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Comments from the editors and reviewers:

-Editors
- Dear Dr. Prado,

Thank you very much for submitting your manuscript to DSR I. As you will see, we have now
received two reviews for your manuscript which both suggest that with some extra work it
could be acceptable for publication. When preparing your revised manuscript, please consider
carefully all of them.

Kind regards
Nikolaos Lampadariou
Associate Editor DSR |

PS please note both reviewers have provided annotated versions of your paper which are
attached. The one with suffix PP is from reviewer#2. The other from reviewer #1. You should
respond to these comments also.

Please find enclosed our revised manuscript. We thank the editor and two reviewers for their
comments. We have revised the manuscript accordingly and provide specific answers below.

Please, you can find annotated versions of the paper attached. The one with suffix _revl is
from reviewer#l. The other with suffix _rev2 from reviewer #2. You can find in there the
answers of the reviewer’s comments also. File with suffix _rev3_with_changes is the paper
with all changes (reviewer#1 + reviewer#2) included with track changes. Finally, file with suffix
_rev3 is the final version, (similar to _rev3_with_changes but without track changes).



-Reviewer 1

Thank you for your helpful comments and for taking the time to point out options to improve
our manuscript. We have revised the manuscript following both reviewers’ suggestions. We
have revised our manuscript according to your comments and suggestions point by point
(please see the revised manuscript and following answers). In the following, we reply (in
standard font) to your comments (cited in blue italics font).

Please, you can find annotated versions of the paper attached. The one with suffix _revl is
from reviewer#l. The other with suffix _rev2 from reviewer #2. You can find in there the
answers of the reviewer’'s comments also. File with suffix _rev3_with_changes is the paper
with all changes (reviewer#1 + reviewer#2) included with track changes. Finally, file with suffix
_rev3 is the final version (similar to _rev3_with_changes but without track changes).

The manuscript submitted by Prado et al. explores the spatial distribution patterns of
Placogorgia sp.,

Actually, the objective of the manuscript doesn’t go into discussing the spatial distribution
patterns of the Placogorgia sp., but focuses on studying the size structure of this aggregation,
using a novel technique such as the 3D reconstruction based on Structure-from -Motion and
photogrammetric approach.

which probably is the most common gorgonian species in Le Danois Bank.

Although the Placogorgia sp. is effectively one of the most common species of gorgonians in Le
Danois Bank, its spatial distribution is very restricted. Despite the efforts of sampling and
characterization of this MPA carried out in recent years (please see references below for
details); this, is the only aggregation of Placogorgia sp. found to date. And although other
specimens have been found, they are not considered to form a three-dimensional habitat
given their isolation.

Sanchez, F., Serrano, A., Parra, S., BallesterosChlrtes, J.E., 2008. Habitat characteristicsedsrohinant of the structure and

spatial distribution of epibenthic and demersal samities of Le Danois Bank (Cantabrian Sea, N. i§pdournal of Marine
Systems, 72, 64-86.

Sanchez, F., Serrano, A., Gomez-Ballesteros, Mi92Bhotogrammetric quantitative study of habitat Benthic communities of
deep Cantabrian Sea hard grounds. Continental Res#arch, 29, 1174-1188.

Sanchez, F., Gonzalez-Pola, C., Druet, M., Gardégp®&, A., Acosta, J., Cristobo, F.J., Parra, $osRP., Altuna, A., Gomez-
Ballesteros, M., Mufioz-Recio, A., Rivera, J., Dést Rio, G., 2014. Habitat characterization of deeper coral reefs in La
Gaviera canyon (Avilés Canyon System, Cantabriax). $#eep Sea Research I, 106, 118-140.

Sanchez, F., Rodriguez-Basalo, A., Garcia-Alegre,G®mez-Ballesteros M., 2017. Hard-bottom batthabitats and keystone
epibenthic species on Le Danois Bank (Cantabria). Seurnal of Sea Research, 130, 134-153.

While modest and simple in scope, the findings of this work are relevant to our understanding
of the distribution of benthic suspension feeders based on two aspects.



First, the lack of studies published about the spatial patterns of this species in comparison to
others Mediterranean gorgonians species.

Indeed, there is no similar study on the gorgonians size distribution nor morphometrics
analysis on this or another species of gorgonian made in the Cantabrian Sea, due to its scarcity
and the depth at which they are found (always below 500m).

And second, the lack of studies based on non-destructive sampling methods.

A study based on 3D reconstruction from images taken by underwater vehicles, gives it the
advantage not only of covering the gap of non-invasive methodologies, but also taking a
further step in image analysis and generating models 3D that allow to move from 2D
measurements as a flat surface or length to 3D measurements made in a three-dimensional
space. The 3D is an aspect of vital importance for this type of habitat in which the key is
precisely the formation of three-dimensional habitats.

On the other hand, | think that there is a lack of statistical analysis that makes us better
understand the distribution of Placogorgia.

The main objective of this study is therefore to establish a baseline study, a reference status of
the population in terms of its 3D size structure, which can be used in the future as a reference
for comparisons with existing populations under similar conditions in other areas or to
monitoring along the time this gorgonian aggregation.

This is the first time that this population structure has been described. There is no aggregation
under similar conditions. A statistical analysis is carried out to describing sizes, based on a
novel parameter such as the 3D fan's surface of the specimens.

The study area is small, about 250 meters long and 10 meters wide (5 meter each transect).
The approximately 500 colonies are geo-located and in the presented maps their spatial
distribution can be observed through a visual analysis. But in this review and taking into
account the reviewer’s suggestion, the spatial statistical analysis to explain the distribution of
gorgonians (Ripley’s K function), has been added to the manuscript.

Below you can find some suggestions to improve this. More comments are on the word file.
Introduction

1 There is a paper that used almost the same technique that is not cited in the text: A new 3-D-
modelling method to extract subtransect dimensions from underwater videos L. Fillinger and T.
Funke Ocean Sci. Discuss., 9, 3879-3917, 2012

| have included it in this new version.



M&M and Results

2 Did you recorded more video transects in Le Danois Bank or only this 2? And why did you
sample two times in the same area?

Le Danois Bank or El Cachucho MPA has a length of about 72 km in an east—west direction and
about 15 km wide from north to south. In the space of only a few miles the depth changes
from 500 m at the top of the Bank to over 4500 m at the Biscay abyssal plain. In this MPA there
are numerous transects that have been made through various research cruises along the last
years. These images and other type of data favored that this area was declared as the first
Marine Protected Area of Spain. Unfortunately, not all image transects have quality enough to
apply Structure-from-Motion algorithms and achieve 3D reconstruction, and the most of them
are used to a visual interpretation.

In the study area, where most of the specimens of Placogorgia sp. are concentrated, there are
five transects, recorded in 2014 and 2017. For this study we have selected the 2 transects
using two selection criteria:

- Transects that cover the area of interest. It is not possible cover the entire gorgonian
aggregation with only one transects because the swath of the images is not enough.

- Transect over gorgonians aggregation that have quality enough for application of this
complex 3D methodology.

3 Is there a correlation between size and fan area?

It is expected that there is a relationship in most cases. But due to that gorgonians feeding
capacity resides precisely in the filtering surface and their filtering surface depends on
different forms, curvatures and ramifications of the colonies; we have decided to use the 3D
area, as the most appropriate parameter in the description of sizes of this population.

4 It would be interesting to know if the distribution of Placogorgia sp. is random, clumped or
regularly distributed along the transects. The statistical analysis to do that is called Ripley’s K.

As the reviewer suggests, it is possible to apply some type of statistical analysis that reveals the
type of spatial distribution adopted within this aggregation. The statistical analysis and the
result of Ripley’s K function have been included in the new version of the manuscript.

5 Is there any difference on the distribution and population structure between the two
transects?

No, the results are consistent between transect. It is the same area, same gorgonian
aggregation and the use of two transects is because it is not possible cover the entire
gorgonian aggregation with only one transects because the swath of the images is not enough.



6 Along both transect you measure some environmental factors like slope, aspect, rugosity,
curvature, etc. and also temperature and salinity. It would be interesting to see which are the
factors that affect the distribution of Placogorgia along both transects by means A Canonical
correspondence analysis.

Certainly, physical variables of sea-water, such as temperature and salinity, are indeed
measured using a CTD attached to the ROTV. Unfortunately, in our opinion, the use of these
physical parameters measured at a given time shouldn't be addressed to model the spatial
distribution in our case, as long as the variability during the year, month, or even a tide period
is too broad to be useful in such a small place. As for the geological variables, canonical
analysis and predictive models (GAMs or MAXENT) have been carried out at a regional scale,
modeling the entire MPA (Sanchez et al.,, 2017). Besides that, this study covers a very
restrictive area with similar slope, BPI and depth than in surrounding areas where this species
is absent, so there must be some other factors like fishing pressure or small scale currents, or
any other determinant factor that we are not able to detect at this scale.

Sanchez, F., Rodriguez-Basalo, A., Garcia-Alegre GBmez-Ballesteros M., 2017. Hard-bottom bathhabitats and
keystone epibenthic species on Le Danois Bank @baiain Sea). Journal of Sea Research, 130, 134-153.

Discussion

7 Try to go more beyond descriptive aspects and establish sound comparisons with previous
relevant studies especially in the discussion.

Ok. I have tried to improve some aspects in the Discussion section.

8 There are many sentences like (line 372-374) | suggest to change the sentence and add the
reference at the end of the sentence.

From this

In Gutierrez-Heredia et al. (2015) and more recently, in Royer et al. (2018), a skeletonization
process was proposed to measure and quantify morphometries as complex as those of
Mediterranean red coral colonies automatically.

To this

A skeletonization process was proposed to measure and quantify morphometries as complex as
those of Mediterranean red coral colonies automatically (Gutierrez-Heredia et al. 2015; Royer
etal. 2018).

Ok. I have improved them.
References

9 Homogenize the references format. Species in italics and abbreviations of the journals etc.



Ok.
-Reviewer 2
- Dear authors,

i was really enthusiastic when i received your manuscript and read the topic, as non-destructive
methods are also in my primary interests of research. It is necessary to introduce this methods
in the list of the accepted and standardized methods within the major international
frameworks of research and environmental protection. The most effective way to make non-
destructive, especially photogrammetry-based, methods stand out, to policy-maker agencies
also, is to offer examples of their real application.

In your case, you highlight some major features of an assemblage, the Le Danois Bank
gorgonian forest, stil under-studied, not well described from many point of views.

In this sense, your work is twice usefull: i) to describe a new aggregation and a vulnerable
habitat, and ii) to underline the effectiveness of an emerging methods that should be adopted
in order to preserve this kind of areas hosting such unique biota.

My revisions are all minor suggestions, to add or change some word or information, and i hope
that they will be useful to improve the final version of the article. You will find everything
directly in the revised word file that i attached here.

Let me know if there is something that you don't accept in my revision and why, or if you need
more clarifications...It is also a very good occasion for me to compare points of view about this
urgent and relevant topic and to learn more about other colleagues work.

Thank you for your contribution to deep Cantabrian benthos dynamic understanding,
Best wishes.

Thank you for your helpful comments and for taking the time to point out options to improve
our manuscript. We have revised the manuscript following both reviewers’ suggestions. We
have revised our manuscript according to your comments and suggestions point by point
(please see the revised manuscript).

Please, you can find annotated versions of the paper attached. The one with suffix _revl is
from reviewer#l. The other with suffix _rev2 from reviewer #2. You can find in there the
answers of the reviewer’s comments also. File with suffix _rev3_with_changes is the paper
with all changes (reviewer#1 + reviewer#2) included with track changes. Finally, file with suffix
_rev3 is the final version (similar to _rev3_with_changes but without track changes).
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Analysis of the population structure of a gorgonian forest (Placogorgia
sp.) using a photogrammetric 3D modeling approach at L e Danois
Bank, Cantabrian Sea

Abstract:

The presence of gorgonian forests and deep-se@s@@yregations in the Le Danois Bank promotedeitsagation
as the "El Cachucho” Marine Protected Area (MPA}XH®y Spanish Ministry of Environment, and its inéusin the
Natura 2000 network. Both habitats are considerédevable, so follow-up surveys are being perforrgedonitor
their conservation in compliance with the EU Hatisitairective. The use of a non-invasive methodolagyich does
not cause damage or alterations on benthic comiesnis particularly necessary in vulnerable ecesysstudies
and MPA monitoring.

This study analyzed the assemblage structure Pfaaogorgiasp. population using a 3D photogrammetry-based
method. The study was carried out through the arsabf the video transects obtained at the Le BaBank, using
the Politolana underwater towed vehicle during the July 2017 EG®R& survey. Recent developments in specific
software of photogrammetric image analysis allowsttacting valuable information from these videansects.
Using the Pix4D Mapper Pro software, 3D point clowekre obtained, and the size and morphometry ltfvydan-
shaped gorgonian population structure could beuetadl. Due to gorgonian’s high structural compigxite use of
length (i.e. height) as the morphometric descripfahe real size of the colonies is not appropritistead of length,
the fan surface area covered by each gorgoniamygolas selected as a suitable parameter of size.difect
measurement of this parameter was possible thrawgimplete 3D reconstruction of the gorgonian fores

A total of 426 colonies dPlacogorgiasp. were digitalized to obtain surface measuresnamdl fan spread orientation
calculations in 3D models. The results show thaggeian populations were mostly composed of a Ipigiportion
of small colonies (0-0.10 #h The population structure distribution shows ghhproportion (~27%) of recruits (<
0.05 nf) and also many (19%) large colonies (> 0.9.rin 78% of the gorgonian colonies, facing anglese
grouped inside the first quadrant (0°-90°), in adance with the main current direction in this zo@®lony
distribution and fan orientation inside the gorgonforest can be used as data sources to improwé&aring and
management programs of these unique habitats indVIPA

Keywords: Placogorgia, gorgonian forest, Underwaterofggrammetry, 3D models, Marine Protected Areas
monitoring, Le Danois Bank, Structure from Moti&@iN])

1. Introduction

Gorgonian forests conform complex three-dimensidraditats for many species, concentrating high iberdity
values in the ocean (Krieger and Wing, 2002; BuhH#losen et al., 2010; Bongiorni et al., 2010; Cerranal.,
2010; Miller et al., 2012; Ponti et al., 2016). Gonians and other corals are damaged by bottonactimg fishing
gear and often end up as bycatch on fishing vegieieger, 2001; Fossa et al., 2002; Hall-Spenceale 2002;
Althaus et al., 2009; Clark et al., 2010; Bo et 2014; Rooper et al., 2017). Their weak ability ézaver from
damage is mainly due to their slow growth ratesdpmws et al., 2002; Sherwood and Edinger, 2009 gbtyuet al.,
2014). Thus, a suitable management and regulafidisting activities and other anthropogenic diburces are
crucial for areas where gorgonians aggregationsoaeged. Their importance as biodiversity hot-spatthe deep-
sea and their high vulnerability to disturbancegehfarced the establishment of national and inténal policies to
protect coral gardens in the deep-sea in the Esidk. OSPAR'’s definition of the habitat “Coral Garsl’ describes
it as a relatively dense aggregation of coloniesmdividuals of one or more coral species occuronga wide range
of soft and hard seabed substrata. Hard-bottoml ganalens are often found to be dominated by gdaysn
stylasterids, and/or black corals (ICES, 2007). Goign assemblages are also included in the EU &talitirective
92/43/EC (EC, 1992) as components of the “1170 Rdweibitat. The large gorgonian coral find among afcps
groups, communities and habitat-forming specied thay contribute to the forming of Vulnerable Marin
Ecosystems (VMESs) in the North Atlantic. The VMEncept emerged from discussions at the United Nation
General Assembly (UNGA) and describes groups otispe communities, or habitats that may be vulrierad
impacts from fishing activities. Protecting andtoeimg deep-sea coral gardens is considered criimah the
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environmental perspective, but also because thaisability of some commercial fisheries depends their
prevalence. Many protected areas are considereghtsFish Habitats (EFH) for some commercial sggecas
recruitment or spawning areas. Both EFH managewmmathiprotected area regulatory initiatives can belmaintain
productive fisheries and a good environmental stafithe ocean (Lindeman et al., 2000; Rieser, 2B€@dlander,
2001).

There are many studies about diversity, distributimd state of conservation of gorgonian assemblageoastal
areas and in the photic zone. These works havedaerd out within scuba diving depth ranged@ m depth), and
mainly in the Mediterranean area (Harmelin and Kpbulos, 1994; Linares et al., 2008; Kipson et 2015).

Knowledge about offshore gorgonian assemblagessgsdeveloped. In the deep-sea, assessing gorgupatation

structure, i.e. specimen size frequency distribut@an be achieved using extractive sampling techasigand
applying functions to model the population struet(®Bak and Meesters, 1998; Meesters et al., 200a)e vecently,
un-invasive techniques based on underwater vehieles become key tools for this type of studieswadr the world
(Mortensen and BukWortensen, 2004, 2005; Gori et al., 2011a; Grinyale 2016; Ambroso et al., 2017).

The presence of deep gorgonian forests at Le D&k was decisive for its declaration as “El Catinlicthe
first off-shore Spanish Marine Protected Area — MP3panish Ministry of Environment, BOE 2011), which
immediately became part of the Natura 2000 Netwaska Special Area of Conservation (SAC). To effetyiv
design and manage conservation areas, monitorgygms of the protected species must be carriefFoaschetti
et al. 2002; Claudet et al., 2006; Addison, 201he El Cachucho MPA has been the subject of numestugses
and surveys in recent years to evaluate its hathisatibution (Garcia-Alegre et al., 2014; Sanckeal., 2017), but
developing methodologies to determine the consenvatatus and population structure of vulneralaleitats is still
necessary. Besides, the response of these hatmtgutection and the effectiveness of the managmegsures
applied in the area have to be monitored too.

Placogorgiasp., a plexauridae gorgonian coral originally iifeed asParamuriceacf. placomugLinnaeus, 1758) in
Sanchez et al. (2017), is one of the most vulnerapécies cited at El Cachucho MPA (Sanchez e2@08, 2009,
2017). It forms fan-shaped colonies and settlesochy substrate bottoms in depth ranges from 5000@0 m. The
fan may very well exceed 1 meter in diameter, asuhblly spreads transversally to the dominatingentis direction
(Wainwright and Dillon, 1969; Grigg, 1972), to mmize the volume of water flowing through the polyped thus
increasing their access to food.

The need to increase the level of detail of thesmeaments to define the morphometry of the gorgmnis clear; the
problem lies in the complexity of the methodologybe used for the measurement of different parametéer than
height. Structural complexity can be defined asphgsical three-dimensional structure of an ecesysthis 3D

feature is the key to obtain a better understandfrthese deep-sea habitats (Burns et al., 2016aséiet al., 2018).
In this way, if the studies are carried out in Ehaldepths, in-situ measuring with divers is ustiwever, obtaining
parameters such as the area covered by each specthmeoccupied volume or orientation is difficulben diving

without altering the coral gardens or even destrg@giome specimens.

In deep-sea studies the use of ROVs and other uatlarwehicles has become common practice, in stdd®ised
on geomorphology or geological processes (Obelet £2014; Embley and Rubin, 2018) or deep reetlaf-water
coral (Van den Beld et al., 2017). These vehiclesusually equipped with different data acquisitaystems based
on acoustic and image technologies, lighting systeand CTD probes. Until a few years ago, the etqilon of
optical information (videos or photographs) wasdthen visual analyses by an expert and the alditgccurately
synchronize and geolocate the identified specieghysical data of the water and visual analysethefsubstrate
(Sanchez et al., 2009; Neves et al., 2014; Bulhtdfmen et al., 2015a, 2015b). The importance ofifeeof non-
destructive methodologies for the study of vulntgapecies is clear both in shallow and deep-sbadis. Recent
advances in fields such as photogrammetry andalireality, together with improvements in compuderalysis
capacity, have made it possible to apply a newaambr. the 3D modeling of the study area. In nearsslareas,
photogrammetry could be a pivotal tool to reduce timpact of sampling activities based on SCUBA divers
operations. On the other hand, in deeper areasaaii¢vable by divers, it is necessary to havearstéve tools to
measure and sampling, thus, again photogrammetrg d@came one the preferable ones. Thus, by wslagnced
photogrammetric reconstruction techniques in desgpisenthic habitats studies, it is now possiblganerate 3D
models and use them for quantitative analyses imipgoour ability to study coral gardens.

The algorithms based on Structure-from-Motion (SfM§ the massive identification of common pointaumerous
overlapping images taken along a trajectory byracke in motion (Westoby et al., 2012; James andsRnp2012).
This photogrammetric approach offers the possjbditcreating advanced cartographic products ofoitean floor,
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such as 3D models of very high spatial resolutiorg fast and low cost way (Kwasnitschka et al12McCarthy
and Benjamin 2014).

Recent research uses photogrammetric reconstructiesaluate habitat structural complexity (Feretrial., 2016;
Priece et al., 2019) and successful studies havaem carried out to obtain morphometric measuresnehtoral
reefs (Bythell et al., 2001; Cocito et. al., 20Q@urtney et al., 2007; Burns et al., 2015a, 2015%tvylet al., 2015;
House et al., 2018). Some approaches use thisitehto map areas which are particularly diffidoltsample such
as habitats located on vertical walls (Robert et2017) or the Antarctic benthos, using videos poed during
under-ice dives (Piazza et al., 2018). This metlaylohas also been used for growth studies in coofdnies
(Bennecke et al., 2016; Ferrari et al., 2017; Neteal., 2018). Studies that determine the unceytdhmat can be
associated with morphometric measurements (Figwetia., 2015; Guo et al., 2016) and uncertaindigsociated
with multitemporal studies based on SfM show pramgigesults (Bryson et al., 2017; Raoult et al., 2041 the
application of this methodology to deep-sea gorgepiopulation structure is still scarce.

Studies on population structure, abundance orildligion patterns of Plexauridae gorgonians have loeeried out in

the Mediterranean Sea (Harmelin and Marinopoul@841 Linares et al., 2008; Gori et al., 2011a; Balet2012;
Griny6 et al., 2016; Palma et al., 2018) and inNloeth Atlantic (Buhl-Mortensen and Buhl-Mortens@014). These
studies deal mainly with a few shallow-water aburidspecies of the genuBaramuricea(closely related to
Placogorgig, studies on deep-water ones (i.e. beyond scudzhable depths) being uncommon and at a large scale
of distribution (see for instance Buhl-Mortensemalet2015aParamuricea placomys

No analyses of the structure of populations of @leids have been developed in the Cantabrian Sefdll Tas gap,
the objective of the present study is an accuraterchination of population structure of tfacogorgia sp.
gorgonian forest at EI Cachucho MPA. The obtainifignorphometric measurements was made exclusivelg by
high-resolution non-invasive methodology with a lowcertainty, based on a 3D reconstruction fromeunweter
images. In the context of the Marine Strategy Fraark Directive (MSFD; EC, 2008), the proposed method can
improve the benthic habitats Good EnvironmentaluUSt§GES) assessment by using benthic habitatatale under
descriptor 1 (Biological diversity) and descriptor (8eafloor integrity), with potential implicationfr other
descriptors.

2. Materialsand methods

2.1. Study area

The El Cachucho fishing ground (also known as Le dixamankby the scientific community) is an extensive
offshore bank and seamount surrounded by slopes aathplex system of channels and canyons (Figrbm the
hydrographic point of view, Le Danois Bank is lochtt the depth that corresponds to the area ofitiam between
the masses of North Atlantic central water (NACW/,ta 500 m, where there is relatively minimal siéyin and the
saline Mediterranean Outflow Water (MOW, whose nmaileus is between 800 and 1100 m depth). Thecdrta
continental slope of the Cantabrian Sea seems tm lyeneral critical to the mixing of water massksotigh
isopycnals, which is why the topographic anomalymied by Le Danois Bank favours the mixing of thesaew
masses (Fiuza et al., 1998; Van Aken, 2000). Thegmphical effects of the Bank on the general cumignamic of
the Cantabrian Sea, predominantly in a W-E directsrin the case of the slope current (winter pafeveurrent) or
the Mediterranean water flow, have a very importatd in sedimentation processes and the systeqmodfiction of
the ecosystem. The current regime reaching the Bantore intense than if it were a seamount in fhenococean.
The bank and its intraslope basin (a sedimentag aetween the bank and the Cantabrian Sea coatlirstralf)
declared as ElI Cachucho MPA (Heredia et al., 2008¢rs 234.000 ha. Depths within the area vary fd28 to
4000 meters, and several studies confirm it asodil@rsity hotspot in the Cantabrian Sea (Sanched. 2008,
2017). The area’s management plan includes speauifiasures for fishing activities, oil explorationinerals and
military activity (BOE, 2011).

The gorgonian forest is seated in a hard bottonmeaat located in the south-west of the bank (Fip. Its
bathymetric range covers from 500 to 600 meterslegith and occupies a surface of 2.88 ha. In thés,ahe
gorgonian colonies are fan shaped, and grow atrdift densities, curvatures and with varying nunadfdsranches

(Fig. 2).

2.2. The Placogorgia species
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In our present state of knowledge, the identitthefspecies analyzed here is difficult to eluciddtieough additional
taxonomic and genetic studies are ongoing and lvélldiscussed elsewhere in a taxonomic paper. Tiubest
samples show affinities with two genera within faenily PlexauridaeParamuriceaand Placogorgia. We have
attributed them to the latter genus based on mdogloal analyses and comparison with several o@entabrian
specimens of both genera.

Six are the species &lacogorgiaknown from the northeast Atlantic and the Medaeran Sea (Grasshoff, 1977).
Five of them are known from the Bay of Biscay, altijlowonly three have been found in the southern seBto
coronata (Carpine and Grasshoff, 1979, graciosa(Tixier Durivaut and d’Hondt, 1975) and. massiliensis
(Carpine and Grasshoff, 1975). Most species aréyraoiected; they are poorly known animals anddkaus needs
revision (Poliseno et al., 2017). Little is knowwoat their variability, and illustrations of longrses of sclerites have
been never published. However, it has been sugbésae variability within the genus is presumabighh three of
the recorded species probably being variants afglesone (Brito and Ocafia, 2004). Unfortunatelg, ¢ontribution
of genetics to differentiate among species hasren effective, not even to discriminate betwB&togorgiaand
Paramuriceawith certitude (McFadden et al., 2011; Polisenoakt 2017), species belonging to both genera
occurring in the same clades. For these reasorsguad species identification is still pending. Despghese
uncertainties, the Le Danois bank habitat-formingggnian has affinities witR. graciosa and patrticularly with its
anthocodial sclerites (Grasshoff, 1977; Taboadd. £2019).

2.3. Survey description

The video transects analyzed in this study weraiobtl at Le Danois Bank during the ECOMARG-2017 syrve
using the ROTV (Remotely Operated Towed Vehi®e)itolana photogrammetric sled on board the RV Angeles
Alvarifio, (Fig. 3). The ROTVPolitolana designed by the Santander laboratory of the Spaiistitute of
Oceanography (IEO), is a robust submarine towedicleehdesigned to study the deep-sea floor using
photogrammetric methods. The vehicle can be o to a maximum of 2000 m depth. In this casasects
were carried out navigating at a 0.8-1.0 knot spett4 m over the sea floor. The sled has bidorat telemetry to
control the submerged instruments (altimeter, CT@bp, compass, video and still cameras control) ated sends
data to the surface in real time. This vehicle &eguboth still pictures and HD videos simultandpusynchronizing
them with measurements of the existing environmamutaditions (Sanchez and Rodriguez, 2013).

Two video-transects were recorded in July 2017 gusirFullHD video-camera (Sony HD-700-CX) and twolLE
lights (12600 lumens / 6000 ° Kelvin). The systeasvequipped with 2 parallel laser beams separateddonstant
distance of 20 cm. This distance provides a methatale and validate the resulting model. In doldjtthe system
acquires synchronized data on pressure, temperatdrealinity (conductivity) with a CTD-SeaBird 37.

Absolute positioning of the vehicle is provided &yongsberg HiPAP 502 Super (Ultra) Short Base I(8@BL).
This fully omni directional system can be pointadany direction below the vessel, as the transduagthe shape of
a sphere and an operating area of 208& ROTYV is positioned by an acoustically operatimagsponder. Amad hoc
designed software performs synchronization of dateeal-time. An Ocean Floor Observation ProtocoDFOP
software (Huetten and Greinert, 2008) processeshikervation files subsequently and merges theim adtlitional
sensor data, which are corrected for space andaifsets and finally splined producing a complestadset for each
individual deployment.

The video transects analyzed in this study were gau@llel lines: TV18 and TV19 (Fig. 4). The ana&gzsections
were about 250 meters long and ran close to thefttipe seamount. The footprint on the floor wasuad 5 meters
wide; this imaging swath varies depending on thighteof flight over the seabed and its topography.

2.4. Photogrammetric reconstructions

Video-sections were decomposed in thousands of pgsitioned overlapping images processed using
photogrammetric Pix4D Mapper Pro software (Pix4D, SAvitzerland). This software carries out an adeadnc
automatic triangulation based purely on image aurded an optimization technique. The triangulatdgorithm is
based on binary local key points, searching forchiag points by analyzing all images. Those maighgnints, as
well as approximate values of image position arnidnbation provided by thBolitolanatelemetry system, are used
in a bundle adjustment to reconstruct the exadtipnsand orientation of the camera for every aceghimage. For
this study, the focal length, principal point aadial/tangential distortions were set as initigdtetical values, while
the final internal and exterior orientation paragnetof the camera were determined by bundle ad@grdtprocessing.
The distance between parallel lasers beams (seda2ftcm) is used as reference scale. A totalsafa®es are used
to fine re-scale the project.
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Pix 4D software also uses a modern approach frampater vision science: dense image matching, aonaated
process based on dense image matching technoladgy €T al., 2010). With this complete automateeédnation of
tie point measurements, camera calibration, andtisition data given by the cameras, the softwaoeiges 3D
dense point clouds (Fig. 5), Digital Surface Mod&$M) and orthomosaics (Fig. 6). The products\wetifrom the
sea floor's morphology, such as maps of slope,@spagosity, curvature, etc. can be extracted ftbenDSM in a
simple way. Since all the information is geo-refex@d in a cartographic system (UTM-WGS84), allgeegraphic
layers obtained can be included in a GIS envirorimen

The 3D point cloud is a cartographic product thatains coordinates (XYZ) of the points and colufoimation,
allowing the subsequent morphometric analysis.

2.5. Assessment of errorsin geolocation and model reconstruction

Absolute accuracy in the geographic positioninghef points in the 3D point clouds depends on tweess. Firstly,

accuracy is established by the characteristich®@SSBL acoustic positioning system used to deterthia absolute
coordinates of the vehicle's trajectory. This utasty is a function of the angle and depth frora tkehicle to the
transducer installed on the ship’s hull. Then, skexl’s trajectory is recalculated according to #meancertainty

parameters during bundle adjustment processing.

Absolute uncertainty in geographic position canabkieved according to the technical specificatiohthe SSBL

acoustic positioning system used to determine tloedinates of the vehicle's trajectory. An SSBL egsimeasures
the horizontal and vertical angles, as well asrthaige to the transponder, giving a 3D positioojguntion of the

transponder relative to the vessel. An error inengeasurements causes the error in the positiadaibg a function
of the range to the transponder, so SSBL has amamchias that increases with range.

Constant distances between laser pointers projestethe frames -not used in scaling- were used &uate the
reconstruction of the geometric model. In this widng geometric uncertainty of the model and eremsociated to
measurements over the 3D point cloud were estimétesdnecessary to be careful selecting distatitashave been
projected on a flat ground.

The re-projection error calculated for the 3D modak also evaluated. Once the 3D coordinates opdire were
computed, the 3D point was re-projected on allith@éges where it appeared. The distance betweemahnieed and
the re-projected point on each image was the riggtion error (Fig. 7). This parameter could bedusevalidate the
internal consistency of the model.

2.6. Population structure
2.6.1.Population Size Frequency

The size of the colonies forming the assemblagemeasured. Deep-sea gorgonian forests set up aeoihpee-

dimensional habitat. Instead of a length measuréntiea 3D fan area covered by each specimen wastedlas a
suitable parameter of colony size. This surfaceissidered to be more representative of the biophlyparameters
of the specimens, such as biomass, age, nhumbeolyis) and feeding capacity. The direct measureroénhis

parameter is possible using a complete 3D modéhefarea. Using the Pix4D software, the area eedlegthin

each gorgonian’s perimeter was calculated. Sineecthionies have different shapes, branches, otientaand
curvatures, the irregular perimeter of each colaag manually digitized on the 3D point cloud (R8y. Thus, the
total surface calculated is a sum of the irregplanar triangular surfaces formed during the digi#ion process
over the 3D point cloud (Fig. 9). The size frequedistribution of the gorgonian population was esanted using
these calculated surfaces. All specimens that doiflilly reconstructed from the video-frames waigitalized. The
fan surfaces data are grouped in 21 categoriefistagram, with a range of 0.08m

Specimens with a surface smaller than 0.8%vere considered as population recruits. This toleswas established
based on the 3D methodology’s resolution, sinceseahare the histogram group of smaller colonies tiaat be
digitalized. In Bennecke et al. (2016), colonied®afagorgia arboreaLinnaeus, 1758) anBrimnoa resedaeformis
(Gunnerus, 1763) whose heights, measured on theo8id cloud, were under 23 cm were also considezedlits,
but there is no similar threshold for fan surface.

2.6.2.Demographic parameters (density, impacts and oaitéon)
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The total number of colonies and the 3D surfacemxV by the video transect were calculated, soitygmsimber of
colonies per m2) was directly obtained for the gtatea. Since each sample was geo-located, batimycalensity
and maps with the geographic distribution of thesenies could be obtained.

To analyze the spatial pattern of gorgonian distidn into this area, the multi-distance spatiaistbr analysis is
used. This approach is based on Ripley's K-functfodistinguishing feature of this method is thasitmmarizes
spatial dependence (feature clustering or featispedsion) over a range of distances. So, the timteof an

appropriate scale of analysis is required. Wherlogxpy spatial patterns at multiple distances apdtial scales,
patterns change, often reflecting the dominangeadicular spatial processes at work. Ripley's Kefiom illustrates
how the spatial clustering or dispersion of feataetroids changes when the neighborhood size elsang

To evaluate possible impacts on the coral populatispecimens that appeared dead in the studyvareaguantified
and geolocated. Among the specimens quantifiecetivare whole colonies (Fig. 10a) and fragmentsiérént
sizes (Fig. 10b) scattered along the coral assgyatdtudied. All were counted and geolocated inatfleomosaic
images.

The orientation of the gorgonian colonies was messtaeking into account the scheme shown in Fig.The fan
usually spreads out transversally to the directibthe dominating current. In this way, it can nmize the volume
of water flowing through it. Smaller colonies waret considered in this analysis since their shajkaientation
was not defined. Both shape and orientation seenet@lop with increasing colony size (Mortensen &uthl-
Mortensen, 2005). In order to know the directiod atrength of the water current in the area we tisedhformation
of a lander deployed in June 2014 and located 5%@sh of the gorgonian forest at a 600 m depthugés data of
an Aquadopp single-point current meter locatechalainder in order to record the horizontal nedtelmo (ca. 2 m
above the bottom) current. It was programmed airiista intervals taken as 30’ burst-sampling peri¢@nchez et
al., 2014).

3.  Reaults

Individual 3D models were reconstructed for eaakesitransect. Trajectory reconstruction and autientia point
extractions were performed, and a re-optimizatibthe model based on scales obtained from parakelr beams
was conducted. From these measurements, densecmids can be processed afterwards in high densige. A
basic description of the characteristics of thep@iht cloud processing conducted here is shownainlél' 1. A total
of 2234 video-frames were processed covering aanesfi 1500 rfiper transect.

3.1. Assessment of errorsin geolocation and model reconstruction

Absolute uncertainty in geographic position basedhie SSBL system was determined as position caicnla
accuracy in the 0.2% range. Although this rangéesawith each the video-section, using maximum iegptows
approximating this position’s error as 0.20% of 850which gives a value of 1.3 m.

But in this study, more important than the uncetyaimssociated with absolute positioning is the uiaggty or
relative error in the reconstruction model. Thisoeis afterwards applicable to the measuremenigenaa the 3D
block. To calculate this error, 18 distances wemasared between laser pointers (not used in sgading the
Quadratic Mean Error was calculated, obtaininglaevaf 1.2 cm.

The reprojection error depends on the camera’'dredion quality, as well as on the quality of matk&round
Control Points (GCPs) on the images, and can beasadobust indicator of internal consistency efitiodel. The
mean reprojection error in pixels of both trans@df48 and TV19 was 0.114.

3.2. Gorgonian population structure
3.2.1.Population size and status

Analyzing the two transects and taking into accdbetmeasured gorgonians, a population densityldf 6olonies
per m2 was calculated. The photogrammetric appraaet in this study allows not only to obtain aarage density
of specimens, but also to position them on an ontigaic of the area. In this way, the geographiisdtidution of the
specimens can be cartographically representeceaegrdensity of colonies being observed in théhseast part of
the transect (Fig. 14), reaching a density in ldé$ part of transects of 0.21 colonies per m2. Stheheastern part of
the study area is exclusively covered by a roclyssate and has a much steeper slope. At the emmdnsiects there
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is an abrupt topographical descent and it is pegcim this area, steep and more exposed to cairevttere the
largest density of colonies of this aggregationuos¢Fig. 2).

To analyze the spatial pattern of gorgonian pasiiido this area, the multi-distance spatial cluatalysis based on
Ripley's K-function is used. The number of distanesvaluate is fixed to 20, starting distance.B50meter and
distance increment is 0.5 meter. With this infoiiomat the statistics computes the average numbereigfhboring
features associated with each feature; neighbdeiaityires are those closer than the distance bealgated. As the
evaluation distance increases, each feature wilt#ly have more neighbors. If the average nunalb@eighbors for
a particular evaluation distance is higher thandaherage concentration of features throughout theéysarea, the
distribution is considered clustered at that distan

Both transects present observed K values higher éixpected below 10 meters of distance. So, atstede of
analysis, the distribution of the specimens is m®red clumped. Beyond 10 meter, the observed Kevialismaller
than expected, so the distribution is more dispktisan random (Fig. 13).

Dead colonies and broken fragments present in ith& were also counted. A total of 103 dead colosgdtered
over the sea bottom were counted. As in the cadbeofiving colonies, these dead colonies were ggagcally
positioned and can be represented by their supiéiggom an orthomosaic of images (Fig.14). Thehagt number of
dead specimens was located in the northwestern &read colonies included both complete coloniesaof
considerable size and fragments of different pripas.

3.2.2.Morphometrics and demographic characteristics

A total of 426 gorgonian colonies were digitaliziedt fan surface measurements?(rin the 3D models using a
surface draw tool in Pix4D software. Colonies tharavnot reconstructed in sufficient detail werecdiged from
this analysis. The gorgonian size frecuency distiiim was unimodal. Thelacogorgiasp. population was positively
skewed, indicating a dominance of colonies less tha5 m in fan surface. Gorgonian surface results wereged
in 21 categories in a histogram, with a range 650 per bin and their frequency distribution (shapdgwated as
an indicator of population structure (Fig. 12).

A logarithmic function was adjusted to the gorgorfian-surface distribution, obtaining aA R0.84.

The population structure also showed a high prigro(t27%) of recruits (< 0.05% and a considerable proportion
(19 %) of large (> 0.5 fir colonies.

3.2.3.0rientation and growth of sea fans

A high percentage of the coloniesRIicogorgiasp. identified in the area show a slightly concslvape and present
a specific orientation. Polyps of cnidarians areeding mainly from the concave side and feed ftbenturbulent,
slower water on the concave side in unidirectidii@l (Mckinney and Jackson, 1989). The orientat@n393
colonies was measured. The distribution per quasirnadicated that 100% of the colonies were origrfeeing a
range between 0 and 180°. Of these, 78% of thenaslavere facing an orientation within the firstaguant (0°-90°),
and among them, 38% of the colonies were orienetaiden 0°-45°, and 40% of the colonies betweerad8°0°
(Fig. 15).

The near-the-bottom current direction obtained ugto a lander located just 500m east of the gorgofiaest
showed a predominant Eastward flow (Fig. 16). Femtiore, the main circulation pattern in the whaleazof Le
Danois Bank has an Eastward direction but therdrapertant topographical effects that can modifystheneral
pattern, including the presence of an anticycldioiv at the seamount’s summit (Gonzalez-Pola eR8al12).

4. Discussion

The application of techniques based on underwatagés has allowed the non-destructive study of cotanies for
decades, but it was not until very recently that study areas were modeled in 3D. The possibifitstadying and
measuring this type of habitat in three dimensiavith an important vertical component, opens maagspbilities
for study. SfM techniques were used to study a kedinean red coral population (Drap et al., 20bu}, the
colonies were sampled by divers in a small areatduke complexity entailed in the field work. Thmrphometric
complexity of the habitat in a coral reef was atsadied (Ferrari et al., 2016; Anelli et al., 201ffcused on the
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determination of habitat complexity measurementh 1 roughness and curvature using Digital Sufféagels and
Digital Terrain Models and their derivatives.

4.1. Photogrammetric reconstructions

The use of this methodological approach based &h t8€hniques from images taken by a ROTV allowedaus
perform a population study of a gorgonian foresthiea Cantabrian sea bathyal ecosystem accuratelwiiné high
resolution. Having a complete 3D reconstructiorthef deep-sea floor allows us to propose a serieseasures that
were impossible to obtain until now.

It is clear that the use of photogrammetric techagthat achieve a 3D reconstruction of complexegads a great
advance for the study of basic parameters of deaphsbitats. However, photogrammetric processed bwis
rigorous since the geometric uncertainty associafiéit the modeling techniques is directly relatedtte magnitude
of the parameter being measured. In this way, étaar the need of high quality geodetic contrdiveeks to detect
small changes in coral reefs using a multi-temppradtogrammetric modeling approach (Neyer et &182. The

methodology used here is in line with used to ighfresolution mapping of marine vertical structu(Robert et al.,
2017), and 3D reconstruction used to obtain gromaths of deep-water octocorals (Bennecke et al.§)20hese

recent advances demonstrate the power and relyadsilthe methodology used here.

The obtained results, giving a quadratic mean esfdr.2 cm and a reprojection error of 0.1 pixelsrhage block
adjustments, show very low values of geometric ttaggy, which validate the application of this apach for the
measurement of parameters related to the size sffilseorganisms living on the sea bottom. Indeedamm
reprojection error values of less than 2-pixelsen@ssumed as indicators of the effectiveness of |@fgrams for
creating highly accurate 3D reconstructions of uwdéer habitats (Burns and Delparte, 2017).

4.2. Gorgonian population structure

The size of gorgonian assemblages is usually meddyr the height of their colonies (Linares et2008; Bennecke
et al., 2016; Ambroso et al., 2017). This heighiften understood as the maximum length of thenmeasured from
the base of the colony. The different orientatiansyatures, ramifications and forms of the colentegether with
their capacity for partial mortality, especially lewrge specimens, make this parameter clearly ficrit to define
gorgonian size and evaluate population structuré&e aspect of ecological studies on benthic ogyasiis the
selection of the best morphological parameters @éscdbe their growth and architecture (Mistri, 1p9%he
possibility of establishing a relationship betwesorphometric and biological (age, feeding capaéty,) aspects of
the specimens will depend on this morphometricacdption. These biometric parameters should be ikey
establishing competition relationships betweemneigs; and although the ecological processes andhfluence of
habitat complexity seems clear (Alvarez-Filip et 2D11; Lambert et al., 2012; Graham and Nash32Gbnzalez-
Rivero et al., 2017), this relationship is still megll understood.

A surface measurement of the colonies is more septative of the biophysical parameters of the ispats, e.g.
number of polyps, biomass, age and capacity of foaltection. To date, there are too few empiridaidges to
establish clear relationships between biophysieabmeters and the size of gorgonian colonies. Atiogiship
between biomass and heightRdramuricea clavatgRisso, 1826) was established (Coma et al., 1998)atween
fan surface and biomass was fixed (Palma et al.8R2®ut these relationships are species depentieatevolution
from classical measurements in coral reefs to moraplex ones obtained by 3D modeling is needed ¢El@i al.,
2018).

The digitalization process proposed in this stubpves that it is necessary to introduce improvememtshe
techniques used to analyze the morphometry of gamalens. Specifically, once the registration amtesentation of
3D areas has been accomplished, it is necessaayttimatize and standardize the parameters to bsunesh
(number of branches, area occupied by each coleolyme, etc.). A skeletonization process was prego®
measure and quantify morphometries as complex asettof Mediterranean red coral colonies automdyical
(Gutierrez-Heredia et al., 2015; Royer et al., 2028SfM based method is used too for the estinmatibgorgonian
population structure and morphometries, where tieteloud corresponding to each colony is divid®d a mosaic
of facets and the 3D canopy surface of the pomrias estimated as the sum of the individual facetaces (Palma
et al., 2018). These methodologies are interestimyshould be standardized in the future for thpplication in as
many cases as possible.

The fan surfaces measured in this study indicad e coral population at EI Cachucho is a young. drhe
colonies we measured reach surfaces larger thaf) &nul the most abundant ones were (0-0.85wite (Fig. 12).



399 Positively skewed size frequency distribution asspnted here implies that a population presentegva&lose to a
400 good health status, with a significant contributmnyoung colonies and a progressive decrease undsnce with
401 respect to colony size (Meesters et al., 2001;reima&t al., 2008). In addition, in a visual inspactideo frames we
402 detected some very small specimens, indicatingentesettlement of larvae on the sea bottom thaida@juvenate
403 the forest. The administrative protection of thesamwhere fishing activities are not allowed si2689, is considered
404 the main reason for this habitat recovery. Besithespccurrence of numerous large specimens, acdreespresence
405 of gear remnants in the area, suggests that thenbabpography, with a very pronounced relief andoeky
406 substratum, saved this area from the impacts afeagiye gears that were traditionally used all gldre Cantabrian
407 Sea until the 90s.

408 The study of the orientation of more than 300 gargos within this aggregation, along with the datailable on the
409 oceanographic dynamics occurring near the bottonthim study area (Gonzalez-Pola et al., 2012) show a
410 perpendicular layout of the coral specimens withards to the dominant current flow. Data from tedler mooring
411 located at the sea floor indicate that 53.4% ofdheent data recorded in 24 hours were registefitin the first
412 quadrant (between 0 and 90°). Thus, this was thia dieection of the currents throughout a day irs threa. The
413 concave side of the older individuals, where thiggmare located was oriented 'back’ to the curfemis is probably
414 a strategy that combines the hydrodynamic shapeb#dst allows them to resist the strong currentsioing in the
415 area without being damaged, with the maximizatibériood availability on the turbulence created oe teeward
416 area. This relationship has been showed in colafi€&orgonia ventalingLinnaeus, 1758); in them, the increase in
417 drag force with surface area could place an upjmeit to colony size (Sponaugle and LaBarbera, 19%d),
418 gorgonians may face several design conflicts betvwei@imizing drag forces to prevent dislodgement artreasing
419 the surface area exposed to the flow for maximadi foapture and exchange.

420 The dead gorgonians recorded in this study werbglly due to natural causes. However, it wasn'sipds to
421 establish whether the colonies were all killed lyna-time event. These animals are subject tarakdiseases than
422 can cause necrosis and death (Rogers et al., 20dibet al., 2016); although little is known froneeb-sea species
423 as research is mainly focused on shallow-wateri¢gedbgenvironments. At this respect, it has beengsated that
424 populations ofP. clavatadominated by small colonies with few large indivads could be due to a high adult
425 mortality or to the occurrence of large coloniesyan certain microhabitats (Bo et al., 2012). Fetwtudies will
426 throw light on the evolution of the studied colaiat Le Danois Bank, and hopefully, help discern ¢hases
427 explaining the death of these specimens.

428 4.3. Gorgonian abundance

429 Although thePlacogorgiasp. is effectively one of the most locally abundgpecies of gorgonians in Le Danois
430 Bank, its spatial distribution is very restrictededpite the efforts of sampling and characterizatbrthis MPA
431 carried out in recent years (Sanchez et al., 22089, 2014, 2017), this, is the only aggregatioRlatogorgiasp.
432 found to date. Other specimens have been foundhbkytcannot be considered to form a three-dimeasibabitat
433 given their isolation.

434 Data on presence and abundance of deep-sea plbxpurgonians in Atlantic and Mediterranean Europeaters
435 are limited, supporting the value of the data oietdihere. See for instance the summary of gorgabandance and
436 density from ROV observations from different contite¢ shelfs in Ambroso et al. (2017). We have beeable to
437 find data concerning the genBfacogorgia most available studies dealing with well-knownyadant species of the
438 genusParamuricea such a$. placomusn North Atlantic (Bulh-Mortensen and Buhl-Mortens@®14),P. clavata
439 andP. macrospinan Mediterranean Sea which are mostly accessipléiving (Harmelin and Marinopoulus, 1994;
440 Linares et al., 2008; Gori et al., 2011a; Bo et2012; Grinyo et al., 2016). Some additional Medidnean data on a
441 few smaller speciesBebryce mollis Swiftia pallidg are also available (Griny6 et al., 2016). Somanapies on
442 Mediterranean plexaurid populations were giventaup3 col/nf, P. clavata(Linares et al., 2008), 18.5 cofinP.
443  clavata(Gori et al., 2011a), up to 9.5 cofinP. macrospingBo et al., 2012) and 3 colfirP. clavata 9 col/nf, P.
444 macrospina(Grinyd et al., 2016). All these studies were @arout at shallower depth range than ours. In the
445 Atlantic Ocean, in Hardangerfjord, hard bottom t@ardens withParagorgia arboreaand Paramuricea placomus
446 showed maximum densities of 33 colonies/1G@Bulh-Mortensen and Buhl-Mortensen, 2014).

447 The ability to geolocalize each gorgonian colonyore of the interesting aspects of the methodolgyused,
448 indicating that density can be spatially represitimiea map and the differences in density betweerez made clear.
449 In this way, population structure can be studiethwi high spatial resolution and different anabftiechniques can
450 be applied within a GIS environment. We measurdérssity of up to 0.15 coloniesf@t Le Danois Bank site. This
451 density is larger than the threshold of 0.1 colofysed by ICES (2007) to define a coral garden habita
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According to the Ripley's K-function spatial anaksthe aggregation shows a maximum clumped disivibat
3.75 m of distance (scale). However the coloniesvsa dispersed distribution for distances gredtantl0 m. Our
knowledge about the spatial patterns of distributad deep-sea gorgonians is poor, although usageQ@y is
increasing our knowledge on this respect (Morten&dBuhl-Mortensen, 2004; Watanabe et al. 2009; Gbral.,
2011a; Ambroso et al., 2017). However, the factbet set them in the deep-sea are difficult to idate due to
inaccessibility; in this respect, very little isdmun about factors that regulate the distributiod growth of deep-sea
corals (Watanabe et al., 2009). Both clumped andawmn distributions, or variability from clumped t@ndom on a
same transect depending on scale, occur in deegesganians; the former has been associated in sases with
reproduction by internal brooding and larvae ssitlat shorts distances from the parents and hagceaising their
probability of settling on a suitable substrate (Masen and Buhl-Mortensen, 2004; Gori et al., 20KHbhng et al.,
2011; Ambroso et al., 2017). However, other biatiwd abiotic factors may be also involved as bofhcafthe
utilization of space by the individuals (Gori et, @011a; Baker et al., 2019 and references thergiojle of sexual
reproduction irPlacogorgiasp. is unknown, although it is likely gonochoritdebrooder, similar to species from the
closely related genu®aramuricea some of whose species have been investigatechadiow depths in the
Mediterranean Sea (Coma et al., 1995). Accordinthése authors, maturation of the larva®irclavataoccurs on
the colony surface and they immediately settle @ durrounding substrate after release (Coma €1395). This
could be the case féacogorgiasp. As for other possible factors that determireedpatial pattern of the community
at study, they were not investigated during thiglgtbut, given the importance of this species irDamois Bank, we
hopefully will approach their study in the forthcimg years.

Parameters defining the population structure oblarty offer data to characterize it at a given tithmares et al.,
2008; Kipson et al., 2015; Griny6 et al., 2016)t &iso allow monitoring the evolution of this poatibn over time
(Coma et al., 1998) and even study its responsgettific phenomena impacting it (McClanahan et Q12 Linares
et al., 2005).

Finally, it is worth highlighting the contributioof this study to the implementation of the Maringaggy

Framework Directive (MSFD) for the monitoring ofetthealth status and recovery of benthic populatibias

characterize vulnerable habitats in MPAs (Rice et 2012). This approach allows the estimation & thain

population parameters in control areas represeetati each habitat. This facilitates the analy#ispugh multi-

temporal successive samplings and the use of irwdicaf the degree of recovery that the populatias undergone
once that management measures reducing anthropogepacts are implemented. In particular, the madhagy

proposed here allows estimating some indicatorscésted with descriptor (1) of the MSFD, BiologiddiVversity

(EC, 2008; Borja et al., 2011), such as "Area covdrgdhe species”, “Population abundance”, and “Pamn

demographic characteristics” of vulnerable ben#pecies that structure habitat 1170 Reefs, of theHabitats

Directive 92/43/EC (EC, 1992), in a non-invasive way.

5. Conclusions

Photogrammetry represents a non-destructive, d¢festtiee tool for coral reef monitoring. This appiah achieves a
greater resolution and provides quantitative messsuallowing the integration of the information @ibed in a GIS
environment. However, its application to deep-saaitats is still in an early stage.

This is the first time that the population struetaf aPlacogorgiaspecies is studied with accuracy in the Cantabrian
Sea at a 500-600 m depth. This gorgonian, togsttierCallogorgia verticillata(Pallas, 1766) is the main structural
species of a deep-sea coral garden inside the MAEA GachuchoC. verticillata distribution being more scattered.
Morphometric measurements were obtained exclusilglya non-invasive methodology with a very hightigpa
resolution and a low uncertainty in the measuremédrgised on a 3D reconstruction of underwater image

The determination of the distribution of sizes, siees, orientations and other population pararsatsing this high
resolution method, represents a considerable advartbe study of gorgonian aggregations. The tesldtained are
crucial to increase knowledge on the area anelédionship with other parameters of interest saclaccompanying
fauna, biodiversity, growth studies, EFH, etc.

In addition, studies regarding the population gtreesof the various organisms inhabiting and MPA fandamental
when monitoring its environmental status and eualgahe effectiveness of the management measomggmented
to preserve it.
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782 Figure 1. Location of “El Cachucho” MPA on the BayRicay, and some topographic features that chaizetine
783 area. The red circle shows the location of the gioian forest analysed in this study.
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785

786 Figure 2. Example picture extracted from one of wigeo-sections showing some of the gorgonian iddiais
787 analyzed and the rocky substrate at 528 m depth.
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791 Figure 3.Politolanatowed vehicle during its deployment maneuvers@tECOMARG survey.
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792
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794 Figure 4. Video transects carried out in this stabdgve the gorgonian assemblage. The backgroumgkishows the
795 EMODNET bathymetry layer.
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798
799 Figure 5. 3D reconstruction of one of video trahs&ceen points show the camera’s position.
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Figure 6. Orthomosaics of the 2 video-sections ootetl over the gorgonian forest.

i ® Computed 3D point
\ «  Point marked on the
1R \ image
\' \ « Reprojected point

Reprojection error

Figure 7. Graphic representation of the re-projectrror in a triangulation model (source: Pix4pSart).
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Figure 8a. Video-frame example with specimen sieledno geometric properties).

Figure 8b. 3D point cloud (xyz) of the same zonthwligitalized gorgonian colonies.

Figure 8c. Zoom in the digitalized perimeter ofaof 4.
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Fiure 9.a: Example of a 3D point cloud of a gorgontcolony

Fiure 9.b: Example of gorgonian surface formingwgiticcesive planar triangles.
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823

824 Figure 10.a: Example of dead colony in the stuéaar
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827 Figure 10.b: Example of fragments of dead coloirig¢ke study area
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Figure 11: Graph showing the facing angle as measirthis study
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Figure 12: Histogram of fan surface ared&)(tistribution ofPlacogorgiasp. at Le Danois Bank
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Figure 13: Results of Ripley’s K function for both I& and TV19 transets. The graphs show a clusteatihb
distribution for distances below 10 meters with @aimum clumped distribution at 3.75 meters.
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Figure 14a: Orthomosaic of the area. Yell®acogorgiasp. colonies / Red: dead colonies
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Figure 14b: Zoom into the north-west area of thBa@mnosaic. YellowPlacogorgiasp. colonies / Red: dead
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Figure 15: Gorgonian facing angles according tosttteeme that appears in Fig. 11.
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Near bottom current direction recordethe study area from a single-point current meter.

Table 1. Basic data regarding the image datasethen8D Point Cloud densification process.
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TV18 TV19
Dataset: number of calibrated images 1085 149
Average Ground Sampling Distance (GSD) in cm 0.27 026
Area Covered (ha) 0.1397 01489
Median of keypoints per image / matches per calibrated image 9533/ 2743.43 9306 / 2528.38
Number of 2D Keypoint for Bundle Block Adjustment 2027544 2028525
Number of 3D Points for Bundle Block Adjustment 1020754 1044876
Number of 3D Densified Points / Average Density (per m3) 15390469 / 171667 15129025/ 147168
Mean reprojection error (pixel) 0.114 0.114
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