically explored in the literature yet. Therefore, the 

objectives of this chapter are the following:  

- To propose a circularity indicator that can be applied to any non-renewable resource and 

accounts for the extended service of the components recovered from waste. 

- To optimize the organic waste management system in the region of Cantabria, setting as 

objective functions the maximization of the circularity indicators of C, N and P, and the 

minimization of the GW, MEU and FWE impacts.  
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METHODOLOGY 
 

Material Flow Analysis (MFA), Life Cycle Assessment (LCA) and multi-objective optimization 

were applied to determine the optimal configuration of the Cantabrian CIWMS aiming at 

nutrient recovery from OW. A superstructure comprising the combinations of unit processes 

that could emerge as a result of the optimization was proposed, as shown in Figure 3.3.1. The 

unit processes that already belong to the Cantabrian waste management system are 

represented with a discontinuous line. 

 

 

Superstructure description 

The products recovered from organic waste were assumed to be applied to land to grow corn, 

the main fodder crop grown in Cantabria.25 The superstructure comprises a set j of unit 

processes for the management of organic waste and a set k of corn production unit processes. 

The unit processes that can handle the solid organic waste are wet thermophilic anaerobic 

digestion, windrow composting inside an enclosed building, composting inside a tunnel reactor, 

incineration and landfill. The ammonia stripping and absorption and the struvite precipitation 

unit processes recover nutrients from the liquid digestate produced in the anaerobic digestion, 

which only processes SS-OW after it has been pretreated.26-30 The remaining liquor is sent to a 

wastewater treatment plant. Incineration and landfill can also handle the rejects generated by 

the other unit processes. It is assumed that all the waste processing units are in the same facility. 

A detailed description of these unit processes can be found in Cobo et al.31 

 

The nutrient uptake efficiencies of corn (shown in Appendix C of the Supporting Information) 

differ for each type of applied product (bio-stabilized material, compost, digestate, struvite and 

ammonium sulfate). P is in excess with respect to the amount of N required by corn in all the 

recovered products except for ammonium sulfate. Consequently, the nutrient flows were 

modeled so that the optimal approach to corn production can be either based on one of these 

strategies or on a combination of them:   

S1) Application of the amount of recovered product needed to cover the corn N requirements. 

Unless ammonium sulfate is recovered, excess P is applied to soil, leading to FWE.  

S2) Application of the amount of recovered product needed to cover the corn P requirements. 

The N requirements are fulfilled with an industrial fertilizer (ammonium nitrate). 

S3) Application of industrial N and P fertilizers (ammonium nitrate and diammonium 

phosphate).  
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Figure 3.3.1. System boundaries and superstructure
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The alternative combinations of the corn production unit processes that can arise from the 

application of these strategies are shown in Figure 3.3.2. The N and P requirements of corn are 

defined as the amounts of these nutrients that yield the maximum average annual crop 

production that can be achieved in a 100-year timeframe with industrial N and P fertilizers. 

Assuming an 80% collection rate of the produced corn grain, it corresponds to a net production 

of 7.11 metric tons of corn grain per ha per year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2. Possible combinations of inputs to the corn production subsystem 

 

 

Data flow 

A modular LCA approach, where the LCA of the individual unit processes of the system is carried 

out,32,33 was performed. The unit processes concerning the management of solid organic waste 
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were modeled with EASETECH 2.3.6,34 which provided their environmental impacts. The nitrate 

and phosphate leachate, the emissions of CO2, N2O and NO, the amount of Dissolved Organic 

Carbon (DOC) consumed by soil microorganisms, the flows of N and P taken up by corn and the 

amount of nutrients stored in soil per hectare of cultivated corn were calculated with DNDC 

9.5.35 These results were transferred to EASETECH 2.3.6, where the environmental impacts 

associated with the land application of the recovered products and corn production were 

calculated.  

 

The results obtained with DNDC and EASETECH were exported as parameters to GAMS (General 

Algebraic Modeling System) 24.7.1, where the problem was formulated. Figure 3.3.3 clarifies 

the data flows derived from the application of this methodology. 

 

The data required to characterize the unit processes that integrate the system are compiled in 

the Supporting Information: waste composition (Appendix A), waste management unit 

processes (Appendix B) and corn production subsystem (Appendix C). 

 

Figure 3.3.3. Data flow diagram 

 

 

DEFINITION OF THE CIRCULARITY INDICATORS 
 

Figure 3.3.4 illustrates the flows of the component i of a given waste stream within a CIWMS. 

The circularity indicator of component i (𝐶𝐼𝑖) is defined as the amount of component i that 
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extends its lifetime by providing a service in the upstream processes with respect to the amount 

of that component present in the collected waste. Equation 3.3.1 shows how the 𝐶𝐼𝑖  is 

calculated for a set of n recycling and preparation for reuse processes and m production 

processes that valorize this component. 

𝐶𝐼𝑖 =
∑ ∑ 𝑅𝑖𝑗𝑘 · 𝜂𝑟𝑖𝑗

· 𝜂𝑝𝑖𝑘
𝑛
𝑗=1

𝑚
𝑘=1

𝑊𝑖  
 (Equation 3.3.1) 

 

The variables needed for the calculation of 𝐶𝐼𝑖 are these:  

- 𝑊𝑖.   Amount of component i present in the waste stream (kg).  

- 𝑅𝑖𝑗𝑘. Amount of component i that enters the recycling or preparation for reuse process 

j. The subsequently recovered component i enters the production process k (kg).  

- 𝜂𝑟𝑖𝑗
. Efficiency of the recycling or preparation for reuse process j for component i (kg of 

component i recovered per kg of component i that enters process j). 

- 𝜂𝑝𝑖𝑘
. Efficiency of the production process k at transforming or incorporating the 

recovered component i into a product that will deliver a service in the consumption 

subsystem (kg of component i transformed per kg of component i that enters process 

k). 

 

Figure 3.3.4. Simplified CIWMS 

 

𝐶𝐼𝑖  is dimensionless, its value can range between 0 and 1. A value of 1 implies that the total 

amount of component i that was discarded is recovered and reprocessed to enter the 

consumption subsystem, indicating that there are not any losses of component i in the recycling, 

preparation for reuse and upstream processes. If 𝐶𝐼𝑖 = 0, component i is not recovered at all, 

but incinerated or landfilled instead.   
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The proposed indicator indirectly accounts for the quality of the recovered components by 

quantifying how much of the recovered component is consumed. This indicator does not 

account per se for the degradation of the waste components after successive cycles, but if the 

selected time horizon of the study is wide enough, a dynamic analysis should show how for a 

sustained service demand, the external supply of component i (∑ 𝐸𝑖𝑘
𝑚
𝑘=1 ) must increase due to 

the degradation of the recovered component.  

 

 

Nutrient circularity indicators  

The circularity indicators of N and P (𝐶𝐼𝑁 and 𝐶𝐼𝑃) were defined as the amount of nutrient i that 

is recycled, applied to land and taken up  by corn with respect to the amount of nutrient i present 

in the collected OW.  

 

The same definition cannot be applied to the C circularity indicator (𝐶𝐼𝐶), since the C captured 

by vegetation in the photosynthesis process does not come from the soil but from the 

atmosphere.  

 

Besides improving the water-holding capacity of soil and its ability to retain cations in a plant 

available form, contributing to C sequestration and promoting the formation of soil 

structure,36,37 the purpose of applying a source of C to land is to feed the soil microorganisms.  

When these microorganisms decompose the SOC, the decomposed C is partially lost as CO2, and 

DOC is produced as an intermediate that can be consumed by the soil microorganisms.38 These 

microbes are also responsible for the N fixation, ammonification and nitrification processes that 

release N compounds that plants can assimilate; they are essential for crop production.  

 

Consequently, a different definition was proposed for 𝐶𝐼𝐶. It was defined as the ratio between 

the mass of DOC that is recycled, applied to land and consumed by microbes with respect to the 

amount of C present in the collected waste. 

 

The values of 𝜂𝑟𝑖𝑗
 and 𝜂𝑝𝑖𝑘

 required for the calculation of the circularity indicators are compiled 

in Appendix D of the Supporting Information.  
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PROBLEM FORMULATION 
 

A single-period Mixed Integer Linear Programming problem was formulated for the optimization 

of the decision variables; i.e., the incoming material flows (waste and recovered products) to 

the green shaded unit processes in Figure 3.3.1. The problem was optimized according to these 

objective functions, where 𝑥 and 𝑦 represent the continuous and binary variables respectively: 

the circularity indicators of the studied nutrients, which must be maximized (𝐶𝐼𝐶(𝑥, 𝑦),

𝐶𝐼𝑁(𝑥, 𝑦), and 𝐶𝐼𝑃(𝑥, 𝑦)), and the selected environmental impacts of the system to be 

minimized (𝐺𝑊(𝑥, 𝑦), 𝑀𝐸𝑈(𝑥, 𝑦) and 𝐹𝑊𝐸(𝑥, 𝑦)). 

 

After verifying the trade-offs between the objective functions, a multi-objective problem was 

formulated as follows:  

min 𝑈(𝑥, 𝑦) = 

= {𝐺𝑊(𝑥, 𝑦), 𝑀𝐸𝑈(𝑥, 𝑦), −𝐶𝐼𝑁(𝑥, 𝑦), −𝐶𝐼𝑃(𝑥, 𝑦)}  𝑠. 𝑡. 

 

The equations that describe the behavior of the system (ℎ(𝑥, 𝑦) = 0) are based on the mass 

balances of the unit processes. The problem is subject to these restrictions (𝑔(𝑥, 𝑦) ≤ 0): 

- The area fertilized with the recovered products cannot exceed the available area to grow 

corn in Cantabria (4810 ha).39  

- The amount of biodegradable waste sent to landfill must be lower than 35% of the domestic 

waste generated in 1995 (170,168 metric ton),11 as established by Directive 1999/31/EC.40 

- Windrow and tunnel composting cannot accept waste streams with the same composition.  

- SS-OW and mix-OW cannot be mixed in any composting processes. 

 

The GAMS model comprises a total of 844 equations, 19 inequations, 817 continuous variables 

and 28 discrete variables. The main input parameters to the models are the source separation 

rate (SSR), the total area available for corn production and the amount of organic waste 

generated yearly in Cantabria.  

 

Different waste collection systems for SS-OW and commingled waste were modeled. It was 

considered that the composition of SS-OW is 98% organic waste and 2% impurities, which is 

consistent with documented source separation experiences.41 Two scenarios (neglecting and 

considering the current legislative framework) were analyzed:  

 

ℎ𝑎(𝑥, 𝑦) = 0       𝑎 = 1,2, … , 𝑣 
𝑔𝑏(𝑥, 𝑦) ≤ 0       𝑏 = 1,2, … , 𝑧 
𝑥 ∈ ℜ𝑛 
𝑦 ∈ {0, 1}𝑚 
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- Pre-Directive scenario. Mix-OW can be recycled. The SSR is 0% and no recycling target is 

set. The red arrows in Figure 3.3.1 represent the flows of mix-OW that can only be 

composted in this scenario.  

- Post-Directive scenario. Mix-OW cannot be recycled. To comply with the 50% organic waste 

recycling target established by the Cantabrian waste management plan11 for 2020, a 50% 

SSR is set, and an additional restriction is added to the model to ensure that 50% of the 

collected organic waste is composted or anaerobically digested. The blue arrows in Figure 

3.3.1 represent the flows of SS-OW that are specific to this scenario. 

 

The multi-objective optimization problem was solved with the CPLEX solver and the Ɛ-constraint 

method.42  

 

 

MODELING APPROACH AND ASSUMPTIONS 
 

The boundary that separates the studied CIWMS from the ecosphere (which provides the 

natural resources consumed by the system and a sink for the generated environmental burdens) 

and the rest of the technosphere is depicted in Figure 3.3.1. 

 

Although crops are managed by farmers under controlled conditions in the technosphere, they 

produce natural biotic resources. Hence, the boundary between technosphere and ecosphere is 

difficult to identify for agricultural soils.43 One of the strategies recommended by Notarnicola et 

al.44 to overcome the limitations of considering agricultural soils as part of the technosphere, is 

to include the impacts of crop production on soil.  In this study the land application of the 

recovered products and the production of corn were modeled as a UP. Although the system was 

optimized for 1 year of operation, the selected 100-year time horizon enabled us to account for 

the loss of soil quality due to soil nutrient depletion caused by the production of consecutive 

annual crops. The average annual corn production and emission rates in that timeframe were 

considered.  

 

Corn enters the food production and consumption subsystem, which comprises the upstream 

processes that transform corn and the other food commodities consumed in Cantabria into OW. 

It composes the background subsystem of the CIWMS because its configuration does not affect 

the results of the study;45 only the flows and the composition of its inputs and outputs (corn and 

waste) that connect it to other unit processes are calculated.  
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According to Cobo et al.,9 the primary function of CIWMSs is to recover waste components so 

that their service life in the upstream processes can be extended. In this case study the elements 

recovered from organic waste are used for land fertilization and soil conditioning. Since the 

studied CIWMS encompasses the entire corn production of the region, the functional unit 

selected to perform the LCA of the system is defined as the area available to grow corn in 

Cantabria (4810 ha).39 

 

An attributional LCA approach was applied. The electricity generated at incineration, anaerobic 

digestion and landfill is considered the secondary system function. The direct substitution 

method was applied by expanding the system boundaries to include the generation of electricity 

from the Spanish grid mix. A 100% substitution ratio was assumed.  

 

The characterization factors of each emission were calculated with the hierarchical 100-year 

perspective of the ReCiPe 1.11 method. The assumptions made by the DNDC model about the 

distribution of nutrients in the environment can be found in Li et al.46 Following the rationale 

explained by Cobo et al.,9,31 only the biogenic C present in animal and vegetable food waste 

(which can i) leach into the water, ii) be emitted to the atmosphere, or iii) be stored either in the 

landfill or the soil as a result of the land application of the recovered products, as shown in 

Appendix C of the Supporting Information) was considered neutral. The CO2 derived from the 

decomposition of SOC was also quantified as fossil C. 

 

Regarding the limitations of the model, the environmental impacts related to capital goods were 

excluded from the analysis. Moreover, this work assumes that all the P is in mineral form and 

accessible for plants. Studies have shown that most of the P in the products recovered from 

organic waste is in mineral form, but not all of it.47-50  

 

On the contrary, the mineralization of organic N is quantified by the DNDC biogeochemical 

model. The organic/inorganic N ratio was assumed to be 93/7 for the compost and bio-stabilized 

material,50 and 62.96/37.04 for the solid digestate.51  

 

The DNDC model assumes a 60% microbial efficiency to calculate the amount of C incorporated 

into microbial biomass in amended soils, defined as the ratio of C assimilated into microbial 

biomass to residue C released by decomposition.46 
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RESULTS AND DISCUSSION 
 

The results of the problem optimization determine the system configuration; i.e., the unit 

processes that the system comprises and their incoming flows of waste and recovered products. 

The values of the objective functions and the decision variables that optimize each objective 

function for the two studied scenarios are compiled in Figure 3.3.5. Figure 3.3.5A shows the 

optimal flows of organic waste and liquid digestate handled by the j unit processes. The optimal 

flows of the recovered products into the k corn production unit processes (Figure 3.3.5B) are 

shown along with the area fertilized with the recovered products. The contribution of the unit 

processes to the environmental impacts of the optimal  system configurations of each scenario 

are depicted in Figure 3.3.6. 

 

The flows of organic waste shown in Figure 3.3.5A are lower in the Pre-Directive scenario 

because part of the organic waste present in the mixed waste ends up in the inorganic waste 

stream after the trommel separation required for the pretreatment of mixed waste.  

 

There are several system configurations that lead to the maximization of a given circularity 

indicator, because the unit processes that manage the rejects do not affect the corn production 

subsystem, and thus they do not contribute to closing the nutrient loops. By analogy, in the Post-

Directive scenario where mix-OW cannot be recycled, the selection of any unit process for its 

management will result in the same circularity indicators. This is the reason the maximization of 

the circularity indicators in Figure 3.3.5A only shows the unit processes that contribute to 

recirculate nutrients.  

 

The amount of P present in the mix-OW collected in the Pre-Directive scenario is more than 

enough to cover the P requirements of the corn produced in Cantabria under the hypothesis of 

this work. However, the N present in organic waste cannot fertilize all the land available for corn 

production in any of the studied scenarios. Consequently, strategies S1 and S2 must be 

combined in the Pre-Directive scenario to maximize 𝐶𝐼𝐶 and 𝐶𝐼𝑁.  As Figure 3.3.5B shows, more 

area is fertilized with the recovered products in the Pre-Directive scenario because of the higher 

amount of organic waste that can be recycled, which makes farmers less dependent on industrial 

fertilizers (strategy S3). Oppositely, the optimization of all the objective functions are partially 

based on strategy S3 in the Post-Directive scenario.    
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The optimization of some objective functions provides duplicate or very similar results (FWE and 

𝐶𝐼𝑃 on the one hand, 𝐶𝐼𝐶  and different circularity indicators in each scenario on the other). To 

avoid redundant results, FWE and 𝐶𝐼𝐶  were not considered in the next part of the study, focused 

on a multi-objective optimization of the other four objective functions.  

 

 

Figure 3.3.5. Values of the objective functions and decision variables for the optimization of the Pre-
Directive and Post-Directive scenarios 
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Figure 3.3.6. Contribution of the unit processes to the environmental impacts  

in the Pre-Directive and Post-Directive scenarios   
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Figure 3.3.7 shows the Pareto fronts of the two scenarios, where each point is better than the 

others in at least one of the values of the objective functions. GW and MEU are normalized with 

respect to the maximum value of the two scenarios.  

 

As the results of the DNDC simulations show, if industrial fertilizers, ammonium sulfate or 

struvite (inorganic fertilizers) are exclusively applied to soil, the corn Nitrogen Use Efficiency 

(defined as the fraction of N input harvested as product)52 decays over time because of the 

depletion of SOC. The opposite occurs when bio-stabilized material, compost and digestate 

(organic fertilizers) are applied, due to their C rich composition. However, the mean Nitrogen 

Use Efficiency obtained for the 100-year time horizon if inorganic fertilizers are applied to land 

is higher than the Nitrogen Use Efficiency achieved after the soil application of the organic 

fertilzers, because the share of plant available inorganic N in the latter is low. This implies that 

more N leaches when the organic fertilizers with a high organic N content are applied to land. 

These results are supported by previous studies that highlight that the N leaching rate of organic 

fertilzers is higher than that of inorganic fertilizers.53,54 

 

As Figures 3.3.6B and 3.3.6C indicate, the corn production subsystem is the main contributor to 

the eutrophication impacts. In both scenarios the MEU increase with the 𝐶𝐼𝑁, being the values 

of these two objective functions higher in the Post-Directive scenario. A similar correlation 

cannot be established between 𝐶𝐼𝑃 and FWE because, unlike N, which tends to leach as nitrate 

when it is applied to soil, P is strongly sorbed onto soil particles; in fact its major environmental 

losses can be attributed to erosion.55 

 

The Pre-Directive scenario, where the minimum amount of organic waste that must be recycled 

is not restricted, relies on incineration and the application of industrial fertilizers. Figure 3.3.6A 

shows that, although the production of  industrial fertilizers is very energy intensive,56 the 

carbon footprint associated with their land application is lower than that of the organic 

fertilizers, a fraction of which degrades to CO2 after their land application.  Thus, as Figure 3.3.7A 

shows, in the Pre-Directive scenario as 𝐶𝐼𝑁 increases, the CO2-eq emissions increase too. 

 

Anaerobic digestion is the unit process that handles organic waste with the lowest carbon 

footprint. Hence, the minimum carbon footprint achieved at the Post-Directive scenario, the 

only one where SS-OW can be subjected to anaerobic digestion, is lower than in the Pre-

Directive scenario. Moreover, since the N recycling efficiency of anaerobic digestion and the 

liquid digestate unit processes is higher than that of the other unit processes, the land 
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application of the products derived from anaerobic digestion also maximizes 𝐶𝐼𝑁. Therefore, as 

shown in Figure 3.3.7B, in the Post-Directive scenario as the 𝐶𝐼𝑁 increases, the carbon footprint 

of the system decreases.   

 

Regarding 𝐶𝐼𝑃, it shows a similar trend to the 𝐶𝐼𝑁 in the Pre-Directive scenario, whereas no clear 

trend can be appreciated in the Post-Directive scenario, where the maximimization of 𝐶𝐼𝑃 is 

based on the application of compost to cover the soil P requirements, and the maximization of  

𝐶𝐼𝑁 on the application of ammonium sulfate and solid digestate to fulfill the soil N needs, which 

leads to the accumulation of P in soil. The values of 𝐶𝐼𝑃 are lower in the Post-Directive scenario 

because of the restriction that prevents mix-OW from being recycled.  

 

A sensitivity analysis was performed to ascertain the consequences that a 20% decrease in the 

values of two key parameters have on the results. The Spanish legislation prioritizes electricity 

from the biogas produced at landfills and anaerobic digestion facilities over other sources of 

non-renewable electricity. Notwithstanding, the electricity generated from waste incineration 

does not have priority access to the grid.57 The sensitivity analysis considered that 80% of the 

electricity generated from the incineration of organic waste replaced the electricity from the 

Spanish grid mix. On the other hand, it is hard to estimate the composition of SS-OW, since pilot 

experiments for the source separation of organic waste have not been carried out in Cantabria. 

The sensitivity analysis assumed that the fraction of organic waste in the SS-OW was 78.4%.  

 

The results of the single-objective optimization of each scenario under the conditions of the 

uncertainty analysis are compiled in Appendix E of the Supporting Information. The main 

difference in the values of the decision variables after the performance of the sensitivity analysis 

is that the FWE of incineration exceed those of landfill. Thus, landfill is selected over incineration 

when the FWE are minimized. As expected, the results of the sensitivity analysis led to slightly 

higher environmental impacts in both scenarios and lower circularity indicators in the Post-

Directive scenario.  

 

Figure 3.3.7 proves that the environmental impacts associated with increasing the circularity of 

nutrients cannot be overlooked. Whereas in the pre-Directive scenario there is a clear opposite 

trend between the environmental impacts and the circularity of nutrients, the behavior of the 

system in the Post-Directive scenario, subject to more restrictions and with more available unit 

processes, is more complex.  
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Figure 3.3.7. Pareto points for the Pre-Directive and Post-Directive scenarios

A               B 



Chapter 3.3 

138 
 

The findings of this study suggest that increasing the SSR of organic waste leads to a reduction 

in the carbon footprint of the system. Although the results indicate that increasing the circularity 

of N has detrimental eutrophication impacts, these are highly dependent on the sensitivity of 

the receiving environment;58 thus general conclusions cannot be drawn.  

 

Before selecting a system configuration that meets the sustainability concerns and satisfies the 

interests of all the stakeholders involved in waste management and the purchase of the 

recovered products, a trade-off between the studied indicators must be identified. Moreover, 

additional impact categories that quantify the environmental impacts associated with the 

presence of heavy metals or organic pollutants in the recovered products, such as human 

toxicity or ecotoxicity, should be included in the analysis. However, the feasibility of any system 

configuration cannot be demonstrated until an economic analysis is performed.”  

 

 

  



Circularity and environmental assessment 

139 
 

REFERENCES 
 

(1) Closing the loop - An EU action plan for the Circular Economy; European Commission: 
Brussels, 2015. 
 

(2) Domenech, T.; Bahn-Walkowiak, B. Transition Towards a Resource Efficient Circular 
Economy in Europe: Policy lessons from the EU and the Member States. Ecol. Econ. 2017, 
155, 7-19.  
 

(3) Delgado-Aguilar, M.; Tarrés, Q.; Pèlach, M. À.; Mutjé, P.; Fullana-I-Palmer, P. Are 
Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products? Environ. 
Sci. Technol. 2015, 49, 12206-12213. 

 

(4) The circularity gap report. An analysis of the circular state of the global economy; Circle 
economy: Amsterdam, 2018. 
 

(5) Moriguchi, Y. Material flow indicators to measure progress toward a sound material-
cycle society. J. Mater. Cycles Waste Manage. 2007, 9, 112-120. 
 

(6) Haupt, M.; Vadenbo, C.; Hellweg, S. Do We Have the Right Performance Indicators for 
the Circular Economy? Insight into the Swiss Waste Management System. J. Ind. 
Ecol. 2017, 21, 615-627. 
 

(7) Franklin-Johnson, E.; Figge, F.; Canning, L. Resource duration as a managerial indicator 
for Circular Economy performance. J. Clean. Prod. 2016, 133, 589-598. 
 

(8) Circularity Indicators. An approach to measuring circularity. Methodology; Ellen 
MacArthur Foundation, 2015;  
https://www.ellenmacarthurfoundation.org/programmes/insight/circularity-indicators. 
 

(9) Cobo, S.; Dominguez-Ramos, A.; Irabien, A. From linear to circular integrated waste 
management systems: A review of methodological approaches. Resour. Conserv. 
Recycl. 2018, 135, 279-295. 
 

(10) Directive on waste and repealing certain Directives. Directive 2008/98/EC; the European 
Parliament and the Council of the European Union: Strasbourg, 2008.  
 

(11) Plan de residuos de la Comunidad Autónoma de Cantabria 2016 – 2022; Gobierno de 
Cantabria, Consejería de Universidades e Investigación, Medio Ambiente y Política Social: 
Santander, 2016.  

(12) Cordell, D.; Drangert, J.-L.; White, S. The story of phosphorus: Global food security and 
food for thought. Global Environ. Change 2009, 19, 292-305. 

(13) Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin III, F. S.; Lambin, E.; Lenton, T. 
M.; Scheffer, M.; Folke, C.; Schellnhuber, H. J.; Nykvist, B.; de Wit, C. A.; Hughes, T.; van 
der Leeuw, S.; Rodhe, H.; Sörlin, S.; Snyder, P. K.; Costanza, R.; Svedin, U.; Falkenmark, 
M.; Karlberg, L.; Corell, R. W.; Fabry, V. J.; Hansen, J.; Walker, B.; Liverman, D.; 
Richardson, K.; Crutzen, P.; Foley, J. Planetary boundaries: Exploring the safe operating 
space for humanity. Ecol. Soc. 2009, 14(2):32. 

(14) Likens, G.E.; Bormann, F.H.; Johnson, N.M. Interactions between major biogeochemical 
cycles in terrestrial ecosystems. In Some perspectives of the major biogeochemical cycles; 
Likens, G.E., Ed.; John Wiley & Sons: 1981; pp 93-109. 



Chapter 3.3 

140 
 

(15) Lal, R. Soil carbon sequestration impacts on global climate change and food 
security. Science 2004, 304, 1623-1627. 

(16) Kroeze, C.; Hofstra, N.; Ivens, W.; Löhr, A.; Strokal, M.; van Wijnen, J. The links between 
global carbon, water and nutrient cycles in an urbanizing world - the case of coastal 
eutrophication. Curr. Opin. Environ. Sustainability 2013, 5, 566-572. 
 

(17) Hanserud, O. S.; Cherubini, F.; Øgaard, A. F.; Müller, D. B.; Brattebø, H. Choice of mineral 
fertilizer substitution principle strongly influences LCA environmental benefits of 
nutrient cycling in the agri-food system. Sci. Total Environ. 2018, 615, 219-227. 
 

(18) Schoumans, O.F. Phosphorus leaching from soils: process description, risk assessment 
and mitigation. Ph.D. Dissertation, Wageningen University, Wageningen, 2015.  
 

(19) Rowe, H.; Withers, P. J. A.; Baas, P.; Chan, N. I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; 
MacDonald, G. K.; McDowell, R.; Sharpley, A. N.; Shen, J.; Taheri, W.; Wallenstein, M.; 
Weintraub, M. N. Integrating legacy soil phosphorus into sustainable nutrient 
management strategies for future food, bioenergy and water security. Nutr. Cycl. 
Agroecosyst. 2016, 104, 393-412. 
 

(20) Yao, Y.; Martinez-Hernandez, E.; Yang, A. Modelling nutrient flows in a simplified local 
food-energy-water system. Resour. Conserv. Recycl. 2018, 133, 343-353. 
 

(21) Tonini, D.; Martinez-Sanchez, V.; Astrup, T. F. Material resources, energy, and nutrient 
recovery from waste: Are waste refineries the solution for the future? Environ. Sci. 
Technol. 2013, 47, 8962-8969. 
 

(22) Wang, X.; Guo, M.; Koppelaar, R. H. E. M.; Van Dam, K. H.; Triantafyllidis, C. P.; Shah, N. 
A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and 
Operation. Environ. Sci. Technol. 2018, 52, 3257-3266. 
 

(23) Knoop, C.; Tietze, M.; Dornack, C.; Raab, T. Fate of nutrients and heavy metals during 
two-stage digestion and aerobic post-treatment of municipal organic waste. Bioresour. 
Technol. 2018, 251, 238-248. 
 

(24) Yoshida, H.; ten Hoeve, M.; Christensen, T. H.; Bruun, S.; Jensen, L. S.; Scheutz, C. Life 
cycle assessment of sewage sludge management options including long-term impacts 
after land application. J. Clean. Prod. 2018, 174, 538-547. 
 

(25) Los pastos en Cantabria y su aprovechamiento. Memoria; Centro de Investigación y 
Formación Agrarias: Santander, 2006.  
 

(26) Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P. N. L. Pretreatment methods 
to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143-156. 
 

(27) Bernstad, A.; la Cour Jansen, J. Separate collection of household food waste for anaerobic 
degradation - Comparison of different techniques from a systems perspective. Waste 
Manage. 2012, 32, 806-815. 
 

(28) Bernstad, A.; Malmquist, L.; Truedsson, C.; la Cour Jansen, J. Need for improvements in 
physical pretreatment of source-separated household food waste. Waste Manage. 2013, 
33, 746-754. 
 

(29) Carlsson, M.; Holmström, D.; Bohn, I.; Bisaillon, M.; Morgan-Sagastume, F.; Lagerkvist, A. 
Impact of physical pre-treatment of source-sorted organic fraction of municipal solid 



Circularity and environmental assessment 

141 
 

waste on greenhouse-gas emissions and the economy in a Swedish anaerobic digestion 
system. Waste Manage. 2015, 38, 117-125. 

(30) Carlsson, M.; Naroznova, I.; Moller, J.; Scheutz, C.; Lagerkvist, A. Importance of food 
waste pre-treatment efficiency for global warming potential in life cycle assessment of 
anaerobic digestion systems. Resour. Conserv. Recycl. 2015, 102, 58-66. 

(31) Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Minimization of Resource Consumption and 
Carbon Footprint of a Circular Organic Waste Valorization System. ACS Sustainable Chem. 
Eng. 2018, 6, 3493-3501. 

(32) Steubing, B.; Mutel, C.; Suter, F.; Hellweg, S. Streamlining scenario analysis and 
optimization of key choices in value chains using a modular LCA approach. Int. J. Life Cycle 
Assess. 2016, 21, 510-522. 
 

(33) Haupt, M.; Kägi, T.; Hellweg, S. (2018). Modular life cycle assessment of municipal solid 
waste management. Waste Manage. 2018, 79, 815-827. 

(34) Clavreul, J.; Baumeister, H.; Christensen, T. H.; Damgaard, A. An environmental 
assessment system for environmental technologies. Environ. Model. Softw. 2014, 60, 18-
30. 

(35) Gilhespy, S. L.; Anthony, S.; Cardenas, L.; Chadwick, D.; del Prado, A.; Li, C.; Misselbrook, 
T.; Rees, R. M.; Salas, W.; Sanz-Cobena, A.; Smith, P.; Tilston, E. L.; Topp, C. F. E.; Vetter, 
S.; Yeluripati, J. B. First 20 years of DNDC (DeNitrification DeComposition): Model 
evolution. Ecol. Model. 2014, 292, 51-62. 
 

(36) Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 
60-68. 
 

(37) Foley, J. A.; DeFries, R.; Asner, G. P.; Barford, C.; Bonan, G.; Carpenter, S. R.; Chapin, F. S.; 
Coe, M. T.; Daily, G. C.; Gibbs, H. K.; Helkowski, J. H.; Holloway, T.; Howard, E. A.; Kucharik, 
C. J.; Monfreda, C.; Patz, J. A.; Prentice, I. C.; Ramankutty, N.; Snyder, P. K. Global 
consequences of land use. Science 2005, 309, 570-574. 
 

(38) Gougoulias, C.; Clark, J. M.; Shaw, L. J. The role of soil microbes in the global carbon cycle: 
Tracking the below-ground microbial processing of plant-derived carbon for 
manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362-
2371. 

(39) Encuesta sobre superficies y rendimientos cultivos; Ministerio de Agricultura y Pesca, 
Alimentación y Medio Ambiente: Madrid, 2017; 
http://www.mapama.gob.es/es/estadistica/temas/estadisticasagrarias/agricultura/esyr
ce/.  

(40) Council Directive on the landfill of waste. Council Directive1999/31/EC; European 
Commission: Brussels, 1999. 

(41) Source separation of MSW. An overview of the source separation and separate collection 
of the digestible fraction of household waste, and of other similar wastes from 
municipalities, aimed to be used as feedstock for anaerobic digestion in biogas plants; IEA 
bioenergy: 2013; http://task37.ieabioenergy.com/files/daten-
redaktion/download/Technical%20Brochures/source_separation_web.pdf. 

(42) Copado-Méndez, P. J.; Pozo, C.; Guillén-Gosálbez, G.; Jiménez, L. Enhancing the ε-
constraint method through the use of objective reduction and random sequences: 
Application to environmental problems. Comput. Chem. Eng. 2016, 87, 36-48. 



Chapter 3.3 

142 
 

(43) Crenna, E.; Sozzo, S.; Sala, S. Natural biotic resources in LCA: Towards an impact 
assessment model for sustainable supply chain management. J. Clean. Prod. 2018, 172, 
3669-3684. 

(44) Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S. J.; Saouter, E.; Sonesson, U. The role of 
life cycle assessment in supporting sustainable agri-food systems: A review of the 
challenges. J. Clean. Prod. 2017, 140, 399-409. 

(45) Frischknecht, R. Life cycle inventory analysis for decision-making. Scope-dependent 
inventory system models and context-specific joint product allocation. Ph.D. 
Dissertation, Swiss Federal Institute of Technology, Zurich, 1998.   

(46) Li, C.; Frolking, S., Frolking, T. A. A model of nitrous oxide evolution from soil driven by 
rainfall events: 1. model structure and sensitivity. J. Geophys. Res.1992, 97(D9), 9759-
9776. 
 

(47) Frossard, E.; Skrabal, P.; Sinaj, S.; Bangerter, F.; Traore, O. Forms and exchangeability of 
inorganic phosphate in composted solid organic wastes. Nutr. Cycl. Agroecosyst. 2002, 
62, 103-113. 
 

(48) Gagnon, B.; Demers, I.; Ziadi, N.; Chantigny, M. H.; Parent, L. -.; Forge, T. A.; Larney, F. J.; 
Buckley, K. E. Forms of phosphorus in composts and in compost amended soils following 
incubation. Can. J. Soil Sci. 2012, 92, 711-721. 
 

(49) García-Albacete, M.; Martín, A.; Cartagena, M. C. Fractionation of phosphorus biowastes: 
Characterisation and environmental risk. Waste Manage. 2012, 32, 1061-1068. 
 

(50) Hansen, T. L.; Bhander, G. S.; Christensen, T. H.; Bruun, S.; Jensen, L. S. Life cycle 
modelling of environmental impacts of application of processed organic municipal solid 
waste on agricultural land (Easewaste). Waste Manage. Res. 2006, 24, 153-166. 
 

(51) Tampio, E.; Marttinen, S.; Rintala, J. Liquid fertilizer products from anaerobic digestion of 
food waste: Mass, nutrient and energy balance of four digestate liquid treatment 
systems. J. Clean. Prod. 2016, 125, 22-32. 
 

(52) Zhang, X.; Davidson, E. A.; Mauzerall, D. L.; Searchinger, T. D.; Dumas, P.; Shen, Y. 
Managing nitrogen for sustainable development. Nature 2015, 528, 51-59. 
 

(53) Yoshida, H.; Nielsen, M. P.; Scheutz, C.; Jensen, L. S.; Bruun, S.; Christensen, T. H. Long-
Term Emission Factors for Land Application of Treated Organic Municipal Waste. Environ. 
Model. Assess. 2016, 21, 111-124. 
 

(54) Brockmann, D.; Pradel, M.; Hélias, A. Agricultural use of organic residues in life cycle 
assessment: Current practices and proposal for the computation of field emissions and 
of the nitrogen mineral fertilizer equivalent. Resour. Conserv. Recycl. 2018, 133, 50-62.  
 

(55) Esculier, F.; Le Noë, J.; Barles, S.; Billen, G.; Créno, B.; Garnier, J.; Lesavre, J.; Petit, L.; 
Tabuchi, J. P. The biogeochemical imprint of human metabolism in Paris Megacity: A 
regionalized analysis of a water-agro-food system. J. Hydrol. 2018; 
DOI:10.1016/j.jhydrol.2018.02.043. 
 

(56) Snyder, C. S.; Bruulsema, T. W.; Jensen, T. L.; Fixen, P. E. Review of greenhouse gas 
emissions from crop production systems and fertilizer management effects. Agric. 
Ecosyst. Environ. 2009, 133, 247-266. 
 



Circularity and environmental assessment 

143 
 

(57) Real Decreto por el que se regula la actividad de producción de energía eléctrica a partir 
de fuentes de energía renovables, cogeneración y residuos. Real Decreto 413/2014; 
Ministerio de Industria, Energía y Turismo: Madrid, 2014.  
 

(58) De Jonge, V. N.; Elliott, M.; Orive, E. Causes, historical development, effects and future 
challenges of a common environmental problem: Eutrophication. Hydrobiologia 2002, 
475-476, 1-19. 

 

 



 

144 
 

CHAPTER 3.4 

ECONOMIC ASSESSMENT 

 

“Anyone who believes that exponential growth can go on forever in a finite world is either 

a madman or an economist.”  

 

Kenneth Boulding, English/American economist (1910-1993) 

 

 

Chapter 3.4 is a literal transcription of this published paper:  

 

Cobo, S.; Levis, J.W.; Dominguez-Ramos, A.; Irabien, A. Economics of enhancing nutrient 

circularity in an organic waste valorization system. Environ. Sci. Technol. 2019, 53(11), 6123-

6132; DOI: 10.1021/acs.est.8b06035. 

 

 

“Decoupling environmental impacts from economic growth by improving resource efficiency is 

the goal of the circular economy that the European Union promotes by setting increasingly high 

recycling targets, which should reach 65% by 2035.1  

 

The collection and preparation of more recyclables usually translates into added costs for waste 

managers.2,3 To minimize the extra costs assumed by the citizens for recovering more recyclables 

in both the waste management tax and the price of the recycled products, trade-offs between 

the interests of the involved stakeholders must be considered.4-6  

 

Policy analyses should consider the consumers’ willingness to pay more or shift consumption 

patterns for the sake of sustainability.7 In some cases, the consumers’ reluctance to change their 

product choices is justified by the reduced performance of the recycled products8 or the health 

concerns that could arise from the use of materials that contain undesired substances.9-10 Hence, 

social acceptance is important for ensuring that recycled products are competitive in the 

marketplace, as exemplified by the organic fertilizers recovered from municipal  organic waste 

(OW).  
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Organic fertilizers have the potential to provide essential nutrients to plants while maintaining 

the soil organic carbon stock, which is essential to future soil fertility and productivity.11-13  

 

One of the challenges of using organic fertilizers created from OW is their potential to release 

heavy metals and persistent organic pollutants.14,15 To mitigate the risk of contamination, which 

can be reduced below the legal limits through source separation,16 the European Union will 

require that all the generated OW is either separated and recycled at source or separately 

collected by 2023.1  

 

Nonetheless, other impacts related to the composition of organic fertilizers are unavoidable. 

Because of the high proportion of organic nitrogen (N) in these products, crops are more 

efficient at taking up the N in the form of ammonium and nitrates provided by the inorganic 

fertilizers. Thus, the land application of organic fertilizers leads to increased eutrophication 

impacts compared to inorganic fertilizers, a rebound effect associated with nutrient recovery.17 

 

Moreover, it has been reported that high N recovery rates do not correlate with a decrease in 

the overall consumption of raw materials,18 which shows that recycling one waste component 

does not necessarily entail that the economy is more circular. There could be a host of 

implications associated with resource looping that remain unexplored. This research aims at 

filling some of the knowledge gaps in this field by studying the economic consequences of 

improving the circularity of two key nutrients present in OW, N and phosphorus (P). 

 

The analysis, based on the framework developed by Cobo et al.19 for the assessment of Circular 

Integrated Waste Management Systems (CIWMSs), focuses on the Spanish region of Cantabria, 

with a population of 580.3 thousand and an area of 5,326 km2.20  

 

This study seeks to develop and evaluate waste management strategies with low carbon 

emissions that comply with the European legislation without compromising their economic 

interests or those of the farmers that acquire the products recovered from OW. Therefore, the 

model of a CIWMS that fits the characteristics of the Cantabrian case study was developed and 

optimized to achieve these goals:  

- To determine the configurations of the CIWMS that i) minimize the waste management costs 

and its carbon footprint, and ii) maximize the circularity of N and P within the system.  

- To evaluate how the economic profitability of the system varies as the circularity of N and P 

changes. 
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- To estimate the economic margin that enables the recovered organic fertilizers to compete 

in the market with industrial fertilizers in a mutually beneficial scenario for waste managers 

and farmers.  

 

 

SYSTEM DESCRIPTION 
 

Figure 3.4.1 depicts the superstructure comprising the alternative unit processes that may 

compose the optimal system configurations. The circularity of the system is given by the 

agricultural application of the products recovered from the OW, which are assumed to be used 

as fertilizers to grow corn, the crop with the highest cultivated area in Cantabria. This corn is 

later consumed and partially transformed into OW, closing to a certain extent the loop of 

nutrients. Thus, the entire corn production of Cantabria was modeled as a subsystem of the 

CIWMS.   

 

The selected optimal system configurations must meet the 2020 50% OW recycling target set by 

the Cantabrian waste management plan21 while abiding by the current legislation that classifies 

the composted bio-waste that has not been source separated as bio-stabilized material instead 

of compost.22 To meet these constraints, at least half of the  generated OW must be source 

separated. Hence, a 50% source separation rate was assumed. Thereby, all the source separated 

OW (SS-OW) must be recycled, while the only options for the OW separated from the mixed 

waste stream (mix-OW) are energy valorization and disposal in landfill.    

 

The OW generated in the region is currently separated from the mixed waste stream at the 

mechanical biological treatment plant. Thus, new strategies for handling the new waste stream, 

the SS-OW, as well as the mix-OW that was previously composted, are required. The incinerator 

and the landfill that already exist in the regional waste management plant might be able to 

process a fraction of the mix-OW, but they were designed to manage primarily the inorganic 

wastes generated in the region. Hence the construction of a new incinerator and landfill were 

considered in the study.  

 

The set s of waste management unit processes shown in Figure 3.4.1 consists of:  
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Figure 3.4.1. Diagram showing the system boundaries and the model superstructure
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- Unit processes to recycle SS-OW: anaerobic digestion, which includes biogas 

combustion and power generation, and windrow and tunnel composting. Windrow 

composting is the only composting option currently available in Cantabria.  

- Unit processes to treat mix-OW and the rejects generated in other unit processes: 

incineration and landfill coupled to the energy valorization of biogas. Two incinerators 

and two landfills were modeled: the ones that already form part of the Cantabrian 

municipal solid waste management plant, and the ones that are constructed if the 

previous ones exceed their capacity.  

- Unit processes to manage the liquid digestate: screw press, wastewater treatment, 

ammonia stripping and absorption, and struvite precipitation. 

- Pretreatment unit processes: trommel, and magnetic and Eddy current separators.    

- Intermediate unit processes between waste generation and treatment or valorization: 

source separation, and collection and transport unit processes.  

 

The set j of n recycling unit processes was defined as a subset of set s that is composed of 

windrow and tunnel composting, anaerobic digestion, struvite precipitation and ammonia 

stripping and absorption. The products recovered from OW in these unit processes are organic 

fertilizers (compost and solid digestate), struvite and (NH4)2SO4. 

 

Whereas (NH4)2SO4 does not contain P, the ratio N/P in the other products is lower than that 

required by corn. Consequently, the criteria selected to fertilize the soil defines the set k of corn 

production unit processes, which includes transportation: 

- Application of the amount of recovered product needed to fulfill the corn P 

requirements. This leads to a N deficiency, which must be balanced with an industrial 

fertilizer (NH4NO3). 

- Application of the amount of the recovered products needed to supply the N required 

by corn. It results in a P surplus in soil, except if (NH4)2SO4 is applied, in which case an 

industrial fertilizer must be added ((NH4)2HPO4). 

- Application of the amount of industrial fertilizers (NH4NO3 and (NH4)2HPO4) needed to 

cover the N and P requirements of corn.  

 

The heavy metal content of the recovered organic fertilizers is compiled in Table S66 of the 

Supporting Information. The Spanish Royal Decree 506/201323 classifies fertilizing products 

derived from waste and other organic components into three categories according to their 

heavy metal content, as shown in Table S67. Because of the high estimated Zn content of the 
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recovered organic fertilizers (251-264 mg·kg-1 of dry matter), they must be classified as Type B, 

or medium quality. Additionally, the new European proposal for the regulation of fertilizing 

products24 suggests additional restrictions – which will not be enforced until the proposal is 

translated into new legislation – for the heavy metal content of organic fertilizers. These limits 

– except for the Cr VI value, which is unknown – are not exceeded either by the organic fertilizers 

recovered in the studied system. 

 

 

METHODOLOGY 
 

A bottom-up mechanistic model of the system was developed through the combination of 

Material Flow Analysis (MFA), Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) tools. The 

optimization model was implemented in GAMS 24.7.1 (General Algebraic Modeling System)25 

and optimized with the CPLEX solver.26 A multi-objective optimization was performed by means 

of the Ɛ-constraint method.27 The followed methodological sequence is summarized in Figure 

3.4.2.  

 

The MFA and LCA of each waste management unit process was carried out with EASETECH 2.3.6 

(Environmental Assessment System for Environmental TECHnologies).28 The main inputs to 

EASETECH are the waste composition and the parameters that characterize the unit processes, 

which are compiled in Appendices A and B of the Supporting Information.  

 

Inorganic waste is assumed to constitute 2% of the SS-OW, which is consistent with real source 

separation experiences.29 The share of waste materials that compose the OW and the impurities 

are compiled from the Cantabrian waste management plan.21  

 

The composition of the recovered products provided by EASETECH was introduced in DNDC 9.5 

(Denitrification-Decomposition),30 where the flows of C, N and P resulting from the application 

of these products as fertilizing agents for corn production were modeled, based on the soil 

properties and the crop management practices described in Appendix C. The software calculated 

the amounts and chemical forms in which these nutrients are taken up by corn, stored in soil or 

dispersed in the environment as gas emissions or dissolved compounds. These results,  

shown in Appendix C, were transferred to EASETECH to perform the LCA of the corn production 

unit processes. The LCA results are shown in Appendix B.  
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Figure 3.4.2. Data flow diagram
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Finally, the LCC sub-models from SWOLF (the Solid Waste Optimization Lifecycle Framework)31 

were adapted to calculate the Total Annual Cost (TAC) of the waste management unit processes, 

detailed in Appendix F. All the economic data are referred to year 2015. 

 

The struvite precipitation and ammonia stripping and absorption unit processes are not 

accounted for by either SWOLF or EASETECH. These unit processes were modeled according to 

the data found in the literature and shown in Appendices B and F.32,33 Guthrie’s modular method 

was followed to estimate the bare module costs of the equipment required for struvite 

precipitation,34 which were later linearized, as shown in Appendix F. The data to calculate the 

capital investment costs associated with the ammonia stripping and absorption unit process 

were taken from Errico et al.35  

 

 

LIFE CYCLE MODELING 
 

The applied LCC framework only quantifies financial costs, as opposed to the environmental and 

social LCC methodologies that calculate the externality costs through the monetization of 

environmental and social impacts.36-39  

 

Previous studies have found that when conducting parallel LCA and financial LCC the appropriate 

system boundaries for each type of analysis may diverge.38-40 Although the environmental 

impacts must be assessed across the entire life cycle of the system under study, the costs 

associated with different life cycle stages are usually assumed by actors with conflicting or even 

opposed goals.  

 

In the studied CIWMS, the targets of the stakeholders involved in waste management differ from 

those of the farmers in charge of corn production. The performed LCC only accounts for the 

waste management costs, whereas the LCA is carried out from the perspective of the citizens in 

whose best interest is to minimize the environmental impacts of the entire CIWMS. 

Consequently, the system boundaries that delimit the unit processes analyzed in the LCA (sum 

of unit processes in sets s and k) are wider than those of the LCC (set s of unit processes), as 

shown in Figure 3.4.1.   

 

Following the guidelines provided by Cobo et al.19 for the analysis of integrated waste 

management systems against the backdrop of a circular economy, the main goal of the 
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described CIWMS is the recovery of nutrients from OW, rather than waste management. 

Moreover, the scope of the analysis is broad enough to capture the effects of the land 

application of the recovered products on the total consumption of fertilizers needed to fulfill 

the annual nutrient requirements of corn. Hence, the selected functional unit to perform the 

LCA is the area available in Cantabria for corn production that is fertilized annually via any of the 

k corn production unit processes (4,810 ha).41  

 

Nonetheless, this functional unit does not describe the performance of the subsystem within 

the LCC boundaries. Since the developed stationary model describes one year of operation of 

the system, the LCC results are referenced to the flow of OW processed annually (83,544 metric 

ton·year-1).21 The selection of different functional units for the LCA and LCC analysis does not 

hinder the interpretation of the results, given that they are expressed on the same annual basis. 

 

An attributional modeling approach was followed to implement the LCA methodology. The 

direct substitution method was applied to subtract the environmental impacts associated with 

the secondary system function, power generation, assuming a 1:1 substitution ratio of the 

electricity generated within the system by the electricity from the Spanish grid mix.  

 

Only the biogenic carbon contained in food waste is quantified as neutral; the carbon emissions 

derived from the other residual fractions collected with the OW contribute to the global 

warming impacts of the system, whether they come from a biogenic source or not. The reason 

is that their complete life cycle is not modeled in this study, and thus it is not correct to subtract 

from the life cycle inventory the CO2 that was absorbed by biomass in a photosynthesis process 

outside the system boundaries.  

 

Regarding the timeframe of the analysis, a 100-year time horizon was considered, consistently 

with the hierarchist perspective used to characterize the emissions of the system by ReCiPe 

1.11.42 This implies that the long-term emissions and the decommissioning costs should be 

accounted for. 

 

Due to the lack of reliable data, only the landfill closure costs, incurred during the 30-year after-

care period established by Directive 1999/31/EC,43 were quantified. These costs are related to 

the activities conducted after the cells are filled, as well as those related to site monitoring and 

maintenance after closure. They are amortized over the 20-year lifetime of the landfill so that 

they are reflected in the cost of waste disposal. The long-term emissions associated with the 
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landfill unit process are due to the degradation of organic matter over time under anaerobic 

conditions. 

 

On the other hand, the first year is not representative of the behavior of the corn production 

unit processes in terms of nutrient requirements and field emissions;17 hence, the average N and 

P requirements and emissions associated with the consecutive crops cultivated throughout the 

100-year period were taken as model parameters.  

 

One of the limitations of the work is that the corn P requirements were calculated considering 

that the P present in OW is in a mineral readily available form for plants, which is not necessarily 

true for 100% of the P.44-47  

 

Another limitation is that the economic and the environmental benefits associated with the 

recovery of the metals that are sorted out in the pretreatment and incineration unit processes 

are excluded from the analysis, under the assumption that they are negligible.  

 

Finally, although the infrastructure costs are quantified, the related environmental impacts are 

omitted, which is supported by a study that concluded that the contribution of infrastructure to 

the global warming impacts in waste management systems are generally negligible.48  

 

 

ECONOMIC MODELING 
 

The TAC of each unit process is calculated as the sum of the operating costs and the capital costs 

minus the revenues derived from the sale of electricity in the Spanish market (51.67 €·MWh-1)49 

and the recovered products, if applicable. The capital costs were annualized assuming a 15-year 

amortization period and a 7% interest rate, which was selected based on the interest rates 

applied by the Spanish credit institutions in 2015.50 

 

The market prices of compost in the European Union typically range between 0-14 €·metric ton-

1,51 whereas in some instances farmers are paid to accept the digestate.52 Indeed, it is a common 

practice for waste managers to cover the expenses related to transport and spreading of the 

organic fertilizers.51,53 The hypothesis of this study is that compost and digestate are given away 

to farmers at a price of 0 €·metric ton-1.  
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The struvite price was calculated based on its P content. It was assumed that the price of P is 

the same as the price of (NH4)2HPO4 (413.42 €·metric ton-1)54 expressed per kg of P. The price of 

the recovered (NH4)2SO4 corresponds to its market value (128.99 €·metric ton-1).55  

 

Furthermore, the Spanish legislation considers providing financial support to the facilities that 

generate electricity from renewable energy sources.56 These subsidies were included in the 

model as an operating income to the landfill and anaerobic digestion unit processes. 

 

The TAC of the landfill also includes the tax that waste managers are charged by the regional 

government (2 €·metric ton-1 of landfilled waste),57 and the above-mentioned closure costs.  

 

The capital costs of the unit processes already available in the Cantabrian waste management 

facilities (shown in Figure 3.4.1 with a discontinuous line) are assumed to be already amortized, 

and hence they are not considered. Only the costs associated with the construction of new cells 

within the previously excavated landfill are accounted for as capital costs of the old landfill.  

 

 

PROBLEM FORMULATION 
 

The decision variables in the optimization problem consist of the mass flows of waste and 

recovered products that enter the green shaded unit processes in Figure 3.4.1; the remaining 

variables are calculated as a function of these decision variables.  

 

The objective functions according to which the decision variables are optimized are the TAC, the 

global warming impacts (GW) and the circularity indicators of N and P (CIN and CIP). The TAC and 

GW are minimized, whereas CIN and CIP are maximized.  

 

Equations 3.4.1 – 3.4.3 indicate how the objective functions were calculated for the set s of t 

waste management unit processes, the set k of m corn production unit processes, and the set j 

of n recycling unit processes. The objective functions depend on the values of the continuous (x) 

and the binary (y) variables, which indicate the unit processes that are selected in the optimized 

superstructure.  

 

The TAC of the system is calculated as the sum of the TAC of all the unit processes in set s minus 

the income perceived as the tax paid by the municipalities in exchange for the waste 
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management services, TAXWM (85.28 €·metric ton-1).58 The GW are calculated as the sum of the 

GW of the unit processes in sets s and k.  

 

The definition of the circularity indicator of component i (CIi) described in Equation 3.4.3 was 

first proposed by Cobo et al.17 to quantify how efficient a CIWMS is at providing a service derived 

from the recovery and valorization of its individual waste components. In this study, CIi is defined 

as the amount of nutrient i that is recycled, applied to land and taken up by corn with respect 

to the amount of that nutrient in the collected OW. These are the variables and parameters 

involved in the calculation of this dimensionless CIi: 

- 𝑊𝑖. Amount of nutrient i present in the collected waste (kg).  

- 𝑅𝑖𝑗𝑘. Amount of nutrient i that enters the recycling unit process j. The subsequently 

recovered nutrient i enters the corn production unit process k (kg).  

- 𝜂𝑟𝑖𝑗
. Recycling efficiency of the recycling unit process j for nutrient i (kg of nutrient i 

recovered per kg of nutrient i that enters unit process j). 

- 𝜂𝑝𝑖𝑘
. Efficiency of the corn production unit process k at taking up the recovered nutrient 

i (kg of nutrient i taken up per kg of nutrient i entering unit processes k). 

The values of 𝜂𝑟𝑖𝑗
 and 𝜂𝑝𝑖𝑘

, calculated from the results provided by EASETECH and DNDC, are 

compiled in Appendix D.  

 

Additionally, the problem is subject to these restrictions:  

- As Directive 1999/31/EC43 dictates, the amount of biodegradable municipal waste going 

to landfill must be lower than 35% of the total weight of biodegradable municipal waste 

produced in 1995 (59,559 metric ton·year-1).21 

- Windrow and tunnel composting cannot form part of the system simultaneously. 

- The area fertilized with the recovered products cannot be larger than the area destined 

for corn production in Cantabria (4,810 ha).41 

  𝑇𝐴𝐶(𝑥, 𝑦) = ∑ 𝑇𝐴𝐶𝑠(𝑥, 𝑦)

𝑡

𝑠=1

− 𝑇𝐴𝑋𝑊𝑀(𝑥) 

 

(Equation 3.4.1) 

𝐺𝑊(𝑥, 𝑦) = ∑ 𝐺𝑊𝑠(𝑥, 𝑦) + ∑ 𝐺𝑊𝑘(𝑥, 𝑦)

𝑚

𝑘=1

𝑡

𝑠=1

 

 

(Equation 3.4.2)  

𝐶𝐼𝑖(𝑥, 𝑦) =
∑ ∑ 𝑅𝑖𝑗𝑘(𝑥, 𝑦) · 𝜂𝑟𝑖𝑗

· 𝜂𝑝𝑖𝑘
𝑛
𝑗=1

𝑚
𝑘=1

𝑊𝑖  
 

 

(Equation 3.4.3) 
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- A new incinerator or landfill is constructed only if the capacity of the existing one is 

exceeded.  

- Capacity restrictions for certain unit processes. 

 

Following the principles of the economies of scale, the TAC of the unit processes for the 

treatment and valorization of solid waste decreases with their capacity;59-63 the TAC is usually 

modeled as a function of the incoming annual waste flows by means of exponential equations.64 

The introduction of nonlinear equations into the model may lead to nonconvexities, which do 

not guarantee a unique local optimal solution.65 To ensure that the solution found by the 

algorithm is a global optimum, several strategies were considered: 

- Breaking down the exponential curves into linear approximations.  

- Modeling a set of unit processes with pre-defined capacities, as Hu et al.5 did.   

- Setting minimal capacity restrictions. The effect of the economy of scale on the TAC is 

assumed to be negligible for the unit processes with capacities larger than the fixed 

minimum. 

The latter was deemed the simplest, easiest to adapt to the SWOLF framework, and least 

computationally intensive approach. These capacity restrictions are congruent from the 

decision-making viewpoint, since waste managers are not expected to make large investments 

in facilities capable of processing just a small fraction of the total waste.  

 

Therefore, the TAC of the unit processes is assumed to vary linearly depending on their size; i.e., 

the TAC expressed as €·metric ton-1 of managed waste remains constant. The minimal capacity 

restrictions of the unit processes that handle solid waste, which were assigned solely to the unit 

processes that are still not implemented in Cantabria, were selected based on the exponential 

curves shown in Figures S11-S19 and extrapolated from the data compiled in the literature.62,64  

 

Following the same rationale, minimal capacity restrictions were set for struvite precipitation 

and ammonia stripping and absorption. These technologies can only be implemented if the flows 

of liquid digestate treated surpass half of the minimal flow of liquid digestate generated in the 

anaerobic digestion unit process (29,537.50 m3·year-1).  

 

Regarding the upper bounds on the capacities of the solid waste management unit processes, 

constraints for the maximal size of the new facilities were not considered. The existing windrow 

composting unit in Cantabria currently handles all the OW generated in the region; thus, it is not 

necessary to fix its maximal capacity restriction. To estimate the maximal annual flows of OW 
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that the current incinerator and landfill can accept, the flows of inorganic municipal waste and 

other non-domestic wastes that these facilities manage were subtracted from their total 

capacities.66,67   

 

If the flows of OW that must be sent to incineration to achieve an optimal solution exceed the 

maximal capacity of the existing unit, a new incinerator is constructed. Because of the 

substantial capital investment that the construction of a new incinerator entails, a minimal 

incineration capacity higher than that of the existing one is set. On the other hand, waste 

managers are already considering the construction of a new landfill, since the current landfill is 

at the end of its lifetime. Thus, a landfill with a capacity of 85,000 metric ton·year-1 is assumed 

to be built if the capacity of the old landfill is exceeded. The capacity restrictions of the solid 

waste management unit processes are listed in Table S50. 

 

The model, which is composed of a total of 1,180 equations, 1,078 continuous variables and 72 

binary variables, was formulated as a single-period mixed integer linear programming problem. 

It was first posed as a single objective optimization problem for each of the objective functions 

described above. Then, a multi-objective optimization was performed considering TAC, CIN and 

CIP as objective functions. It was formulated as follows: 

 

min 𝑈(𝑥, 𝑦) = {𝑇𝐴𝐶(𝑥, 𝑦), −𝐶𝐼𝑁(𝑥, 𝑦), −𝐶𝐼𝑃(𝑥, 𝑦)}  𝑠. 𝑡. 

 

 

RESULTS AND DISCUSSION 
 

Figure 3.4.3 shows the unit processes and flows of OW that achieve the optimal values of the 

objective functions compiled in Table 3.4.1.  

 

Table 3.4.1. Values of the objective functions for the single objective optimizations 

Objective 

 Function 

min 

TAC 

max 

CIN 

max 

CIP 

min 

GW 

TAC (106€·yr-1) -1.96 1.57-5.00 -1.05-2.00 2.27 

CIN 0.056-0.064 0.174 0.066 0.072 

CIP 0.027-0.121 0.033 0.122 0.100 

GW (106kg CO2-eq·yr-1) 54.89-55.00 47.34-47.37 52.31-55.25 42.66 

 

 

ℎ𝑎(𝑥, 𝑦) = 0       𝑎 = 1,2, … , 𝑣 
𝑔𝑏(𝑥, 𝑦) ≤ 0       𝑏 = 1,2, … , 𝑧 
𝑥 ∈ ℜ𝑛 
𝑦 ∈ {0, 1}𝑚 
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Figure 3.4.3. Values of the decision variables that have an influence on the objective function for each single objective optimization (metric ton·year-1)
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Only one system configuration minimizes the GW, because all the unit processes contribute to 

it. However, there are several system configurations that lead to the optimization of the TAC, 

CIN and CIP. The reasons are that the corn production unit processes are located outside the LCC 

boundaries and they are therefore not needed to calculate the TAC. On the other hand, the 

selection of the unit processes that handle mix-OW, which cannot be recycled, does not affect 

the values of the circularity indicators. Consequently, Figure 3.4.3 only displays the values of the 

decision variables used to calculate the objective functions. Furthermore, the ranges of values 

in the cells of Table 3.4.1 that do not show a single value, correspond to the ranges of values 

that the objective functions can take for the different system configurations that optimize a 

given objective function.  

 

The negative TAC values indicate that the cost to operate the system is less than the revenue 

received from the TAXWM, the subsidies and the sale of electricity and the recovered products, 

whereas positive values indicate that the revenues are not large enough to cover all of the costs. 

The contribution of the unit processes and the TAXWM to the TAC that results from the 

minimization of the TAC and GW is depicted in Figure S24. It shows that the negative values are 

due to the TAXWM.  

 

The TAC is minimized primarily using the unit processes that are already available in the waste 

management system, namely windrow composting and landfill, whereas the new infrastructure 

required to optimize the other objective functions significantly increase the TAC. As Figure 3.4.3 

shows, tunnel composting is used to maximize ClP, whereas more costly anaerobic digestion with 

nutrient recovery from the liquid digestate is used to maximize ClN. 

 

Since no single configuration simultaneously optimizes each objective function, trade-offs must 

be made. Figure 3.4.4 shows the Pareto points obtained from the three-objective optimization. 

Each Pareto point represents a solution that cannot be improved in at least one objective 

without decreasing its performance in at least one other objective.  

 

The multi-objective optimization was peformed for three scenarios: the baseline with the 

current TAXWM, and scenarios with a 10% and 20% higher TAXWM (93.81 and 102.34 €·metric ton-

1 respectively). These scenarios account for the fact that policy-makers are likely to raise the 

TAXWM if more expensive waste management unit processes are implemented.  
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Figure 3.4.4 shows how increasing the TAXWM improves the circularity of nutrients that is 

achievable at each level of TAC. With the current TAXWM, CIN values above 0.13 lead to system 

configurations that do not generate net profits for the waste managers, while a 10% increase in 

the TAXWM leads to net profits in every case except the three system configurations with the 

highest CIN represented in the Pareto front. A 20% increase in the TAXWM can provide similar net 

profits to those obtained with the current TAXWM for the most profitable system configuration 

while increasing  CIN and CIP by 140 and 270%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.4.4. Pareto points that show the trade-offs among TAC, CIN and CIP at the three levels of TAXWM 

 

Increasing CIN increases the TAC, because it involves a noteworthy investment in new 

technologies. On the contrary, high CIP values can be achieved at low TACs. In fact, with the 

current TAXWM, net profits are generated even when all the SS-OW is composted in a tunnel 

reactor as long as all the mix-OW is sent to landfill, the least expensive of the modeled unit 

processes. 

 

System configurations that improve CIN do not necessarily increase CIP. The strategy that 

maximizes CIN anaerobically digests the SS-OW, recovers (NH4)2SO4 from the liquid digestate, 

and then applies to the soil the amounts of these products needed to cover the corn N 

requirements. This results in the accumulation of P in soil and the loss of P in the liquid digestate, 

to the detriment of CIP. 
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Under a cooperative approach, win-win solutions in the areas of the decision-making space 

where all the stakeholders can share the costs and benefits are sought. Therefore, it was 

investigated how the increased TAC can be shared between the tax payers, the waste managers 

and the farmers that acquire the recovered products. 

 

Figure 3.4.5 shows for all the Pareto points in each scenario depicted in Figure 3.4.4 the 

minimum price that farmers would hypothetically have to pay to fertilize 1 hectare with the 

recovered products and the complementary industrial fertilizers, in order to create net profits 

for the waste managers. The system configurations that result in a fertilization price that 

exceeds the estimated price of industrial fertilizers (75.74 €·ha-1), are excluded from the 

mutually beneficial decision-making space, since farmers would purchase the industrial 

fertilizers. The minimum price was calculated under the hypothesis that if the TAC is negative, 

the price of the organic fertilizers is 0 €·metric ton-1 (as originally assumed); otherwise, the price 

is set at the value necessary to achieve a TAC of 0 €·metric ton-1. The equations needed to 

calculate the minimum price of the fertilizing products are described in Appendix F.  

 

The system configurations that allow farmers to reduce total fertilization costs (the costs of 

organic plus supplementary industrial fertilizers) compared to only relying only on industrial 

fertilizers, are those where waste managers earn net profits without charging farmers for 

organic fertilizers. This happens for CIN values below 0.13 in the scenario with the lowest TAXWM, 

whereas in the scenarios with the two highest TAXWM, waste managers can earn a profit while 

farmers benefit from the competitive prices of the fertilizers for CIN values up to 0.16.  

 

The difference between the price of the industrial fertilizers and the price paid by the farmers 

for the recovered products and the complementary fertilizers leaves a margin for farmers to 

cover the transport and spreading costs of the organic fertilizers, which are higher than those 

related to the industrial fertilizers, because the amounts of organic fertilizers needed to fulfill 

the function of the industrial fertilizers exceed the mass of the latter.  

 

Nonetheless, if the distance between the waste management plant and the field where the 

products are applied is long enough to surpass this margin, farmers would not be willing to pay 

for the transport and spreading costs. On the contrary, setting low prices for compost and 

digestate would be realistic if the crops were grown near the waste management plant. 
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Figure 3.4.5. Minimum price that farmers must pay for fertilizers so that waste managers can generate 
net profits in the three scenarios 

 

Price of industrial fertilizers (75.74 €·ha-1) 
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POLICY IMPLICATIONS  
 

The promotion of nutrient circularity is compatible with the economic profit of the waste 

managers and the sale of the recovered products at competitive prices with industrial fertilizers. 

However, without economic support in the form of subsidies or an increase in the TAXWM, it 

would be accomplished at the expense of a reduction in the benefits of the waste managers. 

The results demonstrate that a relatively modest increase in the TAXWM could lead to significant 

improvements in the circularity of nutrients. Thus, legislators must incentivize the cooperation 

between stakeholders to simultaneously achieve the minimal reduction in the economic profit 

of the waste managers and the minimal increase in the consumer prices, with the minimal rise 

in the taxes paid by the citizens with respect to the current less circular system. 

 

The results presented in this study challenge the widely assumed premise – on which recent 

European policy is based – that the improvement in resource efficiency derived from the 

implementation of a circular economy will decouple environmental impacts from economic 

growth. These results suggest that the strategies seeking to reduce resource consumption 

should take precedence over maximizing resource circularity. 

 

Regarding the influence of the uncertainty associated with the input parameters of the model – 

like waste composition –on the results, it should be addressed in future research. The developed 

framework is not aimed at determining the precise values of the decision variables and objective 

functions, but at identifying trends and trade-offs between them, and it can be concluded that 

it fulfills this objective.  

 

Therefore, although the results are subject to the specific system, data, and assumptions of the 

case study and cannot be generalized to other regions, the feasibility of the proposed framework 

– which can be applied to other waste fractions and regions – has been proven. Policy-makers 

should promote the use of decision support tools based on systems thinking to determine the 

optimal configuration of waste management systems.“ 
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CHAPTER 4 
 

CONCLUSIONS 

 

“Scientists who say what should be done as if their recommendations sprang from an 

objective calculation are abusing public trust.” 

 

David Keith, Canadian physicist (born 1963)  

 

 

A methodological framework aiming at the sustainable integration of waste and resource 

management was presented and tested in this dissertation. The originality of the research 

resides in the developed methodological approach and its contribution to unraveling some of 

the misconceptions often associated with the circular economy. 

 

 

Scope of the developed decision support tools 

The proposed framework is based on the expansion of the boundaries of integrated waste 

management systems to include the upstream and midstream subsystems where raw materials 

are extracted, processed and subsequently transformed into waste. The advantage of these 

expanded systems, identified throughout the thesis as Circular Integrated Waste Management 

Systems (CIWMSs), is that they enable an in-depth analysis of the consequences of the 

recirculation of the recovered waste components into the upstream subsystems, facilitating the 

decision-making processes. 

 

The developed framework relies on the integration of material flow analysis, life cycle 

assessment (LCA), life cycle costing and multi-objective optimization methodologies to ensure 

that the optimal design of a CIWMS complies with different sustainability criteria. Moreover, the 

application of this approach to the integrated management of nutrients and municipal organic 

waste required the use of a biogeochemical model to determine the distribution and chemical 

speciation of the nutrients contained in the products used for soil amendment. The combination 

of these methodologies, specially the integration of agroecosystems modeling within a decision 
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support system, constitutes a novel contribution to the field of process systems engineering. 

Furthermore, the developed methodological approach can be used to identify the decision-

making space where the costs and benefits associated with the implementation of systems that 

promote resource circularity are fairly distributed among the involved stakeholders. 

 

Regarding the circularity indicator proposed in this dissertation, it allows the quantification and 

comparison of the circularity of each waste component within a CIWMS. Therefore, these new 

decision support tools are suitable to explore the sustainability implications of improving 

resource circularity. 

 

 

The consequences of improving nutrient circularity in the studied system 

Some conclusions – true under the hypotheses of the thesis – about the effects of enhancing 

nutrient circularity on different aspects of sustainability were drawn from the application of the 

developed methodological framework to the case study. 

 

- Resource consumption. 

It was found that improving nitrogen (N) circularity is related to an increased consumption 

of non-renewable raw materials in the studied system.  

 

- Environmental impacts. 

Enhancing N circularity can lead to a higher level of marine eutrophication with respect to 

a system that relies to a greater extent on industrial fertilizers. This happens because crops 

absorb the inorganic N present in industrial fertilizers more efficiently than from the 

products recovered from organic waste, which have a significant proportion of organic N.  

 

Contrarily, since the same unit processes are involved in the promotion of N circularity and 

the decrease in global warming impacts, improving N circularity reduces the carbon 

footprint of the studied system. 

 

- Economic profits. 

It was demonstrated that increasing the economic profits of the waste managers is 

incompatible with enhancing N circularity in the studied system, because of the remarkable 

investment in new technologies that it requires.  
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These results challenge the widely assumed premise – on which recent European policy is based 

– that the improvement in resource efficiency derived from the implementation of a circular 

economy will lead to sustained economic growth and an overall reduction in resource 

consumption and environmental impacts. In the case study, the improvements in some of the 

studied sustainability dimensions were made at the expense of the deterioration of other 

aspects, which makes it necessary to find a compromise between them. Thus, the sustainability 

implications of the recovery and reintroduction into the production cycles of any waste 

component must be analyzed on a case-by-case basis. However, some general 

recommendations could be made based on the results of the thesis.   

 

 

EXTRAPOLATION OF THE RESULTS TO POLICY AND DECISION-MAKING  

 

The optimal system configurations for the management of the municipal organic waste 

generated in Cantabria are based on the source separation of organic waste, which has proven 

to reduce the carbon footprint of the studied system as long as it is implemented parallel to the 

adequate technologies. Nonetheless, given that at the time of writing there are not any plans to 

invest in the source separation of municipal organic waste, it is highly unlikely that a new 

regional source separation and collection system will be set up by 2023, as the European 

legislation establishes.  

 

Along with the technical feasibility of the recycling processes, economic profitability is one of 

the main limiting factors that will determine the maximum degree of circularity that a given 

waste component can achieve. To minimize the total costs associated with resource circularity 

and prevent citizens from assuming these costs in the form of taxes, new policies should 

incentivize the purchase of the products recovered from waste and the cooperation between all 

the parties involved in resource recirculation.  

 

Balancing environmental impacts and resource circularity is crucial for the effective 

implementation of a circular economy. Hence, legislators should promote the use of decision 

support tools based on systems thinking, like the one presented in this thesis, for the design and 

analysis of waste and resource management systems. Given the unexpected consequences that 

could arise from the adoption of a circular economy and offset its benefits, other strategies that 
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seek a reduction in resource consumption (e.g., waste prevention) should take precedence over 

maximizing resource circularity.  

 

Ultimately, the circular economy is just a concept; politicians should make sure that it is not used 

as a greenwashing technique. To that end, standardizing a metric to verify the extent of resource 

circularity, such as the circularity indicator proposed in this dissertation, could be useful.   

 

 

LIMITATIONS OF THE WORK AND SUGGESTIONS FOR FUTURE RESEARCH 
 

Further improvements in the proposed framework – which could help us better understand how 

circular systems contribute to sustainability – should focus on two complementary lines of work: 

the expansion of the scope of the developed model and the integration of new methodological 

tools within the decision support system. 

 

 

Model expansion 

The integration of other sources of organic matter (such as sewage sludge, manure or forest 

residues) and other upstream processes (the cultivation of alternative crops), as well as other 

waste fractions within the developed model would provide a more realistic description of the 

case study. Moreover, additional trade-offs between the studied impact categories and other 

environmental impacts associated with the presence of pollutants in the products recovered 

from organic waste, such as human toxicity or ecotoxicity, should be explored. 

 

Assessing the management of organic waste and nutrients under the perspective of the water-

food-energy nexus could help us analyze the synergies between these basic human needs and 

delineate new strategies to attain the Sustainable Development Goals. On the other hand, 

expanding the developed framework to account for the consequences of waste prevention 

activities is another attractive line of research that could lead to new policies oriented to the 

reduction of food waste, and by extension, to more efficient food systems. 

 

Since energy is an essential input to any process, coupling energy systems modeling to the 

developed framework would better describe the consequences of alternative system 

configurations. For instance, in a decarbonized energy scenario, an energy-intensive recycling 
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process could become environmentally friendly, whereas the energy valorization of waste might 

displace cleaner sources of energy.  

 

The proposed framework should be applied to other waste fractions and types of resources to 

determine how often the positive sustainability implications associated with the circular 

economy can be refuted. A regional setting was adequate for the case study because the low 

market value of the products recovered from organic waste makes their long-distance transport 

economically infeasible; nevertheless, the application of the developed framework to other 

waste fractions and other types of resources would require considering the global supply chains 

of resources and recycled materials. 

 

 

New methodologies 

Such broad frameworks could benefit from a consequential LCA modeling approach, which is 

particularly suitable for modeling the consequences of changes in the consumption and demand 

of raw materials. However, the difficulty related to compiling reliable marginal data hinders the 

application of this modeling approach.  

 

Stochastic programming tools could help us tackle the uncertainty associated with the input 

parameters of the model, like waste composition, and determine its influence on the results. 

The effects of the seasonal variations in waste composition should be accounted for by means 

of dynamic optimization, which could also be used to plan waste management strategies 

compliant with the timeline established by European policies. 

 

Additionally, game theory optimization would enable a more precise representation of the 

interests of the multiple actors that must cooperate to obtain a collective successful outcome 

from the implementation of a circular economy. An agent-based modeling approach could 

facilitate the analysis of the social dimension of sustainability, which, despite being vital for a 

complete sustainability assessment, was overlooked in this thesis. Thus, further research should 

investigate how the adoption of circularity practices affects job creation and other social 

indicators.  

 

Finally, the automation of the data flow between the different pieces of software could facilitate 

and extend the use of the developed tools. 
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CAPÍTULO 4 
 

CONCLUSIONES 

 

“El futuro no se puede predecir, pero se puede inventar.” 

 

Dennis Gabor, físico húngaro (1900-1979)  

 

 

 

En esta disertación se ha presentado y evaluado la utilidad de un nuevo marco metodológico 

para la gestión integrada y sostenible de residuos y recursos. La originalidad de la investigación 

reside en el enfoque metodológico desarrollado y su contribución a resolver algunos de los 

interrogantes que plantea la economía circular.  

 

 

Alcance de las herramientas de tomas de decisiones desarrolladas 

El marco metodológico propuesto se basa en la expansión de los límites de los sistemas 

integrados de gestión de residuos para incluir los subsistemas aguas arriba e intermedios en los 

que las materias primas son extraídas, procesadas, y posteriormente transformadas en residuos. 

La ventaja de ampliar estos sistemas, identificados en la tesis como Sistemas Circulares 

Integrados de Gestión de Residuos (SCIGR), es que permiten un análisis detallado de las 

consecuencias de recircular a los subsistemas aguas arriba los componentes residuales 

recuperados, facilitando los procesos de toma de decisiones.  

 

Para garantizar que el diseño óptimo de un SCIGR satisfaga diferentes criterios de sostenibilidad, 

se integraron metodologías de análisis de flujo de materiales, análisis de ciclo de vida (ambiental 

y económico) y optimización multi-objetivo. Además, la aplicación de este enfoque a la gestión 

integrada de nutrientes y residuos municipales orgánicos requirió el uso de un modelo 

biogeoquímico para determinar la distribución y la especiación química de los nutrientes 

contenidos en los productos utilizados para enmendar el suelo. La combinación de estas 

metodologías, especialmente la integración del modelo de ecosistemas agrícolas en un sistema 
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de soporte de decisiones, constituye una contribución innovadora al campo de la ingeniería de 

procesos y sistemas. Asimismo, el enfoque metodológico desarrollado se puede usar para 

identificar el espacio de toma de decisiones en el que los costes y beneficios asociados a la 

implementación de sistemas que promueven la circularidad de los recursos se distribuyen de 

forma justa entre los actores involucrados.  

 

En cuanto al indicador de circularidad propuesto, permite cuantificar y comparar la circularidad 

de cada componente residual dentro del SCIGR. Por tanto, estas nuevas herramientas de toma 

de decisiones son adecuadas para explorar las implicaciones de mejorar la circularidad de los 

recursos sobre la sostenibilidad. 

 

 

Consecuencias de mejorar la circularidad de los nutrientes en el sistema estudiado 

De la aplicación del marco metodológico desarrollado al caso de estudio se extrajeron algunas 

conclusiones – ciertas bajo las hipótesis planteadas – sobre los efectos de incrementar la 

circularidad de los nutrientes en diferentes aspectos de la sostenibilidad.  

 

- Consumo de recursos.  

Mejorar la circularidad del nitrógeno (N) comporta un incremento en el consumo de 

materias primas no renovables en el sistema estudiado.  

 

- Impactos ambientales. 

Aumentar la circularidad del N puede conducir a un mayor nivel de eutrofización marina 

que el alcanzado en un sistema que depende en mayor medida de fertilizantes industriales. 

Esto se debe a que los cultivos absorben el N inorgánico presente en los fertilizantes 

industriales más eficientemente que de los productos recuperados de los residuos 

orgánicos, los cuales tienen una elevada proporción de N orgánico.  

 

 Por el contrario, puesto que los mismos procesos unitarios están implicados en el 

incremento de la circularidad del N y la disminución de los impactos de calentamiento 

global, intensificar la circularidad del N reduce la huella de carbono del sistema estudiado.  
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- Beneficios económicos. 

Se demostró que en el caso de estudio mejorar la circularidad del N es incompatible con el 

aumento de los beneficios económicos de los gestores de residuos, debido a la notable 

inversión en nuevas tecnologías que esto supone.  

 

Estos resultados desafían la premisa comúnmente aceptada – en la que se basa la legislación 

europea más reciente – de que la mejora en la eficiencia de los recursos derivada de la 

implementación de una economía circular conducirá a un crecimiento económico sostenido y a 

una reducción del consumo total de recursos y los impactos ambientales. En el caso de estudio, 

las mejoras en algunas dimensiones de la sostenibilidad se hicieron a expensas del deterioro de 

otros aspectos, por lo que es necesario encontrar un compromiso entre ellos. Por tanto, las 

implicaciones de la recuperación y reintroducción de cualquier componente residual en los 

ciclos productivos deben ser analizadas caso por caso. Sin embargo, de los resultados de la tesis 

se pueden derivar algunas recomendaciones generales.  

 

 

ELABORACIÓN DE POLÍTICAS Y TOMA DE DECISIONES 
 

Las configuraciones óptimas del sistema de gestión de los residuos orgánicos municipales 

generados en Cantabria se basan en la recogida selectiva, ya que permite reducir la huella de 

carbono del sistema siempre que se implemente en paralelo a las tecnologías adecuadas. No 

obstante, es muy improbable que para el año 2023 se haya normalizado la recogida selectiva de 

residuos orgánicos municipales, como establece la legislación europea, ya que por ahora no 

existe ningún plan de inversión en un nuevo sistema de recogida selectiva.   

 

La rentabilidad económica es, junto a la viabilidad técnica de los procesos de reciclaje, uno de 

los principales factores limitantes que determinará el máximo grado de circularidad que un 

componente residual determinado puede alcanzar. Para minimizar los costes totales asociados 

a la circularidad de los recursos y evitar que los ciudadanos asuman estos costes en forma de 

impuestos, la legislación debería incentivar la compra de los productos recuperados de los 

residuos y la cooperación entre todas las partes implicadas en la recirculación de los recursos.  

 

Equilibrar los impactos ambientales y la circularidad de los recursos es crucial para la 

implementación efectiva de una economía circular. Por tanto, la administración debería 

promover el uso de herramientas de tomas de decisiones basadas en una óptica de sistemas, 
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como la presentada en esta tesis, para el diseño y análisis de sistemas de gestión de residuos y 

recursos. Dado que es posible que algunas de las consecuencias de la adopción de una economía 

circular contrarresten sus beneficios, las estrategias que buscan reducir el consumo de recursos, 

como la prevención de residuos, deberían tener precedencia sobre la circularidad de los 

recursos. 

 

En definitiva, la economía circular no es más que un concepto; la estandarización de un método 

para verificar el alcance de la circularidad de los recursos, como el indicador de circularidad 

propuesto en esta tesis, podría ser útil para asegurar que este término no se emplee como una 

estrategia publicitaria engañosa.  

 

 

LIMITACIONES DEL TRABAJO Y SUGERENCIAS PARA LA INVESTIGACIÓN FUTURA 
 

Las mejoras adicionales en el marco metodológico propuesto podrían ayudarnos a comprender 

la relación entre la circularidad de los recursos y la sostenibilidad, y deberían centrarse en dos 

líneas de trabajo complementarias: la ampliación del modelo y la integración de nuevas 

herramientas metodológicas en el sistema de toma de decisiones desarrollado.   

 

 

Ampliación del modelo 

Incluyendo en el modelo otras fuentes de material orgánica (lodos de depuradora, estiércol o 

residuos forestales) y procesos aguas arriba adicionales (como la producción de otros cultivos), 

así como otras fracciones residuales, se podría reflejar de forma más ajustada a la realidad la 

complejidad del caso de estudio. Además, se deberían explorar los compromisos entre las 

categorías de impacto estudiadas y otros impactos ambientales asociados a la presencia de 

contaminantes en los productos recuperados de la materia orgánica, como la toxicidad humana 

o la ecotoxicidad. 

 

La evaluación de la gestión de los residuos orgánicos y los nutrientes bajo la perspectiva del nexo 

agua-alimento-energía podría ayudar a analizar las sinergias entre estas necesidades humanas 

básicas, y delinear nuevas estrategias para cumplir con los Objetivos de Desarrollo Sostenible. 

Por otra parte, ampliar el marco metodológico desarrollado para cuantificar las consecuencias 

de las actividades de prevención de residuos es otra línea de investigación atractiva que podría 
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conducir a nuevas políticas orientadas a reducir los residuos alimentarios, y por extensión, a 

sistemas alimentarios más eficientes.  

 

Ya que un aporte de energía es esencial para el funcionamiento de cualquier proceso, acoplando 

el modelado de sistemas energéticos al marco metodológico desarrollado se podría conseguir 

una mejor descripción de las consecuencias de las configuraciones alternativas del sistema. Por 

ejemplo, en un escenario que considere un sistema energético con una penetración alta de 

energías renovables, un proceso de reciclaje con un alto consumo energético podría 

considerarse ambientalmente favorable, mientras que la valorización energética de los residuos 

podría desplazar fuentes de energía más limpias.  

 

El marco metodológico desarrollado debería aplicarse a otras fracciones residuales y a otros 

tipos de recursos para determinar con qué frecuencia se pueden refutar las características de 

sostenibilidad atribuidas a la economía circular. Debido al bajo valor de los productos 

recuperados de los residuos orgánicos en el mercado – lo cual hace su transporte a larga 

distancia económicamente inviable –, el enfoque regional de este trabajo se adecua al caso de 

estudio. Sin embargo, la aplicación del marco desarrollado a otras fracciones residuales y otros 

tipos de recursos requeriría considerar las cadenas de suministro globales de recursos y 

materiales reciclados.  

 

 

Nuevas metodologías 

El marco metodológico desarrollado se podría beneficiar de un análisis de ciclo de vida 

consecuencial, apropiado para determinar las consecuencias de los cambios en el consumo y la 

demanda de materias primas. Sin embargo, la dificultad para encontrar los datos que este tipo 

de modelado requiere obstaculiza su aplicación.  

 

Las herramientas de programación estocástica podrían contribuir a abordar la incertidumbre 

asociada a los parámetros del modelo, como la composición del residuo, y determinar su 

influencia en los resultados. Los efectos de las variaciones estacionales en la composición del 

residuo deberían ser considerados en una optimización dinámica, la cual también puede resultar 

útil para planificar estrategias de gestión de residuos conforme al cronograma establecido por 

la legislación europea.  
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Asimismo, la aplicación de los fundamentos de la teoría de juegos permitiría una representación 

de los intereses de los múltiples actores que deben cooperar para obtener un resultado común 

satisfactorio de la implementación de estrategias de economía circular. El modelado multi-

agente podría facilitar el análisis de la dimensión social, la cual, a pesar de ser imprescindible 

para llevar a cabo una completa evaluación de la sostenibilidad, no ha sido estudiada en esta 

tesis. Por tanto, en el futuro se deberá investigar cómo la adopción de prácticas de economía 

circular afecta a la creación de empleo y a otros indicadores sociales.  

 

Por último, la automatización de los flujos de datos entre los diferentes programas empleados 

podría facilitar y extender el uso de las herramientas desarrolladas.  
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NOMENCLATURE 
 

 

ƞ N uptake efficiency  

C Carbon 

CIC Carbon circularity indicator 

CII Circularity indicator of component i 

CIN Nitrogen circularity indicator 

CIP Phosphorus circularity indicator 

CIWMS Circular Integrated Waste Management System 

DOC Dissolved Organic Carbon 

EFA Energy Flow Analysis 

Eh  Redox potential 

FWE Freshwater Eutrophication 

IWMS Integrated Waste Management System 

GW Global Warming 

LCA Life Cycle Assessment 

LCC Life Cycle Costing 

LFA Landfill area 

MCDM Multi-Criteria Decision-Making 

MEU Marine Eutrophication 

MFA Material Flow Analysis 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Non-Linear Programming 

MIP Mixed Integer Programming 

mix-OW Organic waste separated from the mixed waste stream 

MSW Municipal Solid Waste 

N Nitrogen 

NLP Non-linear programming 

NR-RM Non-renewable raw materials 

P Phosphorus 

SFA Substance Flow Analysis 

SOC Soil Organic Carbon 

SS-OW Source Separated Organic Waste 

SSR Source Separation Rate 

TAC Total Annual Cost 

TAXWM Waste management tax 

 

  



 

181 
 

 

SUPPORTING INFORMATION 
 

 

APPENDIX A. WASTE COMPOSITION 
 

Tables S1 and S2 show the energy content and the composition of the organic waste coming 

from the different waste collection systems. The energy content, Total Solids (TS), and water 

contents of each waste fraction, as well as the fossil C (FossilC), the biogenic C (BioC) and the 

anaerobically degradable biogenic carbon (BioCAD) present in the organic waste are shown. It is 

assumed that the composition of the source separated organic waste (SS-OW) is 98% organic 

matter and 2% impurities. Even higher contents of organic matter have been achieved in real 

source separation experiences.1 The composition of the organic waste collected in the mixed 

waste collection system and after the trommel separation (mix-OW) is taken from the 

Cantabrian waste management plan,2 which also provides the amount of organic waste 

generated yearly in Cantabria (83,544 metric ton).  

 

The estimated densities of SS-OW and mix-OW are 362.69 and 116.43 kg·m-3 respectively. 
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Table S1. Composition of SS-OW (kg· metric ton-1 organic waste) 
 

Fraction name  Energy (MJ· 
metric ton-1) 

TS Water BioC BioCAD FossilC N 

Vegetable food 
waste 

1363.51 94.75 317.04 45.01 40.08 0.23 1.80 

Animal food waste 1070.87 55.49 73.97 30.74 19.97 0.63 3.88 

Yard waste, flowers 2091.70 197.89 184.21 103.71 17.99 2.12 2.97 

Wood 668.40 47.74 9.00 24.49 2.82 0.37 0.38 

Non-recyclable 
glass 

0.00 10.18 1.17 0.00 0.00 0.00 0.00 

Food cans 
(tinplate/steel) 

0.00 0.65 0.10 0.00 0.00 0.00 0.00 

Beverage cans (Al) 0.00 0.17 0.02 0.00 0.00 0.00 0.00 

Other metals 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Paper and carton 
containers 

30.54 2.59 0.74 1.16 0.43 0.01 0.01 

Plastic bottles 3.70 0.13 0.02 0.00 0.00 0.10 0.00 

Soft plastic 24.02 0.76 0.13 0.00 0.00 0.62 0.00 

Hard plastic 2.67 0.09 0.00 0.00 0.00 0.07 0.01 

Non-recyclable 
plastic 

11.52 0.46 0.04 0.00 0.00 0.32 0.00 

Juice cartons 0.06 0.00 0.00 0.00 0.00 0.00 0.00 

Textiles 1.96 0.13 0.01 0.05 0.00 0.02 0.00 

Other non-
combustibles 

0.00 2.45 0.16 0.02 0.00 0.02 0.00 
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Table S2. Composition of mix-OW (kg· metric ton-1 organic waste) 

 

 

 

 

 

 

 

 

 

 

Fraction name Energy (MJ· 
metric ton-1) 

TS Water BioC BioCAD FossilC N 

Vegetable food 
waste 

1341.46 93.22 311.91 44.28 39.43 0.22 1.77 

Animal food waste 1053.33 54.58 72.76 30.24 19.65 0.62 3.82 

Yard waste, flowers 2057.96 194.70 181.24 102.04 17.70 2.08 2.92 

Wood 18.97 1.35 0.26 0.69 0.08 0.01 0.01 

Non-recyclable glass 0.00 45.77 5.26 0.00 0.00 0.00 0.00 

Food cans 
(tinplate/steel) 

0.00 2.95 0.45 0.00 0.00 0.00 0.00 

Beverage cans (Al) 0.00 0.75 0.07 0.00 0.00 0.00 0.00 

Other metals 0.00 0.07 0.01 0.00 0.00 0.00 0.00 

Paper and carton 
containers 

137.41 11.67 3.34 5.24 1.93 0.03 0.02 

Plastic bottles 16.77 0.58 0.07 0.00 0.00 0.45 0.00 

Soft plastic 107.97 3.43 0.56 0.01 0.00 2.80 0.01 

Hard plastic 12.04 0.41 0.01 0.00 0.00 0.33 0.02 

Non-recyclable 
plastic 

51.79 2.06 0.16 0.01 0.00 1.46 0.01 

Juice cartons 0.31 0.02 0.00 0.01 0.00 0.00 0.00 

Textiles 8.83 0.57 0.04 0.22 0.00 0.07 0.02 

Other non-
combustibles 

0.00 11.03 0.71 0.07 0.00 0.07 0.00 
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APPENDIX B. LIFE CYCLE MODELING 
 

Technologies for the recovery of nutrients from the liquid digestate 

Table S3 and S4 show the life cycle inventories (LCI) – compiled from the literature –3-5 of the 

technologies modeled to treat the liquid digestate. The content of NH4 and phosphorus (P) in 

the liquid digestate is 781.97e-6 and 60.74e-6 kg·kg-1 respectively.  

 

 Table S3. LCI of the ammonia stripping and absorption (ASA) process 

 

 

 

 

 

 

 

 

 

 
Table S4. LCI of the struvite precipitation (SP) process 

 

 

 

 

 

 

 

  

INPUTS 
3.02 
0.87 
5.48 

20.96 
0.81 

  
kg H2SO4 (96% wt)·kg NH4

-1 in the digestate 
kg NaOH·kg NH4

-1 in the digestate 
kg H2O·kg NH4

-1 in the digestate  
kWh heat·metric ton-1 digestate 
kWh electricity·metric ton-1 digestate 

OUTPUTS 
1.11E-02 

 
kg SO3·kg NH4

-1 in the digestate 

4.80E-03 kg NH3·kg NH4
-1 in the digestate 

5.81E-03 kg (NH4)2SO4·kg-1 liquid digestate 

INPUTS 
1.561 
0.064 

 
kg MgO·(kg (PO4)3-)-1–P in the liquid digestate 
kWh·m-3 digestate 

OUTPUT  
4.45 kg MgNH4PO4·6H2O·(kg (PO4)-3)-1–P in the liquid digestate 
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Trommel separation 

The trommel electricity consumption was assumed to be 0.55 kWh·metric ton-1 for the SS-OW 

and 1.35 kWh·metric ton-1 for the mixed waste. The data was extrapolated from commercial 

trommels,6 considering that the densities of the materials that compose waste are those 

provided by EPA Victoria.7  

 

Table S5 compiles the trommel separation efficiencies for each material; i.e., how much of each 

material ends up in the organic waste stream after the sorting process. The efficiencies were 

calculated from the data provided by the Cantabrian waste management plant.2  

 

Only mix-OW and the SS-OW sent to anaerobic digestion (AD) are subjected to the trommel 

pretreatment.  

Table S5. Trommel separation efficiencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The efficiency of the magnetic and Eddy current separators is 73.42%.2 

 

 

 

 

 

 

Fraction name Sorting 
efficiencies (%) 

Vegetable food waste 90.23 

Animal food waste 90.23 

Yard waste, flowers 90.23 

Wood 3.20 

Non-recyclable glass 51.10 

Food cans (tinplate/steel) 20.00 

Beverage cans (aluminium) 20.00 

Other metals 20.00 

Paper and carton 
containers 

3.50 

Plastic bottles 51.10 

Soft plastic 51.10 

Hard plastic 51.10 

Non-recyclable plastic 51.10 

Juice cartons 0.10 

Textiles 0.50 

Other non-combustibles 8.40 



Appendix B 

186 
 

Landfill  

Figure S1 shows the sub-models associated with the landfill unit process in EASETECH.8  

 

The generation of landfill gas is modeled according to equation S1, which indicates that the 

initial amount of anaerobically degradable biogenic carbon in fraction i of waste (𝐵𝑖𝑜𝐶𝐴𝐷𝑖
0) 

experiences a first order decay.  

 

𝐵𝑖𝑜𝐶𝐴𝐷𝑖
= 𝐵𝑖𝑜𝐶𝐴𝐷𝑖

0 · 𝑒−𝑘·𝑡 (Equation S1) 

 

The decay rates (k) of each waste fraction are shown in Table S6. The assumed time horizon is 

100 years.  

 
Table S6. 1st order decay rate for the anaerobically degradable biogenic C in landfill 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction name k (year-1) 

Vegetable food waste 0.137 

Animal food waste 0.137 

Yard waste, flowers 0.162 

Wood 0.014 

Non-recyclable glass 0.000 

Food cans (tinplate/steel) 0.000 

Beverage cans (aluminium) 0.000 

Other metals 0.000 

Paper and carton containers 0.019 

Plastic bottles 0.000 

Soft plastic 0.000 

Hard plastic 0.000 

Non-recyclable plastic 0.000 

Juice cartons 0.019 

Textiles 0.021 

Other non-combustibles 0.000 
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Figure S1. Sub-models of the landfill unit process
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63% of the generated biogas is CH4, the remaining 37% is CO2. The concentration of additional 

trace substances in the biogas per m3 of the CO2 and CH4 mixture is compiled in Table S7.  

 

Table S7. Additional substances in biogas 

Substance Amount 
(g·m-3) 

Phenol 0.001 
CO 0.028 

Dichlorobenzene 0.006 
Ethylchloride 0.010 

Chloromethane 0.0003 
Naphtalene 0.0006 

Hg 1E-6 
H2S 0.04 

NMVOC 0.03 
VC 0.004 
TCE 0.004 
PCE 0.01 

Benzene 0.008 
Chlorobenzene 0.002 
Ethylbenzene 0.02 

Propylbenzene 0.002 
Dichloromethane 0.02 

Chloroform 0.0003 
Carbon tetrachloride 5E-05 

Xylenes 0.04 
Toluene 0.11 
CFC11 0.001 
CFC12 0.005 

CFC113 0.0005 
HCFC21 0.01 
HCFC22 0.003 

 

 

Table S8 shows the efficiency of the gas collection system and the fraction of the not collected 

CH4 that is oxidized.  

 
Table S8. Efficiency of the gas collection system and the fraction of the not collected CH4 that is oxidized 

 

 

 

 

 

Time period 
(years) 

Collected gas 
(%) 

Not collected CH4  
oxidized to CO2 (%) 

0-5 45 10 
5-15 80 20 

15-55 95 36 
55-100 0 36 
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Table S9 compiles the fraction of each substance in the collected gas that is oxidized in the 

combustion process (the combustion in flare of the gas that leaks, which is 7.21% of the collected 

gas, and the gas that is combusted for energy generation). These assumptions are valid for well 

monitored, state-of-art landfills with liners. All the substances are oxidized to CO2, except for 

H2S, which is transformed into SO2.  

 
Table S9. Fraction of each substance that is oxidized in the combustion process (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substance  In flare  For energy 
generation 

CH4 99.0 99.0 

NMVOC 97.7 97.2 

H2S 97.7 97.2 

Vynil chloride 98.0 93.0 

Trichloroethylene 98.0 93.0 

Perchloroethene 98.0 93.0 

Benzene 99.7 86.1 

Chlorobenzene 99.7 86.1 

Dichlorobenzene 99.7 86.1 

Ethylbenzene 99.7 86.1 

Propylbenzene 99.7 86.1 

Ethylchloride 98.0 93.0 

Chloromethane 98.0 93.0 

Dichloromethane 98.0 93.0 

Chloroform 98.0 93.0 

Carbon tetrachloride 98.0 93.0 

Xylenes 99.7 86.1 

Toluene 99.7 86.1 

CFC11 98.0 93.0 

CFC12 98.0 93.0 

CFC113 98.0 93.0 

HCFC21 98.0 93.0 

Phenol 99.7 86.1 

Naphtalene 2.3 86.1 
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Table S10 shows the additional substances (besides CO2) that are generated in the combustion 

process. 

 

Table S10. Additional substances generated in the combustion and treatment of landfill gas (kg·m-3 CH4) 
 

 

The leachate generation was calculated assuming a net infiltration rate of 300 mm·year-1. Table 

S11 compiles the concentration of different substances in the leachate. It was assumed that 

99.9% of the leachate generated during the first 80 years of operation was collected, whereas 

in the remaining 20 years of the time horizon, 87% of the generated leachate is collected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In flare For energy 

generation 

CO 7.40E-04 8.46E-03 

Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin 6.70E-13 3.60E-12 

NOx 9.10E-04 8.20E-03 

PAH, polycyclic aromatic hydrocarbons 1.00E-06 1.00E-06 

Particulates (2.5-10µm) 7.00E-05 1.80E-04 

Polychlorinated biphenyls 1.00E-06 1.00E-06 

SO2 1.70E-04 1.70E-04 

HCl 1.70E-04 4.00E-05 

HF 4.00E-05 4.00E-05 
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Table S11. Concentration of different substances in the leachate (mg·L-1) 

Substance Period 1 
(1 year) 

Period 2 
(2 years) 

Period 3 
(7 years) 

Period 4 
(90 years) 

DEHP 1.00E-02 1.00E-02 1.00E-02 1.00E-02 

Ethylchloride 1.00E-01 1.00E-01 1.00E-01 1.00E-01 

Propylbenzene 2.00E-03 2.00E-03 2.00E-03 2.00E-03 

Fe 7.80E+02 6.60E+02 3.20E+02 1.50E+01 

SO4 5.00E+02 4.40E+02 2.50E+02 8.00E+01 

Se 1.00E-02 9.00E-03 6.00E-03 3.00E-03 

Ca 1.20E+03 1.00E+03 5.00E+02 6.00E+01 

Cl 2.12E+03 1.90E+03 1.10E+03 3.60E+02 

Na 7.00E+02 6.00E+02 3.50E+02 1.00E+02 

Ag 1.20E-01 1.00E-01 5.00E-02 1.00E-02 

As 3.00E-02 3.00E-02 3.00E-02 3.00E-02 

Ba 5.00E-01 4.50E-01 3.00E-01 1.60E-01 

Cd 1.30E-02 1.20E-02 9.00E-03 6.00E-03 

Cr 7.00E-02 6.50E-02 5.20E-02 4.00E-02 

Cu 7.00E-02 7.00E-02 7.00E-02 7.00E-02 

Hg 4.00E-04 3.00E-04 2.00E-04 1.00E-04 

Mg 4.70E+02 4.10E+02 2.30E+02 6.00E+01 

Ni 7.00E-02 7.00E-02 7.00E-02 7.00E-02 

Pb 5.00E-02 4.50E-02 3.20E-02 2.00E-02 

Zn 4.00E+00 3.50E+00 2.00E+00 7.00E-01 

NH3 3.50E+03 2.90E+03 1.60E+03 1.10E+02 

PO4 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

COD 2.00E+04 1.50E+04 5.00E+03 4.00E+02 

BOD 1.60E+04 1.00E+04 1.00E+03 4.00E+01 

TSS 6.00E+01 6.00E+01 6.00E+01 6.00E+01 

VC 5.00E-03 4.80E-03 4.40E-03 4.00E-03 

TCE 5.00E-03 5.00E-03 6.00E-03 6.00E-03 

PCE 1.00E-02 9.00E-03 6.00E-03 3.00E-03 

Benzene 6.00E-03 5.60E-03 4.80E-03 4.00E-03 

Chlorobenzene 3.00E-03 3.00E-03 3.00E-03 3.00E-03 

Dichlorobenzene 6.00E-03 6.00E-03 6.00E-03 6.00E-03 

Ethylbenzene 3.00E-02 2.80E-03 2.40E-02 2.00E-02 

Dichloromethane 3.00E-02 2.50E-02 1.30E-02 3.00E-03 

Chloroform 3.00E-04 3.00E-04 3.00E-04 3.00E-04 

Carbon tetrachloride 2.00E-04 2.00E-04 2.00E-04 2.00E-04 

Xylenes 8.00E-02 7.50E-02 6.20E-02 5.00E-01 

Toluene 9.00E-02 8.00E-02 5.00E-02 2.00E-02 

Phenol 8.00E-04 3.00E-03 5.00E-03 3.00E-03 
Naphtalene 3.00E-02 2.80E-02 2.40E-02 2.00E-02 
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Table S12 shows the LCI of the landfill unit process. The electricity generated in the gas 

combustion process is 2.64 kWh·m-3 CH4.   

 

Table S12. LCI of landfill operation 

*Construction material for the landfill cells 

 

 

 

 

INPUTS   

Gravel* 
Clay* 

Copper* 
Steel sheets* 
Aluminum* 

Polyvinylchloride resin* 
Polyethylene high density granulate* 

Polypropylene fibers* 
Diesel oil 

Electricity consumption 
(construction and operation of landfill) 

Electricity consumption (leachate treatment) 

0.18 
8.2E-02 

9.87E-09 
1.40E-04 
5.80E-08 
1.00E-05 
2.30E-04 
4.00E-08 
3.20E-03 
8.00E-03 

 
4.43E-02 

kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 

kWh·kg-1 TWW 
 

kWh·kg-1 leachate 
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Incineration 

Figure S2 shows the sub-models of the incineration unit process modeled with EASETECH.8. 

Table S13 compiles the percentages associated with the material transfer of the different 

substances present in waste after the incineration process. The energy efficiency of the 

incineration process is 23.8%.  

 

Table S13. Substance transfer in the incineration unit process (%) 

  
Air Fly Ash Fe 

scrap 
Al 

srap 
Wastewater Degradation Bottom 

ash 

Water 
     

100.0000 
 

VS 
     

100.0000 
 

C 99.90 
     

0.1000 

Ca 0.00 20.5900 
    

79.4100 

Cl 0.1073 32.1300 
  

62.4600 
 

5.3000 

F 
     

0.2300 99.7700 

H 
     

100.00 
 

K 
 

20.5900 
    

79.4100 

N 
     

4.2400 95.7600 

Na 
 

20.5900 
    

79.4100 

O 
 

18.3600 
   

10.0700 71.5700 

S 0.0990 60.9100 
  

15.0000 
 

23.9910 

Al 
 

8.6000 
 

58.2300 
  

33.1700 

As 0.0121 58.9200 
  

0.4554 
 

40.6100 

Cd 0.0064 88.1300 
  

0.0311 
 

11.8300 

Cr 0.0394 16.7700 
  

0.0455 
 

83.1500 

Cu 0.0026 7.3500 
  

0.0157 
 

92.6300 

Fe 
 

3.1900 84.5000 
   

12.3100 

Hg 0.7476 96.2500 
  

0.0936 
 

2.9090 

Mg 
 

20.5900 
    

79.4100 

Mn 
 

20.5900 
    

79.4100 

Mo 
 

2.5400 
  

0.8517 
 

96.6100 

Ni 0.0329 12.5600 
  

0.0873 
 

87.3200 

Pb 0.0008 51.2900 
  

0.2384 
 

48.4700 

Sb 0.1190 59.8400 
  

1.2340 
 

38.8100 

Zn 
 

48.1800 
  

0.0643 
 

51.7600 

 

 

 

 

 

 

 



Appendix B 

194 
 

 

 

 

Figure S2. Sub-models of the incineration unit process 
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Table S14 compiles the substances generated in the incineration process and present in the gas 

stream (besides CO2).  

 

Table S14. Substances generated in the incineration unit process 
 

CO 
Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin 

HCl 
HF 

NOx 
SO2 

Particulates > 10 µm 

3.30E-05 
1.80E-14 
5.3 E-06 
3.90E-07 
8.49E-04 
2.91E-06 
3.00E-05 

kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 
kg·kg-1 TWW 

 

 

Table S15 shows the LCI of the incineration process. The inputs associated with the operation of 

the ash landfill are excluded from the inventory.  

 

Table S15. LCI of the incineration unit process 

INPUTS   

Activated carbon 9.29E-04 kg·kg-1 TWW 

Process water 5.05E-01 kg·kg-1 TWW 

Hydrated Lime 8.57E-03 kg·kg-1 TWW 

Natural Gas 1.45E-02 MJ·kg-1 TWW 

Cement (fly ash stabilization) 5E-01 kg·kg-1 fly ash 

Process water (fly ash stabilization) 5E-01 kg·kg-1 fly ash 

 

 

Anaerobic digestion 

Figure S3 shows the different stages of the anaerobic digestion process considered in 

EASETECH.8  

 

Table S16 compiles the gas yields of the different materials present in the organic waste in the 

anaerobic digestion process. The yield is defined as the fraction of BioCAD of each material that 

is transferred to the gas phase. 63 % of the biogas is CH4, the remaining fraction is CO2. 2% of 

the generated biogas leaks and is combusted in a gas flare, whereas the rest of the biogas is 

combusted for energy generation. The electricity generated in the biogas combustion process is 

2.64 kWh·m-3 CH4. 
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Table S16. Gas yield in the anaerobic digestion process 

Fraction name Yield BioCAD (%) 

Vegetable food waste 70 

Animal food waste 70 

Yard waste, flowers 70 

Wood 45 

Paper and carton containers 45 

Juice cartons 45 

 

The fractions of each substance that are oxidized in the biogas combustion processes are those 

shown in Table S8, whereas the additional substances that are generated in the combustion 

process are compiled in Table S10.  

 
Figure S3. Sub-models of the anaerobic digestion unit process 
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The water content in the digestate is 96% (in weight). Table S17 compiles the distribution of 

different components of the liquid digestate between the liquid and the solid digestate after the 

screw press separation.9 The rest of the components of the digestate are assumed to be 

transferred to the solid digestate. Regarding the energy consumption of the screw press, it is 

assumed to be 10 MJ per metric ton of digestate.10 

 
Table S17. Distribution of the digestate components between the liquid and the solid digestate (%) 

 

 

 

 

 

 

 

 

Table S18 shows the LCI of the anaerobic digestion process. The results are expressed per kg of 

TWW that enters the pretreatment process. However, the table does not include the inputs 

associated with the trommel and the screw press. The heat required to achieve a temperature 

of 55 oC in the reactor was calculated assuming that the specific heat of the solids is 3 kJ·kg-1.  

 

Table S18. LCI of the anaerobic digestion unit process 

INPUTS 
  

Electricity consumption 4.12E-2 kWh·kg-1 TWW 

Diesel 7.57E-4 l·kg-1 TWW 

Process water 5.113 kg·kg-1 TWW 

Heat from natural gas 0.14 kJ·kg-1 TWW 

 

 

 

 

 

 

 

 

 

Substance Liquid 
digestate 

Solid 
digestate 

Water 91.43 8.57 

N 54.11 45.89 

C 38.24 61.76 

Mg 20.5 79.5 

Ca 3.18 96.82 

P 27.32 72.68 

K 92.37 7.63 

VS 30.56 69.44 

Ash 6.95 93.05 



Appendix B 

198 
 

Composting 

Figures S4 and S5 show the sub-models of windrow (W) and tunnel (T) composting processes 

modeled with EASETECH.8.  

 

Figure S4. Sub-models of the windrow composting unit process 

 

 

Figure S5. Sub-models of the tunnel composting unit process 

 

Table S19 compiles the percentages of carbon (C) in each fraction of the organic waste that is 

degraded in the composting processes. On the other hand, 71% of the nitrogen (N) present in 

organic waste is degraded in the windrow and in the tunnel composting processes.  
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Table S19. Percentage of C in each fraction of the organic waste that is degraded in the composting 
processes 

 

Fraction name Windrow Tunnel 

Vegetable food waste 74.56 73.54 

Animal food waste 74.56 73.54 

Yard waste, flowers 74.56 63.79 

Wood 11.28 20 

Paper and carton containers 10 10 

Juice cartons 5 5 

Textiles 5 5 

Others 0 0 

 

Table S20 shows the percentages of each degraded element that are converted into new 

compounds in the composting process.  

 

Table S20. Transformation of degraded elements into new compounds 
 

Element Conversion (%) Compound 

C 99.990 CO2 

C 0.010 CH4 

N 0.100 N2 

N 0.985 NH3 

N 1.400 N2O 

N 97.515 NOX 

 

 

Table S21 shows the additional gas emissions that are generated in the composting process.  

 
Table S21. Additional Substances generated in the composting process 

 

 

 

 

 

 

 

 

 

 

 

Substance Amount 
(kg·kg-1 TWW) 

Terpenes 1.22E-06 

H2S 1.93E-07 
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Table S22 shows the distribution of the materials that compose organic waste between the 

generated compost (comp) or bio-stabilized material (BS) and rejects for different composting 

technologies.  

 

Table S22. Distribution of the materials between compost and reject 
 

 

After the curing phase, the water content in the compost/bio-stabilized material is reduced to 

30%.  

 

 

 

 

 

 

 

 

 

 
Tunnel  

composting 
Windrow  

composting 

Fraction name Comp 
/BS 

1st screen 
reject 

2nd screen 
reject 

Comp 
/BS 

Rejects 

Vegetable food waste 95 0 5 95 5 

Animal food waste 95 2 3 95 5 

Yard waste, flowers 95 0 5 95 5 

Wood 80 20 0 50 50 

Non-recyclable glass 5 30 65 50 50 

Food cans 
(tinplate/steel) 

0 30 70 0 100 

Beverage cans 
(aluminium) 

5 30 65 5 95 

Other metals 5 30 65 5 95 

Paper and carton 
containers 

10 45 45 50 50 

Plastic bottles 5 30 65 20 80 

Soft plastic 5 30 65 20 80 

Hard plastic 5 30 65 20 80 

Non-recyclable plastic 5 30 65 20 80 

Juice cartons 10 45 45 5 95 

Textiles 5 30 65 50 50 

Other non-combustibles 5 30 65 5 95 
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The LCI of the composting processes is compiled in Table S23.  

 

Table S23. LCI of the composting unit processes 

 

 

 

 

 

 

 

 

 

 

 

Land application of products  

Table S24 compiles the LCI of the application of products to land. The required amounts of 

nutrients from each type of recovered product are compiled in Tables S30 and S34. 

 

Table S24. LCI of the application of products to land 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUTS 
  

Electricity consumption   

Grinder 10.600 kWh·metric ton-1 

Windrow turner 0.24 kWh·metric ton-1 

Post-screening 0.9000 kWh·metric ton-1 

Front end loader 8.064 kWh·metric ton-1 

   

Diesel   

Grinder fuel consumption 0.250 l·kWh-1 

Windrow turner fuel consumption 0.127 l·kWh-1 

Front end loader 0.260 l·kWh -1 

Diesel 
Diesel 

NH4NO3 (as N) 
(NH4)2HPO4 (DAP) 

0.010 
0.010 
1.000 
0.235 

l·kg-1 applied N 
l·kg-1 applied P 

kg N·kg-1 N from mineral fertilizer 
kg DAP·kg-1 P from mineral fertilizer 
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Transport 

The waste collected in Cantabria is either directly taken to the mechanical-biological treatment 

plant located in the municipality of Meruelo, or to one of the seven transfer stations of the 

region (to be subsequently transported to the mechanical-biological treatment plant). Table S26 

compiles the distance of each regional municipality to the closest transfer station, as well as the 

distance from the transfer stations to Meruelo. The table also shows the population of each 

municipality.11 The average distance that waste must be transported is calculated assuming that 

all the citizens generate the same amount of waste, regardless of where they live. It was 

calculated that the average distance that waste must go through from the municipalities to the 

transfer station is 24.7 km, and from the transfer station to Meruelo 21.6 km. Table S25 shows 

the LCI of the transport process.  

 

Table S25. LCI of waste transport 
 

Transport Vehicle type LCI 

Curbside collection Collection Vehicle, 10t 
Euro3, urban traffic 

0.00157 L diesel·kg-1 TWW 

From municipality to 
transfer station 

Truck, 7.5t-12t, Euro5, 
urban traffic 

24.7·2 km·kg-1 TWW 

From transfer 
station to Meruelo 

Truck, 20t-26t, Euro5, 
highway 

21.6·2 km·kg-1 TWW 

 

It was assumed that the products recovered from organic waste need to travel from the Meruelo 

facility to the different municipalities of Cantabria. On the other hand, it was assumed that all 

the mineral fertilizers that are applied in the region are produced in Bilbao. Table S27 compiles 

the cultivated areas of each Cantabrian municipality11 and the distances from each municipality 

to Meruelo and Bilbao. Under the hypothesis that the amount of fertilizers and products 

recovered from organic waste that are sent to each municipality is directly proportional to the 

cultivated area in each municipality, the average distance between Meruelo and the land where 

the recovered products are applied is 66.54 km, and the distance between Bilbao and the 

fertilized land, 105.05 km.  
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Table S26. Population and distance of each Cantabrian municipality to the closest transfer station 
   

Transfer stations (km) 

Municipality Population 
(inhabitants) 

1 2 3 4 5 6 7 8 

Alfoz de Lloredo 2,466 13 
       

 Ampuero 4,181 
     

12 
  

Anievas 314 
 

39 
      

Arenas de Iguña 1,711 
 

40 
      

 Argoños 1,720 
       

12 

Arnuero 2,091 
       

40 

Arredondo 480 
     

13 
  

Astillero, El 18,134 
       

31 

Bárcena de Cicero 4,124 
       

14 

Bárcena de Pie de 
Concha 

710 
 

45 
      

 Bareyo 1,999 
       

8 

Cabezón de la Sal 8,345 0 
      

69 

Cabezón de 
Liébana 

601 
  

0 
    

133 

Cabuérniga 1,012 13 
       

 Camaleño 977 
  

12 
     

Camargo 30,611 
       

32 

Campoó de Yuso 696 
   

25 
    

Cartes 5,733 
 

17 
      

Castañeda 2,687 
 

0 
     

39 

Castro-Urdiales 31,901 
      

0 48 

Cieza 556 
 

35 
      

Cillorigo de Liébana 1,310 
  

13 
     

Colindres 8,331 
       

22 

Comillas 2,228 10 
       

Corrales de Buelna, 
Los 

11,003 
 

25 
      

 Corvera de 
Toranzo 

2,074 
 

20 
      

 Enmedio, Campoó 
de 

3,778 
   

16 
    

Entrambasaguas 4,943 
       

13 

 Escalante 747 
       

11 

Guriezo 2,359 
       

41 

Hazas de Cesto 1,522 
       

9 

Hermandad de 
Campoó 
 de Suso 

1,643 
   

0 
   

105 

Herrerías 641 33 
       

Lamasón 298 
  

37 
     

Laredo 11,446 
       

25 

 Liendo 1,227 
       

30 

Liérganes 2,372 
       

25 

Limpias 1,813 
       

25 

Luena 615 
 

34 
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  Transfer stations (km) 

Municipality Population 
(inhabitants) 

1 2 3 4 5 6 7 8 

Marina de Cudeyo 5,174 6       21 

Mazcuerras 2,119         

Medio Cudeyo 7,482 
       

23 

Meruelo 1,965 
       

0 

Miengo 4,741 
 

24 
      

Miera 395 
       

38 

Molledo 1,589 
 

37 
      

 Noja 2,562 
       

11 

Penagos 2,060 
       

26 

 Peñarrubia 349 
  

25 
     

Pesaguero 311 
  

8 
     

Pesquera 71 
   

24 
    

Piélagos 24,574 
 

16 
      

Polaciones 237 
  

33 
     

Polanco 5,794 
 

19 
      

Potes 1,360 6 
       

Puente Viesgo 2,877 
 

7 
      

Ramales de la 
Victoria 

2,827 
     

0 
 

40 

Rasines 959 
     

11 
  

Reinosa 9,496 
   

11 
    

 Reocín 8,318 
 

21 
      

Ribamontán al Mar 4,422 
       

13 

Ribamontán al 
Monte 

2,231 
       

8 

Rionansa 1,058 31 
       

Riotuerto 1,610 
       

19 

Rozas de 
Valdearroyo, Las 

275 
   

27 
    

Ruente 1,044 7 
       

Ruesga 870 
     

10 
  

Ruiloba 765 12 
       

San Felices de 
Buelna 

2,381 
 

18 
      

San Miguel de 
Aguayo 

160 
   

30 
    

San Pedro del 
Romeral 

453 
    

31 
   

San Roque del Río 
Miera 

386 
    

23 
   

Santa Cruz de 
Bezana 

12,679 
       

38 

Santa María de 
Cayón 

9,078 
       

32 

Santander 172,656 
       

39 

Santillana del Mar 4,184 
 

23 
      

Santiurde de 
Reinosa 

265 
   

21 
    

Santiurde de 
Toranzo 

1,602 
    

25 
   

Santoña 11,085 
       

16 
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 Transfer stations (km) 

Municipality Population 
(inhabitants) 

1 2 3 4 5 6 7 8 

San Vicente de la 
Barquera 

4,196 18 
       

Saro 512 
    

15 
   

Selaya 1,931 
    

0 
  

52 

 Soba 1,249 
       

58 

Solórzano 1,012 
       

11 

Suances 8,579 
 

28 
 
 

 
  

     

Tojos, Los 399 26 
       

Torrelavega 52,819 
 

13 
      

Tresviso 71 
  

51 
     

Tudanca 147 41 
       

 Udías 903 5 
       

 Valdáliga 2,272 14 
       

Valdeolea 987 
   

26 
    

 Valdeprado del Río 331 
   

34 
    

Valderredible 1,001 
   

45 
    

Val de San Vicente 2,763 26 
       

Vega de Liébana 788 
  

19 
     

Vega de Pas 795 
    

19 
   

Villacarriedo 1,636 
    

8 
   

Villaescusa 3,883 
       

34 

Villafufre 1,017 
    

17 
   

 Valle de Villaverde 327 
      

29 
 

Voto 2,725 
       

30 
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Table S27. Cultivated area of each municipality and distances to Meruelo and Bilbao 

 
Municipalities Cultivated area (ha) Distance to Meruelo (km) Distance to Bilbao (km) 

Alfoz de Lloredo 104.26 65 133 

Ampuero 22.68 29 68 

Anievas 7.28 77 145 

Arenas de Iguña 51.99 77 145 

Argoños 0.64 12 72 

Arnuero 190.55 40 82 

Arredondo 0.61 52 91 

Astillero (El) 15.68 31 94 

Bárcena de Cicero 163.01 14 68 

Bárcena de Pie de Concha 5.33 77 146 

Bareyo 158.32 8 82 

Cabezón de la Sal 64.61 69 137 

Cabezón de Liébana 13.18 133 202 

Cabuérniga 23.32 82 150 

Camaleño 22.97 137 205 

Camargo 56.42 32 101 

Campoo de Yuso 11.54 68 148 

Cartes 1.59 53 122 

Castañeda 87.66 39 107 

Castro-Urdiales 145.15 48 35 

Cieza 59.35 71 139 

Cillorigo de Liébana 12.86 134 202 

Colindres 0.12 22 61 

Comillas 24.09 76 144 

Corrales de Buelna (Los) 49.35 60 129 

Corvera de Toranzo 40.04 55 124 

Campoo de Enmedio 33.54 95 164 

Entrambasaguas 75.87 13 83 

Escalante 6.73 11 70 

Guriezo 24.71 41 53 

Hazas de Cesto 36.12 9 75 

Hermandad de Campoo de Suso 4.55 105 185 

Herrerías 71.06 101 170 

Lamasón 8.56 115 184 

Laredo 8.73 25 60 

Liendo 6.84 30 53 

Liérganes 20.22 25 94 

Limpias 3.16 25 64 

Luena 12.55 70 138 

Marina de Cudeyo 134.58 21 90 

Mazcuerras 60.13 66 135 

Medio Cudeyo 48.07 23 92 

Meruelo 80.01 0 81 

Miengo 46.93 47 116 

Miera 4.49 38 106 

Molledo 30.98 74 142 

Noja 1.15 11 82 

Penagos 40.86 26 94 

Peñarrubia 26.00 120 188 

Pesaguero 7.17 141 210 

Pesquera 35.96 86 167 

Piélagos 302.42 41 109 

Polaciones 0.46 133 201 

Polanco 39.47 49 118 

Potes 0.08 130 199 

Puente Viesgo 89.10 43 111 

Ramales de la Victoria 9.06 40 79 

Rasines 7.70 35 74 
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Municipalities Cultivated area (ha) Distance to Meruelo (km) Distance to Bilbao (km) 

Reinosa 8.61 106 162 

Reocín 49.93 57 125 

Ribamontán al Mar 610.78 13 93 

Ribamontán al Monte 78.94 8 80 

Rionansa 13.76 113 181 

Riotuerto 3.73 19 89 

Rozas de Valdearroyo (Las) 2.03 108 127 

Ruente 4.11 76 145 

Ruesga 13.58 49 88 

Ruiloba 93.64 77 146 

San Felices de Buelna 33.21 54 122 

San Miguel de Aguayo 0.06 92 161 

San Pedro del Romeral 10.09 76 144 

San Roque de Riomiera 8.07 42 110 

Santa Cruz de Bezana 85.34 38 107 

Santa María de Cayón 181.02 32 100 

Santander 16.93 39 102 

Santillana del Mar 200.13 58 127 

Santiurde de Reinosa 28.87 85 154 

Santiurde de Toranzo 11.96 52 120 

Santoña 1.10 16 71 

San Vicente de la Barquera 36.19 83 152 

Saro 6.89 40 108 

Selaya 9.16 52 121 

Soba 62.72 58 97 

Solórzano 102.26 11 76 

Suances 203.11 63 131 

Tojos (Los) 0.20 95 163 

Torrelavega 128.98 50 28 

Tresviso 4.00 153 221 

Tudanca 0.22 123 191 

Udías 5.61 70 139 

Valdáliga 104.51 84 152 

Valdeolea 683.14 110 179 

Valdeprado del Río 81.70 113 181 

Valderredible 1,352.17 124 193 

Val de San Vicente 175.27 92 160 

Vega de Liébana 21.29 143 211 

Vega de Pas 2.71 71 104 

Villacarriedo 87.47 45 113 

Villaescusa 11.87 34 102 

Villafufre 13.00 43 111 

Valle de Villaverde 12.12 58 40 

Voto 120.47 30 75 
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Additional data 

The global warming (GW), marine eutrophication (MEU) and freshwater eutrophication (FWE) 

impacts compiled in Table S28 have been taken from Ecoinvent 3.3.12 The data reflect the 

average environmental impacts of European production processes, except for the 

environmental impacts related to the generation of electricity, which represent the Spanish grid 

mix. 

Table S28. GW, MEU and FWE of different commodities 

  
Functional unit GW (kg CO2-eq) MEU (kg N-eq) FWE (kg P-eq) 

Spanish electricity 1 kWh 3.05E-01 4.00E-05 1.46E-03 

Heat from natural 
gas 

1 MJ 1.41E-01 4.63E-06 2.79E-03 

Cement 1 kg 8.84E-01 7.06E-05 1.40E-02 

Steel sheet 1 kg 3.31E-01 6.66E-05 4.95E-02 

Aluminum 1 kg 4.90E00 1.40E-03 5.81E-01 

PEHD granulate 1 kg 1.92E00 1.30E-04 7.38E-07 

PP fibers 1 kg 2.334E00 2.05E-04 2.00E-05 

PVC 1 kg 2.71E00 2.18E-04 5.81E-05 

Urea 2.14 kg 3.18E00 1.02E-03 1.28E-01 

H2SO4 1 kg 2.57E-01 4.22E-04 2.76E-01 

MgO 1 kg 1.04E00 1.58E-04 4.85E-02 

NaOH 1 kg 1.41E00 1.22E-04 2.92E-04 

HCl 1 kg 1.14E00 3.89E-04 2.25E-01 

Water 1 kg 6.5E-03 3.25E-06 1.36E-06 

(NH4)2HPO4 1 kg 1.43E00 4.33E-04 7.55E-04 

NH4NO3 1 kg N 8.72E00 2.35E-03 8.46E-04 
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APPENDIX C. DNDC MODELING  
 

The soil properties that the DNDC13 software demands as input data are the following:  

- Texture: loam.14  

- pH: 4.55.14 

- Organic C content (0 cm - 10 cm): 0.0412 kg C·kg-1 soil.15  

- Bulk density (0 cm - 10 cm): 1.03 g·cm-3.15 

 

Table S29 shows the distribution of N in the recovered products.  

 

Table S29. Distribution of N in the compost/bio-stabilized material and the solid digestate (SD) (%) 

 

 

 

 

 

Appendix C1 makes reference to the application of the recovered products to cover the corn N 

requirements, whereas Appendix C2 refers to the corn P requirements. Tables S30 and S34 cover 

the amount of nutrients present in the different products that need to be applied to land to 

produce 7.11 metric tons of corn per ha and year. Tables S31-S33 and S35-S37 show the 

distribution of the C, N and P present in the applied products in the environment.  

  

 COMP/BS16 SD17 

Organic-N 93.00 62.96 
NH4

+-N 1.00 37.04 
NO3

--N 6.00 0 
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Appendix C1. Fertilizing products applied to cover the corn N requirements  

 

Table S30. Amount of nutrients from different sources applied to the soil to cover the N requirements 

Product Unit 
process 

kg N·ha-1 ·year-1 kg P·ha-1·year-1 kg C·ha-1 ·year-1 

Fert (NH4NO3) 
 

128.5 0.0 0.0 

COMP T 196.9 88.9 571.2 

BS T 208.6 96.6 496.8 

COMP W 210.4 96.9 482 

BS W 218.9 101.34 438.9 

SD AD 232.3 49.4 464.4 

(NH4)2SO4 ASA 128.5 0.0 0.0 

MgNH4PO4·6H2O SP 128.5 442.5 0.0 

 

 
Table S31. Distribution of the applied N (%)  

Application of recovered product needed to cover the N requirements 

 

 
Table S32. Distribution of applied P (%) 

Application of recovered product needed to cover the N requirements 
 

Product Unit 
process 

P uptake Leach 
P 

Stored P 
in soil 

COMP T 0.1073 0.7129 0.1798 

BS T 0.0987 0.7314 0.1699 

COMP W 0.0995 0.7307 0.1698 

BS W 0.0943 0.7403 0.1654 

SD AD 0.1928 0.5623 0.2448 

MgNH4PO4·6H2O SP 0.0217 0.9248 0.0536 

 

 

 

 

 

Product Unit 
process 

N uptake Leach NO3 N2O NO Stored N 

Fert (NH4NO3) - 0.7929 0.1989 0.0045 0.0037 0.0000 

COMP T 0.5987 0.2926 0.0084 0.0007 0.0996 

BS T 0.5936 0.3033 0.0084 0.0007 0.0940 

COMP W 0.5936 0.3054 0.0084 0.0007 0.0919 

BS W 0.5872 0.3121 0.0083 0.0007 0.0917 

SD AD 0.5284 0.4136 0.0096 0.0010 0.0474 

(NH4)2SO4 

MgNH4PO4·6H2O 
ASA  
SP 

0.7929 
0.7929 

0.1989 
0.1989 

0.0045 
0.0045 

0.0037 
0.0037 

0.0000 
0.0000 
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Table S33. Distribution of applied C (%) 
Application of recovered product needed to cover the N requirements 

 

Product Unit 
process 

CO2 Leach C Stored C 
in soil 

COMP T 0.9221 0.0439 0.0334 

BS T 0.9164 0.0478 0.0358 

COMP W 0.9156 0.0486 0.0358 

BS W 0.9102 0.0515 0.0383 

SD AD 0.9280 0.0492 0.0228 

 

The distribution of nutrients was calculated from the results of the DNDC software. 

 

 

Appendix C2. Fertilizing products applied to cover the corn P requirements  

 

Table S34. Amount of nutrients from different sources applied to the soil to cover the P requirements 

 

Product Fert 
((NH4)2HPO4) 

COMP BS COMP BS SD MgNH4PO4· 
·6H2O 

Unit process - T T W W AD SP 

kg N·ha-1·year-1 12.3 110.9 112 111.9 112.5 102.7 122.4 

(Fertilizer N) 

kg P·ha-1year-1 13.6 0 0 0 0 0 0 

(Fertilizer P) 

kg N·ha-1·year-1 0 30 29.3 29.8 29.3 63.8 6.1 

(Recovered N) 

kg P·ha-1·year 0 13.6 13.6 13.6 13.6 13.6 13.6 

(Recovered P) 

kg C·ha-1·year-1 0 872 697 682 588 1274 0 

(Recovered C) 
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Table S35. Distribution of the applied N (%)  
Application of recovered product needed to cover the P requirements 

 

Product Unit 
process 

N uptake Leach NO3 N2O air 
emissions 

NO air 
emissions 

Stored N 
in soil 

Fert (NH4)2HPO4  - 0.7929 0.1989 0.0045 0.0037 0.0000 

COMP T 0.7538 0.2376 0.0050 0.0036 0.0000 

BS T 0.7562 0.2353 0.0049 0.0036 0.0000 

COMP W 0.7557 0.2358 0.0049 0.0036 0.0000 

BS W 0.7572 0.2344 0.0048 0.0036 0.0000 

SD AD 0.6710 0.3206 0.0050 0.0034 0.0000 

MgNH4PO4·6H2O SP 0.7929 0.1989 0.0045 0.0037 0.0000 

 
 

Table S36. Distribution of applied P (%) 
Application of recovered product needed to cover the P requirements 

 

P uptake Leach P Stored P in soil 

0.3993 0.2041 0.3996 

 

 

Table S37. Distribution of applied C (%) 
Application of recovered product needed to cover the P requirements 

 

Product Unit 
process 

CO2 Leach Stored 

COMP T 0.90481 0.09519 -0.0832 

BS T 0.90059 0.09941 -0.0907 

COMP W 0.90012 0.09988 -0.0911 

BS W 0.89764 0.10236 -0.0955 

SD AD 0.91230 0.08770 -0.0631 

 

The distribution of nutrients was calculated from the results of the DNDC software. 
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APPENDIX D. EFFICIENCIES OF THE UPSTREAM PROCESSES 
 

Tables S38 and S39 compile the efficiencies of the recycling unit processes for each component. 

The efficiencies are expressed as kg of component i recovered per kg of component i that enters 

the recycling process. 

 

Table S38. Efficiency of the recycling processes that handle organic waste 

 

 

 

 

 

 

 

Table S39. Efficiency of the recycling processes that handle the liquid digestate 
 

 
ASA SP 

C 0.0000 0.0000 

N 0.9520 0.0172 

P 0.0000 0.5625 

 

Tables S40 and S41 compile the efficiencies of the corn production process for the application 

of each type of product (to cover N or P requirements respectively). They are expressed as either 

kg of nutrient taken up by corn per kg of nutrient applied to the soil (for N and P), or kg of C 

consumed by microbes per kg of C applied to the soil.  

 

Table S40. Efficiencies of the corn production processes  
for the application of each type of recovered product. 

Application of recovered product needed to cover the N requirements 

Product 
Unit process 

COMP 
T 

BS 
T 

COMP 
W 

BS 
W 

SD 
AD 

(NH4)2SO4 
ASA 

MgNH4PO4·6H2O 
SP 

C 0.4159 0.4497 0.4574 0.4819 0.4233 0.0000 0.0000 

N 0.6618 0.6284 0.6234 0.6015 0.5687 0.9743 0.9743 

P 0.0960 0.0890 0.0897 0.0854 0.1591 0.3993 0.0212 

 

 

 

 

 

Unit process 
Product 

AD 
SD 

W 
COMP 

T 
COMP 

W 
BS 

T 
BS 

C 0.3422 0.2666 0.3421 0.2473 0.2931 

N 0.3766 0.2561 0.2595 0.2737 0.2730 

P 0.6466 0.9416 0.945 0.9374 0.9331 
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Table S41. Efficiencies of the corn production processes  
for the application of each type of recovered product. 

Application of recovered product needed to cover the P requirements 

 

Product 
Unit process 

COMP 
T 

BS 
T 

COMP 
W 

BS 
W 

SD 
AD 

(NH4)2SO4 
ASA 

MgNH4PO4·6H2O 
SP 

C 0.5476 0.5694 0.5725 0.5856 0.5223 0.0000 0.0000 

N 0.7245 0.7149 0.7098 0.7050 0.5258 0.0000 0.9743 

P 0.3993 0.3993 0.3993 0.3993 0.3993 0.0000 0.3993 
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APPENDIX E. RESULTS OF THE SENSITIVITY ANALYSIS 
 

Figures S6 and S7 show the results of the single-objective optimizations of each scenario in 

Chapter 5 under the assumptions of the sensitivity analysis.  

 

 

Figure S6. Values of the objective functions and decision variables for the optimization of the Pre-
Directive and Post-Directive scenarios 
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Figure S7. Contribution of the unit processes to the environmental impacts in the Pre-Directive and 
Post-Directive scenarios 
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APPENDIX F. ECONOMIC MODELING  
 

Unless indicated otherwise, all the economic data refer to year 2015. The default data is taken 

from the SWOLF framework.18 

 

Common data to all unit processes  

Conversion from 2015€ to 2015$:19 1.11 $  

Interest rate:20 7% 

Amortization period: 15 years 

 

- Time parameters    

Annual operating days: 260 days·year-1   

Daily operating hours: 8 hours·day-1  

  

- Wages 

Operator wage:21 10.69 2015€·hour-1  

Manager wage:21 14.70 2015€·hour-1  

Laboratory technician wage:21 13.57 2015€·hour-1 

Driver wage:21 10.11 2015€·hour-1  

 

- 2015 prices in Cantabria 

Price of gasoline:22 1.204 2015€·L-1 

Price of diesel:22 1.0961 2015€·L-1  

Price of water for industrial use:23 0.96 €·m-3  

Price of agricultural land:24 13971 2015€·ha-1  

 

- Price of chemicals 

Price of MgO:25 0.255 €·kg-1  

Price of H2SO4:26 40.54 2015€·metric ton-1  

Price of NaOH:27 297.30 2015€·metric ton-1  

Price of natural gas:28 0.0224 2015€·metric ton-1  
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Collection and transport  

Two types of waste containers were considered, a 240 L container for the SS-OW, and an 800 L 

container for the mix-OW. Assuming that the collection frequency of SS-OW and mix-OW is once 

and twice per week respectively, the estimated number of required containers is 10,658 for the 

SS-OW and 17,541 for the mix-OW. It was assumed that the number of stops that the trucks 

make is the same as the number of containers. The number of trucks required for the collection 

of the SS-OW and the mix-OW (33 and 120) was calculated from the characteristics of the trips 

of the collection trucks (Table S42).  

 

Table S42. Characteristics of the trips of the collection trucks 

 
SS-OW mix-OW 

 

Number of trips per year 8,892 97,562  

Number of containers emptied per trip 62 18  

Average distance from container to transfer station 24.7 24.7 km 

Average speed from garage to collection point 60 60 km·h-1 

Loading time per container 1 2 min 

Travel time between stops 5 2.5 min 

Unloading time per trip 15 15 min 

 

It was assumed that that the compaction density of organic waste and inorganic materials is 

increased 1.5 and 3 times respectively at the transfer stations.29 The characteristics of the trips 

of the trucks that carry the waste from the transfer stations to the waste management facilities 

are compiled in Table S43. With those data it was estimated that 2 trucks are needed for the SS-

OW and 7 trucks the mix-OW. 

 

 

Table S43. Characteristics of the trips of the trucks that transport the waste from the transfer stations to 
the waste management facilities 

  
SS-OW mix-OW 

 

Number of trips per year 2,847 17,625  

Average distance from transfer station to waste plant 21.6 21.6 km 

Average speed from garage to collection point 80 80 km·h-1 

Loading time per truck 15 15 min 

Unloading time per truck 15 15 min 

 

The costs associated with the waste containers and trucks are compiled in Tables S44-S46.  
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Table S44. Annualized capital costs (CC) and operation and management costs (OM) of waste 
containers30 

 240 L container 800 L container  

Price 75.42 301.68 2015€·unit 
Amortization period 5 5 years 

Washing costs 4.64 5.80 2015€·unit-1 
Number of wash cycles 7 7 year-1 

Other maintenance costs 6.96 8.12 2015€·unit-1 

 

 

Table S45. CC and OM of trucks30 

 Collection 
trucks 

Trucks departing 
from transfer station 

 

Capacity 15 30 m3 
Price 139,236 260,843 2015€·vehicule-1 

Amortization period 10 10 years 
Maintenance costs 18,101 36,201 2015€·vehicule-1·year-1 

Number of operators 2 1 Operators·vehicle-1 
Overhead personnel 10 10 % 

 

 

The TAC of the studied collection and transport system, with a 50% source separation rate 

(SSR), is compared in Table S49 with the TAC of the current collection and transport system 

implemented in the region (SSR=0%). 

  

Table S46. TAC of collection and transport (2015€·metric ton-1) 

 

 SSR=50% SSR=0% 

CC 24.70 22.35 

OM 58.66 50.71 

TAC 83.37 73.06 

 

 

Pretreatment  

The characteristics of the trommel are shown in Table S47. The TAC of the trommel, magnet 

and Eddy current separator are compiled in Table S48.  

 

Table S47. Characteristics of trommel 

Trommel cost 125,863 2015€·unit-1 
Installation cost 30 % equipment cost 
Number of units 0.0025 unit·(metric ton·day-1)-1 
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Table S48. TAC of trommel, magnet and Eddy current separator (2015€·metric ton-1 output) 

 

Trommel Eddy current 
separator Magnet  

CC 0.57 0.71 1.17 

OM 0.63 0.22 1.24 

TAC 1.20 0.93 2.41 
 

 

Summary of the TAC associated with the management of solid organic waste 

The Total Annual Cost (TAC) related to the management of 1 metric ton of organic waste 

entering the different waste management unit processes are compiled in Table S49. The TAC is 

divided into annualized capital costs (CC), operation and management costs (OM), closure costs 

(clos), the landfill tax (tax), the revenues derived from the sale of electricity (elec) and the 

operation subsidies (OS). It includes the TAC associated with the collection, transport and 

pretreatment of the amount of organic waste required to obtain 1 metric ton of organic waste 

at the inlet of the unit processes that manage the solid organic waste. The TAC related to the 

treatment of the rejects in incineration or landfill (+I or +L) is also included in Table S52. It is 

expressed as €·metric ton-1 of organic waste that enters the unit process.  

 

Table S49. TAC of the unit processes that handle the organic waste (2015€·metric ton-1) 

 

Since the costs of the unit processes that are already available in Cantabria are assumed to be 

amortized, only the costs associated with the construction of new cells within the previously 

excavated landfill are accounted for as capital costs of the old landfill. The CC of the new 

incinerator are due to the construction of new cells for the ash landfill. Likewise, the CC of 

windrow composting, 12 €·metric ton-1, was not taken into account.  

 

 

 

  AD+I AD+L W+I W+L T+I T+L Lold Lnew Iold Inew 

CC 31.44 31.32 0.16 0.04 14.48 14.30 0.66 10.94 2.02 67.64 

OM 38.08 30.35 27.75 24.69 34.31 32.37 8.07 8.07 57.25 57.25 

clos 0.12 0.50 0.09 0.20 0.11 0.12 3.17 3.17 1.07 1.07 

elec -8.99 -5.72 -1.21 -0.17 -0.79 -0.25 -0.78 -0.78 -11.53 -11.53 

OS -1.73 -1.82 0.00 -0.05 0.00 -0.04 -0.64 -0.64 0.00 0.00 

tax 0.00 0.32 0.00 0.12 0.00 0.07 2.00 2.00 0.00 0.00 

TAC 58.92 54.96 26.78 24.83 48.10 46.56 12.48 22.77 48.81 114.43 
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Capacity restrictions 

Table S50 lists the capacity restrictions of the solid waste management unit processes. They are 

expressed as annual flows of organic waste. In the case of incineration and landfill, the capacities 

refer to the sum of flows of organic waste and rejects from other unit processes.  

 
Table S50. Capacity restrictions of the solid waste management unit processes 

 

 

 

 

 

 

 

 

Composting  

The parameters required to perform the LCC of the composting unit processes (obtained from 

SWOLF) are the following:  

 

- Time parameters     

Active composting time (windrow composting): 70 days  

Active composting time (tunnel composting): 20 days 

Curing time: 30 days   

Frequency of turning in active composting (windrow): 0.25 day-1 

Frequency of turning during curing phase (windrow and tunnel): 0.143 day-1 

 

- Odor control system   

OC blower power required per air flow rate:0.0579 kW·(m3·min-1) -1 

Motor efficiency: 64.94%  

Odor control air flow required: 54000 m3·(metric ton·day-1) -1     

    

 

 

 Lower bound 
(metric ton·year-1 

organic waste) 

Upper bound 
(metric ton·year-1 

organic waste) 

Old landfill – 25,000 

New landfill – – 

Old incinerator – 15,000 

New incinerator 25,000 – 

Anaerobic digestion 12,500 – 

Windrow composting – – 

Tunnel composting 10,000 –  
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- Construction cost (2010$)    

Grading cost per acre: 31400 $·ha-1 

Paving cost: 123000 $·ha-1 

Building cost (equip., stag.): 75 $·m-2 

Office cost: 430 $·m-2 

Fencing cost: 30 $·m-1 

 

- Additional construction costs     

Engineering, design, supervision: 20% DPC (Direct Project Costs) 

Management overheads: 20% DPC 

Commissioning: 5% IPC 

Contingency: 15% IPC 

Contractor's fees: 10% IPC 

Interest during construction: 10% IPC 

 

- Construction requirements    

Grading requirement: 0.03 ha·(metric ton·day-1) -1 

Paving required: 0.02 ha·(metric ton·day-1) -1 

Warehouse requirement: 34 m2·(metric ton·day-1) -1 

Office requirement: 2.36 m2·(metric ton·day-1) -1 

Land requirement: 0.4 ha·(metric ton·day-1) -1 

Fencing requirement: 13 m·(metric ton·day-1) -1 

 

- Workers     

Operators required:  0.1 person·(metric ton·day-1) -1 

Managers required: 0.041 person·(metric ton·day-1) -1 

Overhead percentage: 10%  

 

- Equipment Requirements       

Windrow Turner: 0.0022 units·(metric ton·day-1) -1   

Tub grinder: 0.0038 units·(metric ton·day-1) -1   
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Front end loader: 0.003 units·(metric ton·day-1) -1   

Bobcat: 0.003 units·(metric ton·day-1) -1   

Screen: 0.0025 units·(metric ton·day-1) -1  

Blower (windrow composting): 0.1 units·(metric ton·day-1) -1 

In-vessel reactor: 0.01 units·(metric ton·day-1) -1   

Equipment installation cost: 0.3%   

 

- Office area    

Office Area required per metric ton per day of material: 2.36m2·(metric ton·day-1) -1 

Energy required to power an office: 290 kWh·m-2·year -1  

 

Table S51. Equipment costs 

Equipment Cost per unit  
(2010$·unit-1) 

Equipment Life 
 (years) 

Repair Cost 
(%Initial Cost) 

Windrow turner 231,380 10 60 

Tub grinder 321,362 10 60 

Pre-trommel 128,545 10 60 

Front End Loader 192,817 10 60 

Bobcat 38,563 10 60 

Post trommel 128,545 10 60 

Blower 306 10 60 

Vacuum system 52,063 10 60 

In-vessel reactor 260,314 15 60 

 

Tables S52 and S53 show the distribution of the CC and TAC in the windrow and tunnel 

composting unit processes.  
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Table S52. Annualized capital costs (CC) in windrow and tunnel composting (2010$·(metric ton·day-1) -1) 
 

WINDROW TUNNEL 

Grading cost 942 942 

Paving cost 2,460 2,460 

Building cost (equip., stag.) 2,550 2,550 

Office cost 1,014 1,014 

Fencing cost 390 390 

Land acquisition cost 5,707 5,707 

Equipment 2,859 5,903 

DIRECT PROJECT COSTS 15,922 18,966 

Engineering, design, supervision 3,184 3,793 

Management overheads 3,184 3,793 

INSTALLED PROJECT COSTS 22,291 26,553 

Commissioning 1,115 1,328 

Contingency 3,344 3,983 

Contractor's fees 2,229 2,655 

 

The OM are calculated as the sum of the labor, overhead, electricity, fuel and equipment repair 

costs.  

Table S53. TAC of windrow and tunnel composting (2015€· metric ton-1) 

 WINDROW TUNNEL 

CC 11.98 14.27 

OM 24.32 32.14 

TAC 36.30 46.42 
 

The CC, OM and TAC are compared with the exponential curves obtained by Tsilemou and 

Panagiotakopoulos31 for windrow (Figures S8-S10) and tunnel composting (Figures S11-S13). 

 

Figure S8. CC of windrow composting 
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Figure S9. OM of windrow composting 

 

 

 

Figure S10. TAC of windrow composting 
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Figure S11. CC of tunnel composting 

 

 

Figure S12. OM of tunnel composting 
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Figure S13. TAC of tunnel composting 
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Anaerobic digestion  

The data required for the economic evaluation of the wet anaerobic digestion unit process was 

extrapolated from a feasibility study.32 The contributions to the CC, the OM and the TAC are 

shown in Tables S54- S56. The required electricity is assumed to be subtracted from the on-site 

power generation.  

 
 

Table S54. CC of wet anaerobic digestion (2005$·(metric ton·year-1) -1) 

General site costs 8.66 

New buildings 51.15 

Major tankage 62.50 

Pre-treatmente equipment 1.07 

Wet processing equipment 69.00 

Flaring and odor control 5.25 

Electrical and steam generation 42.26 

Engineering costs 23.99 

 

 
Table S55. OM of wet anaerobic digestion (2015€· metric ton-1) 

Staff requirements  
Plant manager 4.13 

Operators 7.32 

  

Utilities and fuel  
Fuel 0.91 

Water 4.07 

Electricity 0.00 

Natural gas 0.45 

  

Maintenance  
Equipment 4.49 

Builidings 0.30 

Tanks and odor 0.68 

  

Wastewater treatment 4.70 

 

 

Table S56. TAC of wet anaerobic digestion (2015€·metric ton-1) 

CC 31.22 

OM 29.40 

elec -5.59 

TAC 55.02 
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The CC, OM and TAC are compared with the exponential curves obtained by Arnò et al33 for wet 

anaerobic digestion in Figures S14-S16. These figures do not include the revenues derived from 

the sale of electricity.  

 

Figure S14. CC of wet anaerobic digestion 

 

 

 

Figure S15. OM of wet anaerobic digestion 
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Figure S16. TAC of wet anaerobic digestion 
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Incineration  

Table S57 shows the distribution of the TAC associated with the incineration unit process.  

 
Table S57. TAC of incineration (2015€· metric ton-1) 

CC 65.62 

OM 53.42 

elec -11.53 

TAC 107.52 
 

The CC, OM and TAC of incineration are compared with the exponential curves obtained by 

Tsilemou and Panagiotakopoulos.31 In Figure S18 the electricity revenues are excluded.  

 

Figure S17. CC of incineration 

 

Figure S18. OM of incineration 
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Figure S19. TAC of incineration 
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Landfill  

The parameters required by the SWOLF landfill sub-model are the following:  

 

- General site geometry  

Landfill length/width ratio: 1  

Buffer zone: 91.44 m 

Fraction of buffer zone cleared/landscaped: 0.05  

Height of waste above grade: 12.19 m 

Slope of above grade region (rise over run): 0.33  

Slope of below grade region (rise over run): 0.33  

Off-site road upgrade for heavy vehicles: 1.6 km 

On site roads: 182.88 m 

      

- Basic design and economic parameters   

Number of cells: 20.00 

Distance between groundwater monitor wells: 152 m 

Engineering rate (capital): 0.1   

   

- Labor costs  

Minimum number of laborers: 3  

Overhead costs: 10% wage 

   

- Other operating costs 

Equipment and maintenance cost (excluding fuel): 2,015.6 2010$·year-1·(metric ton·day-1)-1 

Groundwater monitoring: 2,571 2010$·well-1·year-1 

Post-closure care: 285,369 2010$·year-1 

   

- Construction costs   

Land clearing: 3,149 2010$·acre-1 

Low level landscaping: 1,864 2010$·acre-1 

High level landscaping: 5 2010$·(metric ton·day-1)-1 

Standard excavation: 3.36 2010$·m-3 
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Difficult excavation (i.e., muck, clay, etc.): 5.04 2010$·m-3 

On-site earth hauling: 1.91 2010$·m-3·km-1 

Off-site earth hauling: 0.41 2010$·m-3·km-1 

Distance for disposal of excess soil: 1.61 km 

Berms: 4.20 2010$·m-3 

Mixing and compacting soil for liners: 12.61 2010$·m-3 

 

- Purchased material for berms, liners, and final cover  

Soil for berm: 4.489 2010$·m-3 

Clay for final cover or liner: 11.77 2010$·m-3 

Clay additive for liner permeability: 100.88 2010$·m-3 

Sand: 13.54 2010$·m-3 

Gravel: 13.95 2010$·m-3 

Geotextile for final cover - cost of procurement:  0.50 2010$·m-2 

Geotextile for final cover - cost of installation: 0.83 2010$·m-2 

HDPE for final cover - cost of procurement and installation: 15.22 2010$·m-2 

Daily cover – HDPE: 15.22 2010$·m-2 

Daily cover - off site soil: 9.25 2010$·yd-3 

Flexible membrane liner (includes installation): 15 2010$·m-2 

Leachate pump(s), piping and electrical: 10 2010$·(metric ton·day-1)-1 

Leachate storage tank: 114 2010$·(metric ton·day-1)-1 

 

- Road construction   

New road construction (heavy vehicle): 149 2010$·m-1 

Existing road upgrade (heavy vehicle): 74 2010$·m-1 

 

- Buildings 

Maintenance building: 302 2010$·m-2 

Building area required per waste throughput: 2 m2·(metric ton·day-1)-1 

Gatehouse/personnel facility: 320 2010$·(metric ton·day-1)-1 
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- Utilities  

Electrical connection: 10 2010$·(metric ton·day-1)-1 

Sanitary sewer connection and piping: 43.02 2010$·m-1 

Public water connection: 10 2010$·(metric ton·day-1)-1 

Well drilling and installation: 28.28 2010$·m-1 

Well water connection: 48 2010$·(metric ton·day-1)-1 

Gas connection: 10 2010$·(metric ton·day-1)-1 

Industrial fencing: 30 2010$·m-1 

Industrial truck scale (50 metric ton capacity): 89981 2010$ 

PVC piping: 43 2010$·m-1 

Site pre-operational studies and activities: 321,362 2010$ 

 

- Internal combustion engine for energy recovery 

Capital cost: 1586 2010$·kW-1 

Operation and management cost: 24 2010$·MWh-1 

Life of engine: 20 years 

Engine capacity: 6.24 kW·(metric ton·day-1)-1 

 

 

The costs of a landfill with a capacity of 85 x103 metric ton·year-1 are summarized as follows:  

Cost of gas collection and energy generation: 3.63 2015€·metric ton-1 

Capital cost of leachate treatment plant: 4.02 2015€·metric ton-1 

Equipment costs (scraper and front end loader): 0.87 2015€·metric ton-1 
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Table S58. Landfill initial construction costs (2010$) 

Land acquisistion costs 388,563 

Site fencing costs 62,621 

Site building / structure costs 301,738 

Platform scales costs 89,981 

Site utilities installation costs 6,226 

Site access roads costs 256,155 

Monitoring wells cost 3,879 

Initial landscaping costs 3,024 

Leachate pump and storage costs 40,468 

Site preoperational studies and activities 321,362 

 

 

Table S59. Cell construction costs (2010$·cell-1) 

Site clearing and excavation 238,327 

Berm construction costs 11,199 

Liner costs (per active region) 263,078 

Leachate collection piping costs 36,895 

 

 

Table S60. Landfill OM costs (2010$·year1) 

Annual labor costs 71,135 

Annual equipment costs 28,976 

Annual utilities costs 711 

HDPE daily cover 13,115 

OM of Engine 302,624 

 

 

Table S61. Landfill closure costs (2010$) 

Total Final Cover Cost 6,225,601 

Replacing final cover costs 622,560 

Perpetual care total present costs 3,828,277 
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Table S62. TAC of landfill (2015€·metric ton-1) 

 

 

 

 

 

Unlike for the other unit processes, SWOLF does not consider that the costs of landfill vary 

linearly with its capacity. The CC, OM and TAC for different capacities of the landfill are 

compared with the exponential curves obtained by Tsilemou and Panagiotakopoulos30 in Figures 

S20-S22. The costs in Figure S21 exclude the clos, elec, OS and tax.  

 

Figure S20. CC of landfill  
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Figure S21. OM of landfill  

 

Figure S22. Sum of CC and OM of landfill 
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Struvite precipitation 

According to Guthrie’s modular method,34 the equipment purchase costs, or base cost (BC) is 

calculated with an exponential equation based on its size.  

 

Equation S2 was applied to estimate the costs of the crystallizer and stripper.  

 

𝐵𝐶 = 𝐶0 · (
𝐿

𝐿0
)

𝛼

· (
𝐷

𝐷0
)

𝛽

 (Equation S2) 

 

The sizes of the crystallizer and the stripper were estimated assuming that the vessels have 

identical length (L) and diameter (D) with the experimental data from Moerman et al.,4 who 

required a vessel volume of 0.04 and 0.036 m3 per m3·day-1 of liquid digestate for the crystallizer 

and stripper respectively.  

 

The cost of the centrifugal pump was estimated with equation S3:  

 

𝐵𝐶 = 𝐶0 · (
𝑆

𝑆0
)

𝛼

 (Equation S3) 

 

The pump power (S) was calculated assuming a pressure drop of 50 kPa, a pump efficiency of 

50% and a motor efficiency of 80%.  

 

The parameters needed to calculate the BC of these pieces of equipment are compiled in Table 

S63.  

 

Table S63. Parameters needed to calculate the BC for pressure vessels and centrifugal pumps27 

Equipment type C0(1969$) 
Cost 

S0 (W) 
Power 

L0 (m) 
Length 

D0 (m) 
Diameter 

α β MF 

Horizontal vessel 690  1.22 0.91 0.78 0.98 3.18 

Centrifugal pump 650 869.98   0.36  3.38 

 

The update factor (UF) accounts for inflation. It is calculated as the ratio between the present 

cost index and the base cost index. The CEPCI (Chemical Engineering Plant Cost Index) from 1969 

and 2015 is 115 and 556.8 respectively.35  

𝑈𝐹 =
2015 𝑐𝑜𝑠𝑡 𝑖𝑛𝑑𝑒𝑥

1969 𝑐𝑜𝑠𝑡 𝑖𝑛𝑑𝑒𝑥
 (Equation S4) 
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The installation costs are estimated with the module factor (MF). The Materials and Pressure 

correction Factor (MPF) accounts for the costs associated with special materials and high 

pressures. It was assumed that the equipment is made of carbon steel, whose MPF is 1.  

The Bare Module Costs (BMC) are calculated as follows:  

 

𝐵𝑀𝐶 = 𝑈𝐹 · 𝐵𝐶 · (𝑀𝑃𝐹 + 𝑀𝐹 − 1) (Equation S5) 

 

The BMC of the equipment required for the struvite precipitation (crystallizer, stripper and 

pump) were calculated for the range of liquid digestate flows that the system can handle. The 

high R2 values that result from the linear regression shown in Figure S23 indicate that the 

linearization of the BMC is a good approximation for the studied range of flowrates.  

 

Figure S23. Linearized BMC of the equipment required for struvite precipitation 

 

The contingency costs and indirect capital costs are estimated according to Biegler et al.34 The 

fixed capital (FC) is calculated as the sum of the manufacturing (MC) and non-manufacturing 

capital (NMC), with equations S6-S8. 

 

𝑀𝐶 = 1.25 · 𝐵𝑀𝐶 (Equation S6) 

𝑁𝑀𝐶 = 0.40 · 𝐵𝑀𝐶 (Equation S7) 

𝐹𝐶 = 1.65 · 𝐵𝑀𝐶 (Equation S8) 
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The working capital (WC) is estimated as 19.4% of the fixed investment: 

𝑊𝐶 = 0.194 · 𝐹𝐶      (Equation S9) 

 

The Total Capital Investment (TCI), which was later annualized, is calculated as the sum of FC 

and WC: 

𝑇𝐶𝐼 = 1.97 · 𝐵𝑀𝐶  (Equation S10) 

 

Regarding the OM of struvite precipitation, they were calculated as the price of the required 

electricity and MgO. The estimated operating costs are 0.0382 €·m-3 of liquid digestate.  

 

Labor costs are not included in this figure because the operators are assumed to belong to the 

anaerobic digestion facilities. The equipment repair costs are accounted for in the FC.  
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Ammonia stripping and absorption 

The total BMC of the equipment required for the ammonia stripping and absorption (heat 

exchangers, blowers, flash drum, stripper and absorber) was estimated as 31.77 €·(m3·year-1)-1 

with the data provided by Errico et al.36 The TCI was calculated with equation S10. 

 

The OM were calculated as the sum of the costs of ammonium sulfate, sodium hydroxide, 

electricity and natural gas required to operate the unit process. As in struvite precipitation, labor 

costs and the equipment repair costs are not included in the OM of ammonia stripping and 

absorption.  

 

Table S64 shows the contribution of the CC and OM to the TAC.  

 

Table S64. TAC of the ammonia stripping and absorption unit process (2015€·(m3·year-1)-1) 

CC   6.87  
OM   4.40 

TAC 11.27  
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Results of the single objective optimization 

Figure S24 shows the contribution of the unit processes and the TAXWM to the TAC that results 

from the minimization of the TAC and GW. 

 

Figure S24. Contributions to the overall costs (2015€)  

 

 

Price of fertilizers 

The price of the fertilizing products is calculated with equations S11 and S12, and it is expressed 

as € per ha fertilized with the recovered products and the required complementary industrial 

fertilizers to grow corn. 

 

𝑃𝐹 =
𝑇𝐴𝐶 + 𝑃𝐼𝑁𝐷 + 𝑃𝑅𝐼

ℎ𝑎𝑟𝑒𝑐
⟷ 𝑇𝐴𝐶 > 0      (Equation S11) 

𝑃𝐹 =
(𝑃𝐼𝑁𝐷 + 𝑃𝑅𝐼)

ℎ𝑎𝑟𝑒𝑐
⟷ 𝑇𝐴𝐶 < 0      (Equation S12) 
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Change of the value of money with time 

The conversion factors required to account for the change of the value of money (US$) with time 

were extrapolated from the data provided by the Bureau of Economic Analysis37 and compiled 

in Table S65.  

Table S65. Conversion factors 

Year Conversion factor to 2015$ 

1980 2.48 

1981 2.27 

1982 2.13 

1983 2.05 

1984 1.98 

1985 1.92 

1986 1.88 

1987 1.84 

1988 1.77 

1989 1.71 

1990 1.65 

1991 1.59 

1992 1.56 

1993 1.52 

1994 1.49 

1995 1.46 

1996 1.43 

1997 1.41 

1998 1.40 

1999 1.37 

2000 1.34 

2001 1.31 

2002 1.29 

2003 1.27 

2004 1.23 

2005 1.20 

2006 1.16 

2007 1.13 

2008 1.11 

2009 1.10 

2010 1.09 

2011 1.06 

2012 1.05 

2013 1.03 

2014 1.01 

2015 1.00 

2016 0.99 

2017 0.97 
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APPENDIX G. HEAVY METALS CONTENT OF THE ORGANIC FERTILIZERS 
 

The heavy metal content of the organic fertilizers recovered from the SS-OW (Table S66) is 

compared to the heavy metal limit values established by the Spanish legislation38 and the new 

European proposal for the regulation of fertilizing products39 (Table S67).  

 

Table S66. Heavy metals content of the organic fertilizing products (mg·kg-1 of dry matter) 

Product 
Unit process 

COMP 
T 

COMP 
W 

SD 
AD 

Cd 0.3964 0.4077 0.4987 

Cu 27.41 28.10 32.13 

Hg 0.0005 0.0025 0.3126 

Ni 4.731 7.948 10.32 

Pb 5.927 7.946 44.805 

Zn 251.3 243.5 264.2 

Hg 0.0005 0.0025 0.3126 

Cr 0.5454 5.032 15.86 

Cr VI  Unknown Unknown Unknown 

 

Table S67. Limit of heavy metals in fertilizing products according to the legislation  
(mg·kg-1 of dry matter) 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
New European proposal40 Spanish Royal Decree 506/201338  

Solid organic fertilizers Type A Type B Type C 

Cd 1.5 0.7 2 3 

Cu - 70 300 400 

Hg 1 - - - 

Ni 50 25 90 100 

Pb 120 45 150 200 

Zn - 200 500 1000 

Hg - 0.4 1.5 2.5 

Cr - 70 250 300 

Cr VI 2 - - - 
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NOMENCLATURE 
 

AD Anaerobic digestion 

AD+I Anaerobic digestion plus incineration of the rejects 

AD+L Anaerobic digestion plus landfill of the rejects 

ASA Ammonia stripping and absorption 

BC Equipment base cost 

BioC Biogenic C 

BioCAD Anaerobically degradable biogenic carbon 

BioCADi0 Initial amount of anaerobically degradable biogenic carbon in fraction i of waste 

BMC Equipment bare module cost 

BS Bio-stabilized material 

C Carbon 

CC Annualized capital costs 

clos Closure costs 

COMP Compost 

DAP Diammonium phosphate 

DPC Direct Project Costs 

elec Revenues from the sale of electricity 

FC Fixed capital 

Fert Inorganic Fertilizers 

FossilC Fossil C 

FWE Freshwater eutrophication impacts 

GW Global warming impacts 

I Incineration 

Inew New incineration 

Iold Old incineration 

IPC Installed Project Costs 

L Landfill 

LCI Life cycle inventory 

Lnew New landfill 

Lold Old landfill 

MC Manufacturing capital 

MEU Marine eutrophication impacts 

MF Module factor 

mix-OW Organic waste recovered from the mixed waste stream after the trommel 

separation 

MPF Material Pressure Factor 

N Nitrogen 

NMC Non-manufacturing capital 

OM Operation and management costs 

OS Operation subsidies 

P Phosphorus 

PEQ Price of the industrial fertilizers that would be required to cover the same area 

as that fertilized by the recovered products and their complementary fertilizers 
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PF Minimum price that farmers must pay for all fertilizers to make the CIWMS 

economically feasible for waste managers 

PIND Price of industrial fertilizers required to complement the fertilizers recovered 

from organic waste 

PRI Price of the recovered inorganic fertilizers (NH4)2SO4 and (NH4)2HPO4 

SD Solid digestate 

SP Struvite precipitation 

SS-OW Source-separated organic waste 

SSR Source separation rate 

T Tunnel composting 

T+I Tunnel composting plus incineration of the rejects 

T+L Tunnel composting plus landfill of the rejects 

Tax Landfill tax 

TCI Total Capital Investment 

TS Total Solids 

TWW Total Wet Weight 

UF Update factor 

VS Volatile solids 

W Windrow composting 

W+I Windrow composting plus incineration of the rejects 

W+L Windrow composting plus landfill of the rejects  

WC Working capital 

WW Wastewater treatment 
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Some of the most concerning sustainability challenges faced by humanity today are systems 

problems; they are deeply interconnected, and they cannot be solved separately. Thinking in 

systems should allow us to better understand the interconnections between their components, 

simulate possible future scenarios and address systems redesign based on more sustainable 

criteria. The management of waste and resources is one of those pressing challenges that could 

benefit from systems thinking.  

 

The circular economy has been proposed as a resilient economic model to simultaneously tackle 

this problem and embrace sustainability. However, a systematic approach to measure, assess or 

optimize the performance of a circular economy has not been developed yet. This thesis 

contributes to filling this research gap by developing a framework that enables devising 

sustainable solutions to optimize integrated waste and resource management systems. 

 

The application of the proposed framework to a case study suggests that the advantages of a 

circular economic model cannot be taken for granted. The successful implementation of a 

circular economy will require a proper balance between resource circularity and its sustainability 

implications.  

 

Ultimately, there is not a unique road to sustainability, and certainly not a perfect one; any 

contribution to rebuild and reframe the current economic model that helps us transition toward 

a less resource-dependent and more sustainable production and consumption system should be 

encouraged.  
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