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Resumen 

 

Con el objetivo de obtener un modelo capaz de obtener los parámetros que definen una 

distribución de valores extremos no estacionarios, se ha desarrollado utilizando herramientas 

para Python 3 un algoritmo del tipo Shuffled Complex Evolution para encontrar el mínimo de la 

función logaritmo de máxima verosimilitud. Para comprobar la estacionalidad de los valores, los 

tres parámetros iniciales de una distribución GEV se han construido en forma de ondas 

sinusoidales mediante la combinación lineal de senos y cosenos, con lo que el modelo más 

complejo contaría con la búsqueda del mínimo para una función de nueve variables. Los datos 

a evaluar constituyen máximos de altura de ola mensual entre los años 1979 y 2014. 

A la par que el algoritmo, se han desarrollado herramientas para testear esos resultados, 

fundamentalmente empleando la matriz de información de Fisher, así como los tests 

estadísticos AIC y 𝜒2.  

A la vista de los resultados obtenidos, se concluye que el modelo que devuelve unos mejores 

parámetros es un modelo de nueve dimensiones, completamente no estacionario. 

Para comprobar la robustez del algoritmo, se utilizó un segundo dataset mucho más amplio y 

variado con máximos de temperatura. En este caso, se usaron también técnicas de 

normalización. De nuevo se obtuvieron resultados satisfactorios optando por un modelo de 

nueve parámetros completamente no estacionario. 

 

Abstract 

 

With the objective of obtaining a model capable of determine the parameters that define a non-

stationary generalised extreme value distribution, a Shuffled Complex Evolution algorithm was 

developed using Python 3. It was used to find the parameters that minimise the value of the log 

likelihood function for GEV distributions. To take seasonality into account, the parameters were 

built as a linear combination of sinusoidal terms to form waves, being the most complex model 

one with nine variables. The dataset consists of the maximum wave height per month during 

the years 1979-2014. 

In parallel with the algorithm, some tools for testing were also developed, mainly, the Fisher 

information matrix and the statistical tests AIC and 𝜒2. 

According to the results, the model that returns the better parameters for the GEV distribution 

was the one with nine parameters, that is, fully non-stationary. 

In order to check how robust the algorithm is, a second, bigger and more varied dataset with 

temperature maxima was used. In this case, normalisation techniques were also used. The 

results were again satisfactory, opting again for a fully non-stationary model with 9 parameters. 



Dedicado a mis padres.
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Chapter 1

Introduction

1.1 Main purpose

As the study of the distribution of extreme values is extremely relevant in some fields
of science and engineering, specially hydrology and coastal modelling, new approaches
should be taken into account in order to properly solve and analyse problems to come.
In 1.2 some of these approaches will be mentioned, as well as the conclusions extracted
by means of the proper management of the distribution. After that, a brief insight of the
distribution will be provided (1.3), including the principle of maximum Likelihood (1.3.1).

Since the search for the minimum of these functions can be difficult, a SCE algorithm
for Python 3 has been developed in order to work with these distribution (1.5).

Although the majority of the project was made focusing on coastal measures (the
heights of waves and its time dependency) the algorithm is capable of dealing with other
kind of data regardless of its nature, as it will be shown.

1.2 Modern approaches in climatology of the GEV

model

In climatology and some of its branches, the Generalised Extreme Value distribution is
often used for datasets composed of the maxima or minima values for a certain event.
While some results can be obtained by means of rather simple datasets (such as AMM∗,

∗Annual Maximum Method

5



used in hydrology for instance), the lack of data is remarkable. Thus more methods were
developed to avoid the scarcity of data, such as monthly analysis with time dependency[1].
These time dependant models were evaluated with the maxima for each month, since there
is a difference in the value over time for a single year.

The utility of these analysis is akin to several fields: from civil engineering to main-
tenance of coastal environment and the analysis and prediction of massive wave heights,
as it was found that there exists a correlation between the wave heights and the value of
climatological indexes such as NINO3 (El Niño Southern Oscilation phenomenon) and the
North Atlantic Oscilation (NAO)[2].

1.2.1 An example: the heat wave of 2003.

One of the most extreme cases in recent history of climate was the heat wave and drought
of 2003. To properly measure the effects of climatic events several points of view are
evaluated, from agriculture to the water flow, affecting even other areas of science such as
human health[3].

The extreme climate effects of events of this kind is specially noteworthy when used
standard statistical measures. For instance, the temperatures in Europe (average) were 2
times the standard deviation compared to the usual temperatures, reaching even 5σ in local
areas. The lack of rainfall was responsible for extense drought, specially in Central Europe,
to the point of not being able to navigate through the Rhine river.

1.3 The Generalised Extreme Value Distribution

While in most fields the main approach towards statistics is to estimate values such as
the average or the standard deviation, in some other applications the current approach is
focused on finding the extreme values, both maxima and minima. Thus, these values will
be noted as Mn, leading to Mn = max{X1, X2, ...Xn}, being Xn a set of independent
random variables that follow a common distribution function F that may be known or not.
This section will feature some of the basic characteristics of these distribution functions F .

The classic extreme values statistical approach mainly focused on picking which family
should be used in order to evaluate a model, thus approximating F . These families are the
Weibull, Gumbel and Fréchet distributions. This comes directly from the extremal types
theorem[4].

Theorem 1 If there exist sequences of constants an > 0 and bn such that

P ((Mn − bn)/an ≤ z)→ G(z)
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being G a non-degenerative distribution function, then G must belong to one of the

aforementioned families.

The Weibull distribution follows the following expression:

pdf(x; ζ, σ) =


ζ

σ

(x
σ

)ζ−1
exp
(
−(x/σ)ζ

)
x ≥ 0

0 x < 0

(1.1)

being σ the scale parameter (the larger the scale parameter, the more spreaded out is the
distribution) and ζ the shape parameter, which directly affects the shape of the distribution.

The Gumbel distribution follows the equation

pdf(x;µ, σ) =
1

σ
e−(z+e

−z) (1.2)

being z in 1.2 z = x−µ
σ

. Again, σ refers to the scale parameter while µ is the location
parameter, which formally is identified as fµ = f(x − µ) being f a probability density
function. It should be noted that some standard parameters used in probabilistic distribu-
tions not related to extreme values, such as the mean, follow this expression, being the
most obvious one the mean value of a Gaussian distribution.

Finally, the Fréchet probability density function expression can be seen in eq.(1.3).

pdf(x; ζ, µ, σ) =
ζ

σ

(
x− µ
σ

)−1−ζ
e−(x−µσ )

−ζ

(1.3)

These families can be combined in the so called Generalised Extreme Values, following
the probability density function seen in eq.(1.4).

pdf(x; ζ, µ, σ) =
1

σ
t(x)ζ+1e−t(x) (1.4)

being t(x) defined as in eq.(1.5).

t(x) =


(

1 + ζ

(
x− µ
σ

))−1/ζ
ζ 6= 0

e−(x−µ)/σ ζ = 0

(1.5)

Whether a probability density function defined by these parameters follows one distri-
bution or the other (and thus matching with the Generalised Extreme Values distribution)
is given by the value of the shape parameter. Thus, if ζ > 0, it will follow a Fréchet
distribution. If ζ = 0, then it will correspond to a Gumbel distribution. Lastly, if ζ < 0 it
will follow a Weibull distribution.

To appreciate how the probability density function is modified by these parameters,
several plots have been made in Fig.1.4.
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Figure 1.1 Figure 1.2

Figure 1.3

Figure 1.4: Figure shows how the shapes of the distribution for a GEV changes according to the defined parameters
by means of fixing two of them and modifying the other one in each plot as detailed in the legend of each subplot.

1.3.1 The Maximum Likelihood

The Maximum Likelihood is a technique used to find the coefficients for a probability
distribution, based on finding estimations for θ1, θ2, ..., θn so that the predicted probability
p̄(vi) for each individual value of the set is as close as possible to the probability of that
value. The starting point is a sample of data v1, v2, ..., vn extracted from a probability
distribution given by an unknown set of parameters θ such as P (v1, v2, ..., vn|θ). Provided
that θ is unknown, but the set of values vn given by P (θ) is known, an estimation of θ can
be given as the likelihood of these parameters given the sample `(θ|v1, v2, ..., vn). So the
most likely values for θ would be the ones that maximise ` [5].

If the function that describes the likelihood ` is known, it can be done by finding the
maximum via the derivative. This is an easy task if the function only depends on one
variable. Given that case, the only problem results on finding the absolute maximum of the
probability function instead of confusing it with a local maximum. For more dimensions,
not only the aforementioned problem persists, but also the computational cost of the
calculations is much greater, even if the derivative is inserted in its analytical form. This is
the case that is going to be used, as the expression for the log likelihood function for the
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Generalised Extreme Values probability density function (eq.(1.4)) can be written as in
eq.(1.6)[6].

`(ζ, µ, σ) =−m log(σ)−
(

1 +
1

ζ

) m∑
i=1

log

[
1 + ζ

(
xi − µ
σ

)]

−
m∑
i=1

[
1 + ζ

(
xi − µ
σ

)]− 1
ζ

(1.6)

being m the number of samples, provided that the condition in eq.(1.7) is fulfilled.

1 + ζ(t)

(
xi − µ
σ

)
> 0 (1.7)

If this condition is not satisfied, xi are considered outliers of the distribution and will
not be taken into account for the calculations. It should also be noted that for ζ = 0 the
expression in 1.6 takes the form of eq.(1.8), as a Gumbel distribution.

`(x;σ, µ) = −m log(σ)−
m∑
i=1

(
xi − µ
σ

)
−

m∑
i=1

exp

[
−
(
xi − µ
σ

)]
(1.8)

Here it has been used the log Likelihood function. The mathematical advantage of
using the logarithm instead of using the function directly is to ensure the concavity of the
function†. It’s also more convenient in matters of computational effort. Now the objective
is to obtain the coefficients µ̂, σ̂, ζ̂ that minimise the log Likelihood function. While before
it has been stated that the objective would be to maximise, since most of the existing
algorithms and libraries work with minimising techniques, a simple change of sign is
performed. This also will be convenient to avoid conflict with existing libraries that return
the log likelihood with this convention (as will be displayed in (3)).

1.3.2 Retrieving results value

As mentioned in [8], the return value for these statistical models, assuming that they are
time dependant (as will be explained in 2.4) is the correspondent to the 0.95 quantile.
Mathematically it can be expressed as in eq.(1.9).

z(t, µ, σ, ζ) =


µ(t)− σ(t)

ζ(t)

[
1− (−log(1− q))ζ(t)

]
ζ 6= 0

µ(t)− σ(t)log(−log(1− q)) ζ = 0

(1.9)

†More on this can be found in [7].
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which is valid for both the GEV model and the Gumbel model. This equation has been
written using time dependency, which will be properly explained in 2.4, as the quantiles
for non-stationary models are time-dependant during the year[8].

1.4 Evaluating the results

Once the results for the log likelihood and the value for the parameters were obtained,
these results were analysed with the aid of the following techniques in this section. Before
acquiring a proper algorithm, only comparisons between algorithms were used, as will be
provided in Table 3.2 for instance.

1.4.1 The Fisher information matrix

The Fisher information matrix is a method used in information sciences to obtain estima-
tions for the covariation of certain variables. Since the main focus here is the GEVD, no
other forms will be presented. For a common GEV distribution, the Fisher Matrix takes
the form seen in eq.(1.10).

Iθ(ζ, µ, σ) =

 −E
∂2`
∂ζ2

−E ∂2`
∂ζ∂σ

−E ∂2`
∂µ∂ζ

−E ∂2`
∂ζ∂σ

−E ∂2`
∂σ2 −E ∂2`

∂µ∂σ

−E ∂2`
∂µ∂ζ

−E ∂2`
∂µ∂σ

−E ∂2`
∂µ2

 (1.10)

For a Gumbel distribution, the Fisher information matrix takes the analytical form of
eq.(1.11).

Iθ(µ, σ) =

(
m
σ2

n(γ−1)
σ2

n(γ−1)
σ2

n(6−12γ+6γ2+m2)
6σ2

)
(1.11)

where γ is the Euler constant. Once obtained the Fisher matrix, the asymptotic
variances and covariances can be obtained as in eq.(1.12).

Σθ = I−1θ (1.12)

Lastly, if instead of θ the values given are θ̂, then an estimation of the covariance matrix
is obtained, as in (1.13)[9].

Σθ̂ = I−1
θ̂

(1.13)
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1.4.2 The AIC and χ2 tests

To make a proper comparison between models according to the number of parameters
used in determining the log likelihood, two test are proposed, one being a test using the χ2

statistics and the other being the AIC test (as suggested in [8]).

For the first, the comparison of two models i, j is based on eq.(1.14).

`i − `j >
1

2
χ2(1− p) (1.14)

where p indicates the p-value, in this case, 0.05 and χ2 is the test corresponding to
both models i, j. If the condition is fulfilled, then the model i is considered superior to the
model j.

The AIC test, on the other hand, can be expressed as in eq.1.15.

AIC = −2`+ 2c (1.15)

where c indicates the number of parameters. Using our notation, the closest the AIC

score is to zero results in the better model.

1.5 The SCE algorithm

While dealing with a minimisation problem several hindrances may rise[10]:

• There might be several regions where the search algorithm may get stuck.

• Each of the aforementioned regions may contain local minima quite different from
the absolute minimum.

• The objective function may contain irregularities, such as being discontinuous in
several regions.

• The interaction between the parameters may be non-linear and rather complex.

• Non-convexity near the wanted minimum.

The SCE (Shuffle Complex Evolution) algorithm was created at University of Arizona
in order to deal with optimisation problems that fall in the categories listed above[10]. It’s
based on several concepts that were used previously in other algorithms, such as clustering
and the combination of random and deterministic approaches.

In Figure 1.5 the algorithm was used to analyse the Rastrigin and the Goldstein-Price
functions, often used to determine the usefullness of minimisation algorithms.
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(a)
(b)

Figure 1.5: Some basic examples of the SCE algorithm evaluating the Rastrigin function (1.5a) and the Goldstein-Price
function (1.5b). A brief insight on these functions can be found in [11] and [12] respectively.

The SCE algorithm for a n dimensional problem works as follows:

1. To start the process, p ≥ 1 and m ≥ (n+ 1) must be selected, being p the number
of complexes and m the number of points in each complex.

2. For a sample x with size pm formed by s points (x1, x2, ..., xs) in a given space
Ω ∈ <, compute the value of the objective function f .

3. Store the evaluated points with their function value in a vector D in increasing order,
such as {xi, f(xi); ...;xs, f(xs)}, being f(xi+1) > f(xi).

4. Part D into p complexes containing each m points, and evolve each p via the
Competitive Complex Evolution algorithm.

5. Repeat the process replacing the values in D until either the number of iterations
is reached or the system has reached the desired threshold for the value of f(xi)−
f(xi+1), being i a given iteration.

A flow diagram for the Competitive Complex Evolution mentioned above can be found
in Fig. 1.6.
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Figure 1.6: Flow diagram for the CCE algorithm following the steps of the original article. Flow chart extracted from
[13].
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Chapter 2

The library

2.1 Log likelihood function

The main concern, as mentioned in 1.1 was to write a Python library that would be able
to deal with statistics for extreme values. The first step was to build a function that
would calculate the log likelihood (eqs. (1.6) and (1.8)) for a Generalised Extreme Values
distribution. The function takes a tuple theta which contains the parameters for a GEV
model and the dataset to be evaluated (logLikelihood(theta, data)). Returns the value for
the log likelihood as a float. To ensure that this function worked properly, the results were
compared to the output for the function nnlf from the SciPy package[14]. The example
datasets were taken from [9]∗.

At first, the function logLikelihood was used in a greedy algorithm (greedy(n)) that
will evaluate the function for a dataset over a grid of n3 divisions, corresponding to n
values for ζ, n values for σ and n values for µ and return the combination of parameters
ζ, σ and µ that corresponds to the lowest value of the log likelihood. This is in no way
recommended (although it returned good results, specially for the location parameter) due
to it’s high computational need (for n = 40 it can take up to several minutes). Also it
should be noted that at this point only three parameters were tested, and in order to obtain
a decent grid for the testing, a basic knowledge of the parameters is needed beforehand.

∗It should be noted that what nnlf really does is simply −
∑

log(pdf(θ, x)).
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2.2 Normalisation

Since the objective functions require a range for the parameters to be searched, a simple
approximation can be made by means of using normalised values for the parameters, thus
reducing the space searched and converting the values back to normal. This conversion
was made as in eq.(2.1). 

ζ = ζ ′

µ = µ′std(data) +mean(data)

σ = σ′std(data)

(2.1)

It should also be noted that the normalisation may not be necessary, as it depends on
several factors, such as how spreaded out the data is.

Other studies focus mostly on the use of power normalisation (PGEV) and only in
certain scenarios the properties of a PGEV can be used in a GEV distribution[15]. Thus,
the library will only evaluate the data in the original space, and the parameters will be
given also in this space. Not using this technique directly also gives the possibility of using
the library for more extense datasets, as the conditions in [15] don’t necessarily have to be
fulfilled.

2.3 The Datasets

As mentioned above, during the first testings for the logLikelihood function, two basic
datasets were used, both taken from [9], named Waves and Flood. As the library progressed,
a more complex dataset was used based on the detected heights of waves during the years
1979-2014 (for the Marshall island in Australia, according to CSIRO). This will be referred
as the Heights dataset.

The presented dataset contained values for the time (up to hours), the mean period, the
peak period, the height of the wave and the direction. An example can be found in Table
2.1.

Year Month day hour h(m) Tm(s) Tp(s) direction(o)
1979 2 1 0 3.243 7.3487 1.786 25.4823
1979 2 1 1 3.2673 7.363 17.718 21.1644

Table 2.1: Table shows an example of the provided dataset, including the first two rows.

After eliminating the data and obtain the Julian day (as t for seasonality), an example
of the dataset can be found in Table 2.2.
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Year Month h(m) Julian day
1979 2 4.771753 42
1979 3 3.696231 68

Table 2.2: Table shows the result of the given dataset after the proper data curation, containing only the maxima per
month of each year, from 1979 to 2014.

Finally, in order to do the same and also to prove that higher amount of data can also
be analysed in a similar way, a temperature dataset (taken from AEMET) was also used,
containing, like its predecessor, the maximum per day. Once curated (in almost the same
fashion as the Heights dataset), the structure was the same as in Table 2.2. This was
also used to show that the algorithm was compatible with the normalisation presented in
eq.(2.2).

2.4 Evaluating seasonality

For a better understanding of the phenomena, a season-based analysis was taken into
account as some articles suggested[8]. This seasonal model focused on the use of sinusoidal
functions to parameterise the values of the GEV distribution’s parameters. Thus, the
parameters will have the following form, depicted in eq.(2.2).



ζ(t) = ζ0 + ζ1 cos
2πt

T
+ ζ2 sin

2πt

T

σ(t) = σ0 + σ1 cos
2πt

T
+ σ2 sin

2πt

T

µ(t) = µ0 + µ1 cos
2πt

T
+ µ2 sin

2πt

T

(2.2)

being T = 365.25 (counting also leap-years) and t the day of the present maximum.

The need for a seasonal model comes from the fact that over the year the maximum
values for the heights of waves varies significantly for each season. A simple example
of this can be found in the plot in Fig. 2.1. These datasets and extreme, non stationary
variables were already analysed in previous works, for instance, in [16].
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Figure 2.1: Figure shows the maximum height per month over the years 1979-2014 in meters of the waves correlated
to the Julian day. It should also be noted that the plot contains at the very least two obvious outliers that were not
discarded.

2.5 The SCE_UA library

The SCE algorithm is contained in three different modules. These modules have been
adapted to Python 3 using the original libraries from [17], which is a direct Python
adaptation from the original algorithm presented in [10].

The modules are as follows:

• SCE_python.py, which contains the proper algorithm for a given function and given
parameters.

• SCE_functioncall.py, containing the mathematical expressions of the functions given
to SCE_python.py.

• test_sce_implem.py, containing the initial parameters as well as the bounds for each
function. This is the one that has to be executed. After running this module, it will
ask a number depending of which function the user wants to evaluate. The functions
available are:

1. The Goldstein-Price function.

2. The Rosenbrock function.

3. The Six-hump Camelback Function.

4. The Rastrigin function.

18



5. The Griewank Function†.

6. The logLikelihood functions mentioned in (2.1).

2.6 The Fisher library

A module called Fisher.py was also developed, containing the function GEV_ACOV(theta,x),
which takes the tuple theta and a dataset x and returns the covariation matrix (1.4.1). If
seasonality is taken into account as in eq.(2.2), instead of a 3x3 matrix it will return a dxd
matrix depending of the kind of seasonality used, up until 9x9 (completely non-stationary
model).

Thus, GEV_ACOV evaluates the Fisher information matrix using partial derivatives.
That is, directly as in eq.(1.10). For each element of the matrix, an infinitesimal change in
the value of the function is evaluated. In order to simplify this and make it easier to use,
the logLikelihood function was cut from the SCE algorithm, so only the values that are
going to be evaluated are passed into the function logLike(theta).

In order to put it all together, Figure 2.2 links all the modules used in the process:

Figure 2.2: The diagram shows all the modules used during the process. To avoid over-complicating it, the functions
inside each module are not mentioned.

†The code for this one has been slightly modified for the parameters to fit compared to the original script
in [17], otherwise, it would be too heavy to compute
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Chapter 3

Results

3.1 First results for the LogLikelihood

To test whether or not logLikelihood worked, it was tested with the Waves and Flood
datasets mentioned above. As a first test, the results obtained were very satisfactory. Not
only it was compared with the results of the book (which were cut up to just one digit), but
also with the nnlf method. The results were as follows in Table 3.1.

Dataset LogLikelihood (nnlf) LogLikelihood (own)
Wave 164.84079365 164.95225721
Flood 215.78044042 217.04044113

Table 3.1: Table shows the different values obtained for the Log Likelihood of the two datasets using the two different
functions. In both cases the values for the parameters were obtained with the fit function from SciPy.

Combined with the greedy function, it was possible to obtain the three parameters that
returned the minimum value for the log Likelihood. The main issue with this was the time
needed. For just 3 parameters and a 40 x 40 x 40 was exceedingly high (circa 200 seconds
per run) and required a very closed grid, that is, knowledge regarding the possible value of
the parameters. Thus it was completely discarded.

Other optimisation tools provided by SciPy were also used. For instance, the minimize
function. Nevertheless, while some of the algorithms worked, others did not. CG could not
even find a result, while COBYLA provided wrong parameters. Nelder-Mead and SLSQP
were the only ones that provided a solid result.
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3.2 Using the SCE algorithm

This section will emphasise on the use of the SCE algorithm, initially comparing it to the
other used algorithms, and later, several trials will be displayed.

3.2.1 Comparison with other results

Once the library was finished, again the Waves dataset was tested again to check if the
algorithm worked. In order to compare, a summary of the results for this dataset can be
seen in Table 3.2 below.

Method Log Likelihood ζ µ σ

nnlf 164.84079365 0.02387417644 11.373634935 5.6464844917
greedy 164.88059828 0.0 11.18181818 5.63636363
minimize (CG) 166.40789883 0. 10. 5.
minimize (SLSQP) 164.840793708 -0.02383159 11.37363173 5.64643095
minimize (COBYLA) 7074.163337185 1.41127761 12.23879876 3.69586601
minimize (Nelder-Mead) 164.8407936447 -0.02386649 11.37364401 5.64646295
SCE algorithm 164.840794 -0.02386639 11.37362137 5.64647953

Table 3.2: Table displays the different results for the Waves dataset obtained using different algorithms and methods.

Aside from the SCE algorithm, the best results were given by nnlf and Nelder-Mead.
It should be noteworthy that Nelder-Mead served as an inspiration in the creation of the
original SCE algorithm[10].

3.3 Tuning up the models

For the Heights dataset, the first models considered were simply stationary models, using
the Gumbel distribution and the GEV distribution with just 3 parameters. After that,
non-stationary values were used to parameterise the location parameter. The same was
done with the scale parameter and finally, with the shape parameter, ending up with the 9
parameter model seen in 2.4. At this point it should be noted that comparisons made with
nnlf are nearly useless, since its internal calculations do not evaluate the log likelihood
in the analytical way, so seasonality can’t be analysed. The data obtained, alongside the
deviation obtained using the Fisher information matrix (1.4.1) and the results for the χ2

and AIC tests can be found in Table 3.3.
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N 2 3 5 7 9

` 662.8095 650.5278 440.6001 378.561 367.212
AIC test -1321.619 -1295.0556 -871.2002 -743.122 -716.424
`i − `j – 12.2817 209.9276 62.039 11.348

1
2
χ2(1− p) – 0.1101 47.5103 4.829 0.167

µ0/m 2.874± 0.0024 2.733± 0.003 3.0548± 0.0010 3.0398± 0.0009 3.0625± 0.0011
µ1/m – – 1.077± 0.003 1.0282± 0.0016 1.030± 0.002
µ2/m – – 0.3589± 0.0014 0.2984± 0.0014 0.3286± 0.0018
σ0/m 0.9557 0.8167± 0.0019 0.5805± 0.0005 0.5435± 0.0002 0.5580± 0.0006
σ1/m – – – 0.32461± 0.00015 0.3512± 0.0010
σ2/m – – – 0.0513± 0.0009 0.0361± 0.0009

ζ0 0 0.2955± 0.004 0.0436± 0.0007 0.0505± 0.0006 −0.0279± 0.0009
ζ1 – – – – 0.090± 0.003
ζ2 – – – – −0.216± 0.002

Table 3.3: Table shows the different results obtained for the parameters for each type of model. For the `i − `j , `i
refers to the prior model compared to the evaluated.

As an easy way to see how the algorithm works for 9 variables, Figure 3.1 displays a
typical run for the Heights dataset.

Figure 3.1: Figure shows the evolution of values with the iteration for executing the SCE algorithm for 9 variables. The
upper side shows the evolution for the value of the log likelihood, while the lower part represents the evolution of the
parameters.
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Once these results were obtained, several plots can be made using these results, which
will also combine the plot in Figure 2.1 in order to make it easier to follow. The return
value has also been calculated using eq.(1.9), as seen in in figure 3.2.

Figure 3.2: Figure shows the location parameter, the return value for the 0.95 quantile and the scale parameter using
each of the models featured in Table 3.3

Once this was achieved, a final set of 3D plots can be made, using the probability
density function for GEV distributions (eq.(1.4)) in a 3 dimensional plot that shows the
pdf for any day of the year, along with the height of waves for each of the models obtained
above.
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(a) (b)

Figure 3.3: The plots display the probability distribution function over 2 years for the stationary models with two (left,
Gumbel model) and three (right) parameters, using eq.(1.4) with the results from Table 3.3.

(a) (b)

Figure 3.4: Again, the plots display the probability distribution function over 2 years for the models with 5 (left) and 7
(right) parameters, using eq.(1.4).

Figure 3.5: Finally, figure shows the pdf plot for the model with 9 variables, similar to how it was obtained for the plots
in Figures 3.3 and 3.4.
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Given the results for the tests presented in Table 3.3, the conclusion is that the model
with 9 parameters (Figure 3.5) is the one that better suits the dataset provided, that is,
a fully non-stationary model. The stationary models (Figure 3.3) can be discarded, not
only due to the poor results obtained in the tests, but more simply, because for a non
stationary data distribution (Figure 3.2), a non stationary probability function is expected.
Obtaining the same value for the probability density during a year for the dataset is simply
not acceptable.

Between the non stationary models the differences are harder to spot. The influence of
a non-stationary value for the scale parameter can be appreciated by comparing the plots
in Figure 3.4, but the influence of a non-stationary shape parameter is much subtle. This
is also coherent with the difference between the scores in the tests. These differences are
continuously decreasing as the number of parameters go higher.

3.4 Temperature analysis

So far, in choosing the model only one dataset (Heights) has been used. Other extreme
values distributions for climatic phenomena are suitable for this task. Given the case, the
monthly maxima temperatures were also analysed in a similar way. In this case, since
the range of temperatures registered ranged from 120 to nearly 400, the normalisation
procedure explained in 2.2 is almost mandatory.

After using the algorithm with the temperatures dataset, used the same methodology
from the Heights dataset, the parameters obtained, as well as the results for the log
likelihood and the proposed tests can be found in Table (3.4). The shown results are in the
normalised space, as trying to use the algorithm in the Fisher matrix with the original data
based on the output for the normalised space does not have any meaning. Also, further
variable changes may lead to outliers (see eq.(1.7)).

N 2 3 5 7 9

` 7963.643 7189.859 2607.158 2596.823 2592.078
AIC test -15923.287 -14373.720 -5204.317 -5179.648 -5166.158
`i − `j – 773.783 4582.701 10.334 4.745

1
2
χ2(1− p) – 41.637 4027.593 0.0205 4.3 ∗ 10−3

µ0/m 0* −0.351± 0.015 −0.214± 0.006 −0.214± 0.006 −0.2135± 0.0010
µ1/m – – −1.208± 0.008 −1.223± 0.009 −1.217± 0.002
µ2/m – – −0.424± 0.008 −0.417± 0.006 −0.423± 0.009
σ0/m 1.113* 0.982± 0.011 0.5805± 0.0005 0.3839± 0.0008 0.3838± 0.0005
σ1/m – – – −0.01732± 0.00012 −0.021± 0.003
σ2/m – – – 0.020± 0.006 0.016± 0.008

ζ0 0 −0.289± 0.010 −0.184± 0.007 −0.186± 0.007 0.1865± 0.0003
ζ1 – – – – −0.026± 0.003
ζ2 – – – – 0.040± 0.006

Table 3.4: Table shows the different results obtained for the parameters in the normalised space for each type of model
for the temperature dataset. Again, for the `i − `j , `i refers to the prior model compared to the evaluated. The two
values marked with * returned an error value so low that it was neglected.
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The parameters, as well as the corresponding expected result were plotted for each
model as in Figure 3.6, this time, back in the original space after applying the requited
transformations.

Figure 3.6: Figure shows the results for the temperature datasets, in the same fashion as before. Even if the scale
parameters seem to be flat, it should be noted that their value is way below the other values. Thus, from 7 and 9
variables σ(t) also obeys a sinusoidal distribution.

The pdf for 2 years, as done before, and with the best result, again, with nine variables
(as seen in Table (3.4)) can be found in Figure 3.7. Again, it’s easy to see the need for a
non-stationary model for these results.
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Figure 3.7: Figure shows the pdf for the GEV distribution using the best parameters found using the SCE algorithm
with the temperature dataset.
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Chapter 4

Final remarks and acknowledgements

4.1 Conclusion

After providing the insights regarding extreme values distributions, the SCE algorithm
was introduced in order to obtain the best parameters that suit the distribution for a given
dataset, with very good results in several datasets.

As mentioned in Table 3.2, the algorithm is way more robust than any other basic
Python libraries for even simple datasets, which some of them not being able to return
results, let alone more complex functions or datasets. The use of normalisation is not a
problem for the algorithm as seen when the Temperature dataset was evaluated, albeit it
may lead to confusion when evaluating the results using the Fisher information matrix.

The algorithm was proven to be way flexible, as the addition of new terms, large sets
of data and even sinusoidal expressions were not a problem to compute.

All in all, the SCE algorithm is quite a powerful tool in the analysis of statistical
functions and should be taken into account even for simpler cases, since the only thing that
is required is to modify the needed function and the dataset.

4.2 Annexed content

The items that can be found are the following:

• The proper SCE algorithm, consisting on the modules mentioned in (2.5). Other
algorithms mentioned are omitted, either because of their simplicity (greedy) or
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simply because they are already built in Python via SciPy.

• All the datasets mentioned above in non-proprietary format (.csv and .txt), both raw
and curated. The final versions are in .npy format.

• The scripts used to curate the data in order to make them reproducible.

• A Jupyter Notebook showing some examples of the algorithm.

• The modules containing the Fisher information matrix and the tests.

In other words, every file in 2.2 is available in the final version (CD) as annexed content.
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