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Equilibrium between radiation and matter for classical relativistic multiperiodic systems.
II. Study of radiative equilibrium with Rayleigh-Jeans radiation
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We continue the study of the problem of equilibrium between radiation and classical relativistic
systems begun previously [Phys. Rev. D 27, 1254 {1983)].We consider the emission and absorption
of energy by a relativistic pointlike particle immersed in a Rayleigh-Jeans radiation field. The parti-
cle is acted upon by a force which, if alone, would produce a multiply periodic motion. It is shown
that radiative balance at each frequency holds. A discussion is given of the results reported in both
papers.

I. INTRODUCTION

This is the second paper of a series dealing with the
study of the equilibrium between radiation and classical
relativistic material systems. In the first paper' we
showed that, if a relativistic multiperiodic system is im-
mersed in a random radiation having a Rayleigh-Jeans
spectrum at a given temperature, then the equilibrium dis-
tribution of the system is the Maxwell-Boltzmann distri-
bution. In this paper we shall show that, under these con-
ditions, the radiation field is also in equilibrium at each
frequency. That is, the power emitted and the power ab-
sorbed by the system exactly cancel at each frequency on
the average.

As is well known, the problem of the equilibrium be-
tween radiation and matter (i.e., the derivation of the
blackbody spectrum) was actively studied at the beginning
of the century. In the last few years there has been
renewed interest in the subject. All previous studies were
made in the nonrelativistic approximation. In this con-
text, Boyer has shown that if we impose energy balance
at each frequency and for each state of the mechanical
system, we are led necessarily to the Rayleigh-Jeans (RJ)
spectrum for the radiation and the Maxwell-Boltzmann
(MB) distribution for the material system. The same con-
clusions are obtained if we impose the less stringent and
more physical condition that the energy balance is satis-
fied at each frequency ("radiative equilibrium" ). Howev-
er, for relativistic systems, Boyer has suggested recently
that the MB and RJ distributions might be incompatible.
We have shown in Ref. 1, as mentioned above, that this is
not the case.

In order to give a complete proof of the existence of an
equilibrium state, it is necessary to show that not only
does global equilibrium exist„but so does radiative equili-
brium, that is, equilibrium at each frequency. This
guarantees that the spectrum of the radiation does not
change with time. The proof of the radiative equilibrium
is the main purpose of this work. It is necessary to point
out that we are considering the equilibrium between radia-

J

tion and matter at a classical level. Therefore, we consider
an isolated cavity with perfectly reflecting walls and a ma-
terial system inside. With these conditions, the radiative
equilibrium is equivalent to Kirchhoff's law, which is a
well-known consequence of the general principles of ther-
modynamics. However, it has been conjectured ' that the
Kirchhoff law might not be valid if one assumes the ex-
istence of a nonthermal zero-point field such that any wall
would be partially transparent to it.

The plan of the paper is as follows. In Sec. II, we shall
calculate the emitted power per unit frequency interval
and in Sec. III, the absorbed power. Everywhere we fol-
low the notations and the techniques of Ref. 1. The calcu-
lation of the absorbed power rests upon a method which is
explained in Appendix A. In Sec. IV, we discuss the re-
sults obtained. Finally, in Appendix B we discuss the re-
lation between the emitted and absorbed power at every
frequency and the reduced Fokker-Planck equation.

II. EMITTED POWER

As in Ref. 1, we consider a particle which, if unper-
turbed, would describe a multiply periodic motion. That
motion is actually perturbed by the action of the random
radiation and by the radiation reaction. However, we as-
sume that these perturbations are small, in the sense that
their effect in a deterministic period is negligible, so that,
to lowest order, the power emitted can be calculated from
the deterministic (i.e., unperturbed) motion averaged over
all orbits with a suitable distribution function Wo in phase
space.

Now, according to Ref. 1, for a multiply periodic sys-
tem immersed in a Rayleigh-Jeans radiation, 8'0 depends
to lowest order only on the energy, and then on J. Also,
for multiply periodic motions the ensemble average over
an orbit equals the time average' which we must use in
order to decouple the Fourier components of the motion.
If we represent by g a point in phase space and by P, (g)
the power emitted from that point, the total power ernit-
ted is

f dg Wo[@'( J)]&,(g)= f d J d J 'dw'Wo[8'( J)]f dwI', (w, J, w', J ')

lim (2') f d J d J 'dw'Wo[S'( J)]—f dt's, {w(t),J,w', J ') .T~ QQ 0
(2.1)
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Due to the fact that both the result of the time average
and Wo do not depend on w, we can write (2.1) as

f dg Wo[$'( J)]P,(g)

= f dg Wo[$'( J)] lim —f dtP,
T~m T

n r =1+5', 5'=0
T

and then

P, = lirn —f dt lim r f dQE,T o r 4m

(2.8b)

8; JP, . (2.2) + lim —f dt lim r f dQ5'E, . (2.9)
T c

T mT o r ~4m
Therefore, the average in phase space can be put as a

time average over each orbit ensemble averaged over phase
space.

The emitted power per unit frequency interval is given
by the energy carried per unit time by the Fourier com-
ponents of the field created by the particle with frequen-
cies between co and co+d~. In order to calculate it, we
take a sphere X centered on the origin of coordinate 0,
that we take in such a way that the deterministic motion
develops around it. The power emitted is given by

P, = lim —f dt lim r f dQE,T o .- 4~
(2.10)

A procedure similar to that used in Ref. 1 with h~ and

g shows that E, can be expanded in the form

The second integral is of order I/r because in a multiply
periodic motion the acceleration and the velocity are
bounded, and the RE~ is also bounded. Therefore that in-
tegral goes to zero in the limit r~ oo. Consequently

P, = lim f der S= .lim r f dQr S, .
l'~ oo ~ P~ oo

(2.3) E, =gE e (2.11)

2

P, = lim —f dt lim f dQr .(E xB ),
T T 0 r ~4m

where

(2.4)

where r is the radius of the sphere X and S is the Poynting
vector.

Taking into account that the contribution to radiation
comes only from the acceleration fields and considering
the time average over each orbit, we have

which together with (2.10) gives

1 T C 2P, = lim lim —f dt r
T r T o 4m'

Xf dQQQE .E e

=lim r f de E E (2.12)

e nX[(n —p)Xp]
a

R(1—P n)

Ba = n
I retxEa

(2.5a)

(2.5b)

As E is real, E =Eand therefore

P, = lim r f dQQ
I
E-

I

= QP, (n'too)
r 4m

n n

(2.13)

0

(2.6a)

(2.6b)
P, (n coo)= lim r f dQ

I

E
r ~ 4m'

(2.14)

and the subscript ret means that the corresponding quanti-
ty must be calculated at the retarded time.

From (2.5a) and (2.5b), it is seen that

The meaning of these quantities can be easily under-
stood. If the acceleration field of the particle includes
only one frequency, i.e.,

E.xB.=E.x(n
I „,xE. )

=Ea n
I ret Ea 'n

I retEa =Ea n
I ret ~

whence it follows

T
P, = lim —f dt lim — r f dQr n

I «tEa . (2.7)
T ~ T o r~m4m

Now, in the limit r~oo, we have

the corresponding average emitted power is given by

P, (no)= lim —f dt lim r f dQ
I
E,(no)

IT oo T O r oo 4&

=P, (no too)+P ( —no ~oo)

In view of that, the emitted power at a frequency ~,
Ie(~) can be written, after averaging over phase space,

n=r +5, 5=0 (2.8a)

with

6-r"'=0

so that

1,(~)= f dgWo(g)

X g'5(co —n ore)[ P( ego)+Pe( —n. coo)] ~

n

(2.15)



2242 R. BLANCO, L. PESQUERA, AND E. SANTOS 29

where g' is the sum extended to those values of n such
that

M
ll co p = g n; cot )0 .

Let us calculate the term P, (n cop) given by (2.14). To do
that, we must calculate the Fourier coefficients of the
electric field E(t),

T
E = lirn —f dt E,(t)e

~ T
~X n — X

R(1—P.n) ret
(2.16)

As is usual (see Ref. 1), we make the change in the integral t~t'=t„, (t, r ). With the reasoning of Ref. 1 we write

and

1 r, e n X [(n P)X—P] i n—tn, .t(t') dtE = lim — dt' — e
R (1—/3'n ) dt

(2.17)

t =t'+
~

r —g(t')
~

=t'+ R, —
C C

dt
, =1 Pn-.

dt

Now, in the limit r~ no, R =r r—g and n =r +6 with 5 given by (2.8a), whence we have, neglecting terms in llr,l, e r X[(r p)X—p] in t—0 t' —in tn rit in ta (rn g/n)E = hm — dt'—
T ao T P c r(1 P rP)~

It is trivial to show that

(2.18)

r'X[(r —P)XP] «X(r"'XP)
(1 Pr ) — dt 1 —P r

whence we obtain, after an integration by parts,
T

E = lim —f dt' [r X(r X p)](—t')in cope
' e

Il T T O

and, finally, it results in

(2.19)

(2.20)

T T'

P, (n.cop)= lim r f dfl lim lim, f dt( f dt's ——(n cop)
r ~4m T~~ T'~m TT'

X(Ir 'X [r 'X p(t, )]j.Ir 'X [r"'Xp(t, )] j )e

r"'[g(t, ) —g(t, )]
Xexp in mo (2.21)

The product between heavy parentheses can be written

P(ti) (I rr ) 13(t~)—
with the notation of Ref. 1. With the change t( t2 ——u and using —(2.9) of that reference we get

(2.22)

P, (n cop)=— f dw lim —f du e f dQP. (I rr ) P "ex—in p7.

4~c (2~)~ T T C

(2.23)

Taking into account Eq. (5.22) of Ref. 1, we have

0[8'](co,w, u;cop)'=c f dQexp i r(r r") —P (I r—r ) P "= g cr —[8'](to, cop)e'" e, (2.24)
C n, m

and therefore
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e (n'cop) . 1 r —i n moii 1
P, (n cop)= — ~ dw lim — du e —o[S'](n cop, w, u;cop)

4~c (2 )M r~~ T C

e& (n cop f dw lim —f du e
'"'" " g cr [N'](n. cop', cop)e'

'
e

4mc (2n ) T~m T 7

(2.25)

Hence
2

P, (n cop)= — (n cop) cr [5'](n cop, cop) .
4mc

Finally, from (2.26) and (2.15),

I,(co)= — co (2n) f d J d J 'dw 'Wp[$'( J)]g'5(co nc—op)Re[cr [8'](n cop., cop)],
2&C

(2.26)

(2.27)

where we have used

and the fact that the term under the integral sign does not depend on w.

III. ABSORBED PO%'ER

2

f dQ e(k, A, )
A, =1

Xcos[ k. r —co't +8( k, A, )],
(3.1)

where 8 is a random phase with uniform distribution. If
we consider a given sample of the background stochastic
field, we assume that the state of the system is given at
time t by the phase-space distribution p(g, t) so that the
absorbed power from E„~„is given by

P, (co,co+bco, t)= f dgV. eE c, (g, t)p(g, t) . (3.2)

If we average to all samples of the stochastic field we
have

(P, (co,co+bco, t)) = f dgeV (E„o,„(g,t)p(g, t)) . (3.3)

We must obtain the energy absorbed by the particle
from the background field. As the magnetic field does
not produce work, we should consider only the electric
field. We must obtain the absorbed power by the particle
from the component E„~„(r,t) of the field whose angular
frequency is between co and co+A,co. This can be written
(see Ref. 1)

&2

E„g„(r,t) = f dco' 3r(co')

The absorbed power at the stationary state will be ob-
tained taking the limit

P, (co,co+ hco) = lim (P, (co,co+bco, t) )t~ ce

= lim f dgeV (E„~„(g,t)p(g, t)) . (3.4)t~ 00

If we write the probability density as a sum of the
equilibrium density 8'o—uncorrelated with the field—
plus fluctuations 5p, we see that the absorption of energy
is due to the correlation between the stochastic field and
the density fluctuations.

In our problem, the stochastic force is not a white noise
and the correlations must be calculated with some approx-
imation procedure. Problems of this type are usually
solved using Kubo' linear response theory which, in fact,
has been applied to the nonrelativistic theory of
radiation-matter equilibrium. Kubo theory allows the
calculation of the power absorbed by a system in statisti-
cal equilibrium from an external electromagnetic field up
to lowest order. It is assumed that statistical equilibrium
exists before the external field is applied. However, in our
case this condition is not fulfilled because the equilibrium
is produced by the same external field (the background ra-
diation) from which the absorption must be calculated.
Therefore it should be necessary to perform a dynamical
calculation of the correlation between E ~„and p. In
Appendix A, we develop this calculation by a method
which allows to obtain the correlation from a series of cu-
mulants which converges asymptotically. The final result
can be written

2+2
lim (e(E„g„(g,t))ip(g, t)) = —f dco'', co' g f "du f dII y,, (V ")

2c J=

, po —u, ()
X cos co' .( r —r )—co'u „8'p(g),

C
—Q



R. BLANCO, L. PESQUERA, AND E. SANTOS

where TI is given by (A40).
If the spectrum of the radiation is of the RJ type —i.e., 8' =constant —Wo is to lowest order a function of the deter-

ministic energy alone. Then

„Wo——VJ "Wo[8'] .
Bpj

Therefore
3 ~—ug T,,(V ") „Wo(g)=(I rr ).V—

ap,
"

whence it follows

(3.6)

(3.7)

co+66k I

lim (eE a (g, t)p(g, t))= —
3 f dt0'~' f du f dQ(I —r r )p' "cos ro (z —r ")—~'u

0 c

(3.8)

and the absorbed power per unit frequency is

I g (co,co +6co ) ~0~0 . —u ~~0 —uI, (co)= lim = —e f dg f du f dQV. (I rr ) V— "cos r(r r—") —eau—Wo . (3.9)
hco~0 ECO 0 c

It is possible to extend the integral over u to negative values. To do that we consider Eq. (3.9) for u &0,

2 0
R = e3' —f dg f du f dQV (I rr ) V "c—os r(r —r")——cou Wo

C
—00 c

(3.10)

Then, we can change u'= —u and g'=P, s'o that dg=dg' and g=g " with the result that Eq. (3.10) agrees with (3.9).
Therefore, we can write

2 2 2 + 00I.(~)= ' f—dg f "du f dQV. (I rr ) V —"cos —r (r —r ")—cou Wo.
2c 00 c

(3.11)

Using again (2.24) we obtain

du g o „[8'](cg;co )oe™~e ' e

2 2 + 00I (a))= —e
~ f dg f du WoR eIo.[8'](a),w, u;co o)e

co 9= —e
z

Re f dJdJ'dw'Wo f dw f (3.12)

and, finally

2 2 2

I,(c)o= — (2n) m. g' f d J d J 'dw 'Wo[S'( J)]&(co—n. roo)Ref o.- [8'](co;coo)I . (3.13)

Taking into account that, according to Ref. 1,

1Wo=—,Wo

we have the desired result

I,(co)+I,(co) =0 . (3.14)

We shall study in Appendix B the relation between the
emitted and the absorbed power per unit frequency, and
the coefficients of the reduced Fokker-Planck equation of
Ref. 1. Moreover, we shall show that in the case of the
Rayleigh-Jeans spectrum a stronger type of balance which
implies not only radiative balance (3.14), but also detailed
balance, is satisfied.

IV. DISCUSSION

The conclusion of our work (including Ref. 1) is two-
fold: First, that a relativistic material system immersed in
a background radiation with a Rayleigh-Jeans spectrum
approaches a stationary state given by the Maxwell-
Boltzrnann distribution secondly, in this paper we have
proven that in this state the system is also in radiative
equilibrium, which means that the energy of the system
does not change on the average and that the spectrum of
the radiation does not change either. In this paper we
have not proven that it is not possible to have equilibrium
with a radiation having a different spectrum. The proof
of this statement can be done with a particular system
showing that equilibrium does not exist if the radiation
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st
&c «&r ~

d
&c «&r ~

(4.1a)

(4.1b)

where r, is the correlation time of the stochastic force, r„
is the relaxation time, that is the time needed for the ef-
fect of the force to be non-negligible. Here st stands for
stochastic and d for damping. Also, in order to use the
Haken' reduction procedure, it is necessary for the deter-
ministic time to be small in comparison with both relaxa-
tion times:

T «7„
T «7r

(4.2a)

(4.2b)

The deterministic time T is essentially the period of the
deterministic motion. This condition is necessary in order
that the orbit is not changed too much by the action of the
stochastic and damping forces.

The first problem we have is that the Rayleigh-Jeans
spectrum does not have a correlation time because it
diverges at high frequencies (ultraviolet catastrophe). The
problem of the divergences is a fundamental one of classi-
cal electrodynamics and we will not study it here in detail.
A possible solution is to use extended —instead of
pointlike —particles. The extended particle produces an
effective cutoff in the frequencies of the stochastic force
whose inverse can be taken as a correlation time. For
some reasonable models of extended particles' we have

c —&O&O (4.3)

spectrum is different from the RJ one. Actually, this has
been made with the nonrelativistic anharmonic oscillator.

Our results show that there is no inconsistency between
MB and RJ distributions, contrary to Boyer's conjecture,
thus putting on a firm basis classical relativistic statistical
mechanics. However, there is a difficulty with the fact
that the RJ distribution is not a true spectrum, because it
gives rise to a divergent energy density. We shall com-
ment on this problem below, but before that we shall
study the validity of the approximations involved in our
study.

Obviously, the first limitation comes from the difficul-
ties of the classical electrodynamics of point particles. In
our work, we have considered all deterministic orbits, in-
cluding the ones with an energy near the minimum of the
potential (assuming that it exists). When the size of the
orbit is of the order of the classical radius of the electron,
the model of a point particle lacks its validity, i e , t.he.

Lorentz-Dirac equation is no longer correct. In order that
this difficulty may be overcome it is necessary that such
orbits have a small probability. As the average energy of
the MB distribution is k8=m 9' (8 being the absolute
temperature), we see that our results will be not valid for
too low temperatures. Of course, this problem is not
specific of a relativistic theory.

The main approximation involved in the solution of the
stochastic differential equations of motion is the Markovi-
an one. "' This approximation rests upon the assump-
tion that the forces due to the damping (radiation reac-
tion) and the background field are small. More precisely,
the following inequalities should hold:

where

2e7o-
37tlC 3

(4 4)

Now

iP /T«E.

22
iP, i= aga

3c

(4.5)

(4.6)

and a o. has values between y a and y a . Although
Afor a circular orbit a a~ takes the smallest of these values,

we consider the largest one which improves the estima-
tion. Then we have

2eT ya «mc (y —1).
3c

(4.7)

As we said above, the acceleration can be written as

a -UIT
and then we have

2e U
2 2

y «mc (y —1) .
3c T

Writing

kO
q

—6,
mc

As we shall see later, an estimate of condition (4.2b)
leads to the inequality T»~, for moderately relativistic
temperatures, which guarantees that, under those condi-
tions, inequality (4.1b) also holds.

Moreover, at the equilibrium state, both relaxation
times r'„' and ~„should be of the same order. Therefore,
the estimation of the condition (4.2b) alone is enough to
guarantee the validity of the approximation.

It is to be noted that the spectrum of the background
fie1d appears multiplied by the absolute temperature 8.
As long as the spectrum gives the order of magnitude of
the random force intensity, it seems reasonable to think
that, if the temperature is too high, the effect of the ran-
dom force will no longer be perturbative. An important
question is whether or not the bound for 8 allows for rela-
tivistic velocities, because, if it does, the results obtained
will be valid, at least, for moderately relativistic systems.

What we have to verify is that inequality (4.2b) holds
for those orbits for which energies are of the order of the
most probable value, that is, kO. Clearly, this condition
depends on the deterministic force both because the radia-
tion of energy depends on the acceleration of the charge,
and because the average energy depends on the external
field. Consequently, our estimation is not necessarily
valid for all the systems.

First, we suppose that the averages of the kinetic ener-
gy, E, =mc (y —1), and the total one are of the same or-
der; and, secondly, we calculate the accelerations as if the
orbits were circular. It is clear that only in each particular
case can more precise estimates be made.

Condition (4.2b) means that the energy lost by the parti-
cle in a period of the motion is small in comparison with
the total energy, i.e.,



2246 R. BLANCO, L. PESQUERA, AND E. SANTOS

we obtain

y= 1+5, U /c =5(5+2)(5+1)
So that Eq. (4.8) can be written

(2+5)(1+5) « T/rp .

(4.8)

(4.9)

Therefore we see that it is compatible to take T»7"p
and 5 of order unity, which means relativistic velocities.
In fact, 5-1 corresponds to U -0.75c . We must see
whether or not this value for T is reasonable. With the
considerations made above, we can relate the period with
the radius of the orbit. In fact, for a circular orbit

and, if we take

5-1 =-U /c ——, ,
2 2 3

whence it follows

2 16 Hr
3 2

As we have said above, the radius of the orbit must be
much bigger than the classical radius of the electron.
Consequently, we have

tion at high frequencies is slower due to the fact that a
Fourier analysis of a deterministic orbit gives a small con-
tribution to high harmonics. Therefore, we arrive at a
nonstationary state such that the spectrum of the radia-
tion is of the form cp Q(co), where A(cp) is a function
which decreases at high co more quickly than m . The
function changes slightly with time so that it decreases at
low frequencies and increases at high frequencies.

To see this clearly, we point out that, considering the
spectrum with the cutoff, as has in fact been worked out
in this paper, for e small enough, the equilibrium solution
is still Maxwell-8oltzmann, and also the radiative equili-
brium still holds when one neglects terms of order e.
Then, the exchange of' energy between the system and the
radiation will be slower and slower and the equilibrium is
never attained. Obviously, this type of problem is not
specific of a relativistic theory and it was extensively dis-
cussed at the beginning of the century giving rise to the
birth of quantum theory.

APPENDIX A

The equations of motion for the system that we consid-
er can be written

2&7'~ —23T» -6/10 sec . (4.10)

g;=F;(g)+a F; +aK;, i =1,2, . . . , 6

with

(Al)

As rp-6X10 sec, the condition T »~p is compatible
with (4.10).

Let us see in more detail why the nonexistence of a
correlation time poses no problem. The condition 7; «~,"
is necessary in order that the cumulant expansion appear-
ing in the theory of the Markov approximation is conver-
gent, at least asymptotically. If there is not a correlation
time, we need another parameter in order to guarantee the
convergence.

In order to see what this parameter is, let us note that
our calculations are made by introducing a cutoff in the
spectrum, which is written co exp( —ecp) instead of co .
After obtaining the Fokker-Planck equation with that
spectrum it is seen that everything in this equation is fin-
ite in the limit e—+0. Inspection of the expression for the
diffusion coefficient shows that the convergence depends
on the fact that the contribution of the high frequencies to
the deterministic motion decreases quickly enough. In
other words, the deterministic motion produces an effec-
tive cutoff and we have an effective correlation time of
the order of the deterministic period. This allows us to
work with a spectrum of co type which has not a definite
correlation time.

Before concluding, a few words are convenient to clari-
fy the real meaning of the results obtained. Let us consid-
er a material system in a cavity with walls which reflect
perfectly at all frequencies. We assume that at the initial
time there is no radiation in the cavity and the material
system has a finite energy. Then the system radiates and,
after some time, the spectrum of the radiation should ap-
proach the Rayleigh-Jeans spectrum at low frequencies.
The exchange of energy between the system and the radia-

g;=x; and g;+3——p;, i =1,2, 3

Bp
Bt

=~pp+ ~ip

where Wp represents the unperturbed motion

(A2)

6

~pp = —g (Fip)
i=1

and W~ the perturbation

and where F; is the deterministic force, a F; the radiation
reaction, and aE; the background electromagnetic field.
The constant a, which is of order e, gives a measure of the
intensity of the radiation reaction and the background
field. We shall assume that the effect of these forces is
small in a deterministic period and besides, that the corre-
lation of the stochastic field decreases quickly with a
correlation time ~, such that a~, &&1, which corresponds
to conditions (4.2a) and (4.2b). These are the conditions
for the validity of the reduced Fokker-Planck equation
used in Ref. 1 for the calculation of the probability distri-
bution in the equilibrium state.

Gur aim is the calculation of the correlation

(E,a„(g,t)p(g, t) ),
E„a„being the component of the electric field with fre-
quencies between m and ~+Am, and p the probability dis-
tribution in phase space. To do that we write the con-
tinuity equation for p,
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6

W,p= —Q [p(a I',"+aK; )] .
(=i i

We introduce the interaction picture, defining

—Wotp=e p,

so that

(AS)

=2', (t)p(g, t) .

The solution can be written in the usual form

p(g, t) =T exp dt'Wi(t') po,

where T is the operator of time ordering, i.e.,

(A6)

(A7)

r

T exp f dt'W, (t')

anci po =pp. Then

00 f

f, «, f 'dt, f " 'dt„W, (t, )W, (t, ) ~ ~ W, (t„)
n=0

(A8)

p(g, t) =e T exp dt'W, (t') po .

(A 10)

If we average over the samples of the stochastic process and assume that po is uncorrelated with the process, we have
t

(p(Ct))=e ',(T exp J dt'3't(t') pe.

From this result and Eq. (A9) we obtain

p(g, t)=e T exp f dt'W&(t') T
e

Finally, the desired correlation is

(eE e (C t)P(C, t)) (eE e (C, t=)e T

that we shall write as

—1

exp f dt'9', (t') e ' (p(g, t) ) . (Al 1)

exp f dt'W, (t') T exp f dt'9'i(t') e (p(g, t) ) (A12)
e

(eE„t,„(g,t)p(g, t) ) =U(co, bco, t, g)(p(g, t) ) . (A13)

In the limit t~ 00, we know that (p(g, t) )~Wo, so that we must calculate the operator U(co, hco, t, g) To do th.at we de-
fine the operator

r —1

U(co, hco, t, t', g) = eE„i,„(g,t')e 'T exp f dt "9'i(t") T exp f dt"Wi(t")

so that

U(co, bco, t, g) = U(co, b,co, t, t, g) .

Now, taking into account (3.1) we see that E„~„canbe written as

E„i),„(g,t)=Re f dco'e '"'N(co', g),

(A14)

(A15)

(A16)

where C) is a process which can be obtained trivially from (3.1). Therefore U can be written

U(co, bco, t, t', g)=Re dco'e '"' dd'(co', t,g),

where dd' is given by the expression obtained putting C) instead of E„~ in (A14).
Taking into account that

(A17)

g E„g„g (g, t) =E(g, t), (A18)

we obtain, from Eqs. (A17) and (A14),

B(t,t', g)= g U(nbco, b.co, t, t', g)
n=0

=Re f dcoe '"' k(co, t, g)

—1

=(eE(g, t')e T exp f dt Wi(t ) T exp f dt ~i(t )
L

(A19)
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where the correlation involves now the background field with all frequencies. From 8(t, t, g) it is trivial to obtain
k (co, t, g) in the form

4 (co, t, g) =—f B(t,t', g)e' 'dt' (m ~0) . (A20)

Now we study a series expansion for B(t,t, g) and we will analyze the behavior of the resulting terms, as regards their
order of magnitude when their Fourier transform is made in order to calculate 4 (co, t, g).

The expansion can be obtained from (A19) by means of a technique, due to Van Kampen, ' which gives rise to a cu-
mulant series. Note that in Ref. 15, instead of E(g, t')e ', there appears the same operator W& at time t; nevertheless,
this fact does not influence the formal expansion. The result which we obtain can be written in the form

B(t, t', g)= g 8 (t, t', g), (A21)
m=1

'm —28 (t, t', g)= f dt) f dt2 f dt $(( eE(g, t') e '9'$(t]) .9'[(t ]))) (A22)

and (( )) represents the ordered cumulants of Van Kampen. '5

The curnulants have the "cluster" property which means that they are negligible if two contiguous times differ more
than the correlation time of the background field. This is the reason we have introduced an expansion for 8(t, t,g) and

not directly for U(co, hen, t, t', g), because in that case the first component should be E ~„whose correlation with the
background field is oscillatory and does not decrease with time. However, for the total field E the correlation decreases
in a time interval of order r, and the desired property of the cumulants is fulfilled. As a consequence of this property,

each term 8 is of order a(ar, ) and the expansion (A21) converges asymptotically, while a similar expansion for U
requires a more careful analysis, which we make in the following.

The Fourier transform of (A21) gives

4(co, t;g)= g k (co, t, g) (A23)

with

(co, t, g)= —f 8 (t, t', g)e' 'dt'.
77

(A24)

Now, because of the cluster property, in Eq. (A22)
~

t —t
~

(r„and as t& is integrated between 0 and t, it is clear that
B~ contributes only if t belongs to the interval ( r„t+r, ), w—hich, for t &&r„coincides practically with (O,t). After
that, it is trivial that each k~ is bound by a quantity of order ta(ar, ) . As we are interested in the stationary state,
t —+ Oo and that order-of-magnitude estimation loses in principle its meaning. However, we shall see that the expansion is
yet valid. To do that, we write the contribution to the mth term to the correlation (A12),

67+AN . , ] + oo

C (t)=Re f dao'e '"'—f e'"'dt'

&& f dt, f dt2 . J dt, ((eE(g, t')e ' ' W, (g, t, )

~Q(&) &2) WQ(t 2
—f [)

so that

(A25)

(eE„t,„(g,t)p(g, t)) = g C (t),

and let us make the changes of variable
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Then Eq. (A25) is written
t t —u 2

(t)=Re f d~' f— dr&e ' f due '""f drq

' —"—(~2+ +~m -2) Wpu ~p&zX f dr ~ ((eE(g, r~)e W&($,0)e ' 'W&(g, —rq)

Xe ''~i(0 —r2 —r3) e ' '~i(k, —[ra+ +r -il)&&

~p( —u —72—' ' ' —7' )Xe

where we have subtracted the time t —u in every W&, which is possible for a stationary process.
After that, for the cluster property of the cumulants, these are negligible when the time interval between two succes-

sive operators W~ is larger than the correlation time. Moreover, the deterministic motion does not give rise to diver-
gences, the motion being multiply periodic. Then r; & r, and the integrals over r; give rise to a term of order (ar, )
Therefore the possible divergences appear only in the u integral, which we study in the following.

Let us divide the interval of that integral in two parts,

t t —(m —2)r
C

dQ 0 ~ ~ dQ' + dQ
0 0 t —(m —2)r

(A29)

The second contribution presents an integration interval (m —2)r, so that this part is of order (m 2)w,—{ar,)

even in the limit t~ oo. With respect to the first part, we note that the conditions

0&~2&~, ,

0&%3& vc ~

(A30)

0 «m —1«c
0&u &t —(m —2)r,

imply

W2& t —Q,

W3& t —Q —W2, (A31)

, &t —u —(r+ +r, ),
whence it follows that

[O, t —(m —2)r, ]X [O,r, ]X [O,r, ]X . X [O,r, ]
C [O, t (m —2)r,—]X[O, t —u] X [O, t —u —v2] X X [O, t —u —(&2+ . +r p)]

and again the cluster property of tire cumulants leads to the result that the contribution of the first term of the right-
hand side of (A29) to (A28) is of the order of

t —(m —2 w

C~(t)=Re f den' f '
dr~e' "f— 'du e

C

7 1

X f de f dr3 f dr~ ~{{eE(g, r&)e ' W~($, 0)e ' 'W, (g, —r2)

Xe ' " '~~(g, —[r~+ . +r ~])&&

Xe {p(g,t) &,
Wp( u 'r2 ' ' 'r~ l ) j (A32)

and, assuming that t is large enough,
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T t 'r

(t) —Re f dco' —f '
dr, e'""f du e ' '" f '

dr2

X f dr f dr3 . f .dr, ((eE(g, r) e ' W, ($,0)e 'Wi(g, —r2)

&&e
' 'W~(g, —[r2+ +r i])))8p(g),

(A33)

where we have used

and, due to the properties of the action-angle variables,

so that

= X'p„( J«J «w «r2« . , r~ i)e
n

~ +
W()Q —i n. w ~n'~OQ

e p= p ( J, J ', w', rz, . . . , r~ i)e '"' e

and we have taken into account that 8' is a constant with
respect to the deterministic motion.

Now we can analyze the divergences that appear in
(A33) when we take the limit t~00. We see that u ap-
pears in (A33) due to the action of the classical Liouvillian
on the phase-space coordinates. Therefore, we will have,

WOQ
on the right of e ', some function

Therefore, the integral on u gives rise to a term of the
form

—iu(co —n .PoO)
~ ~

~

; Q in Pooudue e
i(co—n—cop)

(A34)

which is bounded if co~n. cop and increases as t for
co = n. coo.

As a consequence, the divergences appear at those fre-
quencies co which agree with some frequency of the multi-
ply periodic motion. The important thing is that in each
term of the cumulant expansion all frequencies of the
multiply periodic motion appear. Therefore, every one
behaves as t if co coincides with some frequency n. cop and
are bound in the opposite case. As the remaining contri-
butions to C'" are of order (av;) ' we obtain, finally,
that for frequencies co&n copen, C~ r, (ar-, )™I and if
co=n cop for some n, C -t(ar, )

' for all t.
As a consequence, the expansion found is valid and we

can take the first nonzero term only, namely Cq because
C& =0, in the estimate of the correlation (A12),

(eE„a„(g,t)p(g, t)) =Re f dco' —f drie' "f du e '"'"((eE(g,ri)e '"Wi(g, O)))e (p(g, t)) . (A35)

As the second-order cumulant is the correlation and the mean value of the background field is zero, in Eq. (A35) only
the fiuctuating part of W, contributes,

In our case, the stochastic force has only components 4, 5, 6, aK;+, I:;"and, besides, i——
c) c)

(al«; )= g (F;")=0,

so that

(A36)

Gn the other hand, the evolution operator of the multiply periodic system verifies'

(A37)

After that, the expression (A35) can be written

Go+ Lido ] + oo t
(eE t, (g, t)p(g, t) )=—f dco' f d—ri f du cosco'(r& —u)

X eEr, ~1 F;"r ",p ",0 p, t
i =1 ~pi
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The correlation of the background field can be written in terms of the expressions of Ref. 1,
2 2 ~0

(E;(r,~&)E~"(r ",p,0))=e f dco 3 f dQTJ(V )cos co .(r —r ")—cor&
C C

(A39)

with

T,J(V)=(Q,J. —p; t'J )+ g E&k, e;„tel Vk .
krl

(A40)

Substituting (A39) into (A38) and integrating over r~, we obtain

ro+hr» t ao co"2+2(co")
(e{Q„&„(g,t))~p(g, t)) = f— dco'e f du f dco"

~0
~ g fde T',J.(V )5(co' co"—)cos co' .(r r")—co'u — „(p(g,t))

"+~",e co' 3' (co')
dco

CO 2c

t 3 —uX f du f dQ P TJ(V ")cos co' (r —r ")—co'u
a J= C

(A41)

where we have taken into account that cu' and co" are both positive.
We have seen that this expression gives the main contribution to the correlation for any time t. What happens in the

limit taco? We must note that in the absorbed intensity, that expression is integrated over phase space which is
equivalent to an integration over all deterministic orbits. As the divergences appear due to resonance between charac-
teristic frequencies of the deterministic motion with components of the stochastic field, an integration over phase space
of (A41) destroys the resonance effect and the divergences disappear in the limit t~ 00. If we take the limit before the
integral over phase space, there appear Dirac's 5's for each frequency co = n coo, giving each a finite contribution to that
integral. Therefore, the limit t~ oo has a sense as a distribution and we obtain expression (3.5).

We must point out that this result agrees to the first or-
der with the one obtained from Kubo linear response
theory' for a system which evolves from the stationary
state Wo under the action of the deterministic force plus
the co component of the electric background field. This
result can be understood because, in the approximation
considered, the damping force gives rise to a negligible ef-
fect. Besides, to first order, the effect of the field at fre-
quencies different from co does not appear, as is the case
in Kubo theory.

The application of this result to the problem that we are
considering has the same difficulty that appears in the
study of the validity of the Markov approximation for the
calculation of the probability distribution of the stationary
state. The singular nature of the spectrum implies that
there is not a true correlation time and we must either
make a qualitative analysis of the magnitude of the ran-
dom force or, alternatively, to start from a more correct
theory where the spectrum is cut off and it is possible to
define a true correlation time. A more detailed discussion
of this point appears in Sec. IV of this paper.

APPENDIX B

In this appendix we shall study the relation between the
emitted and the absorbed power at every frequency, and

the Fokker-Planck equation reduced to the constants of
the unperturbed motion. This relationshi has been stud-
ied previously for the nonrelativistic case, ' where F"de-
pends only on time. The power emitted at the frequency
co, I, (co), is given by Eq. (2.27). As we have seen in Ref. 1,
Sec. VA, the power emitted averaged over an orbit is
given by the drift coefficient G~(S') corresponding to a
given energy. Therefore, the total power averaged over
the whole phase space I, will be given by the average of
G&(S') in the reduced space of the constants of motion.
To see that from Eq. (2.27) for I, (co), it is enough to in-
tegrate over frequencies, which leads to

I,= f I, (co)dco

2 f dgIVO

&& g'(n. coo) Reo' [5't(n coo', coo) .
7

(81)

If we take into account that the expression under the in-



2252 R. BLANCO, L. PESQUERA, AND E. SANTOS 29

tegral is only a function of the constants of motion

~ . ~ J~» J '=(JM+i ~ . ~ J3)

I:—(toM+t i ~ ~ i to3) ~

we obtain

2
(2m. ) f d J d J 'dw'Wog'(n coo. ) Reer [8'](n co.o;coo),

27TC 0, —n
n

that is [see (5.25) of Ref. 1],

I,= —f d J d J 'dw'Gi(8 )80 ~

(82)

(83)

G)(8')= g T FJ
P)

From (83) and (84) we obtain

In order to put (83) in terms of the drift coefficients
that is, G|(J ), G, ( J '), and G ~ ( w '), we use the relation

r

88 T Fd
j=1 i=1 i ~j

M
= g co;G)(J;) . (84)

appearing in the Fokker-Planck equation [Eq. (4.3) of Ref. 1],

M
I, = f I, (co)dao= —f d J d J 'dw' g ci);G((J;)Wo

i=1

and, with an integration by parts

I, = f I, (co)dao= f d J d J 'dw'8' g [G((J;)8'0]
c=1

(86)

where the term in large brackets corresponds to the drift part in the Fokker-Planck equation for the variables J. On the
other hand, it is obvious that such a term can be replaced in (86) by the full drift term in the Fokker-Planck equation, in
view of the fact that 8' depends neither on J ' nor on w '. That is, the contribution of the drift part corresponding to J '

and w ' to the power emitted on the average is zero for each frequency. Therefore, we may state, from (86), that I,(co)
corresponds to the frequency analysis of I„while the drift term is related to the contribution of each orbit to the emitted
power I,.

Now, we consider the total absorbed power I„which is given from (3.4), (3.5), and (3.9) by

I, = f I, (co)de

w0f d~ f ding p;. 2(~)~2 f du f dQ T~~(V )cos co" (r r. ")—eau — „8'0 .c 0 c Bpj"
Taking into account (A39) we have

3

I, = —f dg f du g V (eE(r, O) F,"(r ",p, —u)) „~0,
ap,

"

(87)

(88)

where F t=e(E+V&&8/c) is the stochastic force due to the radiation field. As Wo is a function only of the constants
of motion for an arbitrary radiation field and V F" reduces to V.eE, we have

8 8'0 BhI, = —f dg f du g (F;"(r,p, O)FJ"(r ",p, u))g—
where the sum in v indicates all the constants of motion. If we write the integral over phase space as an integral along
each orbit, integrated over the constants of motion, we obtain

M 8 8'0I, = —f d Jd J'dw' g G2(8', J )
i=1 BJ.i r =M+1

Gp(8', J„' ) +G2(8', to„' )
BJ,' BMr

(810)

where G2(8', h„) corresponds to the reduced diffusion coefficient [see (4.1b) in Ref. 1].
Writing these coefficients as functions of the ones associated with the action-angle variables from the relation

M
G2(8', h )= g G2(J~,h, )= g co~G2(J~, h ),

Sr=1 & X =1BJ (811)
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which is obtained in a form similar to (84), we obtain

M M 880I, = —f d J d J 'd w ' g coax g G2(Jx,J;) +
%=1 i =1 i r =M+1

An integration by parts of this expression finally gives

BWp aWo
G2(Jx,Ji ), +G2(Jsc, w„' )

BJ,' Bw
(812)

3

I, = f I, (co)den= f d J d J 'dw'5' g g Gq(Jx. ,J;) +1BJg,. 1

' ' BJ;
G2(Jk, J„' ) +Gz(J&, ip„' )

a —,a
BJ,' Bw

.8'0 .

(813)

Again, as in (86), we may include on the right-hand side of (813) the whole diffusion term of the Fokker-Planck equa-

tion because 8' depends only on J. Consequently, I, (co) corresponds to a frequency analysis of I„while the diffusion
part of the Fokker-Planck equation is related to the contribution of each orbit to the absorbed power.

If we add (86) and (813) including Gi(J ), G&(w ), G2(J/, h„), and G2(ip, h, ), we have

I, +I,= f d J d J 'd w '8' g
p Ijt

Gi(h„)+ Q G2(h„,h„) a

V Y
Rp ——0, (814)

because Wp satisfies the Fokker-Planck equation for the stationary state. This is obvious from a physical point of view
because it. is necessary to have global energetic equilibrium in the stationary state.

Let us specialize to a relativistic system in a radiation field with Rayleigh-Jeans spectrum. In this case we have shown
that Wo is given by the Maxwell-Boltzmann distribution and that there is equilibrium at each frequency, that is,
I,(co)+I,(co)=0. We will see that in this case a stronger type of balance is satisfied, which implies not only radiative
balance but also detailed balance.

As Wp depends only on the energy, Wp[8'( J )], we may put (812) in the form

dWpI = —f d J d J 'dw ' g coax. Gq(Jx)
K=1

where we have used the notation of Ref. 1,
M

(815)

(816)

and the character symmetric of Gq(Jx) [see (6.7) in Ref. 1]. Using the expressions (5.25) and (5.31) for Gi(p) and
Gz(y), respectively given in Ref. 1 we obtain, from (85) and (815),

M

I,+I,= —f d J d J 'dw' g coax 2
(2ir) g'(n cop) ReIo- [Jx](n cop', cop)I(Wp+m O' Wp)

2&C

On the other hand, using expressions (2.27) and (3.13), we have

I, +I, = f dco[I, (co)+I,(co)]
r

00 2
= —f d~ f d J d J'dw' (2m) +coeds'5(co neap)(n —~o) Re[o- -[Jx](n ~o ~o)l0 2~c2

n

X ( Wp+ ir 5' Wo ) (818)

where we have used the identity

(819)

[see (5.22) of Ref. 1].
From (817) and (818) we see that in the stationary state, verifying Wo+m O' Wp=0, not only the full expression

under the integral is zero, but each term of the sum in n. Therefore, a stronger condition than the radiative balance,
which some authors have called "superdetailed balance"' or "detail radiative balance, " is fulfilled. This superbalance
implies also the "detailed balance" which means physically microscopic reversibility. ' In order to prove this we must
show that each current component of our Fokker-Planck equation —(4.3) of Ref. 1—is zero. In (817) each term of the
sum in L' corresponds to the component Jz of the current, so that such a component is zero. On the other hand, this re-
sult can be generalized to the remaining components of the current because the Fokker-Planck equation may be put in
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the form [see (6.10) and (5.25) of Ref. 1]

(820)
2

0= g (2n. ) g'(n co. o) ReItr [h, ](n coo, coo)](Wo+m. 3' Wo)

so that each component of the current is zero separately.
As may be seen in Eqs. (817) and (820), the detailed balance corresponds essentially to the equality of the absorbed

and the emitted power for each orbit in such a way that each term of the sum in X in Eq. (817) vanishes separately.
Each K term represents the net variation of the energy due to the constant of motion Jz. On the other hand, the radia-
tive balance corresponds to the equality of the absorbed and the emitted power for each frequency [see Eq. (818)].
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