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Abstract Statistical downscaling methods are popular post-processing tools which8

are widely used in many sectors to adapt the coarse-resolution biased outputs from9

global climate simulations to the regional-to-local scale typically required by users.10

They range from simple and pragmatic Bias Correction (BC) methods, which di-11

rectly adjust the model outputs of interest (e.g. precipitation) according to the12

available local observations, to more complex Perfect Prognosis (PP) ones, which13

indirectly derive local predictions (e.g. precipitation) from appropriate upper-air14

large-scale model variables (predictors). Statistical downscaling methods have been15

extensively used and critically assessed in climate change applications; however,16

their advantages and limitations in seasonal forecasting are not well understood17

yet. In particular, a key problem in this context is whether they serve to improve18

the forecast quality/skill of raw model outputs beyond the adjustment of their19

systematic biases.20

In this paper we analyze this issue by applying two state-of-the-art BC and21

two PP methods to downscale precipitation from a multimodel seasonal hindcast22

in a challenging tropical region, the Philippines. To properly assess the potential23

added value beyond the reduction of model biases, we consider two validation24

scores which are not sensitive to changes in the mean/variance (correlation and25

reliability categories). Our results show that, whereas BC methods maintain or26

worsen the skill of the raw model forecasts, PP methods can yield significant skill27

improvement (worsening) in cases for which the large-scale predictor variables con-28

sidered are better (worse) predicted by the model than precipitation. For instance,29
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PP methods are found to increase (decrease) model reliability in nearly 40% of30

the stations considered in summer (autumn). Therefore, the choice of a convenient31

downscaling approach (either BC or PP) depends on the region and the season.32

Keywords Statistical downscaling, perfect prognosis, bias correction, seasonal33

forecasting, precipitation, skill, correlation, reliability categories34

1 Introduction35

Different Statistical Downscaling (SD) methods have been developed since the36

early 1990s (see, e.g., von Storch et al, 1993) to bridge the gap between the37

coarse-resolution biased climate information provided by Global Circulation Mod-38

els (GCMs) and the regional-to-local scale required in different socio-economic39

sectors such as hydrology, agriculture, energy, etc. These methods rely on em-40

pirical/statistical models which link the local observed predictands of interest,41

here precipitation, with explicative large-scale GCM predictors over the area of42

interest. These models are first calibrated and tested (i.e., cross-validated) us-43

ing data from a historical representative period (training phase) and subsequently44

applied to obtain the downscaled local predictions from new GCM predictors (pre-45

diction/downscaling phase). According to the nature of predictors in the training46

phase, two different approaches for SD exist (see, e.g. Maraun et al, 2010; Gutiérrez47

et al, 2013a): Perfect Prognosis (PP) and Model Output Statistics (MOS), the lat-48

ter including the increasingly popular Bias Correction (BC) methods.49

Under the PP approach, quasi-observed predictors from reanalysis are used50

to train the statistical models (e.g. regression or analog methods), based on their51

temporal correspondence with the observed precipitation. Afterwards, the result-52

ing models are applied to GCM predictor data in the prediction phase. There-53

fore, variables well represented by both reanalyses and GCMs (Wilby et al, 2004;54

Hanssen-Bauer et al, 2005; Brands et al, 2013) accounting for a major part of55

the variability in the predictands are typically chosen as predictors in this ap-56

proach (usually large-scale variables at different vertical levels), whereas variables57

directly influenced by model parameterizations and/or orography, such as precip-58

itation, are usually discarded. As a result, one of the most time-consuming tasks59

in PP methods is the selection of a suitable combination of predictors, which must60

be defined over an appropriate geographical domain which encompasses the main61

synoptic phenomena influencing the climate of the region of interest.62

Differently, under the MOS approach, predictors are taken from the same GCM63

for both the training and the prediction phases. In the context of seasonal forecast-64

ing, MOS methods have been traditionally applied establishing an empirical link65

(e.g. regression or canonical correlation analysis) between large-scale circulation66

predictors and pairwise observations at a monthly/seasonal time-scale. However,67

simpler MOS alternatives based on BC methods are becoming increasingly pop-68

ular (see, e.g., Themeßl et al, 2012a). BC methods directly adjust the distribu-69

tion of GCM predicted precipitation against local observations (e.g. local scaling70

or quantile mapping), to ensure that their statistical properties are similar. The71

main advantage of these methods is their simplicity, since no predictor/domain72

screening is required (typically, GCM output from the closest model gridbox is73

considered as unique predictor). For instance, in local scaling methods (the sim-74
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plest case of BC), a linear transformation is applied to the model output to adjust75

the first and/or second order moments of the predicted distribution.76

A considerable body of research on the application of SD methods to climate77

change simulations already exists (see, e.g., Gutiérrez et al, 2013b; Vaittinada78

et al, 2016; Maraun, 2016; San-Mart́ın et al, 2017). Beyond the adjustment of79

systematic biases (Maraun et al, 2015), however, the advantages and limitations80

of these methods in seasonal forecasting are not well understood yet, in particular81

in what refers to their effect on forecast quality/skill. To measure this skill (which82

is understood as forecast association and reliability here), we focus on correlation83

and reliability categories. Note that, differently to other scores such as the mean84

absolute error and the continuous ranked probability score, these two metrics are85

not sensitive to changes in the mean. Therefore, they allow to properly assess the86

added value of the SD methods applied beyond the effect of bias reduction.87

Some prospects on the potential added value of BC methods can be envis-88

aged for the most simple ones. For instance, local scaling preserve the temporal89

structure of the original model predictions and do not affect neither correlation90

nor reliability. However, more sophisticated distributional BC methods such as91

quantile mapping can introduce arbitrary temporal changes (Maraun, 2013) and92

thus, their effect on correlation and reliability is difficult to estimate in advance.93

Differently, PP methods do rely on the temporal correspondence between the pre-94

dictand and the predictors considered, so there might be windows of opportunity95

for improving correlation and/or reliability in cases where large-scale variables are96

better predicted by the model than local precipitation.97

In this paper we analyze this problem focusing on a challenging tropical region,98

the Philippines, which has been identified as an ideal test-bed for SD studies due99

to the complex topography and land-sea contrasts which determine local rainfall100

(Moron et al, 2009; Robertson et al, 2012; Manzanas et al, 2015). Moreover, its101

climate is largely influenced by ENSO (see, e.g., Lyon et al, 2006; Manzanas et al,102

2014) and it is located in a region of the world where seasonal forecasts are partic-103

ularly skillful (Manzanas et al, 2014). As a result, there may be special potential104

for the application of SD methods to seasonal forecasts in this area. We focus on105

downscaling methods providing daily data and refer the interested reader to the106

existing literature (Kang et al, 2007; Robertson et al, 2012) for details on the appli-107

cation of seasonal MOS methods in the Philippines. In particular, we analyze and108

intercompare the results from two state-of-the-art BC (parametric and empirical109

quantile mapping) and two PP (analogs and Generalized Linear Models, GLMs)110

methods when applied to the seasonal hindcast provided by the ENSEMBLES111

project (Weisheimer et al, 2009) for the period 1981-2005. To our knowledge, this112

work provides the most comprehensive study on the added value of the BC and113

PP approaches for downscaling of seasonal forecasts to-date.114

The paper is organized as follows. In Section 2 we introduce the data used (both115

predictand and predictors). Sections 3 and 4 describe the statistical downscaling116

methods that are applied and the verification metrics which are considered to117

assess their performance, respectively. The results obtained are presented through118

Section 5. Finally, the most important conclusions are given in Section 6.119
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2 Data120

2.1 Precipitation in the Philippines: Predictands and Verifying Observations121

The Philippines is an archipelago of 7107 islands with complex topography (see122

Figure 1a) located between the monsoonal and inner tropics (4◦N and 20◦N).123

Apart from ENSO (Lyon et al, 2006; Manzanas et al, 2014), the climate of this124

region is affected by important large-scale processes such as the southwest summer125

and northeast winter monsoons of the western North Pacific Ocean (Wang, 2002),126

but also by local forcing related to the presence of mountains and the complex127

land-sea constrast (Robertson et al, 2012). As a result, the country exhibits a rich128

regional climate composition which has been commonly classified into four different129

Climatic Types (CTs) in previous studies (Coronas, 1920; Manzanas et al, 2015).130

For a good characterization of this variability, daily precipitation from 42131

gauges maintained by the Philippine Atmospheric, Geophysical and Astronomical132

Services Administration (PAGASA: http://www.pagasa.dost.gov.ph), which are133

uniformly distributed across the country (see Figure 1b), was considered for this134

work for the period 1981-2005. The percentage of missing data within this period135

was less than 5% in all cases (less than 1% in most of the stations) so missing136

values were ignored in the calibration/training and verification processes. Panels137

c-f in Figure 1 show the interannual variability of spatial average precipitation138

totals for each CT (see colors in the legend) for the four standard boreal seasons:139

winter (DJF), spring (MAM), summer (JJA) and autumn (SON). Note that pre-140

cipitation along the coastlines of the northern part of the archipelago (CT1 and141

CT2) exhibits a strong seasonal cycle, which is driven by alternating monsoonal142

winds. In particular, during the southwest monsoon (summer), precipitation peaks143

at the stations pertaining to CT1 while CT2 is affected by relative dryness. The144

opposite situation occurs during the northeast monsoon (winter). During the dry145

months (spring), easterly winds prevail, leading to orographic precipitation along146

the mountain ranges in the east of the archipelago and to relatively high precipita-147

tion amounts for the stations pertaining to CT2. At the stations belonging to CT3148

and CT4 (mainly situated in the center and south of the archipelago), precipita-149

tion is mainly driven by meso-scale dynamics rather than by large-scale phenomena150

such as the monsoon circulation, leading to a weak seasonal cycle (rains uniformly151

distributed along the year). For a more comprehensive description of the climate152

of the Philippines, the interested reader is referred to Coronas (1920); Flores and153

Balagot (1969); Kintanar (1984) as well as to the PAGASA website.154

2.2 Model Data: Predictors155

In this work we consider both reanalysis and seasonal forecast data for the upper-156

air variables used as predictors (zonal wind component U at 850 and 200 hPa,157

specific humidity Q and temperature T at 850 hPa; see Section 3) as well as for158

surface precipitation, the target variable.159

On the one hand, and following the recommendation by Manzanas et al (2015)160

—who carried out an assessment of reanalysis uncertainty over the region of161

study,— the ERA-Interim reanalysis (Dee et al, 2011) was chosen for the training162

phase of the PP methods. On the other hand, seasonal forecasts were obtained163
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from four of the GCMs contributing to the ENSEMBLES multimodel seasonal164

hindcast (Weisheimer et al, 2009), which were produced at the following centres:165

The European Centre for Medium-Range Weather Forecasts (ECMWF), the Leib-166

niz Institute of Marine Sciences (IFM-GEOMAR), the Euro-Mediterranean Centre167

for Climate Change (CMCC-INGV) and Météo France (MF). Each of these models168

—whose main components are summarized in Table 1— ran an ensemble of nine169

initial conditions (nine equiprobable members), produced by perturbing the real-170

istic estimates of the observed initial state four times a year (the first of February,171

May, August and November) within the period 1960-2005, providing seven month-172

long retrospective forecasts. For this work, one-month lead seasonal forecasts were173

considered. Note that, although the ENSEMBLES models are several years older174

than state-of-the-art seasonal forecasting systems, they form the most homoge-175

neous and comprehensive multimodel ensemble publicly available to-date.176

Centre Atmospheric model and resolution Ocean model and resolution
ECMWF IFS CY31R1 (T159 ≈ 80km/L62) HOPE (0.3◦ − 1.4◦/L29)

IFM-GEOMAR ECHAM5 (T63 ≈ 180km/L31) MPI-OM1 (1.5◦/L40)
CMCC-INGV ECHAM5 (T63 ≈ 180km/L19) OPA8.2 (2.0◦/L31)

MF ARPEGE4.6 (T63 ≈ 180km) OPA8.2 (2.0◦/L31)

Table 1 Main components of the four global models used in this work, which contributed to
the ENSEMBLES multimodel seasonal hindcast.

To keep consistency among reanalysis and the ENSEMBLES models, all predic-177

tor data were re-gridded to a common regular 2◦ grid applying a nearest neighbour178

interpolation scheme. Moreover, daily instantaneous values at 00 UTC were chosen179

in all cases. The common period for the available predictands and predictors, 1981-180

2005, was considered for this work. Note that, according to the WMO Lead Centre181

for the Long Range Forecast Verification (http://www.bom.gov.au/wmo/lrfvs), a182

25-years long period is suitable for the proper verification of seasonal forecasts.183

Finally, in order to properly harmonize the reanalysis and the ENSEMBLES184

model data used respectively in the training and prediction phases of the PP185

methods, a simple local scaling correction was applied to the latter. In particular,186

for every large-scale model predictor, monthly mean values were adjusted towards187

the corresponding reanalysis values, gridbox by gridbox, avoiding thus problems188

that may arise due to the models mean biases.189

3 Downscaling Methods190

As representative of the PP approach we considered Generalized Linear Models191

(GLMs) and the analog technique, and relied on the optimum downscaling con-192

figuration found for the region of study in Manzanas et al (2015). In particular,193

they used as predictors a combination of two circulation (U at 850 and 300 hPa)194

and two thermodynamic (Q and T at 850 hPa) variables over a domain spanning195

from 114◦E to 132◦E and from 2◦N to 22◦N. Here, U300 has been replaced by the196

closest available variable in the ENSEMBLES models, U200.197

GLMs were formulated by Nelder and Wedderburn (1972) in the 1970’s and198

are an extension of the classical linear regression which allows to model the ex-199
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pected value for non-normally distributed variables. While GLMs have been widely200

used for statistical downscaling of climate change scenarios (e.g., Brandsma and201

Buishand, 1997; Chandler and Wheater, 2002; Abaurrea and Aśın, 2005; Fealy202

and Sweeney, 2007; Hertig et al, 2013), they have been rarely applied to seasonal203

forecasts. Given the dual (occurrence and amount) character of precipitation, we204

followed in this work the common two-stage implementation (see, e.g., Chandler205

and Wheater, 2002; Manzanas et al, 2015) in which a GLM with Bernoulli error206

distribution and logit canonical link-function (also known as logistic regression) is207

used to downscale daily precipitation occurrence (as characterized by a threshold of208

0.1mm) and a GLM with gamma error distribution and log canonical link-function209

is applied to downscale daily precipitation amount. A stochastic component could210

be introduced in both GLMs to increase the predicted variance, which is usually211

underestimated in deterministic ones (Enke, 1997). However, in order to keep this212

stochastic effect away from the validation results, the two GLMs considered in213

this work were deterministic, i.e., predictions were based on the expected values.214

For this method (denoted as PP1 hereafter), we considered as predictors the 15215

leading principal components (PCs, see Preisendorfer, 1988) over the above men-216

tioned domain. PCs were obtained, both for the reanalysis and for the seasonal217

forecasts, by projecting the corresponding standardized fields onto the Empirical218

Orthogonal Functions obtained from the reanalysis, which were computed simul-219

taneously on all predictor variables, considering the joined vector of standardized220

fields. The number of PCs retained, which explain over 80% of the predictor vari-221

ance, was selected as a trade-off between model parsimony and goodness-of-fit222

(after a sensitivity study testing models with an increasing number of PCs).223

The popular analogue technique (Lorenz, 1963, 1969) estimates the local down-224

scaled values corresponding to a particular atmospheric configuration (as repre-225

sented by a number of model predictors defined over a certain geographical do-226

main) from the local observations corresponding to a set of similar (or analog) at-227

mospheric configurations within a historical catalog formed by a reanalysis. Here,228

similarity was measured in terms of the Euclidean distance (Matulla et al, 2008),229

which was computed over the complete predictor fields. Analog-based methods230

have been applied in several previous studies to downscale precipitation in the231

context of seasonal forecasting (see, e.g., Fŕıas et al, 2010; Wu et al, 2012; Shao232

and Li, 2013). In spite of its simplicity, the analog technique performs as well as233

other more sophisticated ones (Zorita and von Storch, 1999) and it is one of the234

most widely used. Here, a deterministic version of the technique (Zorita et al,235

1995; Cubasch et al, 1996) which considers the closest analog is used. This will be236

referred to as PP2 hereafter.237

As representative of the BC approach we used two quantile mapping meth-238

ods, one parametric and one empirical. In the parametric case (referred to as BC1239

henceforth) daily predicted and observed rainfall intensities are fitted to gamma240

distributions and then daily predicted values are corrected according to the differ-241

ences of the corresponding quantiles from the fitted distributions (Piani et al, 2010;242

Themeßl et al, 2012a). Note that the parameters of the gamma distribution can243

be estimated from the first two moments and, therefore, in practice, this method244

is similar to a local scaling. The empirical method (denoted as BC2 hereafter)245

consists of calibrating the predicted empirical probability density function (PDF)246

by adjusting a number of quantiles based on the empirical observed PDF (see,247

e.g., Déqué, 2007). In particular, we proceed by adjusting percentiles 1 to 99 and248
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linearly interpolating inside this range every two consecutive percentiles. Outside249

this range a constant extrapolation (using the correction obtained for the 1st or250

99th percentile) is applied. Moreover, in cases when the predicted frequency of251

dry days is larger than the observed one, the frequency adaptation proposed by252

Themeßl et al (2012b) is applied.253

The two BC and the two PP methods described above were separately cal-254

ibrated/trained and applied for each of the four seasons. We followed a k-fold255

cross-validation approach (Gutiérrez et al, 2013b) for the period 1981-2005, split-256

ting the whole 25-year period into k = 5 random test sets (folds) of 5 years each.257

Each of these sets was independently used for the prediction phase, using the re-258

maining 20 years for training. For each model, the two BC methods were separately259

calibrated and applied for each of the nine available ensemble members. However,260

it is worth to notice here that other configurations were also analyzed for these261

methods. For instance, we tested cross-validated versus not cross-validated meth-262

ods and member- versus ensemble-wise calibrated ones (the latter considering the263

joined nine members series), obtaining very similar results in all cases (not shown).264

Thus, the conclusions obtained in this work for the BC methods do not depend on265

the particular experimental configuration followed. Differently, note that the two266

PP methods were trained just once (based on reanalysis predictor data and local267

observed precipitation). Afterwards, the (unique) resulting statistical model was268

separately applied to each of the nine members.269

4 Verification Metrics270

In order to validate the forecast quality of the raw seasonal precipitation outputs271

from the ENSEMBLES models and the possible added value of the corresponding272

downscaled results (beyond the adjustment of systematic biases) we considered273

two scores recommended by the WMO Lead Centre for the Long Range Fore-274

cast Verification (http://www.bom.gov.au/wmo/lrfvs): The interannual Anomaly275

Correlation Coefficient (ACC) and a measure of reliability based on the different276

categories introduced by Weisheimer and Palmer (2014).277

ACC is a simple metric of forecast association which allows to assess the ability278

of raw/downscaled precipitation to reproduce the observed interannual seasonal279

anomalies. For each particular model, it is applied here to the deterministic forecast280

resulting from averaging the nine (either raw or downscaled) available members.281

In addition, a multimodel (MM) was also constructed by considering the 36 (4282

models x 9 members) available predictions (either raw or downscaled), thus giving283

equal weights to all models and members.284

Reliability measures how closely the forecast probabilities of a certain event285

correspond to the actual chance of observing that event. It is applied here for286

probabilistic forecasts of each of the three precipitation terciles: dry (T1), normal287

(T2) and wet (T3). For each model (the MM), probabilities are computed based on288

the nine (36), either raw or downscaled, available members. Reliability diagrams289

(see the illustrative examples shown in Figure 2) plot the observed frequencies of290

the event considered (e.g. T1, T2 or T3) as a function of its forecast probabil-291

ity, as represented by a determined number of bins (see Doblas-Reyes et al, 2008,292

for details). For a perfectly reliable forecasting system, the curve obtained would293

match the diagonal (perfect reliability line). Points falling within the so-called skill294
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region (in gray), i.e., the region contained between the no-resolution line (which295

indicates the expected frequency of the event: 1/3 for terciles) and the no-skill line296

(halfway between the no-resolution line and the diagonal) positively contribute297

to the forecast skill (Brier Skill Score > 0). Weisheimer and Palmer (2014) pro-298

posed a methodology to translate the information provided by these diagrams299

to an easy-to-interpret scale with five reliability categories: perfect (green), still300

very useful (blue), marginally useful (yellow), not useful (orange) and dangerously301

useless (red). In particular, they performed a weighted linear regression as a best-302

guess estimate on all data points in the diagram (using the number of forecasts303

in each probability bin as weights) and defined the different reliability categories304

based on the relative position of the so derived reliability line with respect to the305

perfect reliability (diagonal), no-skill and no-resolution lines, as well as on the un-306

certainty range around it (as obtained by bootstrapping with 1000 samples). Here,307

we slightly modified this original classification by Weisheimer and Palmer (2014)308

for a better adaptation to our particular regional study (see Section 5.3).309

Note that the two validation metrics considered for this work are insensitive310

to data scaling and, therefore, are suitable to assess the added value of the down-311

scaling methods beyond the improvement of systematic biases in the mean and312

variance. Thus, we assess here the relevant aspects which can provide added value313

for seasonal forecasting.314

5 Results315

5.1 Performance of Raw Models316

In order to obtain an estimation of the performance of the ENSEMBLES models317

over the region of study, we carried out a regional validation considering as refer-318

ence the observed precipitation at the 42 PAGASA stations (model precipitation319

was bi-linearly interpolated to these gauges). Figure 3 shows the results obtained320

in terms of local biases, which are in general strong (as compared with the observed321

climatologies, shown in the first row). Note that in spite of local differences, all322

models (and as a result the MM) exhibit similar spatial patterns for the different323

seasons, which reflect their inability to properly represent the local features in this324

region of complex orography and land-sea contrast. Notice that, by construction,325

all the statistical downscaling methods here considered reduce the mean biases,326

yielding absolute biases smaller than 10 mm/year in all cases (not shown). Al-327

though this is a clear advantage for end users, here we focus on the added value in328

terms of skill (as characterized by forecast association and reliability). The reader329

is referred to (Maraun et al, 2015) for further information on the performance of330

the different downscaling methods from the point of view of biases and marginal331

statistics.332

Figure 4 shows the local interannual ACC values obtained. In general, signifi-333

cant correlations are found for all models throughout the year (especially in DJF334

and MAM) except for JJA. This marked seasonality in forecast skill is a conse-335

quence of the large influence exerted by the ENSO interannual oscillations in this336

region (Manzanas et al, 2014). However, important local-to-regional differences337

can be found for different models in some seasons. For instance, the ECMWF338

model exhibits a superior performance for the CT1 region in JJA. This could be a339
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consequence of the higher resolution of this model, as compared to the other three340

(see Table 1).341

5.2 Correlation of Downscaled Results342

For the different seasons (in rows) and CTs (in columns), panels in Figure 5 show343

the interannual ACC values obtained for each of the ENSEMBLES models (see344

the colors in the legend). Boxplots display the results along the different stations345

for the raw/direct model output (DMO henceforward), which is indicated by a346

light gray shadow, and for all the downscaling methods considered (right after the347

DMO). Overall, results vary mainly among seasons, but also among CTs, models348

and downscaling methods. For the latter, results are in general more sensitive to349

the approach considered (BC or PP) than to the particular technique used within350

each approach. As already explained in Section 5.1, the highest scores for the351

DMO are obtained for DJF and MAM, whereas the worst results are found for352

JJA, with no significant correlations for any model except for the ECMWF in the353

CT1 region. In general, the DMO outperforms the BC methods (note that the354

correlation gain found for the latter in some cases is limited to a few stations and355

is counteracted by the loss found in others, so no robust signal of added value is356

obtained for the BC approach). Nonetheless, PP methods can either improve or357

spoil the correlations attained by the DMO, depending on the case.358

More in detail, whereas the BC methods do not improve (or even worsen) the359

correlations reached by the DMO in general for DJF and MAM, there are a few360

cases in which PP methods can add important value (indicated by black dotted361

boxes). In particular, PP methods are shown to improve raw precipitation from the362

relatively bad performing models (those exhibiting small ACC values, as compared363

to the rest of models), as occurs for the MF model in DJF (CT4) and the IFM-364

GEOMAR model in MAM (CT1). Moreover, as marked with red dotted boxes, PP365

methods can also add important local value for some particular outlier stations366

(those in which the correlation for the raw model precipitation drops, as compared367

with the rest of locations). See, for instance, the case of the CMCC-INGV model in368

MAM (CT2 and CT3). Notice that, as opposite to the DMO and the BC methods369

—which depend on model precipitation at the nearest gridbox and can be affected370

by local features such as wrong orographical gradients, land-sea interfaces, etc.,—371

PP methods rely on large-scale predictors to infer local precipitation, which might372

allow in turn to properly reproduce the observed interannual variability in these373

cases.374

With respect to JJA and SON, whereas BC methods do not clearly improve375

(or even worsen) the correlations attained by the DMO, PP methods provide376

in general better (worse) results than the DMO in the former (latter) season. In377

particular, notice that PP methods yield large correlation improvements in JJA for378

the stations pertaining to CT1 for all models (with the exception of the ECMWF),379

which exhibit nearly-zero ACC values in this season.380

In order to summarize the results from Figure 5 and to better quantify the381

added value of BC and PP methods, Figure 6 shows in bar charts the percentage382

of stations with significant ACC values for the DMO and for the different down-383

scaling approaches (BC and PP), for the different seasons. Within each approach,384

the two methods applied are jointly considered. Moreover, all models except the385
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MM (which is excluded for clarity) and all CTs are also jointly considered. This386

figure shows that BC methods do not outperform (or slightly reduce) the corre-387

lations attained by the DMO for any season. However, PP methods yield higher388

(lower) correlations than the DMO does for JJA (SON). In particular, whereas389

the percentage augments from 10% to 30% in JJA, it drops from more than 60%390

to less than 30% in SON.391

5.3 Reliability of Downscaled Results392

In Weisheimer and Palmer (2014), the confidence interval around the best-guess re-393

liability line was estimated by randomly resampling members, gridboxes and years,394

and the 75% of the total range was considered. Here, we analyzed the sensitivity of395

their classification to different confidence intervals (the same bootstrapping pro-396

cedure was used) and found that the ensemble size had a large influence, as higher397

uncertainty around the best-guess reliability line was obtained for smaller ensem-398

bles. As a result, still very useful (blue) categories may pass to marginally useful399

(yellow) ones due to an enlargement of the confidence region (see Weisheimer and400

Palmer, 2014, for details on the definition of the different categories). Therefore, in401

this work we considered a smaller confidence interval given by the central 50% of402

the total range, which is more suitable for the nine members of the ENSEMBLES403

models used —note that the original classification was developed for the 51 mem-404

bers version of the ECMWF System 4 model (Molteni et al, 2011).— Moreover,405

in order to introduce further discrimination power, within the original marginally406

useful (yellow) category, we differentiate those cases in which the best-guess reli-407

ability line is above the no skill line, assigning to this new category (denoted as408

marginally useful +) the dark yellow color. See, for instance, panels g and h in409

Figure 2 —note that both cases would correspond to the same category in the410

original definition.—411

Figure 7 shows the reliability categories (in colors) obtained after applying the412

methodology described above for the different models (in columns) and seasons413

(in rows), by CT (note that the joined series of the different stations falling within414

each CT are considered). From left to right, each block shows the results for415

the DMO, the two BC and the two PP methods considered, for the three terciles.416

Overall, this figure is in good correspondence with the results found for correlation417

(Figures 5 and 6), with the best reliability obtained in DJF and MAM and the418

worst in JJA. Moreover, the results for the two BC methods are very similar to419

those obtained for the DMO, with slight differences due to spurious changes of420

category (as illustrated in the top row of Figure 2). However, the two PP methods421

exhibit major reliability differences with respect to the DMO, especially for JJA422

and SON. In particular, both PP1 and PP2 improve the results of the DMO in423

the former season, especially for the CT1, where marginally useful or marginally424

useful + categories are obtained instead of not useful and dangerously useless425

ones. Yet, the opposite situation is found for SON. Additionally, this figure also426

shows some well-known results (see, e.g., Manzanas et al, 2014), such as the higher427

performance attained for the extreme terciles (as compared to the normal one) and428

the superiority of the MM, which in general outperforms any single model.429

In order to summarize the results from Figure 7 and to better quantify the430

added value of the different approaches for statistical downscaling, Figure 8 shows431
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in stacked bar charts the percentage of reliability categories obtained from the432

DMO and the different downscaling approaches (BC and PP) for the different433

seasons. Within each approach, the two methods applied are jointly considered.434

For clarity, the results from the MM and from the normal tercile are excluded from435

this analysis. This figure shows that BC methods do not provide clear added value436

(or even worsen the DMO) for any season. However, PP methods yield substantial437

added value for JJA, leading to marginally useful or marginally useful + categories438

in over 50% of the cases, as compared to less than 10% for the DMO (and for the439

BC methods). In contrast, the opposite situation is found for the PP methods in440

SON, with not useful or dangerously useless categories obtained in nearly 50% of441

the cases (as compared with 10% for the DMO and 20% for the BC methods).442

Remarkably, the good alignment between the results found for reliability and443

those found for correlation points out the suitability and usefulness of the method-444

ology proposed by Weisheimer and Palmer (2014) —which is slightly modified445

here— for regional studies. Note that the original work was undertaken for the 21446

global regions defined in Giorgi and Francisco (2000).447

5.4 An Explanation for the Added Value of PP Methods448

As already mentioned, PP methods rely on large-scale predictors to infer local449

precipitation. As such, the above presented cases leading to a gain (loss) of skill450

for the PP approach could be explained by situations where large-scale variables,451

defined over a synoptic domain, are better (worse) predicted by the model than the452

target precipitation, which is more affected by particular local features (as usually453

represented by parametrizations). In order to check this premise, we focus here on454

the climate region CT1, where PP methods were shown to improve (deteriorate)455

the skill of the DMO in JJA (SON). Figure 9 displays the interannual ACC values456

obtained between observed precipitation at the 13 stations pertaining to this CT457

and the ERA-Interim and ENSEMBLES models outputs —the nearest gridbox458

is considered— for precipitation (PR) and the different predictors used (U850,459

U200, Q850 and T850) for the period 1981-2005. For benchmarking purposes,460

ERA-Interim is indicated by a light gray shadow.461

The gain of skill found in JJA for all models except the ECMWF (Figures462

5 and 7) is in agreement with the results shown in the top panel. In particular,463

whereas significant ACC values for precipitation are only found for the ECMWF464

model, mostly significant correlations (similar to the benchmark provided by ERA-465

Interim) are found for all models for U850 and T850, the large-scale predictors most466

correlated with observed precipitation (as indicated by the reanalysis). This sug-467

gests that PP methods might be able to exploit the model ability for reproducing468

upper-air predictor variables to indirectly obtain improved precipitation forecasts469

in cases of a poor skill for model precipitation.470

The opposite situation is found for SON (bottom panel). In this season, the471

ACC values found for precipitation are significant (although smaller than the472

benchmark provided by ERA-Interim) in most cases. However, the results found473

for the large-scale predictors are in general not significant. Moreover, opposite474

correlations with observations (as compared to the reanalysis) are found in some475

cases. The combined effect of these errors could result in wrong downscaled pre-476

dictions, as occurs for the ECMWF model, which leads to negative ACC values477
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(see the corresponding boxplots in Figure 5) and dangerously useless reliability478

categories (see the corresponding extreme terciles in Figure 7).479

6 Conclusions480

In order to assess the advantages and limitations of different approaches for statis-481

tical downscaling in the context of seasonal forecasting, two state-of-the-art Bias482

Correction (BC) and two Perfect Prognosis (PP) methods were applied to obtain483

local precipitation at 42 stations in the Philippines, considering one-month lead484

forecasts from the ENSEMBLES multimodel seasonal hindcast for the four boreal485

seasons over the period 1981-2005.486

As expected by construction, BC and PP methods were shown to be successful487

in reducing the systematic model biases over the area of study, which are in general488

strong (as compared to the local climatologies). In particular, both approaches lead489

to very small biases after downscaling. However, and even though this is a clear490

advantage for users, we focus here on the methods’ ability to predict interannual491

anomalies, which is the basis of seasonal forecasting. Therefore, we assess forecast492

quality/skill in terms of interannual correlation and reliability categories. Note that493

these two metrics are not sensitive to changes in the mean and allow therefore to494

properly assess the added value of the downscaling methods beyond the effect of495

bias reduction.496

On the one hand, BC methods were shown to provide no added value in terms497

of skill, maintaining or worsening both correlation and reliability. These meth-498

ods directly transform model precipitation (by correcting different quantiles of the499

distribution) without relying on any additional information about the underlying500

physical phenomena (e.g. large-scale circulation). As a consequence, BC methods501

can arbitrarily modify the temporal structure of the raw model output, with the502

overall result of degrading the skill (Maraun, 2013). Noticeably, the conclusions503

obtained here for the BC methods are quite general and do not depend on the par-504

ticular experimental configuration followed. For instance, we tested cross-validated505

versus not cross-validated methods and member- versus ensemble-wise calibrated506

ones, obtaining very similar results in all cases.507

On the other hand, we found that PP methods can either substantially improve508

or deteriorate correlation and reliability. As opposite to BC ones, PP methods rely509

on physically-based large-scale model predictors to infer local precipitation. Thus,510

this provides an opportunity for improving the original model skill in those cases511

for which orographic and land-sea contrasts limit the local representativeness of512

model precipitation, but the model is yet skillful in reproducing the large-scale513

predictors. In this work, we show that those conditions are met for certain regions514

and/or seasons. For instance, reliability was increased by PP methods in nearly515

40% of the stations considered in summer.516

Therefore, we conclude that the choice of an appropriate statistical downscal-517

ing method is not trivial and depends on factors such as the region, the season,518

the strength of the connection between the large- and the local-scale climate and519

the model skill for predicting surface/upper-air variables. Moreover, this selection520

should be based on the requirements of the particular user and/or application. In521

general, it is advisable to test the added value of PP methods as a first choice,522
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particularly in regions with complex orography and/or large local variability. How-523

ever, BC methods could be a cost-effective and pragmatic choice in applications for524

which the main concern is just reducing model biases, even at the cost of degrading525

the skill.526
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Fig. 1 (a) Topography of the Philippines. (b) Location of the 42 PAGASA gauges considered,
classified into the four precipitation climatic types (CTs) defined in Coronas (1920), in colors.
(c)-(f) Interannual variability of spatial average precipitation totals for each CT (see colors in
the legend) for the period 1981-2005, by seasons.
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Fig. 2 Reliability diagrams for the raw/direct model output (DMO), the BC1 and the PP1
method (in columns), for three different illustrative examples of seasonal forecasts in MAM,
JJA and SON (in rows), for different CTs and models (see the labels on the left-hand side).
The gray area defines the region contributing positively to the forecast skill (Brier Skill Score
> 0). The perfect reliability, no skill and no resolution lines are indicated in panel a. Colors
correspond to the different categories used, which are based on the original scale proposed by
Weisheimer and Palmer (2014) (see the text for details). Note that the joined series of the
different stations falling within each CT are considered. The sample size used in each case is
indicated in the upper left corner.



Can bias correction and statistical downscaling improve seasonal forecasts? 19
E

C
M

W
F

IF
M

-G
E

O
M

A
R

C
M

C
C

-IN
G

V
M

F

DJF MAM JJA SON

−300

−200

−100

0

100

200

300
mm

0
200

1000

400

600

800

mm

O
B

S
.

M
M

Fig. 3 First row: Observed seasonal climatologies (in mm/season) at the 42 PAGASA stations.
Rest of rows: Bias (in mm/season) for the four ENSEMBLES models and the multimodel, by
seasons (in columns). Significant (α = 0.05, according to a Student’s t-test) values are indicated
with a black dot.
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Fig. 4 Interannual ACC values obtained at the 42 PAGASA stations for the four ENSEM-
BLES models and the multimodel (in rows), by seasons (in columns). Significant (α = 0.05,
according to a Student’s t-test) values are indicated with a black dot.
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Fig. 5 Interannual ACC obtained for the different seasons (in rows) and CTs (in columns).
In each panel, results for each model are shown in different colors (see the legend). From left
to right, boxplots display the correlations obtained along the different stations for the DMO
(indicated by a light gray shadow) and the BC1, BC2, PP1 and PP2 methods. Significant
(α = 0.1, according to a Student’s t-test) values are those above the red dashed lines. Dashed
boxes indicate particular situations which are described in the text.
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Fig. 6 Summary of Figure 5 showing in bar charts the percentage of stations with significant
(α = 0.1, according to a Student’s t-test) interannual ACC for the DMO and the BC and
PP downscaling approaches, for the different seasons. Within each approach, the two methods
considered are jointly analyzed. Moreover, all models except the MM (which is excluded for
clarity) and all CTs are also jointly considered.
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Fig. 7 Reliability categories obtained for the different ENSEMBLES models (in columns)
along the different seasons and CTs (in rows). Each block shows the results obtained for the
DMO, the two BC and the two PP methods considered, for the three terciles (T1, T2 and T3).
Colors correspond to the different categories used, which are based on the original classification
proposed by Weisheimer and Palmer (2014) (see the text for details).



24 R. Manzanas et al.

DMO BC

%
 o

f r
el

ia
bi

lit
y 

ca
te

go
rie

s
%

 o
f r

el
ia

bi
lit

y 
ca

te
go

rie
s

PP
0

20

40

60

80

100
DJF

DMO BC PP
0

20

40

60

80

100
MAM

DMO BC PP
0

20

40

60

80

100
JJA

DMO BC PP
0

20

40

60

80

100
SON

perfect still very useful marginally useful / marginally useful +
not useful dangerously useless

Fig. 8 Stacked bar charts with the percentage of reliability categories (in colors) for the DMO
and the BC and PP approaches (within each approach, the two methods considered are jointly
analyzed) for the different seasons. For clarity, results from the MM and from the normal
tercile (T2) are excluded from this analysis.
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Fig. 9 Interannual ACC values between observed precipitation at the 13 stations pertaining
to CT1 and the corresponding ERA-Interim and ENSEMBLES models outputs —the nearest
gridbox is considered— for precipitation (PR) and the different predictors used (U850, U200,
Q850 and T850) for (top) JJA and (bottom) SON. Significant (α = 0.1) positive (negative)
values are those above (below) the upper (lower) red dashed line.


