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Abstract 

 

Zinc finger of the cerebellum (ZIC) proteins constitute a family of transcription factors (TFs) with 

crucial roles during embryogenesis, particularly during neural development. Defects on the genes 

encoding these TFs cause a broad range of developmental disorders. In particular, Zic2 defects 

lead to holoprosencephaly, a congenital brain malformation resulting from the defective cleavage 

of cerebral hemispheres manifested with variable expressivity and incomplete penetrance. 

However, the target genes and mechanism of action of ZIC2 during brain development are largely 

unknown. Consequently, the molecular etiology of ZIC2-associated holoprosencephaly remains 

poorly characterized. To elucidate the molecular mechanisms by which ZIC2 contributes to 

proper brain development, I first analyzed how the loss of ZIC2 function affects the differentiation 

of embryonic stem cells into anterior neural progenitor cells (AntNPCs). Notably, I found that the 

knockout of Zic2 led to a drastic downregulation of dorsal brain genes, including major roof plate 

markers such as Lmx1a and Lmx1b. Next, one major objective in this project is to determine if 

ZIC2 directly activates these dorsal genes during AntNPC differentiation or if, alternatively, it 

represses ventral regulators which themselves antagonize brain dorsal identity. To achieve this, it 

is necessary to generate ZIC2 binding profiles genome-wide in AntNPC. Due to the lack of a 

specific antibody against ZIC2, I used CRISPR-Cas9 technology to generate a mouse embryonic 

stem cell line (mESC) in which the endogenous Zic2 was tagged with a C-terminal Flag-HA 

epitope. After demonstrating that Zic2 is expressed in this cell line at the same levels as in WT 

cells both at mRNA and protein level, I also showed that this cell line can be used to identify 

ZIC2 binding sites by chromatin immunoprecipitation (ChIP). This Zic2-Flag-HA mESC line will 

now allow us to perform chromatin immunoprecipitation and sequencing (ChIP-seq) and 

immunoprecipitation coupled to mass spectrometry (IP-MS) experiments to elucidate ZIC2 

genomic binding sites and its possible interacting partners, which should provide major insights 

into the regulatory networks and mechanisms whereby ZIC2 contributes to brain development 

and human holoprosencephaly. 

 

 

 

 

 

 

 



MMBB  2018-2019  University of Cantabria 

4 
 

 

 

 

Acknowledgements 

 

After all the work that this project recapitulates I could not leave unmentioned all the people that 

has been involved in making this Master’s Thesis an awesome experience both at the scientific 

and personal level: 

I would like to thank Dr. Álvaro Rada for accepting me in his team and for his close supervision 

and guidance. I must admit that he reaches all expectations as a PI and I still do not believe how 

lucky I am of working and learning each day in this lab.  

Thanks to Patricia, “the bench master”, for every advice and help she has given me since I arrived 

and for making easier each day with our funny conversations. You need her, she is there. 

Thanks to Sara, my first supervisor in Cologne. She started this project and I will work hard to 

meet the expectations so as she can be proud of her little Padawan. I miss you, a lot. Thanks for 

teaching me and taking care of me at the very beginning. And for the memes, best of it. 

Thanks to Sarah, my French best friend, for all the time spent in and outside the IBBTEC. For the 

mutual moral support and the stupid jokes late in the lab. 

Thanks to Dra. Marian Ros for her constant advice on developmental biology. Each video she has 

sent me and each explanation she has given me have made this complex world a bit easier. 

Thanks to all the unique and crazy members of Marian Ros’ lab. Love you, vaquitas. 

Thanks to Piero’s lab girls for the help with the Western Blot and for their continuous good vibes. 

Thanks to all the master colleagues, specially Aurora, Ale and Maria, the discovery of the year. 

Thanks to my parents for all the effort and support during all my education. But mainly for raising 

a human who loves nature, because that is the main reason why I am here. 

Thanks to Dundee crocodile, Manel. You are the best brother anyone could ask for. 

And thanks to Víctor, my favourite person in the world. Everything is better and funnier by your 

side. Impossible to put in words how grateful I am to spent each day with you. 

 

 



MMBB  2018-2019  University of Cantabria 

5 
 

 

 

Abbreviations  

 

ZIC: Zinc Finger of the Cerebellum 

TF: Transcription Factor 

HPE: Holoprosencephaly 

AntNPCs: Anterior Neural Progenitor cells 

mESCs: Mouse embryonic stem cells  

ChIP: Chromatin Immunoprecipitation  

IP: Immunoprecipitation 

MS: Mass Spectrometry 

MIHV: Middle Interhemispheric variant 

RT-qPCR: Real Time quantitative polymerase chain reaction 

WB: Western Blot 

PE: Poised Enhancer 

LIF: Leukemia Inhibiting Factor 

PBS: Phosphate Buffered Saline 

HRP: Horseradish peroxidase 

gDNA: Genomic DNA 

IF: Immunofluorescence 

IP-MS: Immunoprecipitation coupled to mass spectrometry 

COS: Cells being CV-1 (simian) in Origin, and carrying the SV40 genetic material 

dpc: Days post coitum 

SDS-PAGE: Sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

PVDF: Polyvinylidene fluoride 

BSA: Bovine serum albumin 



MMBB  2018-2019  University of Cantabria 

6 
 

1. Introduction 

1.1. ZIC family of transcription factors 

Zinc finger of the cerebellum genes (ZIC) encode a family of transcription factors (TFs) with a 

critical role during embryogenesis 1. They are orthologues of the Drosophila melanogaster odd-

paired gene, which due to an evolutionary gene copy expansion resulted in the five ZIC homologs 

that are now present in both mouse and human (i.e. Zic1 to Zic5). All ZIC proteins share a zinc 

finger domain consisting of five highly conserved Cys2His2-type zinc fingers 2,3 that can bind 

both DNA and other proteins 4. ZIC proteins act at different stages of early (neurulation, 

neuroectodermal differentiation or neural crest induction) 1,4 and late neural development (axon 

guidance, refinement of axon terminals) 5,6. The identification of ZIC mutations in different 

congenital syndromes highlights the relevance of these genes in human development 4.  

 

1.2. ZIC2-associated human holoprosencephaly (HPE) 

In this project, we focus on one member of this TF family, ZIC2. Loss of function mutations 

within the human ZIC2 gene are associated with holoprosencephaly (HPE). HPE is a 

developmental brain malformation resulting from incomplete cleavage of the prosencephalon and 

affecting the correct separation of the two brain hemispheres and facial structures 7.  Together 

with SHH, SIX3 and TGIF, ZIC2 is one of the four marker genes screened for the molecular 

diagnosis of new sporadic or familial HPE cases 7–9. However, to date, fourteen genes have been 

already associated with this malformation in humans (SHH, ZIC2, TGIF, SIX3, CDON, DISP1, 

DLL, FGF8, FGFR1, FOXH1, GAS1, PTCH1, NODAL, TDGF1) 10. Moreover, HPE displays 

reduced penetrance and variable expressivity: not all individuals with loss of function mutations 

in the previous genes display HPE and the severity of the brain abnormalities differ between 

patients 7. HPE is considered as a rare disease, which, nevertheless, is the most common brain 

structural defect in humans, with an incidence of 1/250 conceptuses and 1/10.000-16.000 live 

births 7–9.  

 

HPE can be broadly classified in two major types attending to the degree of brain separation and 

to the location of the defect with respect to the dorso-ventral axis: classical HPE and middle 

interhemispheric variant (MIHV).  

 

In classical HPE the lack of separation is most severe ventrally, and three subgroups are 

established following a severity criterion: (i) alobar (monoventricle with no hemisphere 

separation), (ii) semilobar (partial hemispheric separation), and (iii) lobar (hemispheric and lateral 

vesicle separation is preserved but absent in the rostral and ventral frontal lobes). These 
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phenotypes also include craniofacial defects as microcephaly, hypotelorism and/or cleft lip and 

palate, whose severity normally correlates with the degree of hemispheres separation. In addition, 

midline defects, such as undivided thalami, absent corpora callosa and absent or hypoplasic 

olfactory and optic bulbs, are also frequent 10. 

 

 MIHV, in contrast to classical HPE, shows a proper separation of the ventral forebrain but 

presents a defect in the division of the posterior frontal and parietal regions of the cerebral 

hemispheres along the dorsal midline 11. Both classic and MIHV HPE present an impairment in 

the cleavage of cerebral hemispheres, however, MIHV is milder and less frequent than classic 

HPE 12 and some authors propose that they may have a distinct embryological origin 13.In one 

study that supports this hypothesis, mouse embryos defected for the BMP receptor genes Bmpr1b 

and Bmpr1a (Bmpr1b-/-/Bmpr1a-/- mice) displayed a loss of all dorsal midline cell types without 

affecting the specification of cortical and ventral precursors, in opposition to Shh-/- mutants, in 

which ventral patterning is disrupted, but the dorsal midline initially forms. However, assigning 

a role to ZIC2 in the process of hemisphere separation still remains a challenge, as Zic2 is the 

only gene associated to both classical and MIHV HPE 10.  

 

In mouse model, spontaneous null mutations (Zic2 Kumba allele) demonstrated that the complete 

absence of ZIC2 (Zic2Ku/Ku) causes a mid-gastrulation failure that leads to classical HPE with 

variable severity14. In addition, a hypomorphic Zic2 mouse line, with approximately 20% of the 

normal Zic2 expression levels, develops normally though gastrulation, but displays dorsal 

forebrain malformations at later stages of development including MIHV HPE, microcephaly, 

exencephaly and spina bifida at different degrees of severity 15. These data on mice models 

confirm that ZIC2 associated HPE manifests a defective forebrain dorso-ventral patterning. 

Interestingly, the defects associated to an absent (Zic2Ku/Ku) versus a low level of Zic2 expression 

(hypomorphic line, 20% of activity) suggest that Zic2 dosage sensitivity might change during 

embryogenesis, with dorsal brain patterning being particularly sensitive to reduced ZIC2 levels.    

As previously mentioned, HPE, as many other congenital syndromes, is characterized by its 

variable expressivity and incomplete penetrance 16. These two features strongly suggest that HPE 

might not be simply caused by loss of function mutations in the relevant genes (including ZIC2), 

but interactions with additional genetic and environmental factors might also contribute to the 

etiology of this disease. 
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1.3. Gene-environmental interactions  

Studies in mice show that homozygous Zic2 hypomorphic mutants frequently display forebrain 

abnormalities and die at perinatal stages, but heterozygous mice do not present major 

abnormalities 15. In comparison, the reported human cases appear due to Zic2 heterozygous loss-

of-function mutations or deletions. The fact that heterozygous mice do not present major brain 

anomalies, but human reported cases are caused by heterozygous mutations could suggest 

different gene dosage sensitivity between mice and humans. However, another possibility is that 

interactions between ZIC2 mutations and environmental risk factors (i.e. geneXenvironmental 

interactions (GxE)) cause these differences between species. Namely, laboratory mice develop 

under highly controlled and uniform conditions, whilst environmental context during human 

gestation is highly variable.  Exposure to ethanol and retinoic acid during development are the 

most well characterized risk factors for HPE 17. Both of these teratogenic factors are believed to 

cause HPE by disrupting dorso-ventral brain patterning, although the precise mechanism of action 

has not been fully elucidated. Interestingly, exposure to these teratogens does not cause HPE with 

full penetrance, further supporting that additional interaction of these compounds with genetic 

risk factors cause HPE 8,16 

 

1.4. Zic2 expression in mouse 

To date, most of the information obtained about ZIC2 function is based on the study of this TF 

during mouse embryogenesis. Zic2 expression domains during mouse development have been 

characterized by in situ hybridization and immunofluorescence techniques (IF). Zic2 expression 

initiates at very early stages of development, being detectable in the early embryo stage of 

fertilized zygotes and in pre-implantation blastocysts 18. Prior to gastrulation, it is also expressed 

in the ectoderm of both the extraembryonic and embryonic components of the egg cylinder at 5.5 

days post coitum (dpc). As gastrulation progresses (aprox. 7.0 dpc), Zic2 transcripts are detected 

not only in the ectoderm, but also in the primitive streak and adjacent cells forming the node and 

in the emerging mesoderm in the distal two thirds of the embryonic region. By the neural plate 

stage, Zic2 is only expressed in the anterior half of the embryo and Zic2 signal is predominantly 

detected in the neural plate region. As neurulation proceeds, Zic2 expression becomes restricted 

to the most dorsal region in the cranial neurectoderm and subsequent neural tube 19.  
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In order to better understand the results of this project, it is important to explain the main 

characteristics of neural tube formation. Towards the end of gastrulation, the neural plate begins 

to fold and forms the neural tube. The cells of the most anterior part of the neural tube will give 

rise to the brain and the posterior ones will give rise to the spinal cord, together forming the central 

nervous system. In addition to distinct anterior-posterior identities, the neural tube also undergoes 

dorso-ventral patterning in response to specific signals (Fig.3.A). Ventral identities are induced 

by Sonic Hedgehog (SHH) signaling emanating from the notochord and the neural tube floor 

plate, whereas dorsal identities are induced by WNTs and BMPs signals coming from the roof 

plate. Ventral and dorsal signals antagonize each other’s action, creating an opposing gradient of 

concentrations that will be interpreted by the cells of the neural tube. Depending on its position, 

each cell will interpret different inputs of information. This will allow the specification of 

different neuronal progenitor domains along the transversal section of the neural tube, each of 

them characterized by the expression of a unique set of transcription factors (Fig.3.B). 

Subsequently, the boundaries between these progenitor domains become more sharped due to the 

mutually repressing interactions between the TFs expressed in adjacent domains (Fig.3.C). 

Ultimately, this will result in the establishment of different transcriptional programs in each 

progenitor domain. 

 

1.5. Embryonic Stem Cells (ESC) as a tractable in vitro model 

Mouse studies have demonstrated the important role of ZIC2 during brain development. However, 

there is still a limited understanding of the gene regulatory networks controlled by ZIC2 as well 

as of the regulatory mechanism by which this TF controls gene expression. Consequently, the 

etiological mechanisms by which ZIC2 mutations cause HPE are still unknown, limiting the 

Figure 3. Dorsal-ventral patterning of the vertebrate neural tube. A.  Progenitor domain (pd1-pd6, p0-p3) identity is 
based on the combinatorial expression of a set of TFs and this combinatorial code is necessary and sufficient to specify 
the neuronal subtypes (V0-V3, MN, dI1-dI6) that each domain generates. The pattern of gene expression is established 
in a progressive manner in response to opposing gradients of secreted factors: Shh emanating from the ventral pole (NC, 
notochord); Wnt and BMP signaling dorsally. B. Transversal section of a mouse neural tube. Combination of different 
immunofluorescence images to illustrate the expression of the TFs marking each progenitor domain. C. Illustration of the 
mutually repressive interactions established among TF of adjacent ventral progenitor domains. Modified from Briscoe and 
Small 2015. 

A B C 
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implementation of novel diagnostic or therapeutic strategies. Our project aims to shed some light 

into these questions. To do so, it is necessary to apply different genomic approaches, such as 

chromatin immunoprecipitation and sequencing (ChIP-seq) and RNA-seq, to interrogate ZIC2 

function at different stages of neural differentiation. For an optimal performance of these 

techniques, high amounts of cells are required, and currently it is technically very challenging to 

obtain the specific cell types (i.e. neural progenitors) in sufficient amounts in vivo. Moreover, 

there are obvious ethical restrictions on performing these methodologies on human embryos. To 

solve this issue, mouse embryonic stem cells (mESCs) represent a highly tractable and powerful 

tool as an in vitro model to study early differentiation processes and to model congenital diseases. 

Our team has previously optimized a 5-day differentiation protocol of mESCs into anterior neural 

progenitor cells (AntNPCs) that models the earlier stages of mouse brain development 20. 

 

1.6. ZIC2 as a Transcriptional Regulator 

Applying different genomic and genetic engineering approaches to the mESC differentiation 

model described above, our team previously uncovered poised enhancers (PE) as a group of 

highly conserved regulatory elements that are in a “pre-marked” but inactive state in ESC. 

Importantly, PE contribute to the establishment of a genetic program essential for early brain 

development as they become active in neural progenitors 20. However, it is currently unknown 

how PE become activated during anterior neural induction. Motif analysis in PE sequences 

revealed a significant enrichment of ZIC binding sites. In addition, upon differentiation of mESC 

into anterior neural progenitors (AntNPC), we observed that although Zic2 was already expressed 

in mESC, its expression increased upon AntNPC differentiation. Moreover, analysis of public 

ChIP-seq data revealed that a significant fraction of PE is already bound by ZIC2 in mESC. All 

together, these observations made us hypothesize that ZIC2 could be involved in the activation of 

a subset of PE and, thus, in the proper establishment of anterior neural identity. 

Research made by Luo et al. 21 shows that after silencing ZIC2 in mESC by shRNA there are 

important gene expression changes. Moreover, upon differentiation of these cells into neural 

progenitors, neural linage commitment was abrogated and massive cell death was observed, 

suggesting that ZIC2 could be important for cellular pluripotency. In addition, they used co-

immunoprecipitation techniques to prove that ZIC2 could bind MBD3, one of the main members 

of the nucleosome remodeling complex NuRD, a unique chromatin-remodeling complex with 

both chromatin opening and closing activities that is mostly considered as a co-repressor 21,22. 

However, using CRISPR/Cas9 technology, our team recently generated Zic2-/- mESC that did not 

display any major gene expression or phenotypic defects. Moreover, we were able to differentiate 

Zic2-/- mESC into AntNPCs without any obvious cell death, or morphological defects. This 
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indicates that the defects observed by Luo et al. could be due to off-target and/or acute effects of 

the shRNA technique used in their study. In addition, our team has also generated RNA-seq data 

during the differentiation of either WT or Zic2-/- mESC into AntNPC. When considering 

undifferentiated ESC, the RNA-seq data revealed rather minor gene expression changes between 

WT and Zic2-/- cells. In contrast, gene expression differences were very pronounced in AntNPC, 

with a clear downregulation of dorsal genes and an upregulation of ventral genes in Zic2-/- in 

AntNPCs. 

On the other hand, previous work in our laboratory showed that, in our hands, the commercial 

ZIC2 antibody used in Luo et al. to generate ChIP-seq data in mESC was not completely specific 

for ZIC2 when used for either ChIP or IF. Therefore, and due to the lack of any other commercial 

ChIP-Grade ZIC2 antibody, a major aim of this project was to use CRISPR-Cas9 technology to 

generate a mESC line stably expressing the endogenous ZIC2 tagged with a C-terminal Flag-HA 

epitope. In principle, this mESC line should allow us to perform ChIP-seq, IP-MS 

(immunoprecipitation coupled to mass-spectrometry) experiments using antibodies against the 

inserted epitopes and avoiding unspecificity issues frequently associated with the use of 

commercial antibodies. These experiments should help us to uncover ZIC2 binding regions and 

its possible protein interacting partners upon differentiation of mESC into AntNPCs. 

Consequently, these experiments could provide major insights into the regulatory mechanisms 

whereby ZIC2 contributes to the establishment of an anterior neural gene expression program.  

 

Currently, all the available data point out towards ZIC2 representing a multi-functional 

transcriptional regulator at different stages of embryonic development. Nevertheless, there is still 

a lack of global data that relate ZIC2 binding sites with transcriptional or epigenetic changes 

during neural development. This information combined with the one obtained from studying the 

effects of Zic2 knock out during embryogenesis could help us to understand ZIC2 function in the 

context of normal brain development as well as in the etiology of HPE. Following this objective, 

in this project we further analyzed the expression profiles of Zic2-/- mESC during AntNPC 

differentiation. Consistent both with previous studies in mouse embryos 13 and with the RNA-seq 

data previously obtained by our team, I confirmed that the loss of ZIC2 during the differentiation 

of ESC into AntNPC causes an upregulation of ventral genes and downregulation of dorsal ones. 

Among these gene expression changes, I observed very severe defects in the expression of the 

major roof plate regulators Lmx1a and Lmx1b. To ask whether ZIC2 is directly involved in the 

regulation of some of these genes, and considering the absence of a specific ChIP-grade antibody 

for ZIC2, I successfully generated a Zic2-Flag-HA tagged mESC line as a research tool for future 

ChIP-Seq and IP-MS experiments.  This mESC line should enable us to interrogate ZIC2 genomic 
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binding regions and uncover its possible protein interacting partners. Finally, using this newly 

generated mESC line, I already optimized conditions for future ChIP experiments and confirmed 

that this cell line can be used to map ZIC2 binding sites. 

 

2. Objectives 

1. Validation of the gene expression differences previously identified in Zic2-/- vs WT 

AntNPCs. 

2. Generation of a Zic2-Flag-HA tagged mESC line to globally map ZIC2 genomic binding 

regions and to identify its possible interacting partners. 

3. Optimization of ChIP conditions on the newly generated Zic2-Flag-HA mESC line. 

 

3. Materials and methods 

2.1. Mammalian cell culture procedures 

Cell culture protocols were performed under sterility conditions guaranteed by laminal flow cell 

culture hoods, sterile solutions and media supplemented with antimitotics and antibiotics. Cells 

were kept in an incubator at 37° in a humid 5% CO2 atmosphere. 

2.1.1. Mammalian cell lines 

For this project, two types of mESC lines were used. In addition, one Flag-HA Zic2-tagged cell 

line was generated as part of the project: 

 

Table 1. Cell lines used in the current project. 

Cell line Reference 

WT (E14) mESC Wysocka Laboratory 

Zic2-/- mESC Rada-Iglesias Laboratory (already available) 

Zic2-Flag-HA mESC (FH6 and FH12) 
Rada-Iglesias Laboratory (generated during 

this project) 

COS cells Rada-Iglesias Laboratory (already available) 

 

2.1.2. Culture of mESC in serum plus leukemia inhibition factor (LIF) conditions 

All cell lines used in this study were grown on 1% gelatin-coated plates using knock-out DMEM 

(KO-DMEM, Life Technologies) supplemented with 15% FBS (Heat Inactivated FBS, Gibco, 
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10500) and LIF (see 2.1.3. Production of LIF-1ca from COS cells) in order to promote a primed 

pluripotency state. 

2.1.3. Production of LIF-1ca from COS cells 

 COS cells were grown in complete mESC growing media lacking LIF and were expanded into 

15 cm plates. When they reached confluence, their growing media was collected over 2 nights 

and stored at 4°C. Then, cells were spun down at 1000 rpm for 5 min from the media previously 

collected and the supernatant was filtered through a 0.2µm filter. All this media rich in LIF was 

aliquoted and tested prior to use, to adjust the optimal working concentration.  

2.1.4. Differentiation into Anterior Neural Progenitors (AntNPCs) 

 Cells were initially plated at a density of 18.000 cells/cm2 on overnight 1% gelatin-coated plates 

in N2B27 medium supplemented with 1mg/ml Bovine Serum Albumin (BSA) and 10ng/ml β-

FGF (Human recombinant β-FGF, Gibco, 13256029) without serum nor LIF (D0), following a 

previously stablished protocol with slight modifications 20. The two next consecutive days, BSA 

dose was reduced to 40µg/ml, β-FGF was kept at 10ng/ml and at D2 media was also supplemented 

with 5µM Xav939. Then, cells were grown for three more days without β-FGF but supplemented 

again with 5µM Xav939 in order to improve the homogeneity of the differentiation by enriching 

ectodermal fates 23. 

Table 2. Supplements added each day (D1-D5) of the differentiation of mESCs into AntNPCs. S: Supplement, C: 

concentration. 

 

2.2. Molecular biology methods. 

2.2.1. Genomic DNA isolation 

DNA of mESCs was isolated using “Quick genomic DNA extraction protocol” Lysis Buffer 

recipe 24. Approximately, 0.5 ml of Lysis Buffer were added per 104 cells in a microcentrifuge 

1.5ml Eppendorf tube containing only the cellular pellet. Then, the pellet was properly 

resuspended by vortexing for 15 sec and 1µl of Proteinase K (20µg/µl) for every 25µl of Lysis 

Buffer was added. This step was followed by an incubation of 6 min at 65°C to allow the digestion 

of proteins present in the sample. Then, another vortexing step was performed again for 15 sec 

D0 D1 D2 D3 D4 D5 

S C S C S C S C S C S C 

BSA 1mg/ml BSA 40µg/ml BSA 40µg/ml BSA 40µg/

ml 

BSA 40µg/

ml 

 

Final day. 

 

RNA 

extraction. 

β-FGF 10ng/ml β-FGF 10ng/ml β-FGF 10ng/ml Xav939 5µM Xav939 5µM 

Xav939 5µM 
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followed by Proteinase K inactivation at 98°C for 2 min. After that, genomic DNA is ready to use 

or storage.  

2.2.3. RNA isolation 

Total RNA was isolated using SPEEDTOOLS Total RNA Extraction Kit (Biotools B&M Labs 

S.A.) following manufacturer’s instructions. 

2.2.4. cDNA synthesis 

To perform expression analyses, RNA was reversely transcribed into cDNA using ProtoScript II 

First Strand cDNA Synthesis Kit. Exclusive transcription of mRNAs was warranted by the use of 

oligo-dT Primer binding to the mRNA specific poly-A tail and by the design of primers whose 

PCR product covered two exons. 

2.3. Immunological methods 

2.3.1. ChIP 

 To perform ChIP experiments, a previously described protocol25 was followed with slight 

modifications. Initially, sonication conditions were optimized (see 3. Results).  Briefly, 5x107 

cells for DNA Polymerase II ChIP, 1x107 cells for H3K4me3 ChIP and 11x107 cells for ZIC2 

ChIP were crosslinked with 1% formaldehyde for 10 minutes at RT and then quenched with 

0,125M glycine for another 10 min. Then, cells were rinsed with phosphate buffered saline (PBS, 

Sigma, RNBG8633) and resuspended sequentially in three different lysis buffers (Table 3) to 

isolate chromatin. Chromatin was then sonicated for 15 cycles (cycle = 30 sec on/ 30 sec off; 

Amplitude 80%) using Ultrasonic processor (Labsonic). After sonication, the suspension was 

centrifuged 10 min at 16000g and 4°C. Afterwards, the chromatin from the supernatant was 

divided in different aliquots that were incubated overnight at 4°C with 7 ug of antibody for 

H3K4me3, 10 ug of antibody for Pol2, Flag and HA ChIP. A 10% volume of each aliquot for 

ChIP was incubated without the antibody as a representation of the total input control for the ChIP 

reactions.  

Table 3. Lysis buffers used for ChIP. 

  

Next day, 100µl of protein G magnetic beads were added to the Pol2 and ZIC2 ChIP reactions 

and 75µl to the histone ChIP. After four-hour incubation at 4°C, magnetic beads were washed 

Lysis Buffer Composition 

1 50mM HEPES, 140 mM NaCl, 1mM EDTA, 10% glycerol, 0.5% NP40, 

0.25% Triton X-100 

2 10mM Tris-HCl ph 8.0, 200 mM NaCl, 1mM EDTA, 0.5 mM EGTA 

3 10mM Tris-HCl, 100mM NaCl, 1mM EDTA, 0.5 mM EGTA, 0.1% Na-

Deoxycholate, 0.5% N-lauroylsarcosine 
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with RIPA wash buffer (50mM HEPES, 500mM LiCl, 1mM EDTA, 1% NP-40, 0.7% Na-

Deoxycholate) and chromatin eluted, followed by reversal of the crosslinking and DNA 

purification. Briefly, for DNA purification, two extractions were performed, one with 

phenol/chlorophorm/isoamyl alcohol (25:24:1), followed by a second chlorophorm extraction. 

The aqueous phase was isolated and DNA was precipitated during 30 min at -80°C by adding 

1/10 of the volume of sodium acetate, 1µl glycogen (as internal carrier) and 3 volumes of 100% 

ethanol. Afterwards, samples were centrifuged during 30 min at 4°C with DNA representing 

pellet. DNA was eluted in water. All antibodies used have been previously reported as ChIP-grade 

(Table 4). ChIP samples were analyzed by q-PCR using the primers shown in Table 11. 

Table 4. Antibodies used for ChIP. 

Antibody Company Reference 

DNA Polymerase II Millipore  8WG16 

H3K4me3 Active motif 39159 

Flag epitope Sigma F1804-1MG 

HA epitope Abcam Ab9110 

 

2.3.2. Western Blot 

To confirm that our cell lines expressed a fusion protein composed by ZIC2 and the Flag-HA 

epitope, Western Blot was performed. Proteins from WT, FH6 and FH12 mESCs were extracted 

using RIPA buffer (50mM Tris HCl pH 7.5, 150mM NaCl, 1mM EDTA, 1% (v/v) NP40, 0.1% 

SDS, 0.5% sodium deoxycholate) supplemented with protease inhibitor cocktail. After 20 minutes 

of incubation on ice, protein extracts were recovered by centrifugation (20 minutes at 14000g). 

For Western Blot, 150µg of protein were mixed with Laemmli buffer, heated to 95°C and then 

separated in a 15% SDS-PAGE gel in running buffer (25mM Tris base, 250 mM glycine, 0.1% 

SDS). Proteins were transferred to a PVDF (polyvinylidene difluoride) membrane using transfer 

buffer for 1 h at 100V. The membranes were blocked for 1 h in 4% (w/v) BSA powder and 

incubated with primary antibody overnight at 4°C. After 3-5 washes with TBST, the membranes 

were incubated with the secondary antibody for 1 h at room temperature. Horseraddish peroxidase 

(HRP) coupled anti-IgG antibody was detected using a chemiluminiscent substrate. Antibodies 

used are listed in Tables 5 and 6. 

Table 5. Primary antibodies used for Western Blot. 

Antigen Host Dilution Company Reference 

HA Rabbit 1:5000 Abcam Ab9110 

ZIC2 Rabbit 1:1000 Abcam ab150404 

H3K27ac Rabbit 1:10000 Active motif 39133 
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 Table 6. Secondary antibody used for Western Blot. 

 

2.4. Genetic engineering methods 

2.4.1. Generation of a ZIC2 Flag-HA tagged cell line using CRISPR-Cas9 

 2.4.1.1. Design of guide RNA (sgRNA) 

In order to generate a mESC line with the endogenous ZIC2 gene tagged with the Flag-HA epitope 

in the C-terminal end, a sgRNA was designed to allow the cut just before Zic2 transcriptional stop 

codon. The selection of the optimal sgRNA was performed following Benchling CRISPR toolbox 

instructions (https://www.benchling.com/crispr/). This sgRNA and its complementary oligo 

(Table 7) were synthesized, both carrying at the end a 4 nucleotide sequence complementary to 

BbsI restriction sites, as it was the enzyme used to digest the vector 

pX330A_hCas9_long_chimeric_gRNA_G2P (Fig.1). The two synthesized oligos were annealed 

by incubation at 95° for 5 min and subsequent cooling to 25° at a cooling rate of 5°/min, following 

the next combination of reagents: 

Mix Ligation reaction. 1X (10µl):  

1µl oligonucleotide A 

1µl oligonucleotide A’ 

1µl 10X T4 Ligation Buffer (New England Biolabs) 

7µl ddH2O 

 

 Table 7. gRNA oligos designed. 

 

Species Conjugated Dilution Company Reference 

Anti-rabbit HRP 1:5000 Invitrogen 656120 

gRNA oligo F (5’-3’) gRNA oligo R (5’-3’) 

caccCAATGAATGGTACGTGTGAG aaacCTCACACGTACCATTCATTG 

https://www.benchling.com/crispr/
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2.4.1.2. Generation of guide RNA (sgRNA) Cas9 vector 

The CRISPR-Cas9 expression vector pX330A_hCas9_long_chimeric_gRNA_G2P (Fig. 1) was 

digested with BbsI restriction enzyme and column purified with SPEEDTOOLS PCR CLEANUP 

KIT (Biotools, 21.202) 

 

Mix Digestion reaction. 1X 

1µg vector 

1µl BbsI 

2µl Buffer 

Xµl ddH2O 

A dilution 1:200 of the pair of annealed oligos and 50 ng of the digested vector were ligated 

overnight at 16° using T4 ligase (New England Biolabs). Then, chemical competent E. coli were 

transformed by heat shock. A 30µl aliquot of bacteria was thaw on ice and mixed with 2.5µl of 

Figure 1. Scheme of pX330A_hCas9_long_chimeric_gRNA_G2P vector used for mESC 
transfection. 
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the ligation reaction. After inverting the tube three times, bacteria solution was incubated 1 minute 

on ice, followed by heat shock at 42° for 25 secs and an extra 1 min on ice. Subsequently, the 

solution was transferred to 1ml LB medium and incubated 1 hour at 37° with shaking. 200µl of 

this liquid culture were plated in LB ampicillin plates in order to obtain bacteria colonies which 

were analyzed by PCR to determine if they carried the plasmid of interest. See 2.5.3 Colony PCR.  

2.4.1.4. Design of a repair template including Flag-HA 

To insert the Flag-HA epitope at the site where Cas9 endonuclease introduced the cut, a repair 

template was designed to induce homology directed repair. This sequence was composed by two 

75 bp homology arms, complementary to both sides of the cut at the gDNA flanking the sequence 

of the Flag-HA epitope followed by a transcriptional stop codon (Homology arm left: 5’-

GGGGCGGGCGGCGGGGGCGGCGGCAGCTCTGGCGGGGGCAGCGGGACAACCGGAGGCCAT

AGCGGCCTCTCCTCCAACTTCAATGAATGGTACGTG/Epitope:GACTACAAAGACGACGACGA

CAAATACCCATACGACGTGCCAGACTACGCC/ Stop:TGA / Homology arm right: 

GGGGCCAGGCCTTTCTCCCATTCCCTGTTCCCTTATCCACCGTCGCCCTCCCAAAACCCATCG

AGGGCACCTTAGGATCGTCTTATTAAAATTATG-3’). The single stranded repair sequence was 

synthesized using the Oligo Design toolbox from Integrated DNA Technologies in order to be 

included as a transfection reagent, allowing part of the transfected clones to incorporate this 

template when repairing the cut by homologous recombination.  

2.4.1.5. Miniprep 

The newly generated vector expressing gRNA and Cas9 was purified following the instructions 

of SPEEDTOOLS Plasmid DNA purification kit (Biotools, 21.222) and sequenced to confirm 

that the gRNAs were correctly cloned. 

2.4.1.6. Transfection of mESC 

mESC were grown on 1% gelatin coated 6-well plates with standard mESC growth media. Once 

they reached total confluence, they were split 1:6 to get the optimal confluence for transfection. 

The day after the splitting, their transfection was performed using Lipofectamine ® 3000 

transfection reagent (Thermo Fisher Scientific,) according to manufacturer’s instructions. The 

transfection was performed with 500 ng of the vector 

pX330A_hCas9_long_chimeric_gRNA_G2P (containing the sgRNA sequence, the Cas9 coding 

sequence, GFP sequence and puromycin resistance) and three different amounts of the repairing 

template (a. 1ng, b. 500 ng., c. 100ng). PCR (primers in Table 8) of the three transfected 

heterogeneous populations (a, b and c) confirmed that the optimal transfection had been achieved 

with condition c, so this was the cell population used for the following steps. 

Transfection efficiency was checked by GFP signal 16-18 hours after the transfection. When 

transfection efficiency was between 40-70%, puromycin selection was performed for 48 hours at 



MMBB  2018-2019  University of Cantabria 

19 
 

2µg/ml concentration. Afterwards, surviving cells were isolated in 96-well plates by serial 

dilution and, after expansion; clones with the chosen insertions were identified by PCR. Using 

the primers listed in Table 8, 24 mESC clones were investigated by PCR to check, on the one 

hand, whether they had inserted the Flag-HA epitope; and on the other, if the resulting whole 

tagged-region was at the desired genomic site and had the expected size (see Fig.5.B). 

Table 8. Primers used for genotyping the mESC clones after transfection. 

Primer Sequence 

p1 TGGCTACGAGTCGCTCACAC 

p2 GACGACGACGACAAATACCC 

p3 GGGCTAGGGAAGTTTGGCTC 

 

 

2.5. Polymerase Chain Reaction (PCR) 

2.5.1. RT-qPCR 

In order to determine the transcripts levels of our cells, RNA was extracted and cDNA was 

produced as described previously (2.2.4. cDNA generation). Prior to RT-qPCR, samples were 

diluted 1:3 in dH2O and 0.4µl of this dilution was used per 10µl reaction, according to the 

following Master Mix: 

Mix RT-qPCR reaction. 1X (10µl) 

5µl NZYSpeedy qPCR Green Master Mix (2X), ROX plus (NZY Tech) 

0.125µl 10µM F, R primer Mix 

 0,4µl  cDNA dilution 

4.475µl H2O 

                                       Table 9. Amplification program used for RT-qPCR reactions. 

 

 

  

 

 

 

 

Step Temperature Time 

Initial 

Denaturation 

50.0 2 min 

95.0 2 min 

40 cycles 

95.0 15 sec 

60.0 15 sec 

72.0 1 min 

Melting curve 

95.0 15 sec 

60.0 1 min 

95.0 15 sec 
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RT-qPCR reactions were performed in 96 well plates on the StepOne Plus Thermocycler (Applied 

Biosystems) with the thermocycling program described in Table 9, using Eef1α1 and Hprt1 as 

housekeeping genes. Analysis of the resulting amplification curves was performed with the 

second derivative maximum method. All measurements were performed as triplicates and 

standard deviations were represented as error bars. The primers used for the expression analysis 

of the target genes are shown in Table 10. 

                      Table 10. Primers used for expression analysis by RT-qPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Sequence 

Eef1a1_cDNA_F TAGACGAGGCAATGTTGCTG 

Eef1a1_cDNA_R AGCGTAGCCAGCACTGATTT 

Sox1_cDNA_F CAACCAGGATCGGGTCAA 

Sox1_cDNA_R GTTTTCCTGGGCCATCTTG 

Lhx5_cDNA_F CGGGAAGGCAAGCTATACTG 

Lhx5_cDNA_R CAGGTCGCTCGGAGAGATAC 

Zfp42_cDNA_F GCGGTGTGTACTGTGGTGTC 

Zfp42_cDNA_R GACAAGCATGTGCTTCCTCA 

Hprt1_cDNA_F CAAGGGCATATCCAACAACA 

Hprt1_cDNA_R GCCCCAAAATGGTTAAGGTT 

Six3_cDNA_F CCTCACCCCCACACAAGTAG 

Six3_cDNA_R CTGATGCTGGAGCCTGTTCT 

Lmx1b_cDNA_F GGGATCGGAAACTGTACTGC 

Lmx1b_cDNA_R GTAGGGGCGATCTTCTCCAT 

Lmx1a_cDNA_F GAGACCACCTGCTTCTACCG 

Lmx1a_cDNA_R ACGGATGACAAACTCATTGG 

Zic2_cDNA_F CCGAGAACCTCAAGATCCAC 

Zic2_cDNA_R TGCATGTGCTTCTTCCTGTC 

Nkx6.1_cDNA_F CACGCTTGGCCTATTCTCTG 

Nkx6.1_cDNA_R GCGTGCTTCTTTCTCCACTT 
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2.5.2. ChIP-qPCR 

ChIP DNA samples were analyzed by q-PCR to detect the level of enrichment of DNA 

polymerase II, H3K4me3 histone mark and ZIC2. Input samples were diluted 1:10, histone ChIP 

samples were diluted 1:3, and the rest of ChIP samples were used undiluted prior to qPCR. PCR 

reactions were performed in 96 well plates on the StepOnePlus Real-Time PCR device (Applied 

Biosystems) following the thermocycling program described in Table 10, in a volume of 10µl per 

reaction and using the same master as in 2.5.1. RT-qPCR. ChIP-qPCR signals were calculated as 

percentage of input. Standard deviations were measured from the technical triplicate reactions. 

The average of the percentage of input calculated for each ChIP sample was normalized to the 

signal average obtained in the same sample when two different negative control regions were used 

(Chr 2 (-), Chr 6 (-)). Primers used for the qPCRs of ChIP samples are listed in Table 11. 

 

Table 11. Primers used for ChIP-qPCR. 

Primer Sequence Product size 

Chr6_neg_F CTGGACTGAGGACCTTCTGC 161 

Chr6_neg_R AGGAAGGCAGATGAGGGATT 

Chr2_neg_F CCTGAGGCTGGAAGTTTCTG 109 

Chr2_neg_R CTCCTGGGATTAAAGGCACA 

Lmx1a_pos_ChIP_Zic2_F GAGCCTAGGGTGGGAATCTC 100 

Lmx1a_pos_ChIP_Zic2_R AGAAAGCCACTGGTGACTGC 

Lmx1b_pos_ChIP_Zic2_F CGCTAGAGCCGCTTAATCAC 102 

Lmx1b_pos_ChIP_Zic2_R TCTGTACCTGCTGGGAGCTT 

Wnt3a_pos_ChIP_Zic2_F CCATAGGCTGAGCACACAGA 151 

Wnt3a_pos_ChIP_Zic2_R AACTCACCCCAAGCCCTACT 

Nanog_pos_ChIP_Zic2_F CTAGAGATCGCCAGGGTCTG 80 

Nanog_pos_ChIP_Zic2_R CCCCAAAAAGAGGCTTTACC 

Prmd4_pos_ChIP_Zic2_F CATGGCCTCAAGTAGGGAAG 100 

Prmd4_pos_ChIP_Zic2_R TCGAAACCCGATTACTCCTG 

Eef1a_ChIP_pos_F ACTCCTGTCCCTCCATTCCT 95 

Eef1a_ChIP_pos_R CGTTCAGCAATAGGGGCTAA 

Zfp42_ChIP_pos_F AGCACACGAACACTTGGAAC 127 

Zfp42_ChIP_pos_F GTCCATTGGCCATCACGTTT 

 

2.5.3. Colony-PCR 

To assess whether the transfected bacterial colonies carried the plasmid of interest 

(pX330A_hCas9_long_chimeric_gRNA_G2P) with the sgRNA insertion, PCRs were performed 

using OneTaq DNA polymerase (New England Biolabs). A selection of 7 bacterial colonies were 

resuspended in 30µl of dH2O and heated at 95° to lysate the cells. 3µl of the lysate were used per 

PCR reaction. To amplify the region of interest, an oligo binding to the sequence of the gRNA 
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inserted (F: 5’-CACCCAATGAATGGTACGTGTGAG-3’) was used as forward primer and one 

binding to a region of the vector adjacent to the insertion was used as reverse primer (R: 5’ 

GGAAAGTCCCTATTGGCGTT-3’). If the gRNA insert was present in the vector, a band of 288 

bp was expected (data not shown). 

2.5.4. Clonal genotyping PCR 

To define the genotype of the Flag-HA clones obtained after transfection, DNA was isolated using 

the protocol described in previous section 2.2.1. Genomic DNA isolation, and PCR was 

subsequently performed using OneTaq polymerase with GC Rich Buffer 5X, due to the CG rich 

sequence of the region of interest. 

Mix OneTaq genotyping reactions.1X (25µl reaction) 

5X GC Buffer  5µl 

10 mM dNTPs   0,25µl 

10 µM forward primer 0,5 µl 

10 µM reverse primer 0,5 µl 

One Taq Polymerase 0,125 µl 

Template DNA  1µl 

Nuclease free water  12,63µl 

2.6. Statistical Analysis 

2.6.1. RT-qPCR statistical analysis 

The 2∆CT Method was applied to calculate relative gene expression levels. CT is defined as the 

fractional PCR cycle number at which the reporter fluorescence is greater than the 

threshold26.  For each technical triplicate, the following calculations were performed: 

1. 𝐶𝑇 𝑔𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 −  𝐶𝑇 ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑠 = ∆𝐶𝑇 

2. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 = 2∆𝐶𝑇 

Next, average relative expression level and standard deviations were calculated. Standard 

deviations were plotted as error bars. 

2.6.2. ChIP-qPCR statistical analysis 

Technical triplicates were used to calculate ChIP signals as percentage of input. Then, fold 

enrichments were calculated dividing the percentage of input of each region of interest by the 

average percent input of the negative regions (Chr2 and Chr6). For each technical triplicate: 
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1. 𝐼𝑛𝑝𝑢𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 100 × 2(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑝𝑢𝑡 𝐶𝑇−𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑇)  

2. 𝐹𝑜𝑙𝑑 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
𝐼𝑛𝑝𝑢𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
 

Then, standard deviations were calculated from technical triplicate reactions and represented 

as error bars. 

3. Results 

3.1. Validation of gene expression differences between WT and Zic2-/- cells upon 

differentiation of mESC into AntNPCs. 

 

The in vitro differentiation protocol whereby mESC are differentiated into AntNPCs (2.1.4. 

Differentiation of mESC into AntNPCs) partially recapitulates the early stages of brain 

development. As a result, after five days of differentiation (D5), cells with mostly an anterior and 

dorsal neural progenitor identity are obtained (i.e. AntNPC), as exemplified by the strong 

induction of Lhx5 and Lmx1b, respectively.  

To start elucidating the molecular mechanisms by which ZIC2 contributes to proper brain 

development, we previously analyzed by RNA-seq how the loss of ZIC2 function affected the 

differentiation of ESC into AntNPCs. Then, a differential gene expression analysis of this RNA-

seq data revealed that the loss of ZIC2 disrupted dorsoventral patterning in AntNPC. To validate 

these previous results, I differentiated WT and Zic2-/- mESC lines into AntNPCs and then 

measured the expression levels of selected genes (based on the previous RNA-seq analysis) by 

RT-qPCR (Fig.4). Upon differentiation, both cell lines similarly downregulated the pluripotency 

marker Zfp24, which indicates a successful exit of pluripotency and lineage commitment (Fig. 

4.A). As expected, the knock-out cell line is deployed of Zic2 expression (Fig 4.B). Notably, Zic2 

knock out led to a drastic downregulation of dorsal brain genes, in particular, the classical roof 

plate markers Lmx1a and Lmx1b (Fig. 4. C and D). This downregulation of dorsal fates was 

coupled to an upregulation of ventral genes, as exemplified by the upregulation of the ventral 

marker Nkx6.1 in Zic2-/- versus WT (Fig 4. E). In addition, Lhx5, a marker of the choroid plexus 

at more advanced stages of neural development, was upregulated in the knock out (Fig. 4. F), 

consistent with the phenotype observed in Lmx1a-/- / Lmx1b -/- mice 27. Overall, these gene 

expression differences between WT and Zic2-/- AntNPC are in perfect agreement with our 

previous RNA-seq results, strongly indicating that the loss of ZIC2 impairs the establishment of 

brain dorsal identities, particularly the roof plate. 
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Figure 4. Zic2 knock-out leads to an upregulation of dorsal genes and a downregulation of ventral ones in 
AntNPCs. The expression of (A) pluripotency marker Zfp42, (B) Zic2, (C, D, F) dorsal identity genes and (E) ventral 
identity markers was measured by RT-qPCR. For each gene, the results obtained using WT mESC and Zic2-/- mESC in 
two biological replicates are shown. Expression values were normalized to two housekeeping genes (Eef1a1 and Hprt1) 
and the error bars represent standard deviations from three technical replicates. R.U.: Relative Units.  
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3.2. Generation of a Zic2-Flag-HA tagged mESC line using CRISPR-Cas9 

technology 

Next, we wanted to determine if ZIC2 directly activates these dorsal genes during AntNPC 

differentiation or if, alternatively, it represses ventral regulators which themselves can antagonize 

brain dorsal identity. To distinguish between these two possibilities, it is essential to globally 

identify the ZIC2 binding sites in AntNPC. To do so, our team previously performed ChIP for 

ZIC2 using a commercial ZIC2 antibody. However, IF and ChIP experiments on WT versus    

Zic2-/- cells demonstrated that the antibody was not completely specific for ZIC2. To overcome 

this limitation, we decided to generate a mESC line in which with the endogenous Zic2 gene was 

tagged with a C-terminal Flag-HA epitope. To do so, we followed a CRISPR-Cas9 strategy based 

on two main steps: firstly, introduction of a double strand break close to Zic2 transcriptional stop 

codon; secondly, homology induced repair (HDR) by the incorporation of a repair template 

containing the Flag-HA sequence (Fig. 5.A). 

After transfection, single cells were plated in a 96 well plate in order to derive clonal lines. In 

total, 24 clones were viable. Genotyping by PCR showed that 12 of these clones were 

homozygous for the Flag-HA insertion: first, a PCR product of the expected size (334 bp) was 

obtained when using a forward primer that only hybridized to the Flag-HA tag region (p2) (Fig. 

5.B); secondly, a single PCR product of the expected size (650 bp) was obtained when using 

primers flanking the inserted tag (p1-p3) (Fig.5.B). 
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Figure 5. CRISPR-Cas9 strategy and genotyping. A. gRNAs were designed to target Cas9 and introduce a double-
strand DNA break just before the stop codon. In addition, an oligonucleotide containing two homology arms and the 
Flag-HA sequence was also designed to be used as a repair template for homologous directed repair. B. For 
genotyping, two PCRs were performed for each clone. “Flag-HA PCR” were performed with primers p2 (hybridizing 
to the Flag tag) and p3 (3’ of the Flag tag). “Whole region PCR” were performed with primers p1 and p3, which were 
flanking the Flag-HA insertion. C. PCR genotyping results of the 24 clones isolated after transfection. Marked in grey 
the clones selected for sequencing. 

Figure 6. Illustrative example of the sequencing results obtained for the FH6 clonal mESC. CDS: coding 

sequence. UTR: 3’ untranslated region. 
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The PCR products obtained with primers p1 and p3 (“Whole region PCR”) (Fig.5.C) for the 

clones considered as homozygous for the Flag-HA insertion were sequenced by Sanger 

sequencing. The results confirmed that at least two of the clones, FH6 and FH12, were 

homozygous for the insertion and had the Flag-HA tag properly inserted just before the Zic2 stop 

codon without any alterations on the Zic2 open reading frame (Fig.6).  

Figure 7. The generated FH6 mESC line differentiates as a WT into AntNPCs. The expression of (A) 
pluripotency marker Zfp42 (B, C, E) neural identity genes Sox1, Six3 and Lmx1b and (D) Zic2 was measured 
by RT-qPCR. For each gene, the results obtained using WT mESC and FH6 mESCs in two biological replicates 
are shown. Expression values were normalized to two housekeeping genes (Eef1a1 and Hprt1) and the error 
bars represent standard deviations from three technical replicates. R.U.: Relative Units. 
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Based on the previous results, we then decided to more thoroughly characterize the FH6 mESC 

clonal line. Firstly, this mESC line was differentiated into AntNPCs in parallel with its parental 

WT mESC. The expression levels of important genes were measured by RT-qPCR. Both WT and 

FH6 cell lines differentiated properly and the FH6 line did not show any obvious morphological 

or proliferative differences in comparison to WT cells. Both FH6 and WT cells showed a 

downregulation of Zfp42 upon differentiation, indicating loss of pluripotency (Fig.7.A). Neural 

markers, such as Six3 or Sox1, were similarly upregulated upon differentiation (Fig. 7. B, C). 

Importantly, the expression levels of Zic2 were similar in WT and FH6 lines, indicating that the 

tag was not affecting the proper expression of Zic2. 

To confirm whether the normal Zic2 expression levels observed by RT-qPCR in the FH6 cells 

could also be detected at the protein level, we performed Western Blot (WB) experiments.  Firstly, 

we used the previously mentioned ZIC2 commercial antibody because previous work in our team 

demonstrated that, despite its lack of specificity in either IF or ChIP, this antibody was specific 

for ZIC2 in WB. These experiments again confirmed that ZIC2 protein levels were similar in WT 

and the tagged mESC. Next, I tried to detect ZIC2 with an anti-Flag antibody and I could not 

detect any signal, probably due steric effects that buried the Flag-HA epitope. Nevertheless, I then 

tried with an anti-HA antibody and, importantly, I could detect the ZIC2-Flag-Ha protein only in 

FH6 and FH12 mESC. This confirms that in FH6 mESC ZIC2 is stably expressed as a fusion 

protein containing the C-terminal Flag-HA tag.  

 

Figure 8. Flag-HA tagged ZIC2 levels in FH6 mESC are similar to endogenous ZIC2 levels in WT mESC. ZIC2 was 

detectable in WT and FH lines using a commercial antibody (Zic2), but the HA epitope was only detectable in the tagged 

mESC lines. The histone mark H3K27ac is shown as a loading control. 

3.3. Optimization of sonication conditions for ChIP experiments 

The newly generated Zic2-Flag-HA mESC line could in principle be used to perform ZIC2 ChIP 

experiments. To start evaluating whether this was the case, we first optimized sonication 

conditions on WT mESC lines. For optimal ChIP when working with TFs, the size of the 
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sonicated DNA fragments should be in a range of 200 to 1000 bp. To achieve these conditions, I 

tried two different approaches.  

First, we sonicated the mESC with the Bioruptor Plus sonication device (Diagenode) for a total 

of 45 cycles (30 seconds on/ 30 seconds off) taking aliquots every 5 cycles. After running the 

sonicated DNA on an agarose gel we observed that, with this sonicator, the best results were 

obtained after 45 cycles (Fig 9.A). However, even under this conditions, many of the resulting 

DNA fragments were still too large (>2Kb) while others were too small (<200 bp). 45 minutes is 

an extensive sonication time, which could somehow compromise the chromatin integrity due 

excessive warming of the samples. Hence, we tried with another sonication device. 

mESC were then sonicated with Ultrasonic processor (Labsonic. Parameters: Amplitude 80%) 

(Fig.9. B). In this case, 10 sonication cycles (30 seconds on/ 30 seconds off) resulted in DNA 

fragments that were really close to the desired size distribution, whilst 20 cycles already resulted 

in excessive fragmentation (Fig. 9. B). Finally, 13 cycles were chosen as the optimal sonication 

conditions for this device and were used in subsequent ChIP experiments. 

 

3.4. Testing ChIP with Pol2 and H3K4me3 in control regions 

Once sonication conditions were optimized for mESC, we then wanted to ensure that whole ChIP 

protocol was working in my hands. Therefore, I performed ChIP-qPCR in WT cell lines for DNA 

Polymerase II (Pol2) and for the histone mark H3K4me3. Based on publically available ChIP-seq 

data in mESC, we designed primers to amplify two negative and two positive control regions for 

the binding of Pol2 and the presence of H3K4me3 (Fig. 10).  qPCR analyses of the Pol2 and 

H3K4me3 ChIP samples confirmed strong fold enrichments for both Pol2 (Fig. 10.A) and for 

H3K4me3 (Fig. 10.B) in the positive regions compared to the negative ones. 

 

Figure 9. Sonication optimization. Agarose gel electrophoresis of the sonicated mESC samples after an increasing 

number of cycles using (A) Bioruptor Plus and (B) Ultrasonic processor.  
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 3.5. ZIC2 ChIP validation in control negative regions and putative positive 

binding regions 

Next, we wanted to determine if the tagged FH6 mESC line was suitable to identify ZIC2 binding 

sites by ChIP and if the antibodies for the two Flag and HA epitopes could be used for this 

purpose. To do so, based on the ChIP-Seq data on mESCs published by Luo et al. 2015, we 

selected some control negative regions in chromosome 2 and chromosome 6 where no ZIC2 

binding was expected and some putative positive regions for ZIC2 binding (Fig 11).  

Figure 10. Testing ChIP conditions in WT mESCs for positive and negative control regions. ChIP-qPCR was 
performed to evaluate the binding of (A) DNA Polymerase II (Pol2) and the presence of (B)H3K4me3 in two positive control 
regions in Zfp42 and Eef1a1 promoters and in two negative control regions in chromosome 2 and chromosome 6. The 
qPCRs were performed as technical triplicates. For each technical triplicate, fold enrichments were calculated as the %input 
of the region analyzed divided by the average % input of  the two negative control regions (chr2 and chr6). Standard 
deviation values are plotted as error bars. 

Figure 11. Example of two of the five selected positive regions for testing ZIC2 ChIP in FH6 mESC. Diagram 
showing ZIC2 binding obtained from Luo et al. 2015 data wherein the regions amplified by RT-qPCR in our ChIP are 
marked between red brackets. Whole gene regions obtained  from UCSC genome browser. 
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Figure 12. The FH6 mESC line is suitable to investigate ZIC2 binding profiles 
by ChIP. ChIP-qPCR experiments were performed for the positive and negative 
ZIC2 binding regions in WT and FH6 mESC lines, using either the anti-HA (A) or 
anti-Flag antibodies (B). The qPCRs were performed as technical triplicates. For 
each technical triplicate, fold enrichments were calculated as the %input of the region 
analyzed divided by the average % input of  the two negative control regions (chr2 
and chr6). Standard deviation values are plotted as error bars. 
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ChIPs using antibodies against FLAG and HA were performed in both WT and in FH6 mESC. 

Then, the resulting ChIP DNA samples were analyzed by qPCR. Notably, positive regions 

showed much higher enrichments levels in FH6 mESC than in WT mESC for both the FLAG and 

HA antibodies. However, when more carefully comparing the enrichments obtained for the two 

antibodies, it seems that the anti-Flag gives lower fold-enrichments than the anti-HA antibody. 

Thus, the anti-HA antibody would be preferable for future ZIC2 ChIP experiments. Overall, these 

ChIP-qPCR experiments confirm that ZIC2 binds to the evaluated regions in mESC and also 

demonstrate that the FH6 cell lines can be used to investigate ZIC2 binding profiles by ChIP-seq. 

 

4. Discussion 

The comparison of the expression levels of selected genes between Zic2-/- and WT AntNPC by 

RT-qPCR is in perfect agreement with our previous RNA-seq data.  Altogether, this clearly 

confirms that loss of ZIC2 leads to a general downregulation of dorsal identity genes and to an 

upregulation of ventral ones. Remarkably, the expression of the classical roof plate markers 

Lmx1a and Lmx1b is almost completely lost in Zic2-/- cells upon differentiation. These results 

recapitulate the brain dorsal patterning defects previously observed in mouse embryos deficient 

for Zic2 28.In contrast to the report from Luo et al.29, but in agreement with previous in vivo 

observations, our Zic2-/- mESC showed no obvious defects in self-renewal or pluripotency and 

they were able to differentiate into AntNPC without any major cell death. It would be interesting 

to analyze in more detail the transcriptional changes that occur during the differentiation of Zic2-

/- mESC into AntNPC by generating RNA-seq data at additional time points (i.e. D0, D3, D4 and 

D5). This should help us to better define the differentiation stage/s at which gene expression 

defects arise and to relate such defects with other genomic data obtained at the same time points 

(e.g. ChIP-seq for ZIC2 and histone modifications). However, the current data already supports 

that ZIC2 plays a prominent role in the establishment of dorsal neural identities and, in particular, 

in roof plate induction. This is in perfect agreement with previous hypothesis regarding the 

etiology of MIHV HPE, according to which ZIC2 act as a roof plate inducer required for proper 

dorsal patterning of the brain (Cheng et al., 2006). What remains to be clarified is whether ZIC2 

is acting as direct activator of dorsal genes, as a repressor of ventral ones or both. Given its diverse 

functions at different stages of neural development (Houtmeyers et al., 2013; Ali et al., 2012; 

Herrera et al., 2003; Escalante et al. 2007), it is tempting to speculate that ZIC2 might use different 

regulatory mechanisms depending on the cellular and genomic context. Therefore, different 

approaches should be ideally combined to uncover the regulatory networks and regulatory 

mechanisms by which ZIC2 controls early brain patterning. 
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To elucidate the gene regulatory networks directly controlled by ZIC2 upon AntNPC 

differentiation, it will be important to uncover the ZIC2 binding sites during AntNPC 

differentiation. This would enable us to compare the ZIC2 binding profiles with the transcriptional 

changes observed upon loss of ZIC2 in order to identify the genes that are directly controlled by 

ZIC2. Moreover, these comparisons should also reveal whether ZIC2 preferentially activates or 

represses its direct target genes. Previous work in our team using a ZIC2 commercial antibody 

and Zic2-/- mESC (same used in Luo et al. 2015) showed that, although the antibody was specific 

according to WB analysis, it was not for either IF or ChIP. To solve this issue, in this project I 

generated a Zic2-Flag-HA tagged mESC line using CRISPR-Cas9 technology. To confirm that 

the addition of the Flag-HA epitopes did not affect the expression and/or function of ZIC2 I 

performed several experiments. First, I confirmed that the expression of Zic2 was not altered at 

the mRNA levels based on RT-qPCR analyses. Moreover, the tagged mESC line behaved 

similarly to its parental WT mESC, with no major alterations in expression, morphology or 

proliferation. Next, I tried to detect tagged ZIC2 protein using antibodies against either Flag or 

HA. Initially, I faced problems detecting the Flag epitope by WB in the tagged mESC. I tried two 

different primary anti-Flag antibodies without success. This could be explained by the conditions 

used during WB transfer that can lead to changes in the folding of the tagged protein and 

difficulties in detecting the Flag epitope due to steric effects. Nevertheless, these problems were 

not observed when using an anti-HA antibody, which successfully detected the ZIC2 protein only 

in the tagged mESC lines. In contrast to the denaturing conditions used in WB, in ChIP proteins 

are believed to maintain their native 3D conformation. Therefore, I decided to perform ChIP in 

the ZIC2-tagged cell line using both Flag and HA antibodies. The results demonstrate that both 

antibodies can be used to identify ZIC2 binding sites. However, when comparing to ChIPs 

performed in WT cells in which the Flag-HA epitopes are not present and that, consequently, 

represent an excellent negative control, I observed that the HA antibody was more specific and 

yielded higher fold-enrichment. Therefore, I conclude, that the HA antibody is preferable for ChIP 

and should be ideally used in future ChIP-seq experiments. 

Once I confirmed the gene expression changes previously observed in Zic2-/- AntNPC and having 

established a Zic2-FH mESC line suitable for ChIP, we can now generate additional RNA-seq 

transcriptional profiles in WT vs Zic2-/- at different time points of the AntNPC differentiation (i.e. 

D0, D3, D5) and coupled this to ZIC2 ChIP-seq data that can be generated at similar 

differentiation stages. This should help us to determine which are the direct ZIC2 target genes 

and whether ZIC2 preferentially acts as an activator, a repressor or both. Moreover, we could also 

perform ChIP-seq for different active and repressive histone marks in WT vs Zic2-/-  during 

AntNPC differentiation that will inform us about the chromatin changes that occur at both ZIC2 

binding regions and its target genes. This will allow us to understand how ZIC2 binding affects 
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the chromatin state of its genomic targets and of the genes it regulates. Most likely this will shed 

some light into the role of ZIC2 in the activation of poised enhancers during the differentiation of  

mESC into AntNPCs. 

Once we characterize the genomic binding dynamics and the transcriptional networks controlled 

by ZIC2 another interesting aspect of the project could be to uncover the trans-regulatory 

mechanism/s by which ZIC2 controls the expression of its direct target genes. To do so, two main 

research lines could be followed. On the one hand and using the recently generated Zic2-Flag-

HA tagged cell line, we could perform ZIC2 IP coupled to MS experiments to identify ZIC2 

interacting partners such as co-activators or co-repressors. On the other hand, given the 

phosphorylation-dependent transactivation activity of ZIC2 30,31 we could use CRISPR-Cas9 

technology to mutate the phosphorylation site of ZIC2 and analyze possible changes in expression 

in comparison to WT cell lines. These experiments could establish whether ZIC2 function upon 

differentiation into AntNPCs is strictly dependent on its phoshorylation. If this is the case, it 

would also be highly relevant to uncover the kinase and signaling pathway responsible of 

phosphorylating ZIC2 during AntNPC phosphorylation. 

Uncovering the regulatory networks and mechanisms whereby ZIC2 contributes to brain 

development are essential steps towards elucidating the etiology of ZIC2-associated HPE. As 

mentioned in the introduction, ZIC2-associated HPE is characterized by its reduced penetrance 

and variable expressivity, which strongly suggests that, together with loss of ZIC2 function, other 

genetic and/or environmental risk factors affect this disorder. In addition, human and mice seem 

to display different ZIC2 dosage sensitivities, as ZIC2 heterozygosis can lead to HPE in humans 

while not causing major abnormalities in mice 28,32. We hypothesize that the reduced penetrance 

of ZIC2-dependent HPE and the differential ZIC2 dosage sensitivity between mice and humans 

could be caused by unexplored genetic (e.g. ZIC5) and/or gene-environmental (GxE) interactions 

(e.g. exposure to Ethanol 17 or Retinoic Acid 33,34), which could increase the transcriptional and 

phenotypic defects caused by low ZIC2 levels alone. To test the relevance of GxE interactions in 

the etiology of ZIC2-associated 25,33 HPE, we will use CRISPR/Cas9 technology to generate 

mouse and human ESC lines that are heterozygous for ZIC2 and model the defects observed in 

HPE. Then, WT mESC and WT hESC (human embryonic stem cells) will be differentiated into 

AntNPC under increasing doses of ethanol or Retinoic Acid. Using the information generated in 

the previously mentioned RNA-Seq approach (data at D0, D3,D5) , expression levels of critical 

ZIC2 target genes will be measured by RT-qPCR in AntNPC derived from the different ESC 

genotypes and teratogenic treatments. According to our preliminary data in mouse Zic2-/- 

AntNPC, these target genes are likely to include major dorso-ventral patterning genes as well as 

neuronal differentiation markers. These initial gene expression analyses should reveal whether 

any of the investigated environmental interactions exists. Together with the time profile of RNA-
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seq data upon differentiation that we plan to generate, these global analyses should conclusively 

show the extent to which ethanol and/or retinoic acid interact with ZIC2 during anterior neural 

development in both mice and humans and, thus, potentially contribute to HPE aetiology. 

Overall, my Master Thesis project represents an important starting point in order to globally and 

mechanistically unravel ZIC2 function as a transcriptional regulator during brain development. 

Notably, I have confirmed that (i) the the loss of ZIC2 disrupts dorsoventral patterning during the 

differentiation of mESC into AntNPCs and (i) I have generated a mESC line that can be used as 

an important tool to investigate ZIC2 function using various experimental approaches (ChIP, IP, 

IP-MS). 
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