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The proposal is made of replacing the usual auxiliary assumptions needed for the derivation of
testable Bell inequalities by an assumption resting only on symmetry considerations. It is shown

that reliable atomic cascade tests of symmetric local hidden-variables theories should combine high
statistics, cascades of type 0~1~0, and calcite polarizers. The three conditions have been achieved
in experiments already performed, but never before simultaneously.

Several tests of Bell's inequalities by measuring the
correlation in the polarization of optical photon pairs
emitted in atomic cascases have been performed in the last
decade. ' The experiments have confirmed, in general,
the predictions of quantum mechanics and have provided
strong evidence against a wide class of local hidden-
variables (LHV) theories. It is well known, however, that
a loophole remains for the refutation of the entire family
of LHV theories, due to the low efficiency of the available
optical photon detectors. Because of this fact, it is
necessary to introduce auxiliary assumptions for the
derivation of testable inequalities. The purpose of this
note is to derive new inequalities, easily testable, using a
different auxiliary assumption resting only on symmetry
considerations. The possibility of these tests derive from
Caser's theorem (see below). An attempt in the same
direction has been made by Marshall, which concluded
that symmetric LHV theories could be tested only with
experiments having much better statistics than those so
far performed. I shall show that lower statistics is
enough, provided that the experiment is made in the ap-
propriate conditions.

The relevant quantity measured in most atomic cascade
experiments performed until now is R (P), the coincidence
counting rate when two polarization analyzers are inserted
(one for each photon of a pair) at a relative angle P. The
prediction of quantum mechanics for that quantity is'

R(P)=constX(1+f cos2$),

f=[(E~—t~)(6' ~E~)l(E~+E~)(E~+E )]~F(g),

where e~ (eM) and e~ (e ) are the measurable efficien-1 2 1 2

cies of the first (second) analyzer for light with a polariza-
tion plane parallel and perpendicular, respectively, to the
corresponding analyzer. F(g) is a depolarizing factor,
slightly smaller than 1, dependent on the half-angle g of
the cone of light collected by the lens system. The sign
+ ( —) corresponds to an atomic cascade J=0~1~0
(J=1~1 ~0).

According to Bell, ' the prediction of any LHV theory
should be obtained from an expression of the form

R(b —a)=constx f P ( isa)Pz(b, A)p(A, )dk,

0(Pi,P, (1, (2)

where k stands for a set of (hidden) variables labeling the
state of the photon pair, p(X) being the probability density
of these states. [Note that a pure quantum state corre-
sponds to an ensemble of given p(A, ) in a LHV theory. ]
The parameter a (b) labels the angle of the polarization
axis of the first (second) analyzer with, say, the vertical
plane (a b=P).—Clauser and Horne showed that (1) can
be obtained from (2) provided a suitable choice of func-
tions Pi and P2 is made. Caser proved later that this is
not possible if the functional forms of P] and P2 are iden-
tical, this being a symmetry condition which corresponds
to the approximate symmetry between the two arms of the
apparatus used in the experiments. Unfortunately Caser's
theorem does not provide any bound for the deviation be-
tween the quantum prediction and the prediction of sym-
metric LHV theories. In the fo11owing it is shown that
the difference allows a relatively easy empirical test.

The question whether new experiments are necessary
deserves a few comments. Most physicists share the
opinion that the results of the performed experiments are
sufficient, in practice, to refute all local hidden-variable
theories although, as a matter of principle, a loophole
remains due to the low efficiency of photon detectors.
This state of opinion rests upon the belief that, as some-
times stated, the ensemble of photons actually detected is
a representative sample of all photons emitted. However,
this assumption is not consistent with the fact that even
quantum mechanics predicts a nonlinear behavior of pho-
ton detectors in some cases. For instance, a light signal
corresponding to a two-photon state gives rise to the ac-
tivation of the detector with a probability 2g —g, if g is
the efficiency parameter. Then, let us consider a linearly
polarized two-photon signal crossing a polarizer at angle
O. The creation operator for the incoming photons
transforms as

a ~a, cosO+a, sinO,

where a, (a, ) is the creation operator for photons in the
ordinary (extraordinary) ray of the polarizer. Thus, the
state with two identical photons transforms as
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R(P)~ f P(6)P(B+Q)dB, P(6))0. (3)

This definition restricts (2) in the sense that here it is con-
sidered a single angular hidden variable X and it is as-
sumed that P depends only on the difference a —A, =6
(with b —a =P). If additional hidden variables are includ-
ed, it is possible to define other forms of symmetric LHV
theories able to reproduce the quantum prediction. For
instance we may write, instead of (3),

R(y) f [Pi(6)P2(6+p)+Pi(6+/)P2(6)]dB,

Pi,P2 )0 (4)

which certainly allows derivation of (1) as easily as (2)
does. However, the stronger symmetry condition (3)
seems more natural because (4) implies the existence of
two sharply different kinds of light signals (for a given
wave vector and polarization). Therefore, the symmetric
LHV theories defined by (3) appear as a quite natural
family that deserves to be, but has not yet been, tested
against quantum mechanics.

Tests of symmetric LHV theories have the advantage
that the departure between these theories and quantum
mechanics is exhibited already by the coincidence count-
ing rate R(P) (with both polarizers inserted). In contrast,
the inequalities derived with the usual additional hy-
potheses (e.g., no enhancement ) involve both R(P) and
Ro (the coincidence rate with the polarizers removed). In
consequence, the experimental test of symmetric LHV
theories is, in principle, more simple than the tests via
Bell s inequalities. Furthermore, those tests are insensitive
to detector efficiencies.

In order to study how far the predictions of symmetric
LHV theories lie from those of quantum mechanics, we
must find an adequate criterion of proximity. To do that,
let us assume that an experiment is performed for the test
of the quantum predictions, by measuring the number of
coincidence counts at several angles, IPJ ], during a given
time interval T (the same for all PJ) and that results IN; I

where
~
2)

~

0) means 2 photons in the ordinary ray and 0
in the extraordinary one, etc. If we consider a one-
channel polarizer, the extraordinary ray is absorbed and a
detector in the ordinary ray will be activated with a prob-
ability

P(6) =(2g —i) )cos 6-+2g cos Bsin 6

=2g cos 0—g cos 0 .

That is, the Malus law is satisfied in a measurement with
a low-efficiency detector but it is not so if a high-
efficiency one is used. This illustrates the danger of mak-
ing extrapolations. In particular, there may be LHV
models with Pi (a, A) and P2(b, A) nonlinear functions of
the detector efficiencies, in such a way that Eq. (2) gives
predictions close to the quantum ones in the tested
domain, but violating the Bell inequality in experiments,
not yet made, with high efficiency detectors.

In this paper, in order to clearly define the problem, I
shall call symmetric LHV theories the ones predicting the
coincidence counting rate R (P) in the form

are obtained. A 7 test applied to these results will consist
of calculating

X—:g (N) N—&~) /NJ~= g (RJ. R—~~) /6RJ, (5)
j=l j=l

where Rz NJ /——T(RP =NP /T) is the measured (predicted)
counting rate at the angle PJ. , and 5RJ. is the error in the
measurement of RJ. The second equality (5) comes from
the fact that the predicted standard deviation of the num-
ber of counts is QNJ if we assume that they follow a
Poisson distribution. (We also assume that 5RJ «R~ and
that XJ~ is so large that it is possible to approximate the
Poisson distribution by a gaussian, which is needed to
give a sense to the X test. ) This suggests the definition of
the quantity

S=min g[(KRz' RJ~) /—RP ] QRP
J J

(6)

with R' given by (4), as a suitable measure of the "dis-
tance" between a given symmetric LHV theory [charac-
terized by a function P(6)] and quantum mechanics. The
scale factor K is included in order to emphasize that the
normalization of R~(P ) is arbitrary. (The main differ-J 7ence between the present work and that of Marshall lies
in that he defined the distance by the mean-square devia-
tion between R'(Pz) and R ~(Pz), while here a weighting
factor [R ~(PJ )] ' is included. }

The possibility of an empirical test rests upon the fact
that (6) has a positive lower limit So for some sets of an-
gles I P~ I . It is easy to show that two angles are not
enough to discriminate between (1)' and (3) and three an-
gles are also insufficient. I have checked that four angles
are enough, but the total statistics needed decreases slowly
with increasing number of angles, so that five angles
seems the optimum number under experimental restric-
tions. I choose the set IO, m. /8, m/4, 3m/8, m/2I, which has
the advantage of including those most frequently mea-
sured' (Marshall also chose this set). Then, So is de-
fined as the minimum of (6) when R'(P) is obtained from
(3) with P(6) any non-negative function satisfying the ob-
vious conditions

P(6) =P( —6), P(6) =P(6+sr) . (7)

S=1— gRj'
J

g (RJ) /Rp
j

in order to avoid the unspecified constant K. The starting
set of values for P(6) was chosen from an analytical func-
tion suggested by the work of Marshall. In each step of
the minimization, the values of P(6) were slightly
changed in the direction of steepest descent of So main-

A numerical minimization of (6) has been performed and
the results are shown in Fig. 1 as a function of the param-
eter f defined in (1). The numerical calculation of So, for
a given f, has been made using 17 values of P(6) (for
B=nvr/32 with n =0, 1, . . . , 16) and then calculating
R'(P~) through (3) performing the integral by Simpson's
rule [the equalities (7) were used when needed]. The defi-
nition (6) was replaced by the equivalent one

2 —1
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taining the condition P(0) )0. The convergence was good
in general, but not always. Sometimes it was necessary to
start again with a different initial set of values of P(6).

The (non-negative) function So has a maximum of
about 2 X 10 at f= 1 and decreases with f, being zero
for f &0.5. The form of the function shows that a test is
easier if f is close to l. In the experiments so far per-
formed' f ranges between 0.84 and 0.96.

The experimental tests of symmetric LHV theories
should discriminate between the hypotheses S=O (quan-
tum prediction) and S )So (symmetric LHV theoretic
prediction) by establishing a confidence interval of S from
the empirical data. Let us assume that an experiment is
performed by recording the number of coincidence counts
with the polarizers at the five angles as stated above, the
duration of the measurements being the same at all angles.
It is possible then to assume that the empirical results

IR~ I form a sample of a five-dimensional population with
mean IR& ] and standard deviation [5RJ I. Hence, it is
necessary the find upper and lower limits of S, compatible
with this assumption. To do that, from the mathematical
equality (for all j)

( RJ~ R~ )+ (R—J
—.R) ) —(RJ. Rp )—

=2(RJ —R~ )(RJ —Rp),

~002

So

~001

l

0.9

FIG. 1. The "distance" So between symmetric LHV theories
and quantum mechanics as a function of the parameter f At.
f=0.88 the 95% confidence interval of S is shown correspond-
ing to the first Orsay experiment (Ref. 2).

S =0 if X&XM
we obtain

S =—(VX —V'&M')' if »XM'
(12)

—,
' (SN+ Y X)=g[(R, R, )(R, —R—P)/5R, '],

J
(8)

where X is given by (5), and I define [compare with (6)]

S=g [(Rp RJ ) /Rp] /—g Rp
J J

Y=g [(R)—RJ) /5R~ ],
N:—S 'g [(Rp—RJ) /5RJ ]

J

=QNJ=Q (RJ /5RJ ),
J J

(9)

so that cV, as we11 as X, can be calculated from the data.
As (RJ —RJ )/5RJ. is normally distributed, Y has a 7 dis-
tribution, so that [Rz ) must satisfy

of the confidence interval [S,S~]. If S ~0 there is a
violation of quantum mechanics, if SM & So the sym-
metric LHV theories are disproved.

A rigorous analysis of the performed experiments is not
possible because they have not been made according to the
stipulations stated above. In particular, the empirical er-
rors 6R should be proportional to the predicted counting

Jg
rates RJ. . However, we may make the reasonable assump-
tion that the quantities X and N can be calculated by (5)
and (9) from the available data. Then, it is easy to see
that only the experiments by Aspect et al. have statistics
of the order needed for a test of symmetric LHV theories.
In fact, for experiments not violating the quantum predic-
tion (all but one'), Eq. (11) shows that the relative errors
in the measurements should be at most of the order

5R/R =I/~N =V So/X~
0& Y(YM (10) =(3—7)X)0 ',

where gM corresponds to the desired confidence interval.
For instance, for a 95% significance level, gM ——11.1.
Then, the confidence interval is given by the set of values
of S compatible with (8) and (10). The extreme values of
the right-hand side of (8) are found from the Schwarz in-
equality, which gives

i
Y—X+SN

i
&2&SNY .

This leads to the desired upper limit

SM ———(~X+V X~ )
cV

and lower limit

while typical values are almost 10 times larger. The As-
pect series of experiments have far better statistics, but it
is very difficult to estimate X and 2V from the published
data. Only one detailed table of an experimental run has
been published, from which data we have calculated the
confidence interval shown in Fig. 1. The experiment is,
therefore, compatible with both quantum mechanics and
symmetric LHV theories. (It is possible, however, that a
detailed analysis of the unpublished data shows a viola-
tion of symmetric LHV theories. )

A problem with the Aspect series of experiments is that
they achieve a high statistics by using intense atomic
sources, which gives rise to a high rate of accidental coin-
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cidences. Although the correction of these by background
subtraction is a quite standard procedure, ' it has been
criticized. In consequence, future experiments should try
to avoid any background subtraction.

In summary, the test of symmetric LHV theories re-
quires new experiments combining (1) an atomic cascade
of type J=0~1~0, which allows a factor F(g) of about
0.99, although this (rather geometrical) correction could
be confidently included in the LHV prediction and it is,
therefore, less relevant, (2) (calcite) polarizers having
e /e~ & 10, so giving a value greater than 0.999 for the
first factor of f (1), and (3) relatively high statistics. The
three conditions have been achieved in experiments al-
ready performed, but never simultaneously. In particular,

Aspect et al. failed in the second requirement. On the
other hand, calcite polarizers have been used only once, in
the experiment by Holt and Pipkin, " but the atomic cas-
cade of that experiment was of the type J= 1~1~0,
which gave a relatively low value for F(g) (about 0.95)
and, in addition, this experiment has been strongly criti-
cized, the quantum violation reported in it being current-
ly attributed to systematic errors. It must be taken into
account, however, that according to our calculation the
conflict between quantum mechanics and symmetric LHV
theories should more likely appear in experiments using
calcite polarizers, which strongly suggests the need of new
experiments with these polarizers in order to clarify the
Holt-Pipkin "anomaly. "
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