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Abstract—The presence of IoT in current networking sce-
narios is more relevant every day. IoT covers a wide range
of applications, ranging from wearable devices to vehicular
communications. With the consolidation of Industry 4.0, IIoT
(Industrial IoT) environments are becoming more common. Com-
munications in these scenarios are mostly wireless, and due to the
lossy nature of wireless communications, the loss of information
becomes an intrinsic problem. However, loss recovery schemes
increase the delay that characterizes any communication. On
the other hand, both reliability (robustness) and low delay are
crucial requirements for some applications in IIoT. An interesting
strategy to improve both of them is the use of Network Coding
techniques, which have shown promising results, in terms of
increasing reliability and performance. This work focuses on
a possible new coding approach, based on systematic network
coding scheme with overlapping generations. We perform a
thorough analysis of its behavior. Based on the results, we draw
out a number of conclusions for practical implementations in
wireless networks, focusing our interest in IIoT environments.

Index Terms—Network Coding, Systematic Coding, IIoT

I. INTRODUCTION

Smart homes, wearable devices, and vehicle to vehicle
communications are just some examples among the growing
IoT applications [1]. As the manufacturing world is evolving
towards the so-called Industry 4.0 [2], the environment of In-
dustrial IoT (IIoT) is becoming more common every day. IIoT
deployments typically have multiple devices interconnected
through lossy networks [3], while they have a stringent require-
ment of guaranteeing fast responsiveness to operators’ orders.
In the case of vehicle to vehicle communications, reliability
and low delay are, needless to say, strict requirements.

It is well known that wireless links are prone to induce
errors or erasures. The recovery of lost or corrupted informa-
tion implies repeating its transmission, which would increase
network load and so delay. Re-sending information on a
shared access medium, such as a wireless link, increases the
delay not only for the communication that actually requires
such particular re-transmission, but also for all the other
communications of the same network, which might need to
be on hold.

There are multiple techniques that might prevent re-sending
lost information, by means of coding the original messages
[4]–[14]. These techniques encode the original message so that
the receiver will be able to recover it from only a part of
the overall transmission. Up to date this type of code-base

solutions has not received enough attention in the IoT realm.
The search for IoT optimized coding solutions should thus start
with a study of existing approaches and coding schemes. IIoT
environments are harsh and unstable, with significant changes
in the loss rate [15], [16]. Error modelling is a whole different
research niche. However, it is clear that the optimum coding
scheme for IIoT environments should increase robustness and
reduce delay both for uniform and bursty error links. This work
is focused on a particular coding solution, which will allow
responding to the needs of IIoT communications. This is only
an initial approach to improve IIoT with coding techniques.
Communication protocols with coding schemes, and their use
in IIoT environments, both real and simulated, will be covered
in upcoming works.

The rest of this paper is structured as follows. Section II
provides a brief summary of some of the most relevant coding
techniques that have been proposed in the academic literature,
identifying the aspects that have not been covered yet, which
we study herewith. Section III describes the implementation of
the proposed coding scheme. Section IV summarizes the ob-
tained results, and Section V concludes this work, identifying
future lines of research.

II. BACKGROUND

Forward Error Correction (FEC) is the technique that has
been traditionally used to yield increased communication relia-
bility [4]. The transmitter sends, along with original chunks of
information or symbols, repair (redundant or coded) symbols.
At the receiver, lost symbols are recovered from the redundant
ones. Another way to increase communication reliability is
using Network Coding (NC) [5]. One of the most popular
configurations is known as Intra-flow NC (discussed in [6]),
which shares a number of features with FEC. The transmitter
also sends redundant symbols to protect the original informa-
tion, but intermediate routers have the ability to recode such
symbols, until they arrive at the receiver. Thus, NC generates
coded symbols on a per-link basis, while FEC generates the
required ones for the whole end-to-end communication. The
use of NC instead of FEC yields a reduction of network
overhead, which might be significant in particular scenarios,
for instance wireless mesh networks.

One NC technique that has aroused a lot of interest is
Random Linear NC (RLNC), first introduced in [7] and



later extended in [8]. The transmitter groups source (original)
symbols in blocks called generations, and linearly combines
them using random coefficients from Galois Field GF (2q).
The coded generation has the same amount of symbols, plus
redundant symbols, as many as those that are needed to cover
losses in the corresponding link. The most relevant benefit of
RLNC is that recoding does not necessarily require decoding
the original symbols, since coded symbols can be linearly
combined the same way as source symbols, being the original
message recoverable as long as each router receives enough
symbols for recoding. RLNC coding technique can also be
applied for FEC (coding at endpoints, no recoding), in which
case it is referred to as Random Linear Coding (RLC).

RLNC introduces computational complexity, which is not
desirable at devices with computational power, processing,
or/and memory constraints, such as IoT ‘things’. One way to
reduce this complexity is adding sparsity to the codification
process, leading to Sparse NC (SNC) [9]. Any coded symbol is
built only with some of its corresponding generation’s source
symbols, rather than with all of them. As a result, coded
symbols are not protecting all of its generation’s symbols. One
example of these sparse techniques is Systematic NC (SysNC)
[10], in which RLNC coding is applied only to the redundant
symbols, while the source ones are transmitted without coding.
Since the original information is sent uncoded, most of it can
be received and used immediately, without decoding.

Classic RLNC approach can be described as block based,
since the original information is coded in non-overlapping gen-
erations. However, overlapping generations (technique known
as convolutional coding [4]) offers an important advantage, as
can be easily observed with SysNC: overlapping shortens the
period between repair symbols, which allows start repairing
lost source symbols earlier, therefore reducing recovered sym-
bols’ delay. By overlapping generations, an encoding sliding
window is defined, which covers the source symbols belonging
to the newest generation. An example of SysNC with finite
sliding encoding and decoding windows is the Caterpillar
RLNC (CRLNC) protocol, presented in [11] and extended
with ARQ (Automatic Repeat reQuest) functionality in [12].
CRLNC offers decoding probability very close to the block
based systematic RLNC, but with much lower delay.

Another coding approach similar to overlapping is interleav-
ing [13]. A block of generations (interleaving block) is sent,
symbol by symbol, using time multiplexing. The transmitter
initially sends the first symbol of each generation, followed by
the second symbols, and so on until all symbols are transmit-
ted, including the coded ones. The advantage of interleaving
is its robustness to symbol losses happening in bursts. This
approach introduces a delay, which can be avoided as shown
in [14], using a technique named Interleaving with On-the-fly
Coding (IOC). In this solution source symbols are assigned to
a generation within the interleaving block in the Round Robin
style, which allows the interleaving coding scheme sending
source symbols in their natural order. IOC may require big
amounts of memory, both for coding and decoding operations.

The robustness for burst of losses offered by IOC might be

very beneficial for IoT environments. An interesting concept
to explore is the combination of IOC with overlap, which may
result in a highly efficient coding scheme. However, both of
them may require excessive memory for coding and decoding
processes. The viability of its usage in IoT scenarios is yet to
be evaluated.

In view of the above, SysNC with overlapping seems to
be a suitable coding scheme for IoT. In [11], the CRLNC
protocol inserts only one coded packet per generation. The
authors of the original study present results showing that the
loss probability is smaller for bigger generation sizes, and that
the end-to-end delay was lower just for smaller generations.
However, it is not clear whether introducing multiple coded
symbols per generation might have an impact on this scheme’s
efficiency. In order to clarify that, we have developed our own
implementation of a SysNC solution, which we use to carry
out a thorough simulation campaign.

III. SYSTEMATIC NC IMPLEMENTATION

Depending on the particular NC algorithm implementation,
it might be possible to send multiple symbols within the same
network packet. However, a loss of a single packet implies
a burst of losses. At first look, sending multiple symbols in
one packet does not seem convenient. Hence, in this study we
consider transmissions of one symbol per packet. From this
moment on the meaning of packet is equivalent to symbol.

A. Coding Scheme
We have carried out a SysNC implementation in Python.

Redundant symbols are built with RLNC scheme, combining
source symbols multiplied by random coefficients from Galois
Field GF (28).

A generation is defined as the group of symbols coded
within the same encoding window, which is considered of con-
stant length, as in [11]. Each coded symbol is built from linear
combination of source symbols from a specific generation. In
other words, each coded symbol protects source symbols from
the corresponding generation. Each generation is protected by
r redundant symbols.

Overlapping generations implies that at least one source
symbol in any generation will belong to 2 or more generations.
We define overlap as the number of generations ϕ to which
a source symbol belongs. In this work we consider a constant
ϕ for every source symbol. Thus, each source symbol is
going to be protected by r · ϕ coded symbols. Given this
definition, classic SysNC can be seen as a particular case
of overlapping NC with ϕ = 1. This definition implies the
creation of additional partial generations to protect the last
source symbols. This situation is depicted in Fig. 1, where
yellow boxes are source symbols and green boxes are the
coded ones. In this example of only 15 source symbols and
r = ϕ = 2, it can be clearly seen that without the last r = 2
coded symbols, the last block would not comply with the
definition of overlap, belonging to just 1 < ϕ = 2 generation.

Another consequence of overlap is introducing coded sym-
bols between source symbols belonging to the same gener-
ation. In Fig. 1 it is easy to identify groups of consecutive



Fig. 1. Example of the implemented coding scheme. Yellow boxes are source
symbols, green boxes are coded symbols, red crosses mark the lost symbols.

source symbols between the coded ones. These symbols
belong to exactly the same generations. Thus, we define a
block the consecutive source symbols belonging to the same
generation between coded symbols. Generation and block sizes
will be referred to as g and k, respectively.

The example presented in Fig. 1, illustrates a communica-
tion with erasures. Lost symbols are marked with a red cross.
In this case none of the lost source symbols can be recovered
until receiving the last coded symbol. This example can be
expanded to a much greater number of source symbols with
the same problem: lost source symbols still can be recovered,
but at the end of communication. Depending on the particular
protocol using this solution and its congestion control scheme,
most of these symbols will surely be resent by the transmitter
before recovery becomes possible. However, keeping all the re-
ceived symbols in memory would eventually allow recovering
the lost ones. In other words, recovery probability depends on
the amount of memory available at the receiver. We conclude
that the decoding window should be as long as possible. Since
the goal of the current study is to explore the opportunities
offered by SysNC coding scheme, a sufficiently large buffer
is considered to store all source and coded symbols.

The recovery process is triggered after receiving a coded
symbol. Given that the channel (described in Section III-B)
delivers all symbols in order, this recovery policy is equivalent
to trying to recover after each received symbol.

B. Channel

We consider that transmitter and receiver are connected
through a wireless channel. The channel is error prone and
without packet reordering.

In previous works, the use of uniform distribution for
symbol loss modelling is quite common, as in [10]. However,

G
loss rate = 0
stay = d · pr

B
loss rate = 1

stay = d

1
d·pr

1
d

Fig. 2. Gilbert-Elliot model implementation.

burst errors might characterize real scenarios. This type or
erasure distributions can be mimicked with the well-known
Gillbert-Elliot model, as in [11] and [14]. In this study both
options are considered. Next we detail our Gillbert-Elliot
model implementation.

In the Burst state (B) the loss rate is 100%, being 0% in the
Gap state (G). Burst state duration is set to d, with the Gap
lasting pr ·d. An overview of this implementation is presented
in the Fig. 2. In this work pr is adjusted to match an overall
loss rate, so we can compare the results to those obtained with
a uniform channel model having the same loss rate.

C. Inputs and Outputs

Some of the inputs for the communication model used
in this work have been already mentioned: generation size,
redundant (coded) symbols per generation, overlap, loss rate,
burst length, and the number of packets to store at the receiver.
At this point one last input needs to be specified: the number of
symbols that will be transmitted per experiment. One approach
is to keep sending symbols until the decoder can receive (and
recover) n source symbols. We follow an alternative approach:
n source symbols are sent to the receiver along with the
corresponding coded symbols.

In order to see if the coding scheme is working, we need
to ascertain whether the receiver has seen all of the source
symbols that were transmitted, and if not, how many of them
have been correctly received. Thus, the main output is the
number of source symbols that have correctly arrived at the
receiver, either via regular reception or recovery. Another
interesting metric is the ratio between the recovered symbols
and the lost source symbols. In this work we evaluate the prob-
ability of receiving (normal reception + recovery) all source
symbols (henceforth reception probability). This probability
is calculated by dividing the number of events in which all
source symbols have been either received or recovered, by the
number of simulations executed for a specific set of inputs, as
shown in equation 1.

P (reception) =
# successfull experiments

# simulations
(1)

Delay is going to be estimated in terms of time slots required
for a packet to reach the receiver. For a correct and reliable
data transmission, in-order delivery is highly important. For
this reason we focus on the end-to-end delay. In addition, we
ignore delay of packets that could not be recovered, and so we



only consider for delay estimation those cases where reception
probability equals 1.

As stated in Section I, our aim is to evaluate the impact
of changing redundant symbols per generation with the over-
lapping SysNC coding scheme. Thus, the two main variables
in our input parameters are: redundancies per generation and
overlap. In order to facilitate the discussion of results, both
variables are combined into one, the overhead, which we
define as the ratio between the total number of coded symbols
and the total number of symbols generated by the transmitter.
As can be observed in Fig. 1, by the end of the transmission
(ϕ − 1) · r additional coded symbols are sent. The overall
number of coded packets C that protect S source symbols
can be calculated as follows:

C =

(⌈
S

k

⌉
+ ϕ− 1

)
· r =

(⌈
S

bg/ϕc

⌉
+ ϕ− 1

)
· r (2)

From C, the overhead Ô can be obtained as follows:

Ô =
C

C + S
=

(⌈
S

bg/ϕc

⌉
+ ϕ− 1

)
· r(⌈

S
bg/ϕc

⌉
+ ϕ− 1

)
· r + S

(3)

IV. RESULTS

In order to better understand the impact of both the re-
dundancy per generation and the overlap over the coding
scheme, a simulation campaign has been carried out with
the following input parameters: generations of g = 64, 256
symbols; overlaps of ϕ = 1, 2, 4, 8, 16 generations; 2000
source packets (symbols) are transmitted; loss rates of 1%,
5% and 10% with a uniform erasure distribution, and an
overall loss rate of 10% with burst losses, having a mean
burst duration of 5 time slots (mean gap duration: 45 time
slots). In order to ease coding scheme analysis, the memory
at the receiver is considered big enough to store all source
and coded packets sent by the transmitter. Furthermore, to
ensure statistical tightness of the results, 10000 independent
experiments have been run for every configuration.

The results are shown in Fig. 3 and Fig. 4. The top rows
show the probability of receiving or recovering all source
packets for different loss models. The bottom row depicts
the mean end-to-end delay. As mentioned in Section III-C,
delays are only studied when it is worthy (i.e. all packets were
received). We include in all cases the 95% confidence interval.

In Fig. ?? it can be observed that the reception probability
with an overlap of 8 generations is not always higher than
the one observed for overlaps of 2 and 4 generations. The
same can be seen in Figure ??, where the probability with
ϕ = 16 at some points is lower than with ϕ = 4 and ϕ = 8.
This is due to the distance between the available samples.
The points in which lower overlap schemes have higher
reception probability are simply not available for schemes with
greater overlap. For a fair comparison we would need to focus
only on those overhead values for which the samples of all

curves under comparison are defined. At those points where
the communication overhead generated by coded symbols is
comparable, schemes with higher degrees of overlap are more
likely to receive all the transmitted symbols.

In Figures 3 and 4 we can see that by having a greater over-
lap, the reception probability increases and so delay decreases,
being the latter the main advantage of SysNC with overlap.
According to these results, latency decrease is proportional to
ϕ, as could have been expected, since the blocks (as defined in
Section III-A) are precisely ϕ times smaller than the blocks of
SysNC with no overlap. The conclusion of these observations
is that within a given overhead, it is more efficient to increase
overlap than to have a greater number of redundant symbols
per generation.

It is important to keep in mind that the bigger the overlap,
the faster the overhead growth rate becomes, as redundan-
cies per generation increase. With respect to the possible
implementations of this scheme in the IoT field, it should be
noted that it might be impossible, due to device limitations
or implementation requirements, to increase the overlap. It is
thus important to bear in mind that the greater the degree of
overlap to be used, the larger the overhead, since there are
momre redundancies per generation.

An interesting aspect is the overhead at which reception
probability reaches its maximum value. We refer to it as
saturation overhead. This parameter is of special interest
when it comes to implement NC in a network with restricted
bandwidth. Given that the delay was only studied for those
overheads at which reception probability reaches 1, saturation
overhead corresponds to the first sample of the delay curve,
shown in Figures 3 and 4. Figure 5 shows saturation overhead
for all configurations. As can be observed, larger overlap
does not necessarily lead to lower saturation overhead. This
parameter depends both on the ability of the encoding scheme
to recover lost packets, and on the overhead it introduces, so
no clear conclusion can be drawn regarding this parameter.

When it comes to choosing overlap and redundancies per
generation, it is important to identify the lowest possible
saturation overhead. In other words, to find the configuration
that will ensure the recovery of most of lost packets with
the lowest possible overhead. As the overlap increases, the
saturation overhead may increase rather than decrease. By
optimizing the saturation overhead, the latency may not be
optimal. It is therefore essential to prioritize between channel
efficiency (throughput) and delay.

V. CONCLUSIONS

In this paper we have studied network coding techniques,
with a special interest in identifying those that are suitable
for IoT communications. We have focused on the scheme
described in [11], broadening its initial operation, including
the possibility of modifying the number of redundancies per
generation. This implementation has been used to carry out an
extensive simulation campaign.

The results show that it is more efficient to increase overlap
than to have a greater number of redundant symbols per



Fig. 3. Probability of receiving and recovering transmitted packets (a–d) and end-to-end delays (e–h) for generation size of 64 symbols. The plots are depicted
for uniform losses of 1% (a, e), 5% (b, f) and 10% (c, g), and burst losses (d, h).

Fig. 4. Probability of receiving and recovering transmitted packets (a–d) and end-to-end delays (e–h) for generation size of 256 symbols. The plots are
depicted for uniform losses of 1% (a, e), 5% (b, f) and 10% (c, g), and burst losses (d, h).
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Fig. 5. Saturation overhead values for different cases covered by the present study.

generation. Another important observation is that the greater
the degree of overlap to be used, the larger the overhead, by
increasing the redundancies per generation.

In this work we have also identified saturation overhead,
which we define as the overhead at which reception proba-
bility reaches its maximum. Minimizing saturation overhead
optimizes throughput, but not the delay. It is therefore essential
to find the trade-off between channel efficiency (throughput)
and delay.

The next step is to implement the proposed scheme in real
devices, and to analyze the impact of devices’ limitations
on the the coding configuration. The effect of considering
networks with more than one wireless hop and the influence
of not having unlimited capacity (bandwidth) will be also
considered.
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