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1 ABSTRACT  

2 Studies detailing the environmental impact of sunscreen products on coastal ecosystems are 

3 considered a high priority.  In the present study we have determined the release rate of dissolved 

4 trace metals (Al, Cd, Cu, Co, Mn, Mo, Ni, Pb and Ti) and inorganic nutrients (SiO2, P-PO4
3−and 

5 N-NO3
-) from a commercial sunscreen in seawater, and the role of UV radiation in the mobilization 

6 of these compounds. Our results indicate that release rates are higher under UV light conditions 

7 for all compounds and trace metals except Pb. We have developed a kinetic model to establish the 

8 release pattern and the contribution to marine coastal waters of dissolved trace metals and 

9 inorganic nutrients from sunscreen products. We conservatively estimate that sunscreen from 

10 bathers is responsible for an increase of dissolved metals and nutrients ranging from 7.53 x 10-4 % 

11 for Ni up to 19.8 % for Ti. Our results demonstrate that sunscreen products are a significant source 

12 of metals and inorganic nutrients to coastal waters. The normally low environmental 
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13 concentrations of some elements (e.g. P) and the toxicity of others (e.g. Pb) could be having a 

14 serious adverse effect on marine ecology in the Mediterranean Sea. This risk must not be ignored. 

15 Keywords: Sunscreen, ultraviolet light, metals, inorganic nutrients and kinetic modeling.

16

17 INTRODUCTION 

18 Tourism plays a very significant role in the development of coastal areas, especially in 

19 Mediterranean countries where, tourism, especially “beach & sun” holidays, has been breaking 

20 annual records in recent years1. However, tourism can lead to unwanted impacts if it is not 

21 developed in a sustainable way. The quality of the water, the rich biodiversity and the natural 

22 resources in general of the marine and coastal areas are often threatened by the uncontrolled 

23 development of tourism that leads to excessive risk. The sustainable use of our oceans and seas, 

24 ensured by the sustainable development and growth of the coastal regions, is considered a priority 

25 by the European Union2. 

26 Research-based knowledge of the ecological impact of tourism and recreational activities on the 

27 marine ecosystem is very scarce. For example, seasonal trends in tourism can mediate the timing 

28 and effects of the eutrophication of effluent from wastewater; much higher loads are caused by 

29 periodic and often predictable surges in the number of visitors at specific times of the year (mainly 

30 during summer); and the impacts can extend over a wide area and have effects in areas at 

31 considerable distance from the main areas where tourists congregate3.

32 Amongst the many chemicals and emerging pollutants that enter the sea and cause adverse 

33 ecological effects, sunscreens products in particular are attracting attention in the scientific 

34 community, as well as generating significant media coverage in the last few years. 
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35 Recently, the interest in these commercial products has increased among scientists and the general 

36 public. In the area of human health, experts now insistently recommend the correct application of 

37 these products as being essential to help prevent skin cancer due to exposure to ultraviolet (UV) 

38 sunlight. In the area of the marine environment, concern has emerged in recent years about the 

39 potential hazards for marine ecology caused by the chemical UV filters, both organic (e.g. 

40 oxybenzone and octinoxate) and inorganic (Ti and Zn nanoparticles), that are incorporated as 

41 ingredients in the formulation of sunscreens. These chemicals are released when the product comes 

42 into contact with seawater4. On this latter topic, the study of the behavior of metal nanoparticles 

43 included in sunscreen formulation and released in the sea is considered very important. For 

44 example, it has been reported that nanoparticles can co-occur with other chemicals in aquatic 

45 environment and increase the toxicity of them on organisms 5. 

46 Although knowledge is improving about the degradation of individual chemical agents in 

47 sunscreens, such as organic (e.g. octyl dimethyl-p-aminobenzoate) and inorganic (TiO2 

48 nanoparticles) UV filters6, 7, there is a lack of research that describes the potential release and 

49 behavior of chemical ingredients from the total sunscreen matrix in marine waters8. This is due to 

50 the special physical-chemical characteristics of seawater and the complex matrix of the sunscreen 

51 products. For example, the high ionic strength of seawater and organic matter content could 

52 promote the agglomeration and sedimentation of nanoparticles5. In addition to UV filters, 

53 commercial sunscreen contains a great variety of other chemical ingredients that make each of 

54 these cosmetic products a complex matrix that is difficult to manage both analytically and 

55 environmentally. Sunscreens have also been identified as a significant source of inorganic 

56 nutrients, mainly PO4
3−, in coastal and marine waters, raising the possibility of algae blooms in 

57 oligotrophic waters8.  Furthermore, these cosmetics can be a source of high-risk substances such 
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58 as metals9, many of which (i.e. Al, Zn, Mg, Fe, Mn, Cu, Cr and Pb) have been detected and 

59 quantified in sunscreens8, 10. 

60 It has been demonstrated that concentrations of some of these compounds from sunscreens released 

61 in coastal water (i.e. PO4
3−, NH4

+, NO3
- and Ti) vary during the course of a day, and this could be 

62 associated with variations in the beachgoers activities and changes in solar radiation8. However, 

63 reliable knowledge on the role of sunlight on the release in seawater of the main ingredients found 

64 in sunscreen products has not yet been addressed. Sunlight is known to be an important factor in 

65 the transformation of chemicals in surface waters11. This is especially important in the coastal 

66 environment, which is considered to be a “hotspot” of photochemical processes that lead to the 

67 transformation of dissolved and particulate compounds11, 12, 13. 

68 During the aging process and because their hydrophobic characteristics, sunscreen forms stable 

69 colloidal residues in seawater, including macroscopic aggregates, agglomerates and submicronic 

70 fractions14. These compounds can be released to the aqueous phase in the form of dissolved 

71 chemicals and colloids through various physical-chemical processes. This study evaluates the 

72 differences of dissociation of inorganic compounds/elements under UV light and dark exposure, 

73 the kinetics behind the mobilization into the seawater phase, and the amount of these released 

74 products included in the fraction <0.22 µm. In particular, experiments on the kinetics of release, 

75 using commercial sunscreen, have been conducted in the lab, under controlled UV light and 

76 temperature conditions, to evaluate the susceptibility of sunscreen to release metals (Al, Cd, Cu, 

77 Mn, Mo, Ni, Pb, Co and Ti) and nutrients (Si-SiO2, P-PO4
3− and N-NO3

−) into seawater.  Kinetic 

78 models are proposed to explain the behavior and variability in seawater of the chemicals studied. 

79 This model-based approach offers a valuable potential tool to better understand the risks associated 

80 with inorganic nutrients and metals released from sunscreens in the marine coastal ecosystem.
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81 MATERIALS AND METHODS 

82 Seawater collection

83 Surface water was collected in March 2018 from a zodiac in an offshore area of the Mediterranean 

84 Sea (Málaga, Spain; 36.48N, 4.51W) using a peristaltic pump and pumped through acid-cleaned 

85 Teflon tubing coupled to a C-flex tubing (for the Cole-Parmer peristaltic pump head), filtered 

86 through an acid-cleaned polypropylene cartridge filter (0.22 µm; MSI, Calyx®) and placed in a 25 

87 L low-density polyethylene acid-cleaned plastic carboy. Seawater were filtered in order to avoid 

88 the influences that the presence of natural organic matter and organisms could introduce in the 

89 elements mobility. The collected seawater was transported to the laboratory and kept at 4ºC in dark 

90 conditions prior to experiments. Seawater was stored no longer than two weeks. Prior to 

91 performing the experiments, subsamples of seawater were collected for analysis of dissolved 

92 inorganic nutrients and metals content. 

93 Metals and inorganic nutrients release kinetics experiment

94 In this study, we examined the effects of ultraviolet light (280-400 nm) on the kinetics of release 

95 of nutrients and metals from one of the most recommended and used commercial sunscreen type 

96 (i.e. sun protection milk spray application type with a SPF of 50) (e.g. 

97 https://www.consumerreports.org/cro/sunscreens.htm). Laboratory experiments were carried 

98 under dark and UV light conditions, mimicking the natural night-time and mid-day conditions 

99 respectively, of a Mediterranean coastal area during the summer season. The selection of this 

100 particular commercial sunscreen tested was based on:  the sun protection factor (SPF 50), the 

101 presence of nanoparticles of titanium dioxide among the ingredients; and the format of the 

102 sunscreen product, i.e. sun protection milk spray, which has been demonstrated to cause higher 

103 toxicity to marine organisms8. Metals and inorganic nutrients composition of the selected 
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104 sunscreen were characterized prior experiments. In both kinetics experiments, 0.8 g of sunscreen 

105 was added to 400 mL of seawater in quartz glass vessels (0.5 L capacity). Quartz vessels were 

106 used to ensure the penetration of UV light into the seawater sample. During selected time periods 

107 (between 0 and 24 h exposure), vessels were gently stirred (simulating movement of water by 

108 waves) using a magnetic stirrer, at a controlled temperature of 24ºC representative of seawater 

109 temperature in the Mediterranean Sea during the summer15, 16. Temperature in the experiments was 

110 maintained by cooling water circulation (Polyscience AD07R-40 refrigerated circulating bath). 

111 The time periods selected were 0 (immediately after the sunscreen was added), 0.25, 0.5, 1, 3, 6, 

112 12 and 24 hours. 

113 Samples were exposed to UV radiation of 37.25 ± 3.59 W m-2 (average ± SE) using a high-pressure 

114 UV lamp (OSRAM, ULTRA VITALUX©, 300W), comparable to the UV component of sunlight. 

115 This type of lamp has been used in previous studies related to the degradation of chemical 

116 compounds17 and in the study of sun protection factors18, among others.  The UV light intensity 

117 during this experimental period was analogous to the mid-day sunlight in the coastal city of 

118 Málaga19 and corresponds to an ultraviolet index between 8 and10 (considered very high and 

119 typical of a summer day on the Mediterranean coast) for the same period in the same place. An 

120 UV light meter (UVA-UVB PCE-UV34) was used for UV measurements during the experiment. 

121 A diagram of the experimental device under UV light conditions is given in Supporting 

122 Information (SI) in Figure S1.

123 In both experiments, at the end of each selected time period, the sample was removed from the 

124 quartz chamber and filtered through a 0.22 µm pore-size filter for dissolved chemical analyses, as 

125 it represents the soluble and bioavalability fraction. However, we are aware that the filtered 

126 solution can contains both, dissolved species and particulate matter < 0.22 µm that are released 
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127 from the sunscreen after the experimental exposure. From each sample two subsamples were 

128 obtained, one for inorganic nutrient analysis (kept at -20 ºC until analysis) and another subsampled 

129 for trace metal analysis (acidified to pH 1.5- 2 with HCL 1M) and kept at 4ºC until 

130 preconcentration and analysis. Blanks (seawater sample without sunscreen) were obtained for each 

131 selected period and under both light conditions.

132 Analytical Procedure

133 Sunscreen characterization. Metals (Al, Cd, Cu, Mn, Mo, Ni, Pb, Co and Ti) and total P and Si 

134 in sunscreen were analyzed in triplicate by ICP-MS (PerkinElmer ELAN DRC-e) after prior 

135 chemical digestion, following the method described by Páscoa20

136 Seawater chemical analysis. The concentrations of inorganic nutrients (Si-SiO2, P-PO4
3−, N-

137 NO2
−, N-NO3

-) in seawater samples were determined by colorimetric techniques21 using an 

138 autoanalyzer (Skalar San++ System). The accuracy of the analysis was established using reference 

139 material for nutrients in seawater (KANSO CRM Japan), with recoveries of 102.5%, 108.3%, 

140 96.4% and 103.9% for Si-SiO2, P-PO4
3−, N-NO2

− and N-NO3
-. Concentrations of Al, Mn and Ti, 

141 in seawater were determined directly by ICP-MS (PerkinElmer ELAN DRC-e). Samples for the 

142 analysis of Cd, Co, Cu, Mo, Ni and Pb content were previously pre-concentrated using a liquid-

143 organic extraction method with APDC/DDDC22 and analyzed by ICP-MS (PerkinElmer ELAN 

144 DRC-e). The accuracy of metal analysis was checked by the following certified coastal water 

145 reference materials for trace metals: CASS-4 N RC-CNRC. The recoveries reported were 93%, 

146 98%, 103%, 93%, 93% and 92 % for Cd, Cu, Mn, Mo, Pb and Co respectively.  All the sampling 

147 and analytical operations were carried out in accordance with clean techniques for trace metals. 

148 All chemical analyses were measured in duplicate. The results are expressed as nmol L−1.

149
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150 Modeling

151 The data obtained from the laboratory experiments was modeled and the corresponding parameters 

152 were calculated by using Aspen Custom Modeler software (Bedford, Massachusetts, USA) which 

153 solves rigorous models and simultaneously estimates parameters. Furthermore, Aspen Custom 

154 Modeler gives the statistics values that allow to compare the experimental values of concentration 

155 with the values from the mathematical model. The correlation coefficient (R2), relative standard 

156 deviation (RSD) and relative and absolute error were used to check the validity of the model. This 

157 tool has been successfully used previously by the authors to model release behavior of 

158 contaminants from sediments to seawater23, 24. The model parameters were adjusted using an 

159 NL2SOL algorithm for the least-square minimization of the deviation between the experimental 

160 and theoretical data. 

161

162 RESULTS AND DISCUSSION

163 Sunscreen composition. The concentrations of the elements studied in the commercial sunscreen 

164 selected and the seawater used in this study are given in Table 1. Titanium (1.48 x 107 µg kg-1) 

165 and Al (1.67 x 106 µg kg-1) are the two metals with the highest concentration in the sunscreen. 

166 Titanium is present in sunscreen as TiO2 and TiO2-nanoparticles, both used as UV filter.  The 

167 sunscreen contains Al in the form of Al (OH)3, usually used as an opacifying and viscosity-

168 controlling agent25 and, in some sunscreens, to reduce the agglomeration of the TiO2 nanoparticles 

169 and their catalytic activity in the sunscreen when it is exposed to UV light, and to prevent harmful 

170 effects on skin26, 27. Results of the analysis also show the presence of other metals in relevant 

171 concentrations, including Pb, Mn, Cu, Mo, Ni, Cd, and Co (ranging from 743 µg kg-1 for Pb, to 

172 6.10 µg kg-1 for Co); these other metals are not described in the sunscreen formulation provided 
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173 for users. Metals can be incorporated in cosmetics intentionally because of their function28 or 

174 indirectly, as result of the breakdown of ingredients that incorporate them29 or due to inadequate 

175 purification of raw materials that contain metal impurities30. Cobalt may be included as ingredient 

176 in the composition of the sunscreen, coating the surface of titanium dioxide nanoparticles powders, 

177 to improve their properties performance, as colorant and/or as skin conditioning31. In previous 

178 studies, concentrations of Al, Cu, Mn, Pb, and Ti in sunscreen products have been reported in a 

179 wide range of concentrations (2.20 x 104- 7.40 x 104 µg kg-1 for Al; < 900-5.30 x 105 µg Kg-1 for 

180 Cu; < 200-5.90 x 105 µg Kg-1 for Mn; 27.0-1.75 x 103 µg Kg-1 for Pb; and 60.0-18.5 x 106 µg Kg-1 

181 for Ti)9, 10.

182 Table 1. Trace element concentrations in the commercial sunscreen tested and in the seawater 

183 (dissolved, <0.22 µm) used in the release kinetics experiments. 

Element

Sunscreen 
content 
(µg kg-1)

Seawater 
content 
(nmol L-1)

Al 1.67 x 106 235

Cd 16.7 0.0552

Co 6.10 0.0693

Cu 170 1.14

Mn 254 5.27

Mo 137 92.6

Ni 47.5 2.43

Pb 743 0.0703

Ti 1.48 x 107 33.5

P-PO4
3- 3.15 x 105 73.5

Si-SiO2 3.83 x 106 894

N-NO3
-  n.a 81.8
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184

185 Element concentrations in sunscreen are expressed as µg kg-1. Metal and inorganic nutrient 

186 concentrations in seawater are expressed as nmol L-1. Phosphorus and silicon were measured as 

187 total P and Si form in the sunscreen matrix. n.m means not measured.

188

189 Significant concentrations of phosphorous, P (3.15 x 105µg kg-1), and silicon, (3.83 x 106 µg kg-1), 

190 were also measured in the sunscreen matrix. These nutrients are commonly used in the 

191 formulations of these cosmetics. Phosphorus is found in the form of pentasodium ethylenediamine 

192 tetramethylene phosphonate, used as a chelating and controlling viscosity agent32. Silica, in small 

193 concentrations, is also used in these cosmetics for coating TiO2 nanoparticles26 and to improve 

194 viscosity33. Although we were not able to measure the amount of nitrogen compounds in 

195 sunscreen, N is present, in amounts depending on the product, in the form of the following 

196 nitrogenated compounds: bis-ethylhexyloxyphenol methoxyphenyl triazine, octocrylene, 

197 ethylhexyl triazone and drometrizole trisiloxane, used also as UV filters34-37 and as chelating and 

198 viscosity controlling agents32. 

199 The concentrations of metals and inorganic nutrients measured in the seawater used for the release 

200 kinetics experiment (Table 1) are of the same order of magnitude as in Mediterranean coastal 

201 seawater38. 

202 Trace element release. The experimental results obtained for the release of metals and inorganic 

203 nutrients from sunscreen to the seawater compartment are plotted in Figure 1. Our results show a 

204 clear release of Al, Cu, Mn, Ti, Si-SiO2 and P-PO4
3- from sunscreen into seawater. However, the 

205 release pattern observed for Cd, Mo, Ni, Co and N-NO3
- was not clear; the concentrations of N-

206 NO2
−

 in treatment samples were below the detection limit (< 0.03 µM). 
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207 In general, concentrations of released elements were affected by length of time and exposure to 

208 UV light. The highest release concentrations of Al, Cd, Co, Cu, Ti, Si-SiO2 and P-PO4
3- measured 

209 were under UV light exposure. Only Mn, Mo and Ni did not show significant (p > 0.05; t-test) 

210 differences in release rate between light conditions (Figure 1). Average release rates in the first 24 

211 hours were calculated as (C24h-C0h)/24 [nmol  L-1 h-1]. Release rates decreased in the order Si-

212 SiO2> P-PO4
-3> Al> Ti> Mo> Mn> Cu> Co, under UV light and Al> SiO2=P-PO4

-3> Mo> Mn> 

213 Cu >Cd> Pb, under dark conditions. Aluminum, SiO2 and P-PO4
-3 had the highest average release 

214 rates in both cases. Under UV light conditions Cd, Pb and N-NO3
- showed  maximum 

215 concentration (t ≤ 30 minutes: 1.79 nmol L-1, 0.180 nmol L-1 and 2250 nmol L-1, respectively). 

216 After 3 hours of experiment, the concentration declined notably (0.120 nmol L-1, 0.0970 nmol L-1 

217 and 163 nmol L-1, respectively), reaching a near-equilibrium condition at the end of the exposure. 

218 Only Pb clearly increased the concentration more under dark condition than under UV light 

219 exposure, reaching a maximum of 0.290 nmol L-1 after 12 h. For these elements (i.e. Cd, Pb and 

220 N-NO3
-) dissolution and desorption are favored in the absence of photoreactions. Although more 

221 experiments would be necessary to determine the reason for the decrease in concentration of Pb, 

222 it is reasonable to conclude that the mechanism for this is adsorption to some of the organic 

223 compounds included in the sunscreen formulation. In the case of N-NO3
-, its action as an oxidant, 

224 mediated by photocatalytic reactions, could explain the considerable decrease seen in its 

225 concentration in seawater39. 

226

227

228

229
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230
231 Figure 1. Kinetics of dissolved trace metals and inorganic nutrients released from a commercial 

232 sunscreen under UV light (white dots) and under dark conditions (black dots). The horizontal, 

233 dashed line depicts the initial concentration of the element in seawater.

234

235 Kinetic model of elements release

236 We have calculated a kinetic model to establish the release pattern and the contribution of trace 

237 metals and inorganic nutrients from sunscreen to marine coastal waters. Sunscreen in seawater 

238 forms stable colloidal residues that could include macroscopic aggregates, agglomerates and 
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239 submicronic fractions14. The high proportion of organic material in the colloidal residues released 

240 from the sunscreen controls the behavior, surface properties and structure of the colloids. 

241 Nanoparticles, organic and inorganic chemicals from the sunscreen formulation can interact 

242 through several complex processes under different aging times and conditions5, 40-42; aggregation 

243 rates increase with ionic strength43. Figure 2 shows the schematic representation of the chemicals 

244 and nanoparticles release proposed in the kinetic scheme (Eq. 4) of aging sunscreen in the seawater 

245 environment. The proposed model does not consider the interactions of the studied elements in the 

246 air-water and water-sediment interface neither the interactions with natural suspension matter from 

247 seawater and organisms. In relation to the nanoparticles, only the behavior of the measured 

248 submicronic fraction (<0.22 µm) in seawater is considered. Metals, elements associated with 

249 nanoparticles and phosphorous, showed different experimental release behavior and therefore 

250 three different kinetic schemes are proposed (Eq. 4). Metals not associated to nanoparticles (Al, 

251 Cd, Cu, Mn, Mo, Ni and Pb) are contained mainly inside the organic material; subsequently they 

252 are released to the seawater and finally, after an aging period, they can be adsorbed onto the organic 

253 material forming a stable colloidal suspension. The elements associated to the nanoparticles (Ti, 

254 Co, Si) are initially linked to the organic chemicals due to the hydrophobic character. After  a first 

255 step, they are unlinked inside the organic material, and later, with a delay of 6h, released to the 

256 seawater with an important concentration increasing during the rest of the experiment (6h to 24h); 

257 an additional adsorption-desorption stage of these elements can be considered. Phosphorus in 

258 sunscreen can be photo-mineralized to inorganic species of P-PO4
3− 43.

259
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260
261 Figure 2. Representation of the dynamic release of the studied chemical elements from sunscreen 

262 to seawater under UV light exposure and the aging time, according to the kinetic scheme 

263 considered in the eq. 4.

264

265 The degradation of organic chemical ingredients of sunscreen has previously been found to follow 

266 a pseudo-first-order model39, 46. In the present work, the release processes of nutrients and metals 

267 from sunscreen in seawater can be modeled considering pseudo-first-order reactions (Eq. 1):

𝑟𝑖,𝑗 = 𝑘𝑖,𝑗[𝑋𝑖] (1)

268 where  is the reaction rate,  is the rate coefficient of the metal or nutrient i in the reaction j, 𝑟𝑖,𝑗 𝑘𝑖,𝑗

269 and  is the concentration of the reactant i of each reaction. The concentration of metals or [𝑋𝑖]

270 nutrients in seawater in each experiment performed at constant volume can be determined by Eq.2:

𝑑[𝑋(𝑎𝑞)𝑖]
𝑑𝑡 =

𝑛

∑
𝑗 = 1

𝑟𝑖,𝑗 ―
𝑚

∑
𝑘 = 1

𝑟𝑖,𝑘 (2)

271 where j is the n reactions that release X (aq) and k the m reactions that adsorb X (aq) from the 

272 seawater. The release and adsorption of the components in seawater can take place under total or 
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273 equilibrium reaction. In the latter case, the equilibrium constant of component i can be determined 

274 by Eq. 3:

𝐾𝑒𝑖,𝑗 =
𝑘𝑖,𝑗

𝑘𝑖, ― 𝑗
(3)

275 where the subscript j represents the direct reaction of release, and the subscript -j the adsorption. 

276 In accordance with the release mechanisms described (Figure 2), three different kinetic schemes 

277 (Eq.4) are considered to describe the behavior of metals, elements associated with nanoparticles 

278 (Ti, Co and Si), and phosphorus, respectively. In the present work, the liberation of NO3
- cannot 

279 be modeled because of the lack of data on the concentration of total nitrogen and its speciation in 

280 sunscreen. 

(4)

281 The values of kinetic constants were estimated considering:  the resolution of the mass balances 

282 of the eq. 2, the kinetic scheme of the eq. 4, the initial concentration values of elements, and the 

283 experimental data of concentration vs. time. The rate coefficients and equilibrium constants of the 

284 kinetic reactions estimated, together with the correlation coefficients (R2) and relative standard 

285 deviations (RSD) of the elements released over time, are shown in Table 2. Figure 3 shows the 

286 experimental and modeled release of elements over time. The simulated curves adequately fit the 

287 experimental results. The release of metals from the sunscreen into seawater can be described by 
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288 a total reaction for all metals Table 2), except for Cu in the experiment with UV (𝐾𝑒𝑞𝑖,1 = 0 𝑖𝑛

289 light, and for Cd in the experiment in darkness. However, their adsorption onto organic material 

290 is described by an equilibrium reaction (  for Cd, Mn, Ni and Pb in the presence of UV 𝐾𝑒𝑞𝑖,2 ≠ 0)

291 light, and for Al, Cd, Cu and Mn in darkness. Elements in the nanoparticles (Ti, Co and Si) are 

292 released first to the organic chemicals, later to the seawater and finally adsorbed in the final stable 

293 colloidal suspension, except for cobalt for which no adsorption is observed. All reactions of Ti, Co 

294 and Si (except for Co without UV light conditions where ), can be described by total 𝐾𝑒𝑞𝑖,2 ≠ 0

295 reactions (  in Table 2). The proposed model predicts reasonably well the observed delay 𝐾𝑒𝑞𝑖,𝑗 = 0

296 in the mobility of Ti, Co and Si after short exposure times (Figure 3). The ki,1 and ki,2 kinetic 

297 constants obtained for Ti, Co and Si-SiO2 (Table 2) were equal to each element. This pattern was 

298 different from the rest of the studied elements and confirmed the similar origin of these three 

299 elements in the system. The release of phosphorous compounds from the organic material to the 

300 seawater can be described by a first order reaction. 

301
302 Table 2. Estimated kinetic rate coefficients  and equilibrium constants  for each 𝑘𝑖,𝑗 𝐾𝑒𝑞𝑖,𝑗

303 contaminant in all the assays. The correlation coefficients (R2) and relative standard deviation 

304 (RSD) parameters for the relation between the experimental and simulated released concentrations 

305 using the proposed model are also shown.

306
Metals: Al Cd Cu Mn Mo Ni Pb

Parameter

ki,1 (h-1) 0.00647 0.989 0.465 0.310 2.47 0.00671 9.87 x 10-4

Keqi,1 --- --- 0.937 --- --- --- ---
ki,2 (h-1) 0.508 1.07 0.0283 1.31 --- 0.444 0.263
Keqi,2 --- 19.0 --- 0.567 --- 0.226 5.44
RSD 0.183 0.164 0.148 0.132 0.563 0.023 0.208

with 
UV light

R2 0.911 0.984 0.932 0.964 0.610 0.890 0.788
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ki,1 (h-1) 0.0332 0.201 0.0365 0.443 0.337 5.22 x 10-5 0.00960
Keqi,1 --- 0.622 --- --- --- --- ---
ki,2 (h-1) 3.45 0.0501 0.215 0.102 0.0232 0.0263 0.246
Keqi,2 158 0.131 4.02 0.625 --- --- ---
RSD 0.228 0.0548 0.220 0.253 0.779 0.0512 0.168

without 
UV light

R2 0.701 0.989 0.497 0.876 0.742 0.945 0.888

Element-nanoparticle: Ti Co Si

Parameter

ki,1 (h-1) 0.00650 0.0518 0.0132
Keqi,1 --- --- ---
ki,2 (h-1) 0.00641 0.0513 0.0134
Keqi,2 --- --- ---
ki,3 (h-1) 3.70 --- 0.0310
Keqi,3 --- --- ---
RSD 0.171 0.120 0.0599

with 
UV light

R2 0.975 0.944 0.789
ki,1 (h-1) 1.84 x 10-5 0.731 0.493
Keqi,1 --- --- ---
ki,2 (h-1) 0.453 0.342 0.00897
Keqi,2 --- 0.22 ---
ki,3 (h-1) 0.465 --- 0.287
Keqi,3 --- --- ---
RSD 0.0394 0.093 0.0200

without 
UV light

R2 0.928 0.956 0.997

Phosphorus: PO ―3
4

Parameter

ki,1 (h-1) 1.71
Keqi,1 ---
RSD 0.0895

with 
UV light

R2 0.993
ki,1 (h-1) 8.31 x 10-5

Keqi,1 ---
RSD 0.0805

without 
UV light

R2 0.603
307
308
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309
310
311 Figure 3.  Experimental concentration (mmol L-1) over time of the dissolved metals and nutrients 

312 under UV light conditions (white dots), under dark conditions (black dots) and simulated by the 

313 proposed model (solid line). 

314
315 Figure 4 shows the parity plot obtained for the validation of the proposed model in terms of the 

316 concentrations of the studied element released, at any time and in both UV light and darkness 

317 (n=157). The correlation coefficient (R2) between the experimental values and the values simulated 

318 by the model was 0.979, which indicates a good correspondence between the experimental and 
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319 predicted concentrations. A good fit of the proposed model is also confirmed by the fact that 92% 

320 of the experimental data lie within a model relative error of ±20%, although larger deviations were 

321 noticed at concentrations lower than 0.4 nmol L-1.

322

Nº exp = 157
Nº exp with errors >10 % = 40
Nº exp with errors >20 % = 13
R2 = 0.979
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323

324 Figure 4. Parity plots of the seawater concentrations from the experimental (Cexp) and simulated 

325 (Csim) results of the elements under study. The data number (N) and percentage variation-

326 explained value (R2) are also shown.

327 The good fit obtained confirms that the proposed model predicts reasonably well the release of 

328 contaminants from sunscreen to seawater; an estimation of the maximum concentrations of each 

329 element released after 24 hours, the kinetic rate coefficients and equilibrium rate constants are 

330 obtained. The obtained model predicts the release of metals and inorganic nutrients under the 

331 studied experimental conditions. This model is an useful tool to predict and assess the risk of 

332 sunscreens in the sea.

333 The environmental impact and the consequent potential negative effects of sunscreens ingredients 

334 in coastal waters is considered a research priority2, 4. Several studies have demonstrated the 
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335 numerous effects that individual ingredients have on marine organisms, including the rapid 

336 bioaccumulation of UV filters in bivalves, bleaching of corals, and a severe decrease in the 

337 recruitment and survival in sea urchin, and others7, 47-50. However, identifying sunscreens as a 

338 source of releasing metals and nutrients in the marine system and the potential impact of input, has 

339 not yet been addressed.

340 Using the kinetic constants calculated from our experiment results, we have plotted in Figure 5 the 

341 estimated increase of concentration of  metals and inorganic nutrients derived from the beachgoers 

342 during bath in a typical Mediterranean beach on a summer day. To obtain these values, we have 

343 made the following assumptions: 1) that one beachgoer uses 1 mg/cm2 of sunscreen per 

344 application, i.e. half of the internationally-recommended amount of sunscreen for a single 

345 application51, about 18 g of sunscreen per person; 2) that at least 25% of the amount of sunscreen 

346 applied is washed off during each instance of sea-bathing52, 53; 3) the mass flow of sunscreen per 

347 hour added to the sea water (kg sunscreen h-1) is determined according to the number of bathers 

348 and baths and 4) total volume of sea water of 2.58 x 10-4 m3, off a typical Mediterranean beach8. 

349 The parameters used for this simulation are given in SI in Tables S1 and S2. Simulated increase in 

350 the concentration (nmol L-1 and %) of metals and inorganic nutrients released in a summer day 

351 compared to their background levels in seawater (Table 1) is shown in nmol L-1 as well as in 

352 percentage in SI in Table S3.

353 The increase of dissolved metals released by the tested sunscreen in seawater could range between 

354 7.5 x 10-4 % for Ni and 20 % for Ti. Titanium, Al, and Pb are the metals that present the most 

355 increase in their concentrations, at 20 %, 4 % and 0.2 %, respectively. Several trace metals, at low 

356 concentrations (e.g. Co, Mn, Ni, and Cu), play a key biological role in the sea, regulating the 

357 biogeochemical function in marine organisms, while others, such as Pb and Cd, could negatively 
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358 affect the ecosystem54, 55. Thus, small increments of the dissolved concentrations of these metals 

359 could have an effect on the marine biota. For example, it has been demonstrated that the induction 

360 of phytoplankton cell death in the Mediterranean Sea population is already detectable at 

361 concentrations, of both Cd and Pb, of 89 - 96 pmol L-1 56. Therefore, the release of metals from 

362 sunscreen of the order calculated in this study for a typical beach in the Mediterranean Sea, could 

363 be having a toxic effect on phytoplankton growth. Although the toxicity of Al to marine biota has 

364 hardly been investigated, studies have detected the very high sensitivity of the diatom Ceratoneis 

365 closterium to this metal (72-h IC10 at 593 nmol L-1 of Al)57. For this metal, a cumulative increase 

366 of 4% in Al levels in seawater for a few days could be having a largely unknown effect that surely 

367 requires further research. A quantifiable oxidative stress response in the mussel Mytillus 

368 galloprovincialis has been observed after 24 h of exposure to Ti at 58.5 nmol L-1 (corresponding 

369 to 0.2 g L-1 of sunscreen) under laboratory conditions49. The predicted final Ti concentration 

370 calculated in our study in seawater (45 nmol L-1) after a summer day, is close to that level, and 

371 therefore is another good reason for the potential effect of Ti on the marine environment to be 

372 determined.  

373 With respect to the inorganic nutrients in sea water, sunscreen may increase the concentrations of 

374 dissolved P-PO4
3- and Si-SiO2 by 0.2 %, and 0.6% respectively (Figure 5). Although, nitrogen is 

375 usually the main limiting nutrient for primary productivity in marine waters58, in the Mediterranean 

376 Sea the main limiting nutrient of primary productivity is P-PO4
3- 59-61. The low availability of 

377 phosphorous in the Mediterranean Sea prevents high primary productivity, leading to oligotrophic 

378 conditions. The beaches of this Sea are enjoyed by many millions of visitors every year; the 

379 Mediterranean received more than 330 million tourists in 2016, making it the largest tourism 
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380 destination in the world2. Therefore, a significant supplement of P-PO4
3- from sunscreen use could 

381 be having an important and unpredictable ecological effect in the Mediterranean Sea. 

382

383  
384 Figure 5.  Increase (%) of dissolved metals and inorganic nutrients released from sunscreen after 

385 a summer day at a typical Mediterranean beach.

386 We have used a conservative rate of water renewal of 24 h, but longer water residence times of 

387 between 3 -15 days have been recorded for some Mediterranean beaches62. In the context of these 

388 calculations, water renewal is an essential factor that cannot be ignored due to the associated 

389 cumulative effect which could increase the percentages of increase of metals and inorganic 

390 nutrients in seawater estimated over time.

391 Our study confirms that sunscreen is a potential source of dissolved trace metals and inorganic 

392 nutrients in coastal waters. Some dissolved element concentrations do not seem to present large 

393 differences in release rates between day and night (i.e. Al, Mo, Ni), whereas others show high 

394 release rates in daylight (i.e. Co, Cu, P-PO4
3- and Ti) or in darkness (i.e. Pb) (Figure 1). Our 

395 findings suggest that the mobilization of trace metal and inorganic nutrients from sunscreen to 
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396 seawater could be significantly facilitated by the incidence of UV light. UV radiation can penetrate 

397 to depths of least 30 meters in coastal areas, and produces about 50% of total photochemical effects 

398 in the marine environment63. These effects can change the toxicity of chemicals64 and could enable 

399 greater bio-availability of those trace metals included in sunscreen, thus causing their 

400 bioaccumulation in marine organisms. Furthermore, chemicals contained in sunscreen can react 

401 under UV radiation and form new compounds, such as hydrogen peroxide38, 65.

402 The role of UV light in trace elements release from sunscreen is especially important in the context 

403 of the assessment of environmental risk presented by these sun protection products66. Although 

404 the number of studies made to assess the potential effects of sunscreens on marine biota has been 

405 increasing recently, the majority of laboratory studies are conducted without UV light at 

406 environmentally-relevant conditions, so they are likely to under-estimate the real impacts that 

407 sunscreen-related chemicals may have on the natural environment. Therefore, kinetic release 

408 studies of sunscreen products under different scenarios of interaction (i.e. diverse types in terms 

409 of chemical-physical characteristics) and exposure to UV light (different intensities) are required 

410 for a better understanding of the fate of chemicals released from sunscreen in marine waters. It is 

411 essential to predict as accurately as possible their potential effects on the vitally-important coastal 

412 marine environment.

413
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419 Table S2. Average number of bathers and flow of sunscreen added to the sea as a function of time, 
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