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Abstract This work assesses the suitability of a first simple attempt for process-6

conditioned bias correction in the context of seasonal forecasting. To do this, we7

focus on the northwestern part of Peru and bias correct one- and four-month lead8

seasonal predictions of boreal winter (DJF) precipitation from ECMWF System49

forecasting system for the period 1981-2010. In order to include information about10

the underlying large-scale circulation which may help to discriminate between pre-11

cipitation affected by different processes, we introduce here an empirical quantile-12

quantile mapping method which runs conditioned on the state of the Southern13

Oscillation Index (SOI), which is accurately predicted by System4 and is known14

to affect the local climate.15

Beyond the reduction of model biases, our results show that the SOI-conditioned16

method yields better ROC Skill Scores and reliability than the raw model out-17

put over the entire region of study, whereas the standard unconditioned imple-18

mentation provides no added value for any of these metrics. This suggests that19

conditioning the bias correction on simple but well-simulated large-scale processes20

relevant to the local climate may be a suitable approach for seasonal forecasting.21

Yet, further research on the suitability of the application of similar approaches to22

the one considered here for other regions, seasons and/or variables is needed.23

Keywords Bias correction, process-conditioning, seasonal forecasting, precipita-24

tion, ENSO, SOI, Peru25

1 Introduction26

Flood and drought episodes triggered by ENSO pose serious economic, social and27

environmental concerns in many tropical countries like Peru, especially during28

strong El Niño events such as the one occurred in 2015-2016 (see, e.g., Zhai et al,29

2016; Emerton et al, 2017; Sulca et al, 2017). The recent advances achieved in the30

predictability of ENSO (see, e.g., Barnston et al, 2015; Zheng et al, 2016) may help31
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to mitigate these adverse effects by allowing for adequate planning several months32

in advance. In this context, various initiatives under the umbrella of the Global33

Framework for Climate Services —such as CLIMANDES-2 for Peru— are focused34

on the development of climate services which bridge the gap between science and35

policy by providing key climate information at time-scales that can be relevant for36

decision-making (for instance, seasonal forecasts especially tailored for different37

socio-economic sectors such as agriculture, energy or transport).38

However, the still limited horizontal resolution of the state-of-the-art seasonal39

forecasts obtained with General Circulation Models (GCMs) prevents from their40

direct use in many practical applications, which typically require local climate41

information (see Doblas-Reyes et al, 2013, and references therein). As indicated42

in Manzanas et al (2017b), different statistical downscaling methods have been43

developed since the early 1990s (see, e.g., von Storch et al, 1993) to bridge the gap44

between these coarse-resolution outputs and the local scale. Under the Model Out-45

put Statistics (MOS) approach, these methods rely on empirical/statistical models46

which link the local observed predictands of interest (precipitation in this work)47

with explicative large-scale GCM predictors over the area of interest. In the con-48

text of seasonal forecasting, different types of MOS have been applied, from linear49

regression and Canonical Correlation Analysis (see, e.g., Landman and Tennant,50

2000; Sinha et al, 2013) to more sophisticated ensemble MOS (EMOS) corrections51

which take into account the spread-skill relationship (see, e.g., Gneiting et al,52

2005; Torralba et al, 2017; Zhao et al, 2017). However, all these methods rely on53

the temporal correspondence between GCM predictors and observed predictands54

(they operate at a time-series level) and, therefore, they can only be applied at a55

monthly/seasonal time-scale —seasonal forecasts do not provide day-to-day cor-56

respondence with observations beyond a few days after being issued (see, e.g.,57

Johansson, 2007).— For this reason, simple alternatives based on distributional58

Bias Correction (BC) methods such as the quantile-quantile mapping (see, e.g.,59

Maraun, 2013) applied in this work have become increasingly popular during the60

last decade (see, e.g., Themeßl et al, 2012), since they provide a straightforward61

way to adjust/correct the daily model predictions so that their statistical prop-62

erties (in terms of daily distributions) are similar to those from the observations.63

Nevertheless, several problems have been identified which prevent from the unin-64

formed use of BC methods (see, e.g., Ehret et al, 2012; White and Toumi, 2013;65

Maraun, 2016; Maraun et al, 2017b). For instance, they inherit the model circula-66

tion biases —e.g., errors in the position of the inter-tropical convergence zone,—67

which can lead to meaningless results (Maraun et al, 2017b).68

In seasonal forecasting, an important limitation of BC methods derives from69

the fact that they do not rely on the temporal match between predictors and70

predictands (they operate at a distributional level, not at a time-series level). As71

a result, these methods can introduce arbitrary temporal changes (Maraun, 2013)72

which can deteriorate the interannual variability of the raw predictions (Maraun73

et al, 2017a). This may be particularly the case for some regions where the local74

climatology is mostly dominated by local processes poorly resolved by the GCMs75

such as the tropics (Manzanas et al, 2017b). In this regard, some recent alternatives76

propose a two step BC adjustment-reshuffling approach to mimic the observed77

temporal variability (see, e.g., Vrac and Friederichs, 2014). However, this is done at78

the cost of destroying the temporal consistency with the driving model. Moreover,79
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the reshuffling strategy followed in these methods prevents from their use in a80

cross-validation or operational setup.81

To partially alleviate these problems, IPCC (2015) and Maraun et al (2017b)82

advocated the development of process-informed BC methods, combining the sta-83

tistical modeling with the knowledge about the relevant processes for the problem84

under study. In this regard, weather types offer a simple and practical solution to85

define representative circulation regimes and to analyze conditional model biases86

(Addor et al, 2016). Although BC methods conditioned to a number of weather87

types obtained for the region of interest have been already applied to correct cli-88

mate change simulations (see, e.g., Bellprat et al, 2013), they should be carefully89

taken due to the possible shifts that may appear in the future atmospheric config-90

urations (see, e.g., Wetterhall et al, 2012). Nevertheless, and despite this is not a91

relevant issue for the case of seasonal forecasts due to their shorter predictive hori-92

zon, the application of process-based (e.g. weather-type conditioned) BC methods93

remains unexplored yet for this particular type of predictions.94

In this work we focus on this matter and assess the suitability of a first simple95

attempt for process-conditioned BC over northern Peru. In particular, we focus96

on boreal winter (DJF) precipitation and introduce a quantile-quantile mapping97

technique conditioned on the state of ENSO. We compare the performance of98

this conditioned method against the standard (unconditioned) implementation,99

which has been recently shown to be inappropriate for reproducing the clustered100

temporal precipitation structures (driven by ENSO) characteristic of this region101

(Maraun et al, 2017b). Beyond the expected reduction in model bias, the condi-102

tioned method is found to appropriately modify the non-representative temporal103

structure of the raw model output, providing more realistic local time-series, which104

results in improved forecast association, accuracy and reliability.105

The paper is organized as follows. In Section 2 we introduce the region of106

study, the data used and the BC methods that are applied. The results obtained107

are presented through Section 3. Finally, the most important conclusions are given108

in Section 4.109

2 Data and Methods110

2.1 Region of Study and Observations111

In this work we focus on precipitation over the northwestern part of Peru, which,112

besides the strong influence of ENSO (see, e.g., Bazo et al, 2013; Sanabria et al,113

2017) and the ITCZ (Garreaud, 2009), is affected by local forcing related to the114

presence of the Andes and the complex land-sea contrast. As a result, precipitation115

over this region exhibits a large local variability and provides therefore an appropri-116

ate test-bed for downscaling studies (see, e.g., Horel and Cornejo-Garrido, 1986).117

We used daily precipitation from 71 gauges owned and maintained by SENAMHI118

(the national meteorological service) which cover 1981-2010, the period for which119

seasonal forecast data was available (see next section). Figure 1(a) shows two ho-120

mogeneous clusters of stations which were obtained by applying the Ward’s mini-121

mum variance method (Ward, 1963) to the interannual time-series of accumulated122

precipitation for boreal winter (DJF, the target season of this work), which are123

shown in panels (b) and (c). The highlighted series correspond to San Miguel and124
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Magunchal, two representative stations which will be used in Section 3 to illustrate125

some of the results obtained.126
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Fig. 1 (a) Orography of the region under study (in meters above sea level) and location of the
available stations, classified in two clusters obtained by applying the Ward’s minimum vari-
ance method on the interannual time-series of accumulated precipitation for the boreal winter
(DJF). The interannual series for all the stations in clusters 1 (red) and 2 (blue) are shown in
panels (b) and (c), respectively. Two representative stations (San Miguel and Magunchal) are
highlighted. (d) Interannual anomalies of observed SOI (solid line) and SST averaged over the
El Niño 3.4 region (dashed line). Correlation between both is given in the upper part of the
panel.

The solid line in Figure 1(d) shows the interannual anomalies of the observed127

Southern Oscillation Index (SOI) for DJF. The SOI (see, e.g., Trenberth, 1984) is128

a standardized index computed as the difference between mean sea level pres-129

sure anomalies at Tahiti and Darwin, in Australia (these data were obtained130

from http://www.cgd.ucar.edu/cas/catalog/climind/soi.html). For compari-131

son purposes, the dashed line shows the observed SST anomalies averaged over the132

El Niño 3.4 region (data obtained from http://www.cpc.ncep.noaa.gov/data/133

indices/sstoi.indices). In both cases, anomalies were computed with respect134

to the whole period of study, 1981-2010. The high negative correlation found be-135

tween SOI and El Niño 3.4 SSTs (-0.91) indicates that both indices are mostly136

equal representations of the same underlying phenomenon, ENSO. Therefore, as137

seasonal forecasts of SST were not available for this work, we considered the SOI138

as a proxy for ENSO. Note that, given the strong connection between SOI and El139

Niño 3.4 SSTs, results are expected to be very similar in both cases.140

To quantitatively assess the existing relationship between ENSO and the local141

climate, Figure 2 shows the interannual correlation between the observed SOI142

and precipitation at the 71 stations, in terms of the Pearson and the Spearman143

coefficients —significant (α = 0.05) values are marked with a black dot.— In144
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agreement with previous studies (see, e.g., Sulca et al, 2016), significant positive145

correlations are found for both coefficients in cluster 2, indicating that high/low146

precipitation is received during high/low SOI episodes (i.e., during La Niña/El147

Niño conditions). However, for cluster 1, whereas close to zero correlations are148

found in terms of Spearman, significant negative ones are found for Pearson. This is149

due to the particular effect of ENSO over this area, where only very strong El Niño150

conditions trigger high precipitation episodes (see, e.g., Rau et al, 2017) —see, for151

instance, the observed peaks in San Miguel in years 1982/83 and 1997/98, which152

are shown in Figure 1(b).— Note that, these extreme conditions have a stronger153

impact in the calculation of the (Gaussian-based) Pearson coefficient than in the154

(rank-based) Spearman one. Therefore, both correlations are needed in order to155

properly assess the effect of ENSO on the local precipitation (teleconnections) over156

the entire study region. However, for validation purposes, and for simplicity, we157

only use the Spearman coefficient in the following. Moreover, note that tercile-158

based scores (such as the ROC Skill Score; see Section 2.4) are more suitable for159

validation since they provide more meaningful information.160
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Fig. 2 Interannual correlation between observed local precipitation and SOI, in terms of (a)
Spearman and (b) Pearson coefficients.

2.2 Seasonal Forecasts161

One- and four-month lead (i.e. initialization of November and August, respectively)162

retrospective seasonal forecasts of sea level pressure —which is used to compute163

the predicted SOI— and surface precipitation for DJF were used for this work.164

They come from the System4 (Molteni et al, 2011) of the European Centre for165

Medium-Range Weather Forecasts (ECMWF), which is based on the atmospheric166

model IFS (cycle 36r4) and the oceanic model NEMO. In particular, we first con-167

sidered the seasonal experiment, in which 15 equiprobable members were run at168

the beginning of each month for the period 1981-2010, providing seven month-long169

predictions. Additionally, in order to assess the importance of the ensemble size,170

we also considered the annual experiment, in which 51 members were run four171
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times a year (the first of February, May, August and November), providing twelve172

month-long forecasts.173

174

For the illustrative case of one-month lead forecasts and 15 members, Figure 3175

shows the interannual anomalies for the observed (black) and predicted (red) SOI176

over the period of study. A correlation of 0.91 is found for the ensemble mean (dark177

red line). Such a good model performance for predicting this index, along with178

the significant correlations found between the index itself and local precipitation179

(Figure 2) may provide an opportunity for operational seasonal forecasting in the180

studied region based on the state of SOI. This possibility is addressed here.181
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Fig. 3 Interannual anomalies of observed (black) and predicted SOI for DJF over the period
of study. For the latter, one-month lead forecasts (i.e. initialization of November) from the
seasonal experiment of the System4 are used. The 15 available members (ensemble mean) are
shown in light (dark) red. Correlations between the observed and the predicted index (as given
by the different members and the ensemble mean) are given in the upper part of the plot.

2.3 Bias Correction Methods182

In this work we consider an empirical quantile-quantile mapping method partici-183

pating in the VALUE downscaling intercomparison initiative (Maraun et al, 2017a)184

which has been recently applied to correct seasonal precipitation forecasts (Man-185

zanas et al, 2017b). As described in the latter reference, this method consists of186

calibrating the predicted empirical probability density function (PDF) by adjust-187

ing a number of quantiles based on the empirical observed PDF (see, e.g., Déqué,188

2007). In particular, we adjusted percentiles 1 to 99 and linearly interpolated ev-189

ery two consecutive percentiles inside this range. Outside this range, a constant190

extrapolation (using the correction obtained for the 1st or 99th percentile) was191

applied. Negative values (if any) were set to zero. Moreover, in cases when the192

predicted frequency of dry days is larger than the observed one, the frequency193

adaptation proposed by Themeßl et al (2012) was applied. To avoid the artificial194

skill derived from model over-fitting, we applied a leave-one-out cross validation195
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scheme (Lachenbruch and Mickey, 1968) in which each year was separately con-196

sidered for test, whilst the remaining ones were kept for training. Note that this197

cross-validation framework is the most adequate to test the potential usefulness of198

the methods for operational seasonal forecasting.199

Besides the standard unconditioned implementation of the above described200

method (denoted simply as BC henceforward), we also considered a circulation-201

conditioned one, which takes into account the state of the underlying ENSO (as202

described by the SOI). This implementation, which will be referred to as SOI-BC203

hereafter, is explained in Figure 4. For each test year (for instance 1998), we first204

found out the tercile in which the predicted SOI (as given by the ensemble mean)205

fell —the threshold values identifying the different terciles are computed based on206

all the remaining years.— As shown in Figure 4(1), let’s assume it was the low207

tercile (T1). Instead of considering the whole training dataset, the above described208

quantile-quantile mapping is then fitted considering raw model and observed pre-209

cipitation in those years for which the observed SOI fell in the same tercile, T1210

(2 in the figure) —again, the threshold values identifying the different terciles are211

computed based on all years except 1998.— Once the parameters of the mapping212

are found (3), they are used to correct the raw model precipitation for the test213

year (4). This process is repeated year by year in order to get the final corrected214

time-series for the entire period of study.215

In both BC and SOI-BC, the quantile-quantile mapping was independently216

fitted/applied for each of the available members in the System4 (member-wise217

approach). We also tested an ensemble-wise approach in which all members were218

pooled together and a unique set of adjusting parameters (based on the joint dis-219

tribution) was then applied to each individual member. In agreement with Man-220

zanas et al (2017b), the results obtained were very similar in both cases, so only221

the member-wise alternative is considered henceforward.222

Note that, although more sophisticated process-conditioned corrections could223

also be applied, we test here whether or not this simple approach may help to224

discriminate between precipitation affected by different processes (as character-225

ized by SOI/ENSO). Note also that, in order to refine the correction, more than226

three categories could be considered for the conditioning. For instance, we also227

tested the suitability of using five categories (i.e. quintiles), obtaining similar re-228

sults. Hence, terciles were finally considered as a compromise between getting good229

validation results and retaining a sufficiently large sample size that allows for a230

robust statistical fitting.231

2.4 Validation Measures232

The validation of seasonal forecasts is a multi-faceted problem which requires the233

use of different scores that allow to properly analyze different quality aspects.234

Some of these scores (e.g. continuous ranked probability score) are sensitive to235

changes in the mean and, therefore, can be easily improved by using BC methods236

as a result of the model bias reduction. In this work, we are interested in the237

added value of these methods beyond this model bias reduction. Thus, we focus238

on two validation metrics which are not sensitive to changes in the mean and/or239

the variance: the ROC Skill Score (ROCSS) and reliability.240
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Fig. 4 Diagram illustrating the implementation of the SOI-BC method. For each test year (for
instance, 1998): (1) We found out the tercile in which the predicted SOI fell; T1 in this case.
(2) The quantile-quantile mapping is fitted considering raw model and observed precipitation
in those years for which the observed SOI fell in the same tercile. (3) The parameters of the
mapping are found and (4) they are used to correct the raw model precipitation for the test
year. This process is repeated year by year in order to get the corrected time-series for the
entire period of study. See the text for more details.

The ROCSS measures the accuracy of probabilistic forecasts of different cat-241

egories —terciles here: dry (T1), normal (T2) and wet (T3).— As described in242

Manzanas et al (2014), it is computed as 2A − 1, where A is the area under the243

ROC curve, so it ranges between 1 (A = 1: perfect forecast system) and -1 (A = 0:244

perfectly bad forecast system), with a zero value (A = 0.5) indicating no skill245

compared with a climatological prediction. This metric is recommended by the246

Lead Centre for the Standardized Verification System of Long Range Forecasts247

(http://www.bom.gov.au/wmo/lrfvs/index.html) for the verification of seasonal248

forecasts and is a reasonable first choice to communicate the value of a forecast to249

the end-users. Reliability measures how closely the forecast probabilities of a cer-250
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tain event correspond to the actual chance of observing that event (terciles here).251

Reliability diagrams (Weisheimer and Palmer, 2014) have been traditionally used252

to assess reliability. These diagrams (see next section) plot the observed frequency253

of the event considered (e.g. T1, T2 or T3) as a function of its forecast probability,254

as represented by a determined number of bins (see, e.g., Doblas-Reyes et al, 2008,255

for details).256

3 Results257

Figure 5 provides an illustrative example of the application of the two BC meth-258

ods presented for the particular case of one-month lead predictions from the sea-259

sonal experiment of the System4 (15 members). Interannual time-series of observed260

(black) and predicted precipitation are shown for San Miguel and Magunchal (left261

and right column, respectively), the two representative stations marked in Fig-262

ure 1. Among the predictions, the raw System4 output, the unconditioned and263

the SOI-conditioned method are shown in different rows. Light (dark) blue corre-264

sponds to each of the available members (the ensemble mean). The ROCSS for the265

dry and wet terciles, along with the interannual Spearman correlation are given266

in the upper part of the plots.267

Beyond the expected reduction of the model bias achieved by both BC methods268

—which is particularly visible in Magunchal; compare panels (d) and (f) with269

panel (b)— the conditioned SOI-BC method is shown to modify the temporal270

structure given by the raw model output, improving both the ROCSS and the271

interannual correlation in the two stations (regardless of their different interannual272

precipitation regimes). Note that, in the case of San Miguel, the standard BC273

method is unable to reproduce the observed clustered precipitation around strong274

El Niño years (panel (c)), which has recently reported by Maraun et al (2017b)275

as one of the cases for which standard BC methods fail due to non-representative276

model output. However, the SOI-BC method introduced in this work provides more277

realistic time-series (panel (e)), with precipitation more adequately distributed278

along El Niño/non El Niño years. For the case of Magunchal, it is also clear that279

the SOI-BC method improves the temporal structure given by the standard BC280

method (compare panels (d) and (f)), which basically follows the raw model output281

(panel (b)).282

In order to further analyze how SOI-BC modifies the temporal structure given283

by the System4, Figure 6 shows the tercile plots (see, e.g., Manzanas et al, 2017a)284

for the raw model output, the standard and the conditioned BC method (from top285

to bottom) for the two stations (again, one-month lead forecasts are considered).286

Each plot displays, year by year, the predicted probabilities (as obtained from287

the frequencies of the 15-member ensemble) for each of the three terciles (T1,288

T2 and T3) in a white-to-orange colored scale, along with the observed tercile289

(black circles). Overall, as a consequence of the conditioning followed, the SOI-BC290

method exhibits higher resolution (probabilities far from the climatological value:291

1/3) than both the raw model output and the unconditioned method, which lead292

to very similar results. In particular, whereas the standard method maintains the293

temporal sequence of probabilities given by the System4, the SOI-conditioned294

version can introduce notable changes for particular years. For instance, the SOI-295

BC significantly increases the probability of the wet (dry) tercile for 2008 towards296
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Fig. 5 Interannual time-series for San Miguel and Magunchal (left and right column, respec-
tively), as given by the raw System4 output and the two BC methods applied (in rows) at
one month lead-time. The light blue lines correspond to each of the 15 members, whereas the
dark blue one represents the ensemble mean. The ROCSS for the dry and wet terciles, along
with the interannual Spearman correlation are shown in the plots. In all cases, observations
are displayed in black.

the observed value in Magunchal (San Miguel). Alternatively, there are also cases297

for which it can wrongly modify the prediction of the global model (e.g. the wet298

tercile for 1998 in Magunchal).299

The above results found for San Miguel and Magunchal are representative of300

the overall performance of the two BC methods applied for the entire study re-301

gion. Figure 7 shows the ROCSS for the dry and wet terciles (in rows) for raw302

System4 precipitation (the 15-member experiment), the unconditioned and the303

SOI-BC method (in columns) for the 71 stations considered. Black dots indicate304

significant —α = 0.05, marked with a black dot— values. As in (Manzanas et al,305

2014), significance was computed by means of bootstrapping (Mason and Graham,306

2002) with 1000 samples; i.e., by generating 1000 time-series of probabilistic fore-307

casts by randomly resampling the original series. For the case of one-month lead308

predictions (left panel), whereas the standard BC method provides no improve-309

ment with respect to the raw model output, the SOI-BC version yields better310

ROCSS over most of the stations, particularly in cluster 2, where System4 (and311

the standard BC method) exhibits negative ROCSS. Moreover, although there is a312

general decrease in skill for the case of four-months lead predictions (right panel),313

the SOI-BC method still provides better results than both the raw model and the314

unconditioned BC method at this longer lead-time, which points out the potential315

usefulness of process-conditioned BC methods for operational decision-making.316
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Fig. 6 Tercile plots for the raw System4 output —for the illustrative case of one-month
lead forecasts from the 15-member experiment— and the two BC methods applied (from top
to bottom), in San Miguel and Magunchal. Each plot displays, year by year, the predicted
probabilities (white-to-orange colored scale) for each of the three terciles (T1, T2 and T3),
along with the observed tercile (black circles). Numbers on the left indicate the ROCSS for
each tercile.

Figure 8 shows the reliability diagrams obtained for the dry and wet terciles317

(left and right column, respectively) for cluster 1 and 2 —note that the joined318

series of the different stations falling within each cluster are considered.— Black,319

blue and red lines correspond to the raw model precipitation (the 15-member ex-320

periment), the unconditioned and the SOI-conditioned BC methods, respectively.321

Note that, for a perfectly reliable forecasting system, the curve obtained would322

match the diagonal. Points falling within the so-called skill region (in gray), i.e.,323

the region contained between the no-resolution line (which indicates the expected324

frequency of the event: 1/3 for terciles) and the no-skill line (halfway between325

the no-resolution line and the diagonal) positively contribute to the forecast skill326

(Brier Skill Score > 0). With the exception of the wet tercile in cluster 1, the327

results found for this metric are in agreement with those obtained for the ROCSS,328

with the SOI-BC method improving the poor reliability (closeness to the diag-329

onal) exhibited by both the raw model predictions and the BC method (which330

provide very similar results), either at one or four months lead-time (top and bot-331

tom panel, respectively). Aside from the lack of reliability, raw model forecasts332

and the standard BC method also show a lack of resolution (closeness to the hor-333

izontal climatological line). To some extent, this limitation can be also overcome334

by the SOI-BC method. Note the importance of these results, since reliable and335

resolutive seasonal forecasts are essential for any forecast-based decision-making336

(Weisheimer and Palmer, 2014).337

In order to assess the effect of the ensemble size on these results, all the above338

validation (ROCSS and reliability) was also performed for the case of the annual339

experiment of the System4, for which 51 members were available. The results340
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obtained for this larger ensemble were very similar for the two metrics considered341

(not shown for brevity).342
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Fig. 7 ROCSS obtained for the dry and wet terciles (in columns) for raw System4 precipitation
and the two BC methods applied (in rows). Left (right) panel corresponds to the case of one-
moth (four-months) lead predictions from the 15-member experiment of the System4.

An explanation of the above results comes from the fact that although the343

seasonal forecasting model is able to accurately forecast the interannual variabil-344

ity of ENSO (Figure 3), it fails to predict and reproduce the local impact of this345

phenomenon over the region under study. For instance, for the case of one-month346

lead predictions from the 15-member experiment, Figure 9 shows the interannual347

correlation between the observed SOI and the predicted local precipitation (left).348

The model fails to reproduce the observed SOI teleconnections (shown in Fig-349

ure 2(a)). In particular, System4 does not differentiate between those stations350

positively correlated with SOI (cluster 2) and those not significantly correlated351

(cluster 1), exhibiting a uniform pattern of negative correlations over the entire352

area of study. Moreover, this same pattern is also returned by the unconditioned353

BC method (center) since, as discussed, it does not significantly alter the temporal354

structure of the raw model output and, therefore, the correlation with SOI is pre-355

served in the corrected series. Differently, as a result of the changes in the temporal356

structure introduced by the SOI-BC method, part of the observed teleconnections357

is properly recovered in this conditioned implementation, although reinforced for358
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the stations in cluster 1 (right). Note that this is due to the simple conditioning359

setup used in this work (we only considered three categories of the SOI), which360

may not be the optimum solution for the stations in cluster 1, where only the361

strongest El Niño events have an impact in local precipitation (see, for instance,362

the case of San Miguel in Figure 2(b)).363

4 Conclusions364

In this work we have assessed the suitability of a first simple attempt for process-365

conditioned bias correction in the context of seasonal forecasting. To do this,366

we have focused on the northwestern part of Peru and bias corrected one- and367

four-month lead seasonal forecasts of boreal winter (DJF) precipitation from the368

ECMWF System4 (15- and 51-member experiments have been analyzed) for the369

period 1981-2010. With the aim of including some information about the under-370

lying large-scale circulation, we have introduced an empirical quantile-quantile371

mapping which runs conditioned on the state of the Southern Oscillation Index372

(SOI). In this method, for each test year, the quantile-quantile mapping is trained373

using only those years for which the observed SOI lied in the same category (ter-374

ciles are used here) the predicted SOI fell into —SOI is used here as a proxy for375

ENSO, which is known to strongly affect the climate of the study region.— This376

SOI-conditioned method was compared against a standard unconditioned imple-377

mentation in which it was directly applied over the entire period of study.378

Our results show that the unconditioned method broadly preserves the tem-379

poral structure of the raw model precipitation and, as a consequence, does not380

improve its unskillful predictions (beyond correcting the mean biases). Contrarily,381

the SOI-conditioned version can modify the temporal sequence of the raw model382

output, providing more realistic local time-series, and yielding better ROC Skill383

Scores (ROCCS) and reliability over the entire study area. Nevertheless, despite384

this general skill improvement, it is important to note that this conditioned method385

should not be expected to properly capture precipitation due to small-scale pro-386

cesses (e.g. convection) or other local features which are not directly related to the387

SOI and, therefore, not taken into account in this implementation.388

The results obtained in this work suggest the potential usefulness of this new,389

SOI-conditioned method, especially for those regions where the local climate vari-390

ability is largely driven by SOI/ENSO. Noticeably, similar approaches as the one391

applied here could be also valuable for other regions of the world affected by other392

large-scale phenomena (e.g. teleconnection patterns), as long as the models used393

are good at reproducing such phenomena, but do fail in predicting the associated394

local variability. Further investigation on the application of process-conditioned395

BC methods for those regions is still needed.396
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Fig. 8 Reliability diagrams for the dry and wet terciles (left and right column, respectively)
for cluster 1 and 2 (top and bottom rows). Black/blue/red line corresponds to the raw model
precipitation/BC/SOI-BC. Top (bottom) panel corresponds to the case of one-moth (four-
months) lead predictions from the 15-member experiment of the System4.
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Fig. 9 Interannual Spearman correlation between the observed SOI and the raw and corrected
model precipitation (from left to right), at one month lead-time. In all cases, the ensemble mean
resulting from the 15-member experiment of the System4 is considered. Significant (α = 0.05)
values are marked with a black dot.


