
PH Y S ICAL RK VIE% 0 VOLUME 23, NUMBER 10 15 M AY 1981

Classical relativistic statistical mechanics: The case of a hot dilute plasma
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Starting from predictive relativistic mechanics we develop a classical relativistic statistical mechanics. For a system
of N particles, the basic distribution function depends, in addition to the 6 N coordinates and velocities, on N times,

instead of a single one as in the usual statistical mechanics. This generalized distribution function obeys N (instead of
1) continuity equations, which give rise to N Liouville equations in the case of a dilute plasma (i.e., to lowest,

nonzero order in the charges). Hence, the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the reduced

generalized distribution functions is derived. A relativistic Vlasov equation is obtained in this way. Thermal

equilibrium is then considered for a dilute plasma. The calculation is explicitly worked out for a weakly relativistic

plasma, up to order 1/c', and known results are recovered.

I. INTRODUCTION we must have the integrability conditions

The lack of a classical relativistic theory of
interacting particles for many years has had as a
consequence that a satisfactory classical relativis-
tic statistical mechanics does not exist at present.
This situation has been emphasized by Havas. '
Nevertheless, in the last few years a consistent
framework for classical relativistic systems of
interacting particles has been developed. The ori-
ginal work is in Refs. 2-5, and in Ref. 4 this new
framework has been called "predictive relativistic
mechanics" (PRM).

PRM is a "Newtonian type" theory of the classi-
cal N-particle. interaction in Minkowski space M4.
By Newtonian type it is meant that the dynamics
of the system is governed by a system of second-
order ordinary differential equations. It can be
formulated in a three-dimensional. formalism as
well as in a manifestly covariant formalism.

The fundamental facts of the latter approach"
are as follows: consider a system of N classical
pointlike interacting particles in M4. Let x, be
the four-position of particle a (a, b, . . . =1, . . . , &)
and let s, be its proper time. Then PRM states
that the dynamics of the system is governed by a
system of ordinary differential equations of the
form

u, = '-,
d

' =$,(X~, u~) (,P, . . . =0, 1,2, 3), (1)

that is, u, is the four-velocity and $~ is the four-
acceleration of particle g, which depends on the
four-positions and four-velocities of all particles.

Now we search for solutions to the system (1)
of the form

x', =x,(s,, initial conditions),

that is, we can parametrize the trajectory of parti-
cle g with one parameter: its own proper time.
In order that Eq. (2) will be compatible with (1)

'=0, Vbo g,
b

where dlds, means the differential operator

d 8=u +
ds Bx eub b b

(3)

(4)

(u,f) =q,zu, )~,=0. (6)

Equations (3) and (6) are the fundamental restric-
tions that the theory imposes on the possible four-
accelerations. They are true independent of wheth-
er or not an external field exists.

As an alternative to the manifestly covariant
formalism of PRM, we can obtain from the $' the
three-accelerations p, , of the system through the
relations

p'=r '((*.'-, ('.vJ, ( t)

where v, is the three-velocity of the particle g
and y, =(1 —v,') '~'. I.et c, the speed of light, be
equal to 1. In this way we obtain p, ,' as a function
of the four-positions x, =(t„x,) and four-veloci-
ties u, . Then we can restrict ourselves to simul-
taneous configurations, t, =t, Vb, in order to ob-
tain the physical three-accel. erations "seen" by a
given inertial observer: p, ',

'

~, „Vt~. The canon-
ical formulation of this three-dimensional formal-
ism of PHM was given first by Hill. ' In Ref. 7 the

Throughout this paper the Einstein summation con-
vention for Greek labels is assumed.

Choosing the signature -2 we have for the four-
vector u,

(5)

where q~ is the Minkowski metric tensor. [In the
definition (4) the derivatives 8/su, must be under
stood as if the identity (5) did not exist, that is,
as if the four components of u', were independent. ]
Then
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three-accelerations, p, ', ~, „are supposed to ex-
ist as power series in the coupling constants and
then a canonical formalism is proved to exist
within this perturbative framework satisfying
"good" asymptotic conditions (good meaning that
for infinite particle separation in the past —alter-
natively in the future —the canonical coordinates
recover their standard free-particle expressions).
The role of good asymptotic conditions was ori-
ginally brought out by Kerner and Hill. ' Accord-
ing to the "noninteraction theorems" ' the canon-
ical coordinates q, cannot be the three-positions
x .

PRM is consistent with the classical theory of
fields at least in the perturbative framework. ""
For example, in the case of electromagnetism,
given the retarded Lienard-Wiechert potentials
(alternatively advanced or time symmetric) we have
a unique four-acceleration ], which reduces to
that obtained from these potentials for isotpopic
configurations: q z(x, —x~)(x~-x„) =0, Vb, a with
b4a,

Now consider a relativistic macroscopic system
of N classical interacting particles, perhaps with
an external field in the framework of the PRM.
Since, under the conditions stated before, we have
a canonical formalism corresponding to the three-
accelerations p', ~, „ that is, systems of canoni-
cal coordinates (q, , pJ and the corresponding
Hamiltonian H, we can construct the statistical
mechanics of the macroscopic system along the
same lines as that in the nonrelativistic case. In
the important case of equilibrium we can write for
the partition function Z

~ P~I ~Z=--t. )t.-"...dq.d p. , (8)
g= 1

where as usual P =1jkT with T the temperature
and k tbe Boltzmann constant. Formula (8) sup-
poses that the intrinsic angular momentum of the
macroscopic system is zero and that we work in

a frame relative to which the system is macro-
scopically at rest, i.e. , a frame where the total
momentum of the system is zero. As long as the
system is isolated this is the correct definition
of the rest frame, since in PRM the description
of the interaction between particles can be made
without the introduction of the field as something
independent of the degrees of freedom of the parti-
cles. Now, as can be seen in Ref. 11, where the
case without an external field is treated, q„p,
and H are complicated functions of x~, v~ even at
first order in the coupling constants. This is true
for both short- and long-range scalar and vector
interactions and also for the interesting special
case of the electromagnetic interactions. Then the
calculation of Z becomes involved. Nevertheless,

in the case of a dilute completely ionized plasma
we guess that a remarkable simplification is pos-
sible, as we will see in Sec. III.

In Sec. II we develop a general approach to clas-
sical relativistic statistical mechanics to treat
both the equilibrium and nonequilibrium cases,
which allows for practical calculations. We begin
defining the generalized distribution function of Ã
particles and then we obtain N continuity equations
for this distribution function.

In Sec. III the case of a dilute relativistic plasma
is considered. We work in the space of the three-
positions x, and three-velocities u, =y,v, and ob-
tain N Liouville equations from the N continuity
equations although tbe (x,, u) are not canonical
coordinates. Then we give the standard distribu-
tion function relative to the coordinates (x,, uJ
for a dilute plasma in equilibrium in a frame
where the system is at rest, and finally we give
the relativistic extension of the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY}hierarchy.

In Sec. IV the relativistic BBGKY hierarchy is
cut off in a standard way and some general results
are established for the resulting solutions. Fi-
nally, in Sec. V we calculate the two-body distri-
bution function of a slightly relativistic plasma in
order to get a simple test for the theory.

II. THE GENERALIZED DISTRIBUTION FUNCTION
AND THE CONTINUITY EQUATIONS

We now consider a relativistic macroscopic
system of N classical particles which are inter-
acting among themselves, with or without an ex-
ternal field, in the framework of the PRM. Let
us define its "generalized distribution function"
P(t„x„u„t„x„u„.. . ) = F(t,, x,, u) (u, is t—he
three-vector consisting of the space components
of u,'} as the probability density of finding particle
1 at xl with velocity u, at time t» particle 2 at x,
with velocity u, at time t» and so on. That is,

E

6P(t, , x,, u) = E(t,,x„u), d'x, d'u, (9)
&=1

is the elementary probability of finding every
particle z in the corresponding elementary volume
d'x, d'u, at time t,.

Because of the Newtonian character of the equa-
tions of motion (1) and because of the equations
(3) which allow for the existence of dynamical
trajectories such as (2), we have a deterministic
dynamical problem with a finite number of initial-
value data: (t,, x,, u), a=1, . . . , ¹ Then

5P(t, , x,, u) does not change by changing the argu-
ments (t„x„u) to new arguments representing
the same dynamical trajectories, or correlatively,
5P depends only on which ensemble of dynamical
trajectories is considered. That is,
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d 6P 96P &6P
-Qg g+ g ~g Dd VQ ~

Sg Xg
(10)

These N conservation equations for 5I' are actually
compatible since Eqs. (3), satisfied by the four-
accelerations, guarantee that the integrability con-
ditions of (10) are satisfied.

From the N conservation equations (10) we ob-
tain the N continuity equations

BF s dxg 8
I( dug

Bt, Bx, I, dt Bu, }, dt,

that is,

the latter part of the alphabet, R, S, . . . , take the
values s+1, . . . , N. The integral is extended to all
positions x~ and to all velocities u~.

Let us set g =R in Eq. (12) and integrate over
d'x&d'u&, the integral being extended to all values
of x~, u~. After applying Gauss's theorem we ob-
tain in an obvious notation

BF(N-1)

R R dZx d R ~R R d~u y

BF -B B—+ ~ (EV)+ ~ (Fy -'() =0,
Bt Bx Bu

(12)
(16)

that is, for any reasonable asymptotic conditions
for the macroscopic system

f(t, x,, u) =F(t,=t, x,, u) . (13)

By adding the N continuity equations (12) and set-
ting t, =t, Vb, we obtain the standard continuity
equation for the standard distribution function

—+ ~ v', + ~ y ' =0. 14
a a a a

If the macroscopic system is in equilibrium then
F must be invariant by time translations and f
does not depend on time. If besides being in equi-
librium the system is homogeneous, then F must
be also invariant by space translations. That is,
in this case, F will depend on the x, only through
the relative positions x, —x,. Of course if there
is a container we will have some sort of inhomo-
geneity near the walls.

From the generalized distribution function,
F(t,,x, u), we obtain the reduced generalized
distribution function of order s &N,

N

d'"(t, g„) =I Exd'x„d'u„.
R=s+1

(15)

Here and in the following capital Latin letters
from the first part of the alphabet, A, B, . . . , take
the values 1, . . . , s and capital Latin letters from

where $, is the three-vector consisting of the
space components of $", . [Note that at variance
with Eq, (10}, where the four components of u',
are considered as independent, in Eq. (11) the
identity (5) is taken into account. That is, the
three components of u, are considered as inde-
pendent while ug is given by ug =(1 + u,3)'~3.]

Thus, instead of having a unique continuity equa-
tion for the standard distribution function f(t, x„u)
depending on 6N+1 variables, we have N contin-
uity equations for the generalized distribution
function j(t,, x,, u) depending on 7N variables.

When we put t, =t, yg in the generalized distri-
bution function F(t„x,, u,}, we obtain the standard
distribution function

F(E-& )

(17)

and then

BF(s)
=0

Bt

in agreement with the notation in the left-hand
side of (15), where the labels ts were omitted.

III. THE CASE OF A DILUTE PLASMA

aWb (19}

where

e~~
gg 3 [(B )gM3Xg(3xgQQg)B3 ]

a ab
(20)

Here e„e,are the charges of particles g and 0,
~, is the mass of particle g& and 8„is the func-
tion

Rgg- [(Xggub) -Xgg'] '
~ (21)

For x„we ha e x„=x,—x, , and (u,u,}, (x„u,),
(x„u,}, and x„' mean four-scalar products.

When no bound states are present, formal expan-
sions in the charges, which underly the method to
obtain the Eqs. (19) and (20), must be interpreted
as expansions in the dimensionless parameter
e,e,/mcgh, where m is m, or m, and I3 stands for
the typical impact parameter of the collisions.

Let us consider a system of N interacting charged
particles without any external field. (Later we will
relax somewhat this condition when we consider
a system in equilibrium, in which case a container
may be necessary, but we may suppose that the
container produces a surface effect which will
be negligible for particles not too near the walls. )
Then, to first order in the products of the charges,
the physical solution to Eq. (3) gives" for the four-
acceleration $, of the charge g
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Then, in order to assure the fast convergence of
the expansions, we must have relat, ively high im-
pact parameters, that is, we must have dilute
enough systems.

For a dilute completely ionized plasma without
external field, it is easy to verify that

(22)

with, $, given by Eqs. (19) and (20). [Note that Eq.
(22} is true even in the presence of an external
field. ] Hence, in this plasma, the N continuity
equations (12) can be written as the N Liouville

equations

BF ~» 8F—+v- +r '$.
gt a BX a a eu

a

(23)

Multiplication of these equations by y allow us to
write more compactly

dF BF 8F—=u~ ——+ $~ =0
ds ex 8Qa a a

(24)

—+Q v ~ +Jr '(()
gg Bx ty= t eu

a a a a

for the standard distribution function f(t, x,, u) on
the space of the positions x, and velocities u, .

As we have mentioned in the Introduction, we
have a canonical formalism for the dynamical
system described by the instantaneous three-ac-
celerations p, ', ~, , so that we can write directly
the Liousville equation

(25)

sf ~dq, sf ~ dp, &f (26}

where (q, , p) are canonical coordinates and the
standard distribution function, g=f(t, q„p,) is de-
fined on phase space.

The standard distribution functions f and f are
connected by the relation

according to Eq. (4).
A generalized distribution function such as the one

defined here, E(t,, x,, u), has been considered pre-
viously by Hakim' and van Kampen. " Both auth-
ors give N Liouville equations for this distribution
function but they limit themselves to the case when
the particles are free or only a prescribed exter-
nal field is present. %hen the interaction among
the particles is taken into account we need the
framework of PRM in order to assure the integra-
bility conditions of the N Liouville or the N con-
tinuity equations. In Ref. 15 the important result
establishing the Lorentz invariance of the gener-
alized distribution is derived.

Starting from Eq. (14) and again taking into ac-
count Eq. (22), we obtain the Liouville equation

(27)

where D(x,, m, u,)/D(q, , p,) is the Jacobian deter-
minant for the coordinate transformation (x,m u)- (q, p). Note that the determinant is an integral
of the motion since in a dilute plasma the continui-
ty equation (14) becomes the Liouville equation
(25) in the (x,, u) space. Indeed, our guess is
that the value of the determinant is const
& exp [(P —P')H], where P = I/kT and P' is a con-
stant. [Provided that we have a Liouville equation
for the distribution function f(t, x, , u,), the same
considerations which are used in Newtonian sta-
tistical mechanics (see e.g. , Ref. 16 for the New-
tonian case) lead here to f= const && exp(-P'H) for
an equilibrium system. On the other hand for
canonical coordinates we have f= const x exp(-PH)
and therefore, from Eq. (27), it follows the ex-
pression constx exp(P —P'}H for the Jacobian de-
terminant. Obviously in the limit of the density
going to zero P' goes to P. In this case the de-
terminant takes the value 1.] Then we have for the
partition function of a dilute plasma in equilibri-
um

Z = const x Jt exp(-P'H)
' "

d'x, d'u, ,
a=&

(28)

8F (a+1)
+ ~ d'x~d'u~ = 0, BgA 29

where Eq. (19) has been taken into account. This
hierarchy of equations corresponds to the BBGKY
hierarchy for the standard reduced distribution
functions of the nonrelativistic case." Here, for
each value of s we have not one but s equations
corresponding to the different values of the label
A: 1, . . . , s. Furthermore, when one writes the
nonrelativistic BBQKY hierarchy for interactions
which depend on the particle velocities, it can
be seen that each equation of the hierarchy, cor-
responding to each value of s, involves three re-
duced standard distribution functions, f"', f'~",
and f'"", instead of only the first two functions,
as is the case when the accelerations do not de-
pend on the velocities. We see in (32} that the

where it is assumed that the total momentum and
the intrinsic angular momentum are zero. Com-
pared with Eq. (8) which gives Z in the general
case, this expression for Z could represent an
important progress as long as the actual calcula-
tion of Z, for the dilute plasma, is concerned.

Let us now consider the definition (15) for
p'»(t „,x„,u„). By integration over xa, us, we ob-
tain from (24)

gF(s) gF 4)
CL + QQ

g 8 A
~AS
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"relativistic hierarchy" involves only two reduced
generalized distribution functions in spite of the
fact that relativistic accelerations do depend on
velocitie s.

As in the nonrelativistic case the determination
of the reduced generalized distribution function
E"' can only be made when the hierarchy is cut off
somewhere, that is, when for some value s we
give E""'as a function of the other E'"' functions
with x& s+1. Let us remark that we have here
restrictions on function E'""that we do not have
in the nonrelativistic case, since now s(s —1)/2
conditions of integrability, coming from (29),
must be satisfied. To first order in the products
of the charges these integrability conditions are

on the four-accelerations, the integrability condi-
tions for Eq. (24) are satisfied.

IV. APPROXIMATE SOLUTIONS FOR THE
RELATIVISTIC BBGKY HIERARCHY

In a completely ionized plasma, which is dilute
enough, because of the long-range character of
the interaction, the term ps)„sBF")/Bu„ in Eq.
(29) is small compared with the large collective
effect represented by the integral term. Of course,
this is only true as long as s«N. Then, accord-
ing to what is done in the nonrelativistic case"
we set, whatever particles 1,2, 3 are,

8 [,BF""))
~ARg el s 8 P

( BE($+1)

Bu
(3o)

F~'(1, 2) = F "(1)Fu'(2)[1+G(1, 2)],
F'u&(1, 2, 3) = F(~&(1)F( &(2)F&~&(3)

x [1 + G(1, 2) +G(1, 3) + G{2, 3}],

(31)

Of course, the integrability conditions for the
whole hierarchy (29) are satisfied as long as we
do not introduce any approximation. This follows
from the fact that, because of the conditions (3)

where it is supposed that G(1, 2}« l. Equation
(32}, when s =1,2, gives for the functions Fn) and

G the equations

BF6) 1 BF(1)
+ ~ Z J~P"'(&)(;d'x~d'"a= —Z JP"'(&); ~. [ "'(()P()d)jd'*„d'~„,,

R, 1
(33)

BE QG1 2= —Q, )~P"'(d) —P(1, 2)sag, )~P"'(d) — „, —,' ~ JF"'(R)( d d Ux'''

F"'(R) G(B,R) $~~d'xsd'u„, B Wdi (34)

. 8,BG(1,2) 8,BG(1,2) i
(35)

After home algebra we obtain in an obvious nota-
tion

BF '(1) BF(~)(2) BF( &(2) 8[F )(1}][',]
Bx" ~" Bu' Bu' BIO1 2 2 1

to first order in the small quantities+sf„sBF")/Bug
and G. It can be seen that this is equivalent to
work to lowest order in the dimensionless parame-
ter & =(N/V)(e'/kT)', where e is a typical charge
of the system and V its volume (see Ref. 17 for the
analogous nonrelativistic case). Note that the
left-hand side of Eq. (33) equated to zero gives
the relativistic Vlasov equation. This corresponds
to considering Eq. (29) to zeroth order in (..

The integrability condition of Eq. (34} is

which is a nonlinear integrodifferential equation
involving only E"'.

Let us consider the case of a homogeneous plas-
ma in equilibrium. Then E"' is the one-particle
distribution function of an ideal gas. That is, in a
frame relative to which the system is macrosco-
pically at rest, we must set for E"' the relativis-
tic Maxwellian distribution

F'"(1)= [Pm, /4rVK, (gm, )]exp(- pm, y,), P = 1/kT

(37)

where V is the volume of the system and (Kp m)

is the modified second-order Bessel function. Let
us see what happens with the four equations (33), (34),
and (35). First of all, taking into account Eq.
(20), it can be seen that Eq. (35) is automatically
satisfied and that the left-hand side of Eq. (33) is
zero. Then we have

x g „F"'(R)(, d'xad' su(s1 —2) =0, Z JP"'(&)(; .[P"'tl)P((„,W[d'x„d'u„=O, (da)
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G(1 2) —
P 1 2e-Ky»'

12

x= (4vÃPe2/V)'~2 e' =—e '=e ' (41)

satisfies Eqs. (38) and (39) to first order in 1/c.
In Eqs. (40) and (41) the notation x —xb —=x„,

while Eq. (34) becomes

sG(l, 2)
Ng

XQ

=dm„(„' vdm„g f5v'(R')(mG(RR), d ii 'diT

(39)

with E") given by Eq. (37).
One can be convinced of.the existence of solutions

of Eqs. (38) and (39) by working out the low-veloci-
ty approximation. To first order in 1/c we obtain
from Eq. (20)

p .

() a b ab a ab ab b+— X —V, 'Y —= (X~ab
b)2 2y 2 c 2y 2

2y
2 ab b y ab I ab

a ab ab ab

(40}

Hence, taking into account Eq. (37), we obtain
that the Debye-Hiickel solution (see, for example,
Ref. 16) for a two-component plasma

c(t,—tb) =xb —x~=x~b has been used.
In fact it can be seen that G(1, 2) given by Eqs.

(41} is the only physical solution for Eqs. (38) and
(39), when tQe interaction is given by (40). So to
order 1/c, although the acceleration Eq. (40) does
depend on f„, the function G(1, 2) given in Eq. (41)
does not depend on t12 That is, the relativistic
corrections in G(1, 2) begin with 1/c terms, which
incorporate the dependence on t12.

V. THE CASE OF A DILUTE SLIGHTLY
RELATIVISITIC PLASMA IN EQUILIBRIUM

As a test for the theory we calculate in this sec-
tion the standard two-particle distribution func-
tion, f"'(x„,u„u,) = E"'(x, , u„u,),, „, in the par-
ticular case of a dilute, slightly relativistic, homo-
geneous plasma in equilibrium, where only two
different kinds of charges, e and -e, are present.
The plasma is supposed to be completely ionized.
It will be seen that in the appropriate limit pre-
viously known results are recovered.

Let us multiply Eq. (39) by y„' and then sum the
two equations that we obtain setting alternatively
d4 =1,2. When the system is in equilibrium, G(1, 2)
depends on t„ t2 only through its difference t».
So we obtain

v, — ' —dm, y, '(,', —dm, y, ' E f (', Rv'(R)G(b, R)d'ii u„dv v' —dm, y, '(,',

—Pm, y, ' Z J (',sE")(R)G(1;B)d'x„d'us=0. (42)

Now, G(1, 2) does not depend on ts [see Eq. (18)]
and the same is true for $122 and $2',. So we can
set ts=t, =)), in Eq. (45). Then G(1, 2), $'12, g„
G(l, g), G(2, 8) are changed in G(1, 2)~,„b,

, G(l, ft)
~ .. .etc. In order to simplify

the notation in the remainder of this section,
G(1, 2) ~, 2 will be written G(l, 2) and so on.
Hereafter Eq. (42) must be read with this new
notation.

Now, in agreement with the result we want to
obtain (getting E(2)

~, , for a dilute slightly rela-
tivistic homogeneous plasma in equilibrium) let
us set t„=0 in ],given by Eq. (20) and then ex-
pand this expression in powers of 1/c to second
order. In this way we obtain the accelerations
which can be derived from the Darwin Lagrangian"

I

-1 p —eeb Xab ' V eaeb Xab Va

m 2
' 2m c2

a ab- a

(x„, v )'
Vb 3 2

(43)

As an ansatz let us write G(1, 2) as

i ( 12 1}(
3K 12) 2 2C /12

where G,(2"») is the Debye-Huckel solution given
in Eq. (41}. After some algebra, Eq. (42) gives

l
to first order in the products of the charges. For
the time component we have

v ~ G(1, 2)+ pe1e2 1+—~2 —+(peb/V) ~ e12 J) d xs
~X12-

—v, G(1, 2)+ pe, e, 1+——'2 +(pe, /V) ~ed)( ' '~ d'x
9X12 2

(x» ~ v,)' 8 1, (x» v, )2 & 1—~pe, e2 ", ', v, ~ +-,'pe, e, —"2,' v, —=0, ( 5)
C y12 BX12J12 C y12 BX12 r12
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where Eqs. (43} and (44) have been taken into account. Then

(v, —v, ) — G,(r») v, v, + G,(r»)

12

Pe e g 2 12 11 x v

12

p
3 vx ( 12 1) ( 12 1) 3 vv (X12 Vl) (X12 V2} (48)

12 1-2

P e,e, dG, (r») P e,e,
12 12 +12

Then, G(1, 2) becomes

(47}

This equation can be separated into the following: plasma E,
N S

E — B Q &du ubdx dxbq
a=1 b=l

H„being the Darwin Hamiltonian"

(50)

G(] 2)
P e, ( ~}( ) 4 & 4 eaeb

+gb 22l V + 21RbVb ~ P fP2 V ~ 2 Pl blab

(48)
and, according to Eq. (34}, we obtain for the stan-
dard two-particle distribution function, f"'(1,2}

'(1, 2)
~m

f"'(1 1)=S'"'(l)5'"'(2){(— ' ' v """+ '
2c

+(x„v,)(x„v,)
2c f'

(49}

with E") given by Eq. (37) (in fact only terms ofI"' up to 1/c' must be retained). It can be veri-
fied that G(1, 2) given by Eq. (48), with $21~ given
by Eq. (50} and E") by Eq. (37), satisfies identi-
cally the condition (38) for t»=0, to first order
in 1/c'.

The standard two-body distribution function for
a dilute slightly relativistic plasma has been cal-
culated previously by Kosachev and Trubnikov'
starting from the Darwin Lagrangian. Qur result,
Eq. (50), agrees with theirs to order 1/c', but
not to higher-order terms. We think that these
terms are meaningless unless one goes beyond the
Darwin Lagrangian, which is only correct to order
1/c'. In a forthcoming paper we obtain the two-
body distribution function to all orders in 1/c
starting from pb given by (20).

From Eq. (51) we can calculate the energy of the

eeh ~ ~ (Xb'
V 'V +-

2c2& a
ab ~

vg(x„~ vb)
2

&ab
(51)

Actually, by symmetry arguments, this calcula-
tion gives modulus 0(1/c') the same result as in
the Coulomb approximation. " To this order, our
result agrees with the value obtained for E by
Krizan and Havas, who only have taken into ac-
count what they call the "short-range relativistic
correlations. "

Since the plasma energy we have obtained adds
nothing to the plasma energy in the Coulomb ap-
proximation, there is no correction, to this order,
to the equation of state. In order to obtain rele-
vant results we would have to push the approxima-
tion further than to 1/c', which can be done in the
framework of this paper (we will give some re-
sults about it in the near future). Therefore the
two-particle distribution function shown in Eq.
(49) has very little interest on its own. It has
only been reported here as a simple test for the
goodness of the theory that has been presented
in this paper.
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