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Equation for the potential of an electron system with slowly varying density
in the energy-functional formalism
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A second-order differential equation is derived for the electric potential of an electron system with slowly

varying density. It includes consistently the first-gradient corrections to both the kinetic energy and the ex-
change energy. In the regime of high density, the equation reduces to the one derived by Schwinger
[Phys. Rev. A 24, 2353 (1981)I.

The starting point of the energy-density —functional for-
malism is the theorem of Hohenberg and Kohn. ' It states
that there exists a functional of the electron density which is
a minimum for the ground state of the system and this
minimum value corresponds to the energy of that state.

I

The functional is not known in general, but there are
several regimes for which an approximate form can be de-
rived. One of these is the system with a slowly varying den-
sity. In this case, the functional can be generated by gra-
dient expansion techniques and it can be written, in atomic
units (lr=e =m =1),

E [pl= —' fp(i)p( r )~l i—r
I

dd "''+ f (&P( r )p( r )+F(p)+ G (p&( (r p&')d +o( ~ )

where p is the number of the electrons per unit volume
(i.e. , p ~0) and W( r ) is the external Coulomb potential
energy of an electron at r. The parameter e is introduced
as a formal expansion parameter (at the end we shall put
e= 1) and o(e) means terms of order higher than e. The
function F(p) has been evaluated from the homogeneous
electron gas theory to be

F(p) = (3/10)(3 ')' 'p' ' —(3/4)(3/ )' 'p '+F ( )

(2)

The first term gives the well-known Thomas-Fermi expres-
sion, the second one the exchange (Dirac) term, and F, is
the correlation energy. The correlation energy has been
derived in the limit of high density and several approximate
expressions are available, which are valid also for lower den-
sities. The function G (p) is

G(p) = (1/72)p ' —(7/432m. )(3rr'') ' 'p ' '+ G, (p)

(3)

The first term has been derived by Kompaneets and
Pavloskii, Kirzhnits, and others. The second term has
been obtained recently with similar techniques. ' The third
term (gradient correction to the correlation energy) is also
known. ~ This form of the functional has been used (with
empirical corrections of the coefficients of the gradient
terms) for the discussion of atomic and polyatomic (as well
as nuclear) systems.

Functional (1), with e= 0, gives rise to the local density
approximation (LDA). The condition that F. [p] is a
minimum, with a fixed number of electrons, leads to a vari-
ational problem whose Euler differential equation is a
second-order one. It allows the calculation of the electron
density and generalizes the early Thomas-Fermi equation.
However, if one goes beyond LDA by retaining the terms
of order e in the functional (1), the Euler equation of the

I

variational problem is an integro-differential one. It can be
transformed into a fourth-order differential equation by in-
troducing the total potential V through the Poisson equa-
tion, valid outside the atomic nuclei,

V' V= —47rp+ V H = —4vrp

(note that p is the number of electrons per unit volume
while V and 8' are potential energies, i.e., electrostatic po-
tentials times the electron charge, which is —l in atomic
units). The purpose of this paper is to show that this equa-
tion can be transformed into another one with the same de-
gree of approximation (i.e. , first order in e), but with
second derivatives only. The point is that it is not profitable
to use a fourth-order equation (widely used in fact) if there
is a second-order one which has the same degree of accuracy.

At this moment it is appropriate to call attention to the
convenience of changing from the use of functionals of the
density to functionals of the potential. It is a trivial exten-
sion of the Hohenberg-Kohn theorem that there is a univer-
sal functional of the potential whose minimum corresponds
to the ground-state energy. This follows from the fact that
the potential is uniquely related to the density through Pois-
son Eq. (4). A functional of the potential may be simpler
than the corresponding one of the density, owing to the
property that the density at a point is related locally to the
potential, while the converse is not true. Therefore, poten-
tial functionals are likely more local than density function-
als. A functional of the potential for atoms which has been
proposed recently by Schwinger has allowed him to calcu-
late the quantum correction of relative order Z ' ' to the
total energy of the Thomas-Fermi atom. We shall obtain
Schwinger's equation as a particular case (the high-density
limit) of our equation for the potential. Besides, we show
that it has the same degree of approximation as the
Thomas-Fermi-Dirac-Weizsacker theory, a fact already not-
ed by Schwinger.

After that, the main result of this paper can be expressed
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in the region without external charges. The functions
V( r ) and S(V) are defined as follows. In the first place
we define V such that its zero coincides with the Fermi en-
ergy Fr The.n, we define the function f ( V) by

dF(p) = —V ~p= f(V)
dp

(6)

where F(p) is given by Eq. (2). [The possibility of writing

p as a function of V rests upon the convexity of the func-
tion F(p)]. Now, the function V( r ) is defined by

V =—V —47r e G (f'( y ) ) d y
df (y) (7)

G dv

with G (p) given by Eq. (3). Finally, the function S ( V) is
given by

S( V) —= 4rrf ( V) 1+47reG (f'( V) )
df( V)

dV
(8)

together with Eq. (7), where only terms of order e should
be retained.

The proof of the theorem follows. The variational prob-
lern constrained by the condition which fixes the number of
electrons gives the Euler equation

V= E ( 7p) —2eG7 p+o(e) . (9)
dF (p) dG 2

dp dp

We must show that this equation agrees with Eq. (5) to first
order in ~. Equation (9) agrees with Eq. (6) to zeroth or-
der, so that f( V) can be substituted instead of p in all
first-order terms. In the resulting equation, we may obtain

p as a functional of V, which gives the following expression,
again equivalent to Eq. (9) to first order in e:

p=f —e
df dG 2

dV df
( 7f) +2G V f +o(e) (10)

Here 6 is a function of f, f a function of V, and V a func-
tion of r . Now, taking Eq. (4) into account, it is straight-
forward to obtain

V= —4rrf+4meG '7 V+o(e)2 df
dV

where V is the function defined by Eq. (7). Finally, taking
Eqs. (4) and (6) into account, we substitute

—V V =47rf ( V) (12)

in the last term of Eq. (11) and we obtain Eq. (5) in the re-
gions where the external charges vanish. This completes
the proof.

The function S ( V) of Eq. (6) is rather involved
(although straightforward) and it will not be written here
explicitly. However, there is a regime where S(V) is rather
simple, namely, the high-density limit. For high densities,
Eqs. (2) and (3) can be approximated by

as a theorem. The Euler equation of the variational prob-
lem, stating that E[p] given by Eq. (1) is stationary, agrees
to order e with the differential equation

'2 V+S( V) =0

where we have introduced p, in the second term of F (p) as
a new formal expansion parameter (which will be put equal
to 1 at the end). To first order in both e and p, we obtain

V = V+ e(42/6') ( —V)' '

V= —(842/3~)( —V) +(8/9n )(9p, +2t) V

(14)

This (with e = p, = I) is just the equation successfully used
by Englert and Schwinger' for the calculation of the mag-
netic susceptibilities of atoms. A nontrivial problem is that
of finding the appropriate boundary conditions, which we
will not discuss here (see Ref. 12).

Summarizing, from any energy functional E [p] it is poss-
ible in principle to derive an equation for the electric poten-
tial. In the regions with slowly varying and not too low den-
sity, the functional can be generated by means of an expan-
sion in terms of two dimensionless parameters:

(me'/t') ' ',
)
'7 ( '~') ~' .

These equations, with a=p, =1, have been derived by
Schwinger, which suggested that they might extrapolate the
Thomas-Fermi (TF) model to the outer reaches of the
atom. With our derivation it can be seen that this is not
necessarily correct, because the starting functional (I) is
valid only when the gradient corrections are small compared
with the main term' and this is not true in the outer region
of the atom. It is more adaquate to say that Eqs. (14) im-
prove the TF model in the case that it is valid. This ex-
plains in part the poor results obtained by De Raad and
Schwinger" in the calculation of the magnetic susceptibility
of diamagnetic atoms which, although improving the TF
results, are far from experimental values. In a recent paper
(published after the first submission of this Brief Report)
Englert and Schwinger' have shown that a modification of
Eq. (14) greatly improves the results obtained for the mag-
netic susceptibility. We comment on the reason for that in
the following.

According to our derivation, an improvement of Eqs. (14)
should consist of' calculating the corresponding equations
to higher orders in e and/or p, . An equation correct to
second order on e should be rather involved and probably is
not worthwhile due to the lack of convergence of the gra-
dient expansion of the functional E[p] in the outer regions
of the atom. On the other hand, a consistent equation to
second order in p, should contain, besides the exchange [last
term of the first Eq. (13)], the correlation energy to first or-
der. Nevertheless, at least for some properties, it may be
more important to include exchange to second order than
correlation to lowest order. An equation with these proper-
ties might be obtained by retaining only the desired terms of
Eq. (5). However, a simpler procedure is to interpolate
beween Eq. (14) and the Thomas-Fermi-Dirac (TFD) equa-
tion (which includes the exchange to an order higher than
the first one). This means to search for an equation fulfill-
ing two conditions: being equivalent to Eq. (14) to first or-
der in both e and p, , and going to the TFD equation in the
limit e 0, p, 1. The solution is

V 'V= —(4/3m ) [ [ —2 V+ (9p, +2m)'/(9m)']' '

+ (9p, + 2e)/9rr)

F(p) = (3/10) (3~')"'p' ' —p (3/4) (3/~)"'p"'

G(p) = (1/72)p

These correspond to the formal parameters p, and e intro-
duced in this Brief Report. If the energy functional is
known to a given order, 0(IM, "e ), the equation for the po-
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tential can be derived to the same order of accuracy. The
lowest order —defined as zeroth, O(p, e ) —is the early TF
equation. The TFD equation is O(p'a ), while Schwinger's
equation is first order [i.e., it includes 0 (p'a ) and
O(p, e')]. The local density approximation is O(p"e ) and
Eq. (5) O(p, "e'), with n limited by the knowledge of the
density functional. Englert and Schwinger's equation (15)
includes the exchange part of the terms O(p, ~ ) besides
the leading gradient correction O(p, e'). To be consistent,
it lacks the correlation energy term 0 (p, 'e ), but this seems
to be less important, as it is, probably, the gradient correc-

tion to exchange, O(p'~'). lt must be pointed out again
that no equation of the type discussed here is valid in the
most external regions of the atom, due to the lack of con-
vergence of the gradient density expansion. However, this
difficulty may be mitigated with an adequate choice of
boundary conditions.
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