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inspiración continua y, finalmente, a mis compañeros de clase. En especial, me gustaŕıa
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Abstract

Perovskite-like structures and, in particular, perovskite-like oxides (ABO3) have been
deeply studied since the discovery of CaTiO3 in 1839 due to their wide range of physical
properties and potential industrial uses (e.g non-volatile computer memories, IR sensors,
etc).

This bachelor thesis has been focused on the characterisation of both the high-symmetry
and low-symmetry phases of CaTiO3, SrTiO3 and BaTiO3, which are embedded in the
so-called II-IV perovskite family, by means of first-principles simulations performed in the
framework of DFT. Even though the only difference between them lies in the A cation,
it is well known that the type of instability displayed by each perovskite-like structure
in its low-temperature phases is significantly different: the ground state of CaTiO3 and
SrTiO3 exhibits TiO6 octahedral rotations (i.e an AFD instability) whereas the one of
BaTiO3, as well as its low-temperature tetragonal phase, displays a non-null macroscopic
polarization (i.e an FE instability).

In order to characterise the high-symmetry phase (i.e the bulk cubic structure) of the
aforesaid perovskite-like oxides, the band structure, the Projected Density of States, the
so-called “fat bands”, the Born effective charge tensor and the bond lengths of these
crystalline structures have been computed and carefully analysed. As a result of such
analysis, the following main conclusions have been drawn: the bottom of the conduction
band has a predominant Ti-t2g character whereas the top of the valence band is mainly
composed of O-2p orbitals and the bonds arising between these orbitals display a mixed
covalent-ionic nature.

In addition, the structural properties of the low-symmetry phases of the aforementioned
perovskites (i.e of the ground state of CaTiO3 and SrTiO3 and of the tetragonal phase of
BaTiO3) have been also studied with the ultimate goal of analysing their different nature
which is a manifestation of the predominant soft mode arising in that crystalline struc-
ture. The results obtained regarding the unit cell characterisation (e.g lattice parameters,
atomic positions, rotation angles, etc.) have been found to be in full agreement not only
with the type of instabilities predicted by means of the Goldschmidt Tolerance Factor but
also with the structural parameters obtained through either neutron or X-ray diffraction.
Moreover, the macroscopic polarization displayed by the tetragonal phase of BaTiO3 has
been computed yielding the numerical value Pz = 30.39µC× cm−2.

Key words: Perovskites, first-principles simulation, AFD, FE, Goldschmidt Tolerance
Factor.
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Resumen

Las estructuras de tipo perovskita y, en concreto, los óxidos de tipo perovskita (ABO3)
han sido ampliamente estudiados desde el descubrimiento del CaTiO3 en 1839 debido a
su amplio rango de propiedades f́ısicas y a sus potenciales usos industriales (por ejemplo,
memorias de ordenadores no volátiles, sensores IR, etc).

Este TFG se ha centrado en la caracterización tanto de las fases de alta simetŕıa como
de las fases de baja simetŕıa del CaTiO3, del SrTiO3 y del BaTiO3, que pertenecen to-
dos ellos a la llamada familia de perovskitas II-IV, mediante simulaciones de primeros
principios en el marco de la teoŕıa DFT. A pesar de que la única diferencia entre ellos
reside en el catión A, es bien sabido que el tipo de inestabilidad exhibida por cada una
de las ya mencionadas estructuras de tipo perovskita en sus fases de baja temperatura
es considerablemente distinto: el estado fundamental del CaTiO3 y del SrTiO3 exhibe
rotaciones de los octaedros TiO6 (es decir, una inestabilidad AFD) mientras que el del
BaTiO3, aśı como su fase tetragonal de baja simetrá, se caracteriza por un valor no nulo
de la polarización macroscópica (es decir, una inestabilidad FE).

Con el objetivo de caracterizar la fase de alta simetŕıa (es decir, la estructura cúbica) de
los oxidos de tipo perovskita mencionados con anterioridad, la estructura de bandas, la
Densidad Proyectada de Estados, las llamadas “bandas gordas”, el tensor de carga efec-
tiva de Born y las longitudes de enlace de estas estructuras cristalinas han sido calculados
y analizados cuidadosamente. Como consecuencia de dicho análisis, las siguientes conclu-
siones principales han sido obtenidas: la parte inferior de la banda de conducción tiene un
carácter Ti-t2g predominante mientras que la parte superior de la banda de valencia está
compuesta principalmente por orbitales O-2p y los enlaces que tienen lugar entre dichos
orbitales exhiben una naturaleza mixta entre enlaces iónicos y covalentes.

Además, las propiedades estructurales de las fases de baja simetŕıa de las perovskitas men-
cionadas con anterioridad (es decir, del estado fundamental del CaTiO3 y del SrTiO3 y de
la fase tetragonal del BaTiO3) han sido estudadias también con el fin último de analizar su
diferente carácter que es una manifestación del modo suave que surge en estas estructuras
cristalinas. Los resultados obtenidos con respecto a la caracterización de la celda unidad
(por ejemplo, los parámetros de red, las posiciones atómicas, los ángulos de rotacion,
etc.) han demostrado estar en perfecta consonancia no solo con el tipo de inestabilidades
predichas por el Factor de Tolerancia de Goldschmidt sino también con los parámetros
estructurales obtenidos a través de bien difracción de neutrones, bien difracción de rayos
X. Asimismo, la polarización macroscópica exhibida por la fase tetragonal del BaTiO3 ha
sido calculada obteniéndose el valor numérico Pz = 30.39µC× cm−2.

Palabras clave: Perovskitas, simulación de primeros principios, AFD, FE, Factor de
Tolerancia de Goldschmidt.
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Chapter 1

Introduction

The aim of this chapter is to characterise the unalike low-temperature stable phases of
the three perovskite-like titanates (CaTiO3, SrTiO3 and BaTiO3) that will be analysed
throughout this work as well as to explain the origin of both the ferroelectricity and the
octahedral rotations displayed by some of them.

1.1 ABO3 perovskite structure

ABO3 type oxides, such as the ones mentioned above, are of great importance nowadays
due to the fact that they display a wide range of physical properties including ferroelec-
tricity, piezoelectricy and ferromagnetism, among others, that can be controlled by their
electronic configuration, their ion size, etc, which enables the possibility of tuning one of
these properties via material engineering.

The ideal perovskite structure, which is often distorted leading to other phases accounting
for an upgraded energetic stability, such as the orthorhombic and tetragonal ones that will
be explained later on, presents a cubic unit cell and can be classified within the Pm3̄m
space group. As it can be seen in Figure 1.1, if one chooses the unit cell so as to have
the B ion located at its body centre, the atomic positions of A, B and O-like atoms are
given by [0,0,0], [1/2, 1/2, 1/2], [1/2, 1/2, 0], [1/2, 0, 1/2] and [0, 1/2, 1/2] respectively.
Besides, if one quickly inspects the same figure, it is straightforward to realize that A-like
atoms have a 12-fold oxygen coordination whilst each B-like atom is only surrounded by
6 oxygens which are, each, linked to six cations (4A + 2B).

Figure 1.1: Schematic view of an ABO3 ideal cubic structure where the A and B ions are represented

by green and blue spheres, respectively, whereas the oxygens are represented by red ones. Image obtained

using VESTA [1].
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INTRODUCTION 2

It is worth remarking that the same crystalline structure can be alternatively depicted as
a three dimensional A-centred cubic network consisting of eight rigid corner-sharing BO6

octahedra.

1.2 Technological applications

If one inspects the theoretical background concerning the aforementioned perovskite-like
structures it is straightforward to realise that these materials have been deeply analysed
over the last fifty years due to the wide range of properties exhibited by them and, there-
fore, to their potential use in several industries.

As a result of their intrinsic properties arising from their atomic constituents and the ar-
rangement of the former within the crystalline structure, perovskite-like oxides, in which
CaTiO3 , SrTiO3 and BaTiO3 are embedded, have proven not only to work efficiently as
catalysts because of their high melting point but also to constitute successful oxygen flow
carriers owing to their elevated densities [2] [3].

In spite of the importance of these properties regarding the chemical market, ferroelec-
tricity, which, as it will be later explained, is only exhibited by those perovskite-like
structures displaying a polar arrangement (i.e for a non centre-symmetric structure), has
been the most exploited feature to date. Among the numerous technological applications
linked to ferroelectric perovskite-like oxides, the use of these materials as electro-optic
switching devices all along with their utility regarding the manufacturing process of non-
volatile computer memories, constitute the most remarkable ones. However, for the shake
of brevity, only the second application will be briefly explained in this present work.

Bearing in mind that the essential prerequisite for manufacturing a computer memory,
either a ROM or a RWM, is that there must be two distinct physical states of the core
components that can be assigned to a logical 1 or 0, it is therefore natural to consider bulk
ferroelectric materials as perfect candidates regarding the manufacturing process as both
logical states could be identified with each remanent polarization state. Furthermore,
the use of ferroelectric materials as core components of computer memories exhibits a
clear advantage in terms of information retrieval: because of the hysteresis loop presented
among these type of materials, no information will be lost in the case of a power shutdown.

In order to manufacture a non-volatile computer memory exhibiting a high performance
as well as a decent data storage capacity, it is mandatory to assemble as many devices
as desired bits into an array of, usually, silicon-based electrodes. It is then clear that
bulk materials can no longer be used and, with the aim of overcoming this issue, thin
nanometric perovskite-like oxide layers are used in their place. By doing so not only the
memory is improved in terms of size but also in terms of commutation speed as it can be
proved that a reduction of the size of the aforementioned layer leads to a decrease in the
numerical value of the coercive field too (i.e the magnitude of the electric field needed to
switch the polarization) as long as the offset of ferroelectricity is not attained [4].
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1.3 Ferroelectricity and oxygen octahedral rotations

In this present section the two main unstable modes of the already explained perovskite
structure (i.e oxygen octahedral rotations, hereinafter referred to as AFD, and ferroelec-
tricity, hereinafter referred to as FE) will be explained. Moreover, an empirical rule for
predicting structural distortions based on steric arguments will be analysed and, finally,
a brief analysis of the competition and cooperative couplings between AFD and FE will
be made.

1.3.1 Oxygen octahedral rotations

1.3.1.1 General overview

The structures displaying oxygen octahedral rotations, which are very stable in wide
ranges of temperature and pressure, transform into different crystal systems (e.g tetrag-
onal or orthorhombic) that are, indeed, more present among ABO3 perovskites than the
cubic one.

According to Glazer [5], there are 23 distinct systems regarding octahedral tilting which
are, each, classified in terms of three letters (a,b and c), each of them indicating the
magnitude of the tilt along the direction of the axes [100], [010] and [001] respectively; as
well as in terms of three symbols (+, - and 0), each of them denoting an in-phase tilting
between successive oxygen octahedra defined along the same axis, an anti-phase tilting
or no tilting at all respectively. It is worth noting that the presence of in-phase rotation
patterns does not exclude the presence of anti-phase ones along different axes although
they tend to cancel each other out as it was reported in [6] for the a−a−c+ ground state
displayed by roughly half of the perovskite oxydes.

(a) a0a0c+ (b) a0a0c−

Figure 1.2: Schematic view looking down the c axis of a two layered perovskite structure displaying

either an in-phase rotation pattern along the c axis, Figure 1.2a, or an anti-phase rotation pattern along

the same axis, Figure 1.2b. Image taken from [7].

As it can be seen in Figure 1.2, oxygen octahedral rotation patterns mainly consist in
rigid rotations of the BO6 octahedra that, even though they do not modify the coordina-
tion sphere of the B ion which is embedded in the central part of it, they do significantly
change the one relative to the A cation.



INTRODUCTION 4

1.3.1.2 Bonding approach

Chemical bonding [8] plays an important role when inferring which of the 23 Glazer’s
systems will be displayed by a given perovskite as a result of an instability that can be
usually predicted by means of the Goldschmidt Tolerance Factor which will be explained
later on. In order to understand such phenomenon, both ionic and covalent bonding have
been deeply analysed in the last decade, paying important attention to the latter which
can be split into A/B-O σ and B-O π bonding, being this one only significant in the case
of having a transition metal acting as the B atom which is, indeed, the case that will be
treated throughout this work.

It is beyond the scope of this work to explain the mathematical models that have been used
to study the relationship between chemical bonding and rotation amplitude and “sense”
(i.e in-phase or anti-phase rotation patterns) among ABO3 perovskites, which are, mainly,
that related to a local pseudo Jahn-Teller effect [9], a covalency metric [10] and a group
theoretical analysis based on the irreps of the Pm3̄m space group [11]. However, for the
shake of completeness, the most significant conclusions yielded by these analysis will be
stated below:

• A-O bonding: Because of the large difference regarding electronegativity between
typical A cations and O atoms, this type of bonding is expected to be highly ionic
[12]. However, as the electronegativity of the former increases, the importance of
the covalent bonding between these two species will increase too, being specially
significant as the distortion from the ideal cubic structure, also referred to as a0a0a0

using Glazer’s notation, increases, due to the augmented overlap of oxygen orbitals
with the A cation [12]. Finally, the a+b−b− Glazer system, which is embedded in
the Pnma space group and, thus, displays an orthorhombic crystal structure, has
been found to be the one that maximizes A-O covalent bonding and, at the same
time, minimizes their repulsive overlap. It is because of that fact that such Glazer
system can be largely found for structures accounting for a small Tolerance Factor
and a highly electronegative A cation.

• B-O bonding: Even though a competition for the same orbitals within the oxygen
has been reported between the σ bonding orbitals of the A cation and the π ones
of the B counterpart [12], the interactions of the latter cation with the oxygen are
expected to be stronger than the ones arising from the interaction of the former ion
as, this one, is usually less electronegative. It is worth remarking that, since AFD
does not change the coordination sphere of the B cation, as it was explained above,
and, besides, the distances between the B cation and the O anion barely change, the
analysis of this type of bonding lies in the modification of the B-O-B angles wich, in
the cubic structure, are reported to be 180◦ [12]. Finally, the a0a0a0 Glazer system
has been found to be the one that maximizes B-O covalent bonding being, in fact,
only observed for structures accounting for oversized A cations and significant B-O
π bonding.

• a0a0a0 stability: Even though B-O covalent bonding is greatly maximized when
a cubic structure is displayed by a given perovskite, it is known, and it has been
already stated in this present work, that most perovskites do not possess the ideal cu-
bic Pm3̄m symmetry (i.e the a0a0a0 Glazer system) but undergo symmetry-lowering
distortions. In terms of bonding this can be understood by the fact that, for
small tilting angles, the increase in ionic energy associated with the aforementioned
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a+b−b− Glazer system largely outweighs the B-O covalent bonding stabilization of
the former structure [12].

Keeping in mind that the energy, spatial extent and filling of the different orbitals within
the chemical species of a given perovskite oxide will play a crucial role in terms of bonding
strength, it is necessary to analyse the evolution of its Density of States, hereinafter
referred to as DOS, and/or its Projected Density of States, hereinafter referred to as
PDOS, so as to check which atoms significantly contribute to it below the Fermi level (see
[13] for further information concerning DOS and PDOS).

1.3.2 Ferroelectricity

1.3.2.1 General overview

Bulk ferroelectricity, which can only be understood in terms of a collective model as it will
be explained in the following section, was first discovered in 1920 through the study of
Rochelle salt [14] and has been deeply studied since due to its technological applications
such as dielectric capacitors or IR sensors among others (see [15] for further information
regarding bulk ferroelectricity technological applications).

Multiple approaches are still being currently used in order to analyse the global mecha-
nism responsible for ferroelectric transitions such as hybridization between the formally
empty d states of the transition metal B and the oxygen-2p states, which is modelled
as a second-order Jahn Teller efect [16], lattice dynamics concerning the so-called soft
mode (see Section 1.4) [17] and Born effective charges [18] among others. However, all of
them ultimately agree in the fact that ferroelectricity must be considered as a cooperative
phenomenon in such a way that its appearance in one part of the structure leads to an
electrostatic field which results in a similar polarisation in neighbouring parts.

For a material to be considered ferroelectric, being ferroelectricity linked to pyroelec-
tricity and piezoelectricity, it must possess at least two equilibrium orientations of the
spontaneous polarization vector in the absence of an external electric field and these ori-
entations must be possible to switch (i.e the polarization vector can be tuned) by means
of a sufficiently large electric field [19].

(a) Free energy (b) Hysteresis loop

Figure 1.3: Double well-shape free energy in terms of the electric polarization, where T0 = Tc,

Figure 1.3a, and hysteresis loop, where P0 and E0 denote the remanent polarization and coercive field

respectively, of a typical ferroelectric bulk material, Figure 1.3b.Image taken from [21].
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Most ferroelectric bulk materials display ferroelectricity only below a certain phase tran-
sition temperature known as Curie Temperature, Tc. If one analyses that second-order
phase transition by means of the Landau-Devonshire Model [20], which mainly consist in
expressing the free energy of the system in terms of a contribution arising from polariza-
tion and a contribution having its origin in the strain tensor elements, the widely known
hysteresis loop presented among these materials naturally arises as a certain amount of
energy is required in order to overcome the barrier created by the potential surface, which
adopts a double-well shape, so as to change the polarization state.

1.3.3 Classification

Multiple criteria can be followed so as to set a classification of bulk materials regarding the
type of ferroelectricity that they display. Nevertheless, for the shake of brevity, just the
distinction between paradigmatic ferroelectrics and incipient ferroelectrics, also referred
to as quantum paraelectrics, will be analysed herein.

Paradigmatic ferroelectrics and quantum paraelectrics

Some materials such as SrTiO3, as it will be deeply discussed in the fourth chapter, present
a polar soft mode but do not display a ferroelectricity-driven phase transition [22]. This
fact, indeed, can only be understood by means of quantum paralectricity if one wishes to
remain within the soft mode framework.

In contrast to paradigmatic ferroelectricity, where ωT reaches zero for the TO, quantum
paraelectriciy suppresses the onset of the ferroelectric phase transition as ωT never reaches
zero due to the stabilization of the transverse optical mode driven by quantum fluctuations
[23].

Figure 1.4: Difference regarding the TO’s vibration frequency behaviour between a paradigmatic

ferroelectric bulk material and a quantum paraelectric one .

1.3.4 Goldschmidt Tolerance Factor

Special importance regarding the probability of any structural distortion to be displayed
is attributed to the Goldschmidt Tolerance Factor, t, [24] which quantifies that likelihood
in terms of the size of each ion (A, B and O) and can be computed as it follows (see
Appendix A for its step by step derivation):
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t =
RA +RO√
2(RB +RO)

, (1.1)

where Ri denotes the ionic radius of the ion I.

System t

CaTiO3 0.973
SrTiO3 1.009
BaTiO3 1.070

Table 1.1: Goldschmidt Tolerance Factor of CaTiO3, SrTiO3 and BaTiO3 calculated substituting the

ionic radii stated by Shannon [25] in Eq.(1.1).

Theoretically speaking, it can be shown [24] that any atomic arrangement yielding a value
of t 6= 1 (i.e not displaying an ideal cubic perovskite structure) will result in a structural
distortion driven by the need to improve the bonding properties of the chemical species
of the given perovskite-like structure.

In particular, the casuistry has been found to be the following:

• t > 1: Those perovskite-like structures yielding a numerical value of the Gold-
schmidt Tolerance Factor slightly greater than unity encompass an undersized B
cation and, therefore, will be submitted to B-O motions which will ultimately lead
to the rupture of the centrosymmetric parent phase thus resulting in a low-symmetry
polar phase.

• t < 1: Those perovskite-like structures yielding a numerical value of the Gold-
schmidt Tolerance Factor slightly less than unity encompass an undersized A cation
and, therefore, will be submitted to A-O motions. Specifically, such crystalline
structures will display an AFD distortion which will ultimately result in a phase
transition from the a0a0a0 Glazer system to any of the 22 remaining tilted ones.

At this point it is worth mentioning that it has also been shown in [6] that, as one
would expect, the energy difference between the cubic structure and the ground state
varies strongly with t and so do the distortion amplitudes too being the in-phase rotation
configurations and the anti-phase ones related to t in a quite similar way.

1.3.5 AFD vs FE

Even though the competition between AFD and FE modes has been largely reported
among several perovskite-like structures [26] [27], recent studies have found a coopera-
tive nature between these two instabilities giving rise to the so-called hybrid improper
ferroelectricity which has ultimately set the path for electric-field control of octahedral
rotations and electronic properties [28].

Although it has been proved by means of group theoretical analysis that octahedral ro-
tations, due to its three-dimensional connectivity, can not, by themselves, induce ferroelec-
tricity [11]; it has been found that the layering of non-polar perovskites (e.g SrTiO3/PbTiO3)
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leads to a new type of ferroelectricity, hereinafter referred to as improper ferroelectricity
due to the fact that no Γ polar instability is found, in which octahedral rotations induce
an electrical polarization [29]. This phenomenon mathematically arises from the fact that
a trilinear coupling of a polar mode with the octahedral rotation patterns, coming from
unalike irreps (i.e the two layers display a distinct AFD mode and, therefore, they are not
geometrically equivalent), is found when computing the free energy of the layered system.

Furthermore, cooperative couplings between these two modes have also been found through
ab-initio simulations in regular LiNbO3-type perovskites [30] which can be theoretically
explained by means of a Landau-like potential expanded up to the sixth order for FE and
up to the fourth for AFD. It is worth remarking that the cooperation between these two
instabilities, which is believed to have an steric origin, has been found to be independent
of strain and highly dependent on the amplitude of the octahedral tilting, being reinforce
for great amplitudes and turning into a competitive nature for small ones [30].

1.4 Soft mode approach

This approach to understanding and anticipating unstable atomic motions, first proposed
by Cochran [17], is based on the assumption that perovskites get unstable against a set
of normal modes of vibration of the lattice [13] which may arise anywhere in the Brillouin
zone. As a result of such instability, which can be visualized by the computation of the
phonon dispersion curves that will display a negative curvature (i.e a purely imaginary
vibration frequency ω), the most unstable soft mode undergoes a decrease in its frequency
as the temperature decreases that leads to a frozen-phonon situation at T ′ (i.e the mode
frequency vanishes at the transition point as expected for a second order transition) which
ultimately results in a phase transition towards another symmetry which will increase ω.

Figure 1.5: Born-Oppenheimer energy against the stable position of a nucleus belonging to an atom k

within a lattice a. The upper curve displays a real vibration frequency and, therefore, represents an stable

mode whereas the lower one displays an imaginary vibration frequency and, thus,represents a structure

that will undergo a phase transition towards a lower energy one. The dashed curve corresponds to the

harmonic oscillator solution.
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An undoubtedly pitfall of this method concerning its development is the fact that one
can no longer work within the harmonic oscillator framework as it has been proven [17]
that anharmonicity plays a crucial role in the softening process, specially near T ′, and,
thus, most of the parameters of the mathematical model lying underneath the soft mode
approach become linearly temperature-dependent. Furthermore, one must also take into
account the dynamic non-linear coupling of the soft mode with its acoustic mode coun-
terpart which leads to finite anomalies in the dispersion curve [31].

A clear example of the competition between the set of unstable modes can be clearly vi-
sualized in Image 1.6 where multiple normal modes of both CaTiO3 and BaTiO3 in their
bulk cubic structure display a negative curvature.

(a) CaTiO3 (b) BaTiO3

Figure 1.6: Computed phonon dispersion curves along the high symmetry lines of the Brillouin zone

for both CaTiO3 and BaTiO3 in their bulk cubic structure. The most unstable normal modes have been

identified by means of a filled circle. Image taken from [32].

When inspecting Figure 1.6 it is straightforward to realise the complexity of such approach
as linking a certain phase transition with the normal mode(s) that originated it is not
a trivial task. Nonetheless, for the shake of comprehension, a few words shall be said
regarding unstable modes, which are labelled by a letter (the high symmetry point of the
Brillouin zone where the softening process takes place), a number (the representation of
the wave-vector group under which the soft mode evolves) and either a + or a - symbol
denoting an in-phase or anti-phase movement, respectively, of adjacent unit cells within
the supercell defined in the real space.

• Those unstable modes coming from high energetic lattice vibrations are, by and
large, responsible for the distortion of the almost rigid BO6 octahedra.

• Those unstable transverse optical modes softening at Γ, such as the Γ−4 reported
for BaTiO3, are directly related to FE distortions and its curvature has been found
to exhibit a high degree of dependence on the volume and Born effective charges,
among others, of the material considered [19]

• In general, those unstable modes softening at R and M lead to strong AFD insta-
bilities.
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1.5 Low-Temperature stable phases

It is well known that materials displaying a crystalline structure undergo structural
changes (i.e changes concerning their Bravais lattice) induced by temperature or pres-
sure among others thermodynamic parameters. In particular, perovskite-like oxides, such
as the ones that will be studied throughout this present work, are characterized by their
low-symmetry phases, which are mainly driven by AFD and/or FE distortions, and tend
to undergo structural changes, leading to higher symmetry atomic arrangements, upon
heating.

Keeping in mind that those perovskite-like structures yielding a Goldschmidt Tolerance
Factor smaller than one are likely to develop an AFD instability, one can easily inferred
from Table 1.1 that the low-temperature phases of CaTiO3 will display a certain Glazer
system whereas those of BaTiO3 will be driven by an FE instability. Nevertheless, the
distinction between AFD and FE becomes uncertain for SrTiO3 as its tolerance factor lies
close to unity and, as a consequence, its low-temperature phases are expected to account
for an admixture of both types of distortions.

Throughout this present section the different structural phase transitions exhibited by
CaTiO3, SrTiO3 and BaTiO3 will be depicted leaving aside both the experimental methods
carried out in order to determine each of them; which are mainly Raman spectroscopy,
X-ray analysis and neutron diffraction, as well as the theoretical tools needed to study
the aforementioned phase transitions, which mainly consist of a Landau-like development
of the free energy of the system.

1.5.1 CaTiO3

CaTiO3, as it has been already explained, has a non polar nature and, therefore, exhibits
great-amplitude rotations of the TiO6 octahedra in each of its low-temperature phases.
Specifically, upon heating, it undergoes the set of structural phase transitions sketched in
Figure 1.7.

ORTHORHOMBIC
Pnma
a−a−c+

T ∼ 1512K
−→

TETRAGONAL
I4/mcm
a0a0c−

T ∼ 1636K
−→

CUBIC
Pm̄3m
a0a0a0

Figure 1.7: Phase transitions, each of them labelled by their Glazer system, space group and crystalline

structure, reported by [33] for CaTiO3.

1.5.2 SrTiO3

SrTiO3, as it has been explained above, is embedded in the category of quantum para-
electrics and, therefore, does not display any ferroelectricity-driven phase transition. In
particular, it displays the AFD-driven transition depicted in Figure 1.8.

TETRAGONAL
I4/mcm
a0a0c−

T ∼ 105K
−→

CUBIC
Pm̄3m
a0a0a0

Figure 1.8: Structual phase transition labelled by its Glazer system, space group and crystalline

structure reported by [34] for SrTiO3.
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1.5.3 BaTiO3

BaTiO3 is a paradigmatic ferroelectric and, as a consequence, undergoes a set of phase
transitions, which are sketched in Figure 1.9, driven by FE instabilities which arise from
the atomic displacement of Ti towards any of the faces of the polyhedron plotted in Figure
1.1 which is, in turn, accompanied by cooperative displacements of the oxygens located
within the unit cell.

RHOMBOHEDRAL
R3m
[111]

T ∼ 183K
−→

ORTHORHOMBIC
Pnma
[011]

T ∼ 273K
−→

TETRAGONAL
I4/mcm
[001]

T ∼ 393K
−→

CUBIC
Pm̄3m

Figure 1.9: Phase transitions, each of them labelled by their spontaneous polarization axes and their

space group, reported by [35] for BaTiO3.

1.6 Objectives of this bachelor thesis

The main goal of this present bachelor thesis is to fully characterise both the high-
symmetry phases (i.e the bulk cubic structure) of CaTiO3, SrTiO3 and BaTiO3 as well
the ground state of CaTiO3 and SrTiO3 (i.e the orthorhombic and tetragonal crystalline
structure respectively) and the tetragonal phase of BaTiO3 through first-principles com-
putational simulations.

Two distinct chapters are devoted the study of the aforementioned perovskite-like oxides,
which only differ from each other in the A cation and can be embedded in the so-called
II-IV family:

• Chapter 3 is intended to develop a geometrical analysis, through the computation
of the lattice constant and the bond lengths; and an electronic study, through the
computation of the band structure, the projected density of states and the Born
effective charge tensor of the three ATiO3 perovskite-like structures in their bulk
cubic structure. The main objective of this chapter is, therefore, to explore the
similarities and differences of the high-symmetry phases of these three crystals.

• Chapter 4 is intended to investigate the FE instability of BaTiO3 in its tetragonal
structure as well as the AFD distortion that both CaTiO3 and SrTiO3 display
in their ground state. In order to do this, all the structures will be relaxed and
characterised by means of their bond lengths, projected density os states, lattice
constants and, in the case of BaTiO3, electric polarization. The main objective of
this chapter is, therefore, to confirm from a first-principles simulation perspective
the predictions yielded by the calculation of the Goldschmidt Tolerance Factor.



Chapter 2

Computational Methods

The aim of this chapter is to briefly review some of the approximations implemented in
most of the first-principles codes currently available, including Siesta [36], which will be
the one used in order to fully characterise all the electronic and structural properties of
calcium, barium and strontium titanate.

2.1 Implemented approximations

2.1.1 Born-Oppenheimer approximation

The ground state of a material composed of Ni nuclei and Ne electrons interacting among
them is fully defined in terms of the time-independent Schrödinger equation as it follows:

H(~r, ~R)Φ(~r, ~R) = EΦ(~r, ~R). (2.1)

The hamiltonian shown above is mathematically constructed as the addition of the ki-
netic energy operator of the nuclei and the electrons, K̂i(~R) and K̂e(~r) respectively; the

nucleus-nucleus and electron-electron electrostatic interaction operators, V̂ii(~R) and V̂ee(~r)

respectively; and the nucleus-electron electrostatic operator, V̂ie(~R,~r).

Keeping in mind the form of the operators, which can be consulted in [13], as well as the
fact that the mass of the nuclei is way greater than that of the electrons, it can be easily
shown, an its derivation is explained in very detail in [13], that, when neglecting the con-
tribution of the kinetic energy of the nuclei (i.e when performing the Born-Oppenheimer
approximation), the dynamics of the nuclei and the electrons can be decoupled and, due
to their low mass, the electrons will undergo an adiabatic process in order to get adjusted
to the positions of the nearly fixed nuclei.

Under the constraints mentioned above the energy of the electrons for a given nuclear
arrangement characterised by an atomic structure where the nuclei occupy positions ~R,
Eel(~R), which is found by solving the “clamped-nuclei” Schrödinger equation, can be
determined through the following expression where Ke(~r) represents the kinetic energy of

the electrons, Eee(~r) denotes the interaction between electrons and Eie(~R,~r) represents
the interaction energy between an electron an a nucleus:

Eel(~R,~r) = Ke(~r) + Eee(~r) + Eie(~R,~r). (2.2)

12



COMPUTATIONAL METHODS 13

2.1.2 Density Functional Theory

Even though the obtention of Eq.(2.2) might seem straightforward it is a task extremely
difficult to tackle as it requires to solve an Schrödinger-like equation where the wave func-
tion depends of 4Ne variables (3Ne spatial coordinates and 1Ne spin-related variable).
Nowadays a wide range of methods, such as Density Functional Theory (DFT), Moller-
Plesset or Hartree-Fock, have been developed in order to obtain accurate approximations
for the eigenvalues of the many-body hamiltonian. Only the DFT approximation will be
briefly explained in this section as it is the one that has been used throughout this work.

The key goal of DFT, which is based on the Hohenberg-Kohn Theorems (see Appendix
A for further information) [37] [38], is to rewrite the energy expression shown in Eq.(2.2)
as a functional of the electronic density, n(~r), so that the ground state energy and its
electronic density can be found by minimising the electronic energy with respect to the
density. This is achieved by replacing the real system of Ne interacting particles by
a fictitious one of non-interacting particles yielding the same electronic charge density,
mathematically constructed using Kohn-Sham orbitals (φn), which are constrained to
move in an effective potential. Under these constraints Eel can be expressed as it follows
[37]:

Eel = −1

2

Ne∑
n

∫
d~rφ∗n(~r)∇2φn(~r)d~r+

∫
n(~r)Vie(~r)d~r+

1

2

∫ ∫
d~rd~r′

n(~r)n(~r′)∣∣∣~r − ~r′∣∣∣ +Exc, (2.3)

where the term Exc denotes the so-called exchange-correlation energy which seeks to reflect
the difference between a system of Ne interacting and non interacting particles. Multiple
exchange-correlation energy functional approximations are currently available in most of
the softwares performing ab-initio calculations. In the particular case of this work Local
density Approximation, hereinafter referred to as LDA, has been implemented and, thus,
the functional used throughout it adopts the following expression where εhomxc denotes the
exchange and correlation energy of an homogeneous electron gas:

ELDA
xc [n(~r)] =

∫
εhomxc (n(~r))n(~r)d~r. (2.4)

2.1.3 Further approximations

Even though the above-mentioned approximations might be regarded as the principal
ones it is worth mentioning the existence of others:

• Pseudopotentials: In order to reduce the computational effort needed to solve
the many-body hamiltonian and keeping in mind that within an atom the elec-
trons can be, usually, easily split into core electrons, which are chemically inert
as its charge density remains unperturbed when adding or removing a significant
number of electrons; and valence electrons, which are submitted to orthogonality
constraints produced by the already mentioned core electrons, the pseudopoten-
tial approximation has been implemented throughout the calculations of this work.
This approximation basically consists in replacing the effects created by the core
electrons, up to a cutoff radius Rc, by an effective pseudopotential that has to be
submitted to some constraints, which can be consulted in [39] and [40], regarding
its norm conservation, its smoothness and its transferability.
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• Sampling of the reciprocal space: When periodical boundary conditions are
applied in a reciprocal space framework (see [13] for further information) the Bloch
treatment of the eigenfunctions of the many-body hamiltonian naturally arises and,
thus, those wavefunctions are unequivocally determined by a band index n and a

wave vector ~k. It can be shown [13] that only the wavefunctions whose ~k ∈ [−π
a
,
π

a
]

(i.e those whose ~k is laying on the First Brillouin Zone, hereinafter referred to as
1BZ) produce unalike states. Keeping in mind the facts already stated above it
is straightforward to realize that many physical magnitudes, such as the electronic
charge density, require to compute an integral over the 1BZ. In order to reduce the
computational effort a discretization is performed leading to the computation of a
sum over a finite selection of k-points that will, undoubtedly, be picked regarding
the smoothness of the eigenstates. Even though there are several approaches for
choosing a k-grid, such as the one proposed by Chadi and Cohen [41] or that im-
plemented by Gilat and Raubenheimer [42], the one that has been implemented
in Siesta and, thus, the one that has been used throughout this work, is the one
proposed by Monkhorst and Pack (see [43] for further information).

• Basis functions: Keeping in mind that DFT leads to an expression of the en-
ergy functional of the real system in terms of the one-electron auxiliary functions,
φn, and the electronic density, n(~r), it seems natural that, in order to reduce the
computational cost, these monoelectronic wavefunctions should be defined as a lin-
ear combination of basis functions (whose number is significantly reduced when the
pseudopotential approximation is implemented). By doing so the focus of the ap-
proach changes from the determination of the eigenstates of the Schrödinger-like
equations that naturally arise in the framework of DFT to the calculation of a set
of coefficients and thus, the computational effort is greatly reduced.

Multiple basis sets, which can be consulted in [44], are available in first-principles
softwares. The default basis functions set by Siesta, and the ones used throughout
this work, consist of atomic orbitals which are mathematically constructed as the
product of one or more different radial functions (if one wishes to improve the
performance) and a spherical harmonic. Specifically, the default type is referred as
DZP which stands for polarized double ζ i.e atomic basis sets that consist of two
radial functions as well as polarization functions so as to improve both radial and
angular flexibility (see [44] for further information).

2.2 First-principles codes

Owing to the computational development of the last decades as well as to the acquisition of
knowledge regarding DFT and other related methods, which can be consulted in [45], first-
principles simulations (FP), also referred to as ab-initio, have become extremely powerful.

FP codes are able to fully characterise a material (i.e to obtain the eigenstates of the
multi-body Hamiltonian) using neither fitted parameters nor empirical models, just the
fundamental physical constants. It is straightforward to see the importance of this ap-
proach as, nowadays, simulations involving a huge number of atoms are easily achievable
and one can get really accurate predictions with a relatively low computational cost,
specially if order-N algorithms have been implemented in the code.
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2.2.1 Siesta

Among the wide range of ab-initio codes currently available Siesta [36], which was devel-
oped in the later 90s, has been the one used throughout this work. A detailed description
of this code, which provides a high degree of freedom to the user and implements order-N
algorithms, can be found in [46]. Nevertheless, some aspects regarding the input files and
the inner algorithms used for solving the Schrödinger equation will be briefly discussed in
this section.

Figure 2.1: Schematic representation of the input files needed to run a simulation with Siesta as well

as the output produced after a certain number of iterations has been performed so as to solve Kohn-Sham

equations self-consistently.

• Input files: Two different input files, as shown in Figure 2.1, are needed to perform
the simulation:

1. An input file written if Flexible Data Format (FDF) where the user has to
specify the number of atoms contained in the system, the different species, the
atomic number of these species, the lattice constant and vectors, etc; as well
as some factors regarding the approximations already explained above such as
the type of functional that will be used to perform DFT (e.g LDA, GGA, etc),
the k-grid that will be used to perform the discretization within the 1BZ, the
type of basis functions that will be implemented (e.g PW, Gaussians or PAO
among others), the tolerance factor, etc.

2. An input file for each kind of element defined at the ChemicalSpeciesLabel
block of the FDF file, usually written in ASCII format (.psf), containing the
norm conserving pseudopotential in its fully nonlocal (Kleinman-Bylander)
form of the given chemical species, usually generated for their ground state.

• Inner algorithm: Once the hamiltonian (H) and the overlap matrices (S) have
been computed with the data provided by the input files the following steps are
followed in order to compute the Kohn-Sham equations self-consistently: Firstly,
and initial guess for the charge densities of the isolated atoms is proposed; secondly,
the effective potential is computed using the functional set in the FDF file; thirdly,
the KS equation is solved and the electron density is computed and, finally, the
electron density obtained is compared to the one initially proposed to see whether
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the iteration has to be performed again using the first iteration density value as the
initial guess or not (depending on the tolerance factor set in the FDF file).

• Output file: Once the previous calculation has converged an output file is produced
with information regarding the different energetic terms of the system, the atomic
forces and the stress tensor among others.



Chapter 3

Cubic phase characterisation of
CaTiO3, SrTiO3 and BaTiO3

Even though, as it has been already pinpointed, the only perovskite-like titanate which
displays a cubic structure at room temperature (i.e at 296K) is SrTiO3, in this present
section the electronic and structural properties of the three materials will be analysed
in their bulk cubic structure so as to inspect both the similarities and differences among
them.

3.1 Lattice constant

In order to compute the lattice parameter of the unit cell displayed in the bulk cubic
configuration of CaTiO3, SrTiO3 and BaTiO3 the total energy of each system, made up
of different contributions and hereinafter referred to as Etot, has been calculated for a set of
i trial lattice parameters ai, each of them defining a unit cell volume Ωi, at a temperature
of 0K. These energetic values have been later fitted to the Murnaghan equation of state
[47] with the aim of obtaining the volume of the unit cell which yields the minimum
energetic value and, therefore, the lattice constant for the bulk cubic structure of the
three pervoskite-like titanates.

System ath/Å aexp/Å

CaTiO3 3.823 3.836
SrTiO3 3.873 3.905
BaTiO3 3.947 4.000

Table 3.1: Theoretical (th) and experimental (exp) [48] lattice parameters obtained for CaTiO3, SrTiO3

and BaTiO3 in their bulk cubic structure.

One can quickly realise that the theoretical estimation of the lattice parameter lies below
the experimental one for the three perovskite-like structures. In particular, the mismatch
between both values was found to be -0.34% for CaTiO3, -0.80% for SrTiO3 and -1.32%
for BaTiO3, which does not come as a surprise as the discrepancy between theoretical
and experimental values concerning lattice parameter calculations within the framework
of LDA was reported to lie in the range of -1% - -3% in [49].

17
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Furthermore, the numerical values obtained, with CaTiO3 being the perovskite-like ti-
tanate accounting for the minimum value among the three and BaTiO3 the one display-
ing the biggest unit cell, are not surprisingly either as the ionic radius of Ca, Sr and Ba,
which is related to the lattice parameter through the equation a =

√
2(r(Ca,Sr,Ba) + rO)

(see Appendix A), is, respectively, 114pm, 132pm and 149pm [25].

3.2 Coordination number and bond lengths

A simple but yet effective way of characterising the atomic arrangement of the ABO3

perovskite structures that will be analysed throughout this work is the computation of
the lengths of the bonds which arise between each cation (i.e A and B) and each anion
(i.e O). These bond lengths, which are depicted in Table 3.2 for the bulk cubic structure
of CaTiO3, SrTiO3 and BaTiO3, will be crucial for understanding the ground state of
the aforementioned perovskite-like structures due to the fact that, as it has been already
pinpointed, those structures yielding a value of the Goldschmidt Tolerance Factor differ-
ent than unity will undergo a structural phase transition by means of either AFD or FE
distortions thus leading to a modification of the bond lengths and, in the case of AFD, to
a modification of the coordination number (hereinafter referred to as CN) of the A cation.

System CN of A Bond length /Å CN of B Bond length /Å

CaTiO3 12 2.703 6 1.911
SrTiO3 12 2.739 6 1.937
BaTiO3 12 2.791 6 1.974

Table 3.2: Coordination number and bond lengths of both A (i.e Ca, Sr or Ba) and B (i.e Ti) cations

in the bulk cubic structure of CaTiO3, SrTiO3 and BaTiO3.

If one keeps in mind the schematic representation of the ideal ABO3 bulk cubic structure
sketched in Figure 1.1 as well as the relations between the ionic radii and the lattice
constant for a cubic closed-sphere packing arrangement derived in theAppendix A, it is
straightforward to realise that the bond lengths of A an B cations could have also been
calculated by substituting the cubic lattice parameters tabulated in Table 3.1 into the
expressions

√
2a
2

an a
2

respectively.

3.3 Band structure

In order to obtain the electronic band structure of the three perovskite-like oxides in their
bulk cubic crystalline configuration, the Kohn-Sham equation has been computed on a
set of points located within the 1BZ. Specifically, the incursion along the 1BZ has been
made through the following path: Γ→ X→ M→ R→ Γ→ M→ X→ R.
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Figure 3.1: Full band structure (top row) and amplified band structure (bottom row) of CaTiO3

(EF = −5.095eV), SrTiO3 (EF = −6.232eV) and BaTiO3 (EF = −7.709eV) in their bulk cubic structure

at the equilibrium lattice constant depicted in Table 3.1.

Bearing in mind that in a typical tight-binding textbook example the width of the elec-
tronic bands is related to the overlap between neighbouring atoms (i.e to the numerical
value of 〈φv|φu〉) a quick inspection to the uppermost band structure displayed in Figure
3.1 shows the ionic character of these three materials as a set of well separated flat bands
having, approximately, the same energy as the single orbitals giving rise to them is ob-
tained. Nevertheless, specially if one analyses the bottommost band structure depicted
in Figure 3.1, which zooms in on both the top of the valence band and the bottom of the
conduction band of the three perovskite-like titanates, it is straightforward to realise that
a covalent bonding nature is also displayed by these materials as the band structure at
that level exhibits a significant dispersive character.

With the aim of performing a deeper analysis regarding the covalent character of the
bonds arising in CaTiO3, SrTiO3 and BaTiO3 the projected density of states, hereinafter
referred to as PDOS, which represents the number of electronic states with weight on
an orbital µ available within a certain energy window, has been computed through the
knowledge of the band structure of the aforementioned perovskite-like structures by means
of the following expression:

gµ(E) =
1

N~k

bands∑
i

∑
k

∑
v

C∗vi(
~k)Cµi(~k)Svµ(~k)δ(E − Ei(~k)),

where Svµ denotes the overlap matrix of the involved states, Ci represents the coefficient

of the eigenvector Ψi( ~K) and N~k = V
a3

1
3 .
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Figure 3.2: Projected density of states of CaTiO3, SrTiO3 and BaTiO3 in their bulk cubic structure at

the equilibrium lattice constant depicted in Table 3.1 where the projections onto the A cation are shown

in green, whereas the ones onto the Ti and O atoms are shown in blue and red respectively.

Following the same line of reasoning the so-called “fat bands”, which explicitly show the
contribution of each atomic orbital to a certain band of the electronic band structured
depicted in Figure 3.1, have also been computed yielding the electronic composition shown
in Figure 3.3.
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Figure 3.3: Electronic band structure of CaTiO3, SrTiO3 and BaTiO3 showing the contributions of

O-2p and O-2s-like atoms (black and red respectively), Ti-3d, Ti-3p and Ti-3s-like atoms (dark blue,

yellow and orange respectively) and p-like and s-like A atoms (light blue and green respectively).
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When inspecting Figure 3.2 as well as Figure 3.3 one can certainly pinpoint the main
common feature among these perovskite-like oxides: the top of the valence band has a
predominant O-2p character whereas the bottom of the conduction band is mainly com-
posed of Ti-3d-like atoms, specifically Ti-t2g as the rupture of the degeneracy due to the
electric field arising from the surrounding charge distribution of the oxygen atoms within
the Ti chemical environment leads to a decrease in terms of energy of the dxy, dxz and
dyz orbitals which are collectively known as t2g. Moreover, the both the “fat bands” and
the PDOS clearly show a hybridization between the former orbitals enhancing therefore
the covalent picture of these perovskite-like structures.

Despite the aforementioned similarities among these materials, one difference can be
drawn when looking carefully to the PDOS depicted in Figure 3.2: the position of the
peak corresponding to the A cation with respect to the O states moves towards higher
energies as the number of electrons of the A cation increases, going from being lower in
energy in CaTiO3 to hybridize with the O atoms in SrTiO3 to finally laying in higher en-
ergies in BaTiO3. It is worth noting that the same analysis can be made at the level of the
“fat bands” represented in Figure 3.3 by carefully inspecting the differences concerning
the O-2s-like states, which are painted in red, between the three structures.

3.4 Born effective charges

Let k be a set of atoms submitted to a null macroscopic electric field. Under this con-
straint, the Born effective charge tensor Z∗ is defined as the coefficient of proportionality
relating the polarization per unit cell arising in the direction β and the atomic displace-
ment of the set along the direction α [50]:

Z∗k,αβ = Ω0
∂Pβ
∂τk,α

∣∣∣∣
E=0

,

where, from a practical standpoint, the (α, β) elements of this tensor are computed as
finite differences of the polarization with respect to small displacement of the correspond-
ing atom along a given cartesian direction (i.e x, y and z).

ATiO3 Z
∗(T )
A Z

∗(T )
T i Z

∗(T )
O ‖ Z

∗(T )
O ⊥

Nominal 2 4 -2 -2
CaTiO3 2.557 7.503 -5.912 -2.074
SrTiO3 2.526 7.558 -5.950 -2.067
BaTiO3 2.629 7.598 -5.988 -2.119

Table 3.3: Nominal and mean Born effective charge of each of the atoms located within the unit cell

of CaTiO3, SrTiO3 and BaTiO3. The subscripts ‖ / ⊥ denote the oxygen submitted to a displacement

along the direction/perpendicular to the direction of the Ti-O bond.
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It is worth remarking that, theoretically speaking, a diagonal symmetric tensor fulfilling
the equation

∑
k Z
∗
k,α,β = 0 must be obtained for each ABO3 perovskite-like structure as

no net polarization should arise in a crystal as a result of its rigid displacement (i.e as the
acoustic sum rule must be fulfilled).

Several conclusions can be drawn from the numerical values represented in Table 3.3.

Firstly, one can realize that for the three perovskite-like structures the Born effective
charge of each atom highly differs from the nominal one (i.e from the one expected in a
purely ionic material). In this former case the A atom, whose electronic configuration is
given by A : []xs2, would transfer these two s electrons to oxygen atoms, whose electronic
configuration is given by O : [He]2s22p4; and another electronic charge transfer would
arise between the aforementioned oxygen atoms and the titanium, whose electronic con-
figuration si given by Ti : [Ar]3d24s2, which would transfer these four electrons to the
former.

Secondly, and directly linked with the first fact, one can easily realised that the Born
effective charge of Ti and O ‖ is almost twice its nominal charge whereas for the rest of
atoms the mismatch between both is not that significant. This feature can be explained
in terms of the covalent bonding arising between the unoccupied d states of Ti and the
non occupied p states of O, which has been already remarked when the band structure of
the perovskite-like titanates was analysed, due to the fact that large values of Z∗(T ) have
been found to have their origin in the rate of change of the overlap integrals concerning
the so-called “off-site” hybridization under atomic displacements within the unit cell.

Finally, even though a band-by-band analysis should be carried out in order to clarify
the underlying phenomena which give rise to the anomalous values of Z∗(T ) reported
in Table 3.3, it seems reasonable to state that the A cation does not play a crucial
role in the aforementioned hybridization as the Born effective charge values obtained for
both titanium and oxygen atoms have been found to be extremely similar for CaTiO3,
SrTiO3 and BaTiO3 (i.e the titanium atom is mainly affected by the octahedral chemical
environment defined by the oxygen atoms). Furthermore, if one quickly inspects the
Born effective charge values obtained for the aforementioned cation, it seems plausible
too to affirm that the A-O bond displays a significant less covalent character which is in
accordance with the fact that these atoms do not exhibit any occupied electronic state.

3.5 Maximally Localized Wannier Functions

Let the electronic state of a crystalline material be defined by a set of Bloch Functions,
Ψn,~k, localized in the reciprocal space, which are ill-defined in the sense that the addition
of a phase factor does not modify the electronic information carried by them, and let us
consider a single isolated band n. Under these constraints, the aforementioned electronic
representation can be expanded by a set of Wannier Functions, hereinafter referred to as
WFs, localized in the reciprocal space, which, even though they are not eigenstates of the
electronic Hamiltonian any more, they do expand the same Hilbert space as the set of
equivalent Bloch Functions, and are related to the latter through the following Fourier-like
transformation [51]:
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∣∣∣~Rn〉 =
V

(2π)3

∫
BZ

d~ke−i
~k. ~R
∣∣∣Ψn,~k

〉
.

If this approach is now generalised for a set of closed manifolds (i.e for set of distinct
isolated groups of bands separated from each other by a significant energy gap) containing
a certain number of bands (J), the unitary transformation between Bloch Functions and

WFs adopts the following expression, where U
(~k)
mn represents a unitary matrix which arises

as a result of the aforementioned non-uniqueness of the Bloch Functions [51]:

∣∣∣~Rn〉 =
V

(2π)3

∫
BZ

d~ke−i
~k. ~R

J∑
m=1

U (~k)
mn

∣∣∣Ψn,~k

〉
.

In order to compute and plot the Wannier functions of SrTiO3, which will be of great util-
ity when it comes to perform chemical bonding analysis, three well-separated manifolds,
whose election has been based on the analysis of the band structure, have been used: one
containing 9 bands (3 per oxygen) reflecting the O-2p character of the top of the valence
band (Manifold I), an other one containing 3 bands reflecting the Ti-t2g character of the
bottom of the conduction band (Manifold II) and, finally, one closed manifold mathemat-
ically constructed as the addition of the former two (Manifold III).

As it was stated above, generally speaking the WFs display a non-uniqueness character,
so, in order to overcome this issue, the WFs of SrTiO3 have been computed by means of
the Maximally Localized approach [52](i.e by iteratively minimising the sum over the set
of different bands contained in each manifold of the quadratic spreads of the Wannier cen-
ters) yielding a set of J equivalent Maximally Localized Wannier Functions , hereinafter
referred to as MLWFs, per unit cell for each closed manifold.

For the shake of completeness, some of the MLWFs as well as the quadratic spreads
computed for SrTiO3 are depicted below.

(a) X-Y Plane (b) X-Z Plane (c) Y-Z Plane

Figure 3.4: MLWF computed within the first manifold centred on a py oxygen atom displaying a π

bond with a neighbouring dxy-like Ti-t2g atom.

.
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(a) X-Y Plane (b) X-Z Plane (c) Y-Z Plane

Figure 3.5: MLWF computed within the second manifold centred on a dxy-Ti-t2g atom displaying two

π∗ bonds with a neighbouring px-like O atom and a py-like one respectively.

(a) X-Y Plane (b) X-Z Plane (c) Y-Z Plane

Figure 3.6: MLWF computed within the third manifold centred on a dxy-Ti-t2g showing an almost

purely atomic character.

Manifold Quadratic Spread / Å2

Manifold I
6× 1.352
3× 1.262

Manifold II 3× 1.912

Manifold III
6× 1.055
3× 0.935
3× 1.220

Table 3.4: Quadratic spreads of the Wannier Centres yielded by the MLWFs of each of the J bands

embedded in each of the three distinct manifolds defined for the bulk cubic structure of SrTiO3.

Before deeply analysing several features regarding chemical bonding that can be directly
drawn from the knowledge of the MLWFs, it is worth noting that these functions would
be highly similar to the ones that one would obtain for CaTiO3 and BaTiO3. This fact is
not surprising at all as the similarity of the three perovskite-like crystals in terms of their
electronic configuration has been already remarked not only when their band structure
was analysed but also when Z

∗(T )
T i and Z

∗(T )
O were found blind with respect to the A cation.
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At the level of the previous results, even though the hybridization between the unoccupied
d states of Ti and the 2p states of O was already known, the computation of the MLWFs
gives rise to the knowledge of the type of bonding (e.g σ or π) through the degeneration of
the spread of the Wannier Centres, hereinafter referred to as WCs, tabulated in Table 3.4.
Specifically, within the second manifold all the bonds (dxy with px and py, dyz with pz and
py and dxz with px and pz) were found to be π∗-like; whereas within the one containing
the 3 oxygen atoms of SrTiO3 three bonds were found to be σ∗-like (px, py and pz with
dz2) and the remaining 6 were found to be π-like (py with dxy, pz with dxz, pz with dyz,
px with dxy, py with dyz and px with dxz).

Furthermore, it is worth noting that the manifold embedding both O-2p and Ti-T2g bands
(i.e Manifold III) displays three distinct values for the spread of the WCs which was of
course expected as this manifold has the intrinsic features of the former ones (i.e it exhibits
π, π∗ and σ∗ bonds). Moreover, one can easily realise by inspecting Table 3.4 that the
numerical values obtained for the quadratic spreads of the WCs of this manifold are
significantly lower than those obtained for the unmixed manifolds as, in the former case,
the MLWFCs were found to be more compact as a result of the increase of the electronic
degrees of freedom.



Chapter 4

Ground state characterisation of
CaTiO3, SrTiO3 and BaTiO3

The objective of this chapter is to analyse the structural and electronic properties that
will arise in some of the low-symmetry phases of the three perovskite-like oxides (i.e in the
ground states of CaTiO3 and SrTiO3 and in the ferroelectric tetragonal phase of BaTiO3)
studied herein by means of the so-called geometrical optimisation or structural relaxation.

4.1 Geometrical Optimization

It is well known that perovskite-like oxides display a wide range of energetically stable
phases (i.e structural arrangements for which the free energy decreases) which can be
identified by inspecting the local minima in the PES. In particular, when performing
a multidimensional minimisation of the PES one can not only identify the equilibrium
structures but also pinpoint the ground state, which corresponds to the global minimum,
as well as the distorted structures connecting two low-symmetry phases, which appear
within the PES analysis as saddle points.

In order to perform the aforementioned three dimensional optimization, the Conjugate
Gradient Method [53], which can be regarded as an improved version of the Steepest
Descent Algorithm [54] in terms of convergence, has been carried out within the framework
of DFT. It is beyond the scope of this present work to fully depict the Conjugate Gradient
Method; however, a brief description of the algorithm will be stated below for the shake
of completeness:

1. An initial atomic arrangement is considered and the total energy is computed.

2. The gradient of the aforementioned energy, which depends explicitly on ~R and ~r
within the framework of DFT, is computed by means of the Hellman-Feynman
Theorem (see Appendix A) and the atoms are displaced along the direction defined
by the negative value of the gradient (i.e along the direction of the forces).

3. A one dimensional minimisation procedure is carried out along the gradient line.

26
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4. The minimum along the line is taken as the second trial atomic arrangement and
the new forces arising from such configuration are computed.

5. The atoms are then displaced along the opposite direction of the new gradient which
must be orthogonal to the first one.

6. The algorithm stops after n iterations, each of which is computed along a distinct
orthogonal search direction, once the constraints specified in the FDF are fulfilled
(i.e once the atomic forces and the elements of the stress tensor are less than a
certain value, which would, ideally, be zero).

Figure 4.1: Schematic representation of the Conjugate Gradient’s algorithm implemented throughout

this present work so as to perform structural relaxation.

4.2 Structural Properties

Before going in depth in the analysis of the low-temperature phases of CaTiO3, SrTiO3

and BaTiO3, it is worth noting that FE structural transitions do not imply a change in
the number of formula units in the unit cell whereas in the case of AFD distortions such
change takes place as otherwise it would be impossible to track any rotation because the
periodically equivalent atoms would mirror the movement of the one contained in the unit
cell thus leading to a net movement of the crystalline structure instead of to a rotation
pattern.

The unit cells used to compute the magnitudes that will be analysed in this chapter,
which are consistent with the colours used in Figure 1.1, are shown below.
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(a) 3D Structure (b) AB Plane

Figure 4.2: Orthorhombic unit cell of CaTiO3 displaying an a−a−c+ rotation pattern. Image obtained

using VESTA [1].

(a) 3D Structure (b) AB Plane

Figure 4.3: Tetragonal unit cell of SrTiO3 displaying an a0a0c− rotation pattern.Image obtained using

VESTA [1].

(a) 3D Structure (b) AB Plane

Figure 4.4: Schematic crystalline structure computed for BaTiO3 in its bulk tetragonal phase displaying

an atomic off-centering of Ti within the oxygen octahedra. Image obtained using VESTA [1].

By inspecting Figures 4.2, 4.3 and 4.4 it is effortless to distinguish between AFD and FE
structural transitions in terms of the unit cell displayed by them. In particular, the unit
cell of CaTiO3 contains four formula units (i.e it is a supercell embedding twenty atoms)
whereas that of SrTiO3 contains eight formula units, although it would be sufficient to
perform the simulations with a unit cell embedding just four formula unit. Likewise,
because oh the FE nature of the structural transition of bulk cubic BaTiO3 towards its
tetragonal phase, the unit cell displayed by it in its low-temperature phase coincides with
that of the bulk cubic structure (i.e the unit cell contains just one formula unit).
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4.2.1 Unit cell characterisation

With the objective of analysing the geometrical arrangement of the atoms within the
low-symmetry phases of CaTiO3, SrTiO3 and BaTiO3, which are depicted in Figures 4.2,
4.3 and 4.4 respectively, as well as their energetic stability, a detailed description of the
lattice parameters and the energetic shift yielded by each crystalline structure, computed
in the DFT Kohn-Sham framework (i.e being the energy of each geometrical phase given
by Eq.(2.1.2)), once the structural relaxation was performed will be given below.

In particular, the energy shift has been computed through the following expression where
LS denotes the low-symmetry phase considered while N indicates the amount of unit
cells within that given supercell (i.e N = 4 for CaTiO3, N = 8 for SrTiO3 and N = 1 for
BaTiO3):

∆E =
1

N
(EKS,LS −N × EKS,Cub). (4.1)

4.2.1.1 CaTiO3

When carefully inspecting Tables 4.1 and 4.2 one can infer that the crystalline structure
obtained for the ground state of CaTiO3 by means of a DFT first-principles simulation is
in accordance with the orthorhombic a−a−c+ Glazer system reported by [55] and already
depicted in Section 1.5. In particular, the theoretical lattice parameters computed, which
differ from the experimental ones in less than 0.02Å, are consistent with a perovskite-like
structure embedded in the Pnma space group as a 6= b 6= c.

Numerical values a/Å b/Å c/Å ∆E/ meV
u.cell

Theoretical 5.3999 7.5505 5.3066 -405.55
Theoretical (LDA functional) [55] 5.4122 7.5374 5.2898

Table 4.1: Theoretical lattice parameters and energy shift with respect to the cubic phase reported for

CaTiO3 in its bulk orthorhombic structure.

Special importance must be attributed to the energy shift undergone by each formula
unit of the orthorhombic unit cell which has been found to be significantly greater than
the one yielded by both the ground state of SrTiO3 and the tetragonal ferroelectric phase
of BaTiO3 which is tabulated in Tables 4.3 and 4.4 respectively. This striking reality,
which is not as surprising for the tetragonal phase of BaTiO3 as it is for the one displayed
by SrTiO3 owing to the fact that the former structure is not its ground state, as it was
explained in Section 1.5, and, therefore, it does not constitute a global minimum of the
PES, can be understood if one bears in mind the following regards:

• If one carefully inspects Table 1.1 it is clear that, even though SrTiO3 exhibits an
AFD instability too, its Goldschmidt Tolerance Factor differs from the one yielded
by an ideal ABO3 cubic structure by 0.009 whereas the difference calculated for
CaTiO3 is 0.027. As a result, and keeping in mind that the energy shift is directly
related with the aforementioned Tolerance Factor, as it was reported by [6], it is
reasonable to obtain highly distinct energy shifts for both types of perovskite-like
ground states.
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• Keeping in mind the correlation reported by [56] between higher energy shifts and
higher temperature transitions from the ground state to the ideal bulk cubic struc-
ture, it is straightforward to foresee, when inspecting Section 1.5, that the energy
shift of CaTiO3 will be significantly greater than the one displayed by the ground
state of SrTiO3.

• If one compares the bond lengths computed for CaTiO3 in its bulk cubic structure
(Table 3.2) with the ones obtained for the ground state of the aforementioned per-
ovskite (Table 4.6) it is clear that the AFD-driven instability has strengthen the
chemical bonds between A-O and B-O ions and, as a consequence, there has been
an enhancement of the overlap between A/B and O orbitals, as it was explained in
Section 1.3.1.2, which has ultimately led to an increase of the energetic stability of
the crystalline structure.

Finally, for the shake of completeness, the Wyckoff positions [57] of each non-equivalent
atom of the ground state of CaTiO3 in its Pnma geometry have been depicted in Table
4.2.

Atom Ca Ti O(1) O(2)
Coordinates a b c a b c a b c a b c
Theoretical 0.0432 1/4 0.9910 1/2 0 0 0.4798 1/4 0.0816 0.2922 0.0429 0.7069

LDA functional [55] 0.0480 1/4 0.9892 1/2 0 0 0.4776 1/4 0.0838 0.2927 0.0441 0.7063

Table 4.2: Theoretical atomic (fractional) coordinates of each chemical species of CaTiO3 in its bulk

orthorhombic structure.

It is worth remarking that the simulation performed under the framework of this bachelor
thesis has been found to yield a set of Wyckoff positions differing in less than 0.005
fractional units from the ones reported by [55]. As a consequence, being both simulations
performed by means of the same functional (Eq.(2.4)), the knowledge of the Wyckoff
positions reported by [55] could be used as a reference for carrying out a series of tests with
distinct pseudopotentials, sampling grids or basis functions among others approximations
described in Section 2.

4.2.1.2 SrTiO3

The structural and energetic parameters of the ground state of SrTiO3 (i.e of the a0a0c−

system), which reflect the I4/mcm space group nature of the aforementioned low-symmetry
phase, already reported in Section 1.5, due to the fact that the tetragonality has been
found to differ from unity, are depicted in Table 4.3.

Numerical values a/Å c/Å c/a δ/f.u α/◦ ∆E/ meV
u.cell

Theoretical 3.85967 3.89359 1.00879 0.02505617 2.87 -6.28
Experimental 3.894 3.898 1.0005 2.1

Table 4.3: Theoretical and experimental [34] lattice parameters, tetragonality, oxygen displacements

(in fractional units), octahedral rotation angle and energy shift with respect to the cubic phase reported

for SrTiO3 in its bulk tetragonal structure .
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Several aspects of the magnitudes tabulated above are worth discussing:

Firstly, it is worth mentioning that the crystalline structure has undergone a symmetry
transition from a bulk cubic structure to a bulk tetragonal structure being both theo-
retical and experimental data regarding the lattice parameters displayed by the ground
state of SrTiO3 in perfect agreement; indeed, they differ in less than 0.04Å. Moreover,
it is worth noting that this structural change could have been predicted by means of
the rotation angle tabulated in Table 4.3 as it was reported by [11] that, for a given
perovskite-like structure displaying an AFD instability consisting in either in-phase or
anti-phase rotations around the c axis, the BO6 octahedra will be axially modified unless
the trigonometric relation a

c
=
√

2 cosφ holds, which is clearly not the case for the ground
state analysed herein.

Secondly, when inspecting the oxygen displacements reported for the TiO2 plane, it is
straightforward to realise, and it could have been already pinpointed by looking at Figures
4.3 and 4.2, that the AFD distortion undergone by SrTiO3 displays a smaller amplitude
than the one undergone by CaTiO3 which leads to greater atomic displacements that can
be inferred from the Wyckoff positions depicted in Table 4.2. Once again this fact is
not surprising as a decrease of the AFD distortion amplitudes for increasing Goldschmidt
Tolerance Factors was already foreseen by [6].

Thirdly, the rotation angle calculated through the expression α = arctan
(

δ
2×L

2

)
, where

L=0.5 denotes the length of each formula unit embedded in the supercell, has been found
to be consistent with the competitive nature of AFD and FE instabilities (i.e has been
found to be lower than 5◦ [30]).

Finally, it is worth noting that the energy shift reported in Table 4.3 is slightly lower than
the one yielded by the tetragonal ferroelectric phase of BaTiO3 which is depicted in Table
4.4. Once again this fact is not surprising as it has been already remarked, when shedding
light to the results obtained for the ground state of CaTiO3, that there is a correlation
between the critical temperature at which the transition towards the bulk cubic crystalline
structure takes place and the energy shift. Therefore, if one carefully inspects Section 1.5,
the energy difference between these two perovskite-like titanates becomes obvious.

4.2.1.3 BaTiO3

The structural and energetic data which will be used to characterise the unit cell of
BaTiO3 in its low-temperature tetragonal phase is depicted in Table 4.4.

Numerical values a/Å c/Å c/a V/Å3 ∆T−T i/f.u ∆T−O1/f.u ∆T−O2/f.u ∆E/ meV
u.cell

Theoretical 3.938139 3.999005 1.015455 62.023 0.015485 -0.021637 -0.015074 -10.3
Experimental 3.986 4.026 1.010 63.97 0.015 -0.023 -0.014

Table 4.4: Theoretical and experimental [58] lattice parameters, tetragonality, volume of the unit cell,

titanium and oxygen displacements (in fractional units) and energy shift with respect to the cubic phase

reported for BaTiO3 in its bulk tetragonal structure .
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When inspecting the tetragonality factor reported in Table 4.4, it is clear that the afore-
mentioned perovskite-like structure has undergone a greater distortion, in terms of axial
elongation, than the ground state of SrTiO3 which also displays a tetragonal structure
and yields a value of 1.00879 for the tetragonality factor. However, if one bears in mind
the Goldschmidt Tolerance Factors depicted in Table 1.1, it is straightforward to foresee
the aforesaid difference as the Tolerance Factor of SrTiO3 lies closer to unity than the
one displayed by BaTiO3 and, therefore, the former structure will be submitted to less
significant distortions which will ultimately reaccommodate the cations within the unit
cell.

In addition, it is worth mentioning that the atomic displacements, calculated with respect
to the atomic position of the cation Ba, undergone by BaTiO3 as a result of its phase
transition are in full agreement with the Γ4− soft mode-driven transition. In particular,
the Ti cation has been displaced upwards whereas the oxygen O(1) (i.e the one located in
the TiO2 plane, specifically at [1/2, 0, 1/2] in the bulk cubic structure) and the oxygen
O(2) (i.e the one located in the BaO plane, specifically at [1/2, 1/2, 0] in the bulk cubic
structure) have undergone a downward displacement which, as one would expect when
inspecting Figure 4.4, has been found to be greater for O(1).

In order to put an end to the analysis of the low-temperature tetragonal phase of BaTiO3

it is almost mandatory to compute the macroscopic polarization arising in the direction
defined by the c axis of this crystalline structure which will be tabulated below. Before
doing so, it is worth explaining its origin: because of the above mentioned Ti and O
displacements, and bearing in mind the admixture between ionic and covalent bonding
that takes place among ABO3 perovskites, which has already been pinpointed in the pre-
vious chapter, the longitudinal Ti-O bond length has been shortened and, therefore, the
transfer of charge in this covalent framework has been encouraged (i.e the Born effective
charges of both Ti and O atoms participating in the Ti-O π bonding significantly differ
from the nominal ones and are also greater than the ones yielded by the same atoms in
the bulk cubic structure). As a result of the aforesaid transfer of charges, the Coulomb
interactions are great enough to counteract the short-range forces, thus leading to an FE
instability.

Pz,the/µC× cm−2 Pz,exp/µC× cm−2

30.39 26.3

Table 4.5: Theoretical (th) and experimental (exp) [59] macroscopic polarization obtained for BaTiO3

in its bulk tetragonal low-symmetry phase.

4.2.2 Band structure

With the aim of analysing the electronic structure of the ground state of CaTiO3 and
SrTiO3 as well as that of the tetragonal low-temperature phase of BaTiO3 the Projected
Density of States has been computed for each perovskite-like structure being each non-
equivalent atomic contribution plotted in Figure 4.5.
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Figure 4.5: Projected density of states of CaTiO3, SrTiO3 and BaTiO3 in their bulk orthorhombic

and tetragonal structure respectively at the equilibrium lattice constant depicted in Tables 4.1, 4.3 and

4.4 where the projections onto the A cation are shown in green, whereas the ones onto the Ti and the

two non-equivalent O atoms are shown in blue, red and orange respectively.

At this point, and bearing in mind that bond lengths play an important role regarding
orbital overlap, it is worth remarking both the similarities an differences between the
PDOS computed for the ideal bulk cubic structure of the aforementioned perovskite-like
crystals (Figure 3.2) and the PDOS depicted herein (Figure 4.5).

On the one hand, when inspecting the width of the peaks displayed by each atomic con-
tribution it is straightforward, and barely unexpected as it has been already discussed in
1.3.1.2 as well as during the analysis of the PDOS computed for the cubic structure of
the aforementioned perovskites, to realise that the bonds arising in such structures (i.e
in the low-symmetry phases of CaTiO3, SrTiO3 and BaTiO3) can be described in terms
of an admixture of ionic and covalent bonding. Furthermore, the PDOS depicted above
not only shows the same contributions around the energy gap as the PDOS computed
for the ideal cubic structure (i.e a predominant O-2p character in the uppermost region
of the valence band and a predominant Ti-3d character in the bottommost region of the
conduction band) but also the same behaviour of the position of the A-p peak with respect
to the O-2s one.

On the other hand, if one carefully inspects the conduction band of both PDOS (Figures
3.2 and 4.5), it is clear that whereas in the cubic structure there is a ”resonant” contri-
bution arising from both Ti-t2g and Ti-eg states, that does not seem to be the case for
the lower-symmetry phases in which the contribution arising from the Ti atom displays a
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smoother behaviour. This fact can be understood within the Crystal Field Theory frame-
work owing to the fact that a phase transition from cubic to tetragonal/orthorhombic
symmetry implies a decrease regarding the symmetry of the Ti-3d complex from Oh to
D4h/D2h respectively, thus modifying the number of unalike energy levels of d-orbitals from
2 in the bulk cubic structure to 4/5 in the tetragonal/orthorhombic crystalline structure
(see Appendix A for further information). As a result of such degeneracy rupture, the
possibility of finding an electron at a certain energy will increase as the degrees of freedom
linked to the energetic position of d-orbitals have increased too and, therefore, the contri-
bution arising from the Ti states will become smoother even though an orbital-by-orbital
decomposition would result in a “resonant” behaviour.

Finally, it is worth remarking the different intensity of the contributions arising from the
O-2s states between the bulk cubic structure of BaTiO3 and its ferroelectric tetragonal
structure. This can be easily understood if one realises that the off-centering movement
of Ti towards the oxygen located at [1/2, 1/2, 0] depicted in Figure 4.4 leads to a decrease
in that given Ti-O bond length, thus increasing the overlap between both orbitals.

4.2.3 Coordination number and bond lengths

With the aim of fully characterise the geometry displayed by the low-symmetry phases of
CaTiO3, SrTiO3 and BaTiO3 as well as to perform a deep analysis of the bonds that have
been either reinforced or weaken as a result of a phase transition driven by the need to
reaccommodate the undersized B or oversized A cations within the perovskite crystalline
structure, the bond lengths of each cation have been computed.

4.2.3.1 CaTiO3

The bulk cubic structure of CaTiO3 yields a tolerance factor slightly greater than unity
and, therefore, its phase transition, which is linked to the simultaneous condensation of
the soft modes located at R and M , is driven by an AFD instability consisting in two
identical anti-phase rotation patterns along the axes a and b and an in-phase rotation
pattern along the c axis (i.e the a−a−c+ Glazer system). The bond lengths displayed by
both Ca an Ti cations in the ground state of CaTiO3 sketched in Figure 4.2 are depicted
in Table 4.6.

Atom(V) / Neighbouring atom(s)(H) Ca / Å Ti / Å O / Å

Ca 2×3.106

1×2.294
2×2.321
1×2.406
2×2.555
2×2.645
1×2.306
1×3.081

Ti 2×3.106
2×1.940
2×1.945
2×1.950

Table 4.6: Neighbouring atoms and bond lengths (second, third and fourth column) of both Ca and Ti

(second and third row) in the orthorhombic phase of CaTiO3.
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At first glance, specially if one compares the data tabulated above with the one yielded
by the ground state of SrTiO3 and depicted in Table 4.7, it is straightforward to realise
that the ground state of the former perovskite displays a higher degree of distortion than
the former even though both present an AFD distorted phase. As a consequence, not
only the energy gain is the greatest among the perovskites studied herein but also the
coordination number and the bond lengths displayed by both cations are the ones that
have been modified the most, as it can be pinpointed by looking at Figure 4.3, once the
phase transition has taken place.

Regarding the bonds, it is worth remarking that in the ground state of CaTiO3 the Ca
cation does no longer present a 12-fold oxygen coordination but a 10-fold one in which
nine of the oxygens are significantly closer to the aforesaid cation than in the bulk cubic
structure (see Table 3.2) being the tenth oxygen located at a distance long enough (3.081Å)
to cease to be even considered part of the coordination polyhedron. Moreover, as a result
of the geometry displayed by the ground state (i.e as a result of the different lengths of
the orthorhombic lattice parameters a, b and c), the oxygens surrounding the central Ti
of each unit cell within the supercell are located at different distances from it being all of
them longer than in the bulk cubic structure.

4.2.3.2 SrTiO3

The bulk cubic structure of SrTiO3 yields a tolerance factor slightly greater than unity
and, therefore, its phase transition is driven by a small tilting of the octahedra along the
c axis, in particular by a R5− soft mode. The bond lengths displayed by both Sr an Ti
cations in the a0a0c− ground state sketched in Figure 4.3 are depicted in Table 4.7.

Atom(V) / Neighbouring atom(s)(H) Sr / Å Ti / Å O / Å

Sr
4×2.609
4×2.729
4×2.881

Ti
4×1.940
2×1.947

Table 4.7: Neighbouring atoms and bond lengths (second, third and fourth column) of both Sr and Ti

(second and third row) in the tetragonal phase of SrTiO3.

On the one hand, regarding the chemical bonds displayed by Ti, neither the coordination
number of Ti nor the O-Ti-O bond angles differ from those tabulated in Table 3.2 for the
bulk cubic structure of SrTiO3; as a matter of fact, the only difference between the ground
state and the cubic structure is the lengthening of the bonds of the O atoms located at
c = 1 and c = 0 which is driven by the geometrical transition from a cubic structure to a
tetragonal one by means of the elongation of the c axis.

On the other hand, regarding the chemical bonds displayed by Sr, it is straightforward to
realise that the tilting of the octahedra along the c axis has led to the splitting of the 12
equivalent bond distances (2.739Å) between Sr an O displayed by the cubic structure into
four short, four medium and four long Sr-O distances. The medium distances correspond
to the oxygens located at c = 0 in the Ti-centred scheme (i.e at c = 1/2 in the Sr-
centred scheme), whereas the short distances are those related to two oxygens located
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at [1/2, 0, 1/2] in the Ti-centred scheme and at c = 0.75 in the supercell sketched in
Figure 4.3 and to two oxygens located at [0, 1/2, 1/2] in the Ti-centred scheme and at
c = 0.25 in the Sr-centred supercell. Finally, the longest distances are those corresponding
to the interchanged positions of the former (i.e two oxygens located at [1/2, 0, 1/2] in
the Ti-centred scheme and at c = 0.25 in the supercell sketched in Figure 4.3 and to two
oxygens located at [0, 1/2, 1/2] in the Ti-centred scheme and at c = 0.75 in the Sr-centred
supercell).

4.2.3.3 BaTiO3

The bulk cubic structure of BaTiO3 yields a tolerance factor greater than unity and,
therefore, its phase transition is driven by an off-centering displacement of Ti, in partic-
ular by a Γ4− soft mode. The bond lengths displayed by both Ba an Ti cations in the
ferroelectric tetragonal low-symmetry phase sketched in Figure 4.4 are depicted in Table
4.8.

Atom(V) / Neighbouring atom(s)(H) Ba / Å Ti / Å O / Å

Ba
4×2.764
4×2.786
4×2.850

Ti
1×1.851
1×2.148
4×1.973

Table 4.8: Neighbouring atoms and bond lengths (second, third and fourth column) of both Ba and Ti

(second and third row) in the tetragonal phase of BaTiO3.

If one inspects the chemical environment of Ti, it is straightforward to realise that the
coordination number has not changed with respect to the bulk cubic structure as it was al-
ready predicted in Section 1.3.1.2. In particular, the oxygen atoms located in the c = 1/2
plane are no longer linked to the central Ti by a linear chain (i.e through an angle of
180◦) as it can be seen in Figure 4.4; however, they do remain at the same distance of
Ti (i.e 1.973Å) as the one yielded by the bulk cubic arrangement and depicted in Table
3.2. Moreover, the aforementioned movement of the Ti atom towards the oxygen located
in the c = 1 plane leads to the shortening and lengthening of the two respective bonds
parallel to the direction of displacement of the central Ti cation.

Likewise, if one keeps in mind the A-centred schematic representation of an ABO3 per-
ovskite, the atomic movements explained above will lead to the establishment of 4 short
(those displayed by the oxygens located in the plane defined by c = 1/2 in the Ti-centred
scheme and in the plane defined by c = 1 in the Ba-centred scheme), 4 medium (those
displayed by the oxygens located in the plane defined by c = 1 and c = 0 in the Ti-centred
scheme and in the plane defined by c = 1/2 in the Ba-centred scheme) and 4 long bond
lengths (those displayed by the oxygens located in the plane defined by c = 1/2 in the
Ti-centred scheme and in the plane defined by c = 0 in the Ba-centred scheme) between
the Ba cation an the surrounding O atoms.



Chapter 5

Final considerations

This chapter aims at highlighting the main results obtained for the three perovskite-like
crystalline structures analysed in their bulk cubic structure (Chapter 3) and in their low-
symmetry phase (Chapter 4) through the first-principles code Siesta. Moreover, a few
words will be said about the improvements that could have been made at the level of the
simulations. Finally, a brief discussion about the additional calculations and simulations
that could have been carried out so as to provide the reader with a better overall picture
of the nature of CaTiO3, SrTiO3 and BaTiO3 will be outlined and some future lines of
research will be suggested.

5.1 Conclusions

First of all, it is worth remarking the power of DFT first-principles simulations as, even
by performing the calculations within the framework of LDA, the results obtained for the
three perovskite-like titanates depicted in Chapters 3 and 4 (e.g the lattice parameters
of the bulk cubic structure of CaTiO3, SrTiO3 and BaTiO3 tabulated in Table 3.1 or the
energy shifts and lattice parameters of the low-symmetry phases of the aforementioned
perovskite-like oxides tabulated in Tables 4.1, 4.3 and 4.4, among others) have been found
to be in full agreement with the experimental values reported by the authors cited therein.

Secondly, and in regards to the results obtained for the bulk cubic structure of the afore-
said perovskite-like titanates, it is worth mentioning that the computation of the band
structure, specifically the width of the bands obtained; the so-called “fat bands”; the
PDOS and the Born effective charges, specifically the huge difference reported therein
between the nominal charges and the ones obtained for Ti and O ⊥, has led to the main
conclusion drawn in Chapter 3: the nature of the bondings arising in ATiO3 crystalline
structures can be regarded as an admixture of covalent and ionic character. In addition,
it is worth noting that the computation of the “fat bands”, which are depicted in Fig-
ure 3.3, has shed light to the contribution of each orbital to both the conduction and
the valence bands; in particular, it has been proven that the top of the valence band
has a predominant O-2p character whereas the bottom of the conduction band displays
a Ti-t2g nature. Besides, the main difference between CaTiO3, SrTiO3 and BaTiO3 re-
garding their electronic properties has been pinpointed through the computation of the
PDOS: the energetic range contribution of the A cation to the band structure of each of
the perovskite-like titanates analysed throughout this thesis is correlated with the atomic
number of the aforesaid cation; specifically, it has been shown that the hybridization be-
tween the orbitals of such cation and the O-2s states only takes place in SrTiO3, being

37



FINAL CONSIDERATIONS 38

the A peak too low and too high in terms of energy to hybridize with the O-2s states of
CaTiO3 and BaTiO3 respectively.

Thirdly, and in regards to the results obtained for the low-symmetry phases of CaTiO3,
SrTiO3 and BaTiO3 reported in Chapter 4, it is worth noting that the simulations per-
formed therein have verified the predictions regarding the phase transitions sketched in
Section 1.5 made based on the values of the Goldschmidt Tolerance Factors depicted in
Table 1.1. In particular, the lattice parameters and atomic displacements reported in Ta-
bles 4.1, 4.2 and 4.3 for the ground states of CaTiO3 and SrTiO3 have proven to be in full
agreement not only with the space group expected to be displayed by them (Pnma and
I4/mcm respectively) but also with the characteristic AFD instability displayed by those
structures yielding a value of t smaller than unity (i.e having and undersized A cation).
In addition, the rotation angle computed for SrTiO3 has proven to be consistent with the
competitive nature of AFD and FE modes reported by [30]. Likewise, the results depicted
in Table 4.4 have also succeed in tracking both the upward and downward displacements
undergone by Ti and O atoms respectively as well as the space group displayed by the
distorted low-symmetry phase which ultimately leads to the FE mode predicted by means
of the value of t yielded by the bulk cubic structure of BaTiO3. Moreover, it is worth not-
ing that all the energetic shifts reported in Tables 4.1, 4.3 and 4.4 are consistent with the
correlation between the energy shift and the Goldschmidt Tolerance Factor reported by [6]
as well as with the one found by [56] between the energy shift and the critical temperature
at which the phase transition towards the high-symmetry crystalline structure takes place.

An other important feature to be highlighted in the framework of the low-symmetry
phase analysis is the fact that the PDOS plotted in Figure 4.5 has proven to reflect both
the Ti-O bond strengthening undergone by BaTiO3, through the augmented intensity of
the O-2s peak, and the Oh → D4h/D2h transition (see Appendix A) undergone by the
Ti-3d complex, through the elimination of the highly energetic “resonances”. Finally,
it should also be remarked that the bond lengths depicted in Tables 4.6, 4.7 and 4.8
are consistent with the space group displayed by each of the three perovskite-like oxides
and its computation has proved the fact, which was stated in Section 1.3.1.1, that AFD
instabilities do significantly distort the the coordination sphere of the A cation, which
has been found to be specially true for the case of CaTiO3 (Table 4.6), while leaving the
coordination sphere of the Ti cation unperturbed.

5.2 Future work

5.2.1 Improvements

Even though, as it has been already remarked above, the results obtained through the
simulations performed have been proven to be accurate, an undoubtedly improvement
could have been made at the level of the approximations implemented in the code (see
Chapter 2):

• An improved exchange-correlation energy functional, such as an hybrid one or that
used under the framework of the Generalized Gradient Approximation (GGA), could
have been used instead of working within the LDA framework. By doing so, even
though the electronic charge density does not vary significantly in the perovskite-like
structures belonging to the ATiO3 family, the numerical values obtained would have
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been more accurate as assuming that the value of Exc[n(~r)] at an specific evaluation
point depends only on the value yielded by the density at that point (i.e working
within the LDA framework) might be regarded as a crude approximation.

Moreover, with the aim of completing the information reported in Chapters 3 and 4, the
following simulations and/or calculations could have been performed:

• The MLWFs as well as the WCs could have been computed and plotted for the bulk
cubic structure of CaTiO3 and BaTiO3 as well as for the low-symmetry phases of
the three perovskite-like titanates studied throughout this bachelor thesis. Special
importance should be given to the computation of the latter as it would shed light
to the nature of the bondings (bonding or antibonding σ or π bonds) that have been
weaken or strengthen as a result of the phase transition. In particular, one would
expect to be able to pinpoint a significant change, with respect to the bulk cubic
structure, regarding the π Ti-O longitudinal bonding of BaTiO3.

• The ground state of BaTiO3 sketched in Figure 1.9 could have been simulated so as
to have all the ground states of the three perovskite-like crystalline structures fully
characterised. By doing so, one would expect to obtain a more significant energy
shift as well as a polarization vector which does no longer point to the c axis as a
result of the R3m space group displayed by BaTiO3 in its ground state.

• Born effective charges could have been computed for the three low-symmetry phases
studied herein. This tensor, which would cease to be symmetric, would be a useful
tool for tracking the structural arrangement changes reported in Chapter 4 by means
of the analysis of the bond lengths.

• Lattice dynamics (i.e the study of atomic vibrations within the crystalline structure)
could have been analysed in this bachelor thesis. In particular, phonon dispersion
curves for the high-symmetry and low-symmetry phases of CaTiO3, SrTiO3 and
BaTiO3 could have been computed with the ultimate goal of performing a deep
analysis of both the instabilities arising therein and the competition among unstable
modes within the soft mode approach.

5.2.2 Future lines of research

The results depicted herein for the high and low-symmetry phases of CaTiO3, SrTiO3

and BaTiO3 have opened the door to further lines of research focused on the deeper
understanding of the phenomena analysed throughout this bachelor thesis:

• The study of the cooperation and/or competition arising among different soft modes
(i.e those responsible for AFD and FE distortions) and hard modes (i.e those re-
sponsible for Jahn-Teller distortions and breathing modes), which have not been
studied herein, by means of the couplings found when expanding the free energy of
a given perovskite.

• The development of a vibronic coupling model able to accurately predict both the
Glazer system and the rotation angles displayed by the ground states of CaTiO3

and SrTiO3, among others ABO3 perovskite-like oxides, without relying on steric
arguments.

• The study of the dependence of the Gibbs free energy state function on T, P and
other relevant parameters by means of a second-principles simulation.



Appendix A: Further physical
concepts

In this section some of the concepts mentioned in the previous chapters will be developed
for the shake of clarity even though they are not crucial for the comprehension of the
work.

Derivation of Goldschmidt Tolerance Factor

Let us consider an ideal ABO3 cubic perovskite (i.e a perovskite-like structure yielding
a numerical value of t=1) and let us focus on the AO and the BO2 plane, both of them
sketched in Figure 1.

(a) AO Plane (b) BO2 plane

Figure 1: Schematic representation of an ideal ABO3 cubic perovskite displaying a closed-sphere

packing structure.

Under the constraint of closed-sphere packing the following relations between the cubic
lattice parameter, a, and the ionic radii, ri, hold:

√
2a = 2rA + 2rO√

2(rB + rO) = rA + rO
1 = rA+rO√

2(rB+rO)

t = rA+rO√
2(rB+rO)

,

where the Pythagorean Theorem has been used in the first equality and the relation
obtained from the analysis of the BO2 plane (i.e a = 2rB + 2rO) has been used in the
second one.
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Hohenberg-Kohn Theorems

The two Hohenberg-Kohn theorems, which set the basis of DFT, will be stated below.
They both can be verified easily and their proof can be consulted in [38].

Theorem I: For any system of interacting particles in an external potential Vext(~r), the
density is uniquely determined (i.e the external potential is a unique functional of the
density)

Theorem II: A universal functional for the energy, E[n], can be defined in terms of the
density. The exact ground state is the global minimum value of this functional.

Kohn-Sham equations

In the framework of DFT the KS equation is the Schrödinger-like equation of a fictitious
system of n non-interacting particles which yields the same electronic charge density as
the original one made up of interacting particles.

[−1

2
∇2 + Veff (~r)]φn(~r) = εnφn(~r)

The electronic charge density of the aforementioned auxiliary system, which is needed in
order to compute Eel, is calculated as it follows:

n(~r) =
occ∑
n

|φn(~r)|2

Hellmann-Feynman Theorem

Let |Ψλ〉 be an eigenstate of the hamiltonian operator Ĥλ associated with an eigenvalue
Eλ. Under these constrains the following relations hold:

∂E

∂λ
=

〈
∂Ψ

∂λ

∣∣∣Ĥ∣∣∣Ψ〉+

〈
Ψ

∣∣∣∣∣∂Ĥ∂λ
∣∣∣∣∣Ψ
〉

+

〈
Ψ
∣∣∣Ĥ∣∣∣ ∂Ψ

∂λ

〉
= E

〈
∂Ψ

∂λ
|Ψ
〉

+

〈
Ψ

∣∣∣∣∣∂Ĥ∂λ
∣∣∣∣∣Ψ
〉

+ E

〈
Ψ

∣∣∣∣∂Ψ

∂λ

〉
= E

∂

∂λ
× 〈Ψ |Ψ〉+

〈
∂Ĥ

∂λ

〉
=

〈
∂Ĥ

∂λ

〉
,

where the eigenvector equation (i.e Ĥ |Ψ〉 = E |Ψ〉) has been used in the second equality
and the normalization condition (i.e 〈Ψ|Ψ〉 = 1) has been applied to the third one.

Crystal Field Theory

It is well known that when solving the Schrödinger equation for a one-electron body the
so-called atomic orbitals (s, p, d, f) naturally arise as they represent the eigenstate of
the atomic Hamiltonian. These orbitals, in spite of their different spatial location, are
degenerated (i.e their energy is the same) in an isolated atom/ion framework.
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However, when the atom/ion is located within a given chemical environment, the electric
field created by it lifts the degeneracy of the orbitals of the former atom/ion, thus leading
to a set of energetically distinct orbitals.

In an ABO3 perovskite-like oxide having a transition metal acting as a B cation the
aforementioned rupture of the degeneracy, driven by the chemical environment defined by
the TiO6 octahedra, will take place among the d-orbitals sketched in Figure 2.

Figure 2: Schematic representation of the five ideally degenerated d-orbitals.

It is beyond the scope of this Appendix to provide a detailed description of such phe-
nomenon, which can be found in [60]. Nevertheless, for the shake of comprehension, the
orbital splitting, predicted by the Crystal Field Theory (hereinafter referred to as CFT),
that will be undergone by the Ti cation in each of the ABO3 structures that have been
analysed throughout this thesis will be depicted below. Nonetheless, it is worth remark-
ing that CFT is based on the following two assumptions and, therefore, it might lead to
inaccurate predictions, specially if one bears in mind the mixed ionic-covalent character
of the Ti-O bonds arising in the three perovskite-like structures analysed herein:

1. Both the metal and the ligands are treated as point charges.

2. Only electrostatic interactions between them are taken into account (i.e their bond-
ing is considered to be purely ionic).

In particular, Figure 3 represents the d-orbital splitting taking place in the bulk cubic
structure of CaTiO3, SrTiO3 and BaTiO3 in which the TiO6 chemical environment cor-
responds to the Oh point group (i.e an octahedral crystal field); Figure 4 represents the
d-orbital splitting taking place in both the ground state of SrTiO3 and in the ferroelec-
tric tetragonal low-symmetry phase of BaTiO3, in which the TiO6 chemical environment
corresponds to the D4h point group (i.e an octahedral crystal field elongated along the
cartesian direction defined by the c axis); and, finally, Figure 5 represents the d-orbital
splitting taking place in the ground state of CaTiO3 in which the chemical environment
defined by TiO6 has seen its symmetry lowered as a result of the orthorhombic crystalline
structure of the given perovskite.
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Figure 3: Crystal field splitting diagram for a transition metal in an Oh geometry fixed by the ligands.
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Figure 4: Crystal field splitting diagram for a transition metal in a D4h geometry fixed by the ligands.
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Figure 5: Crystal field splitting diagram for a transition metal in a D2h fixed by the ligands.
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