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Abstract. In this paper, we analyze optimal control problems of semilinear parabolic equations,
where the controls are distributed and depend only on time. Box constraints for the controls are
imposed and the cost functional does not involve the control itself, only the associated state. We
prove second order optimality conditions for local strong minimizers, which are used to derive error
estimates in the numerical approximation. First we estimate the difference between the discrete and
continuous optimal states. In the last part, under an additional assumption on the optimal adjoint
state, we prove error estimates for the controls and improve the estimates for the states.
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1. Introduction. In this paper, we consider a domain Q C R?, d < 3, with a
Lipschitz boundary I'. Given T > 0 we denote @ = 2 x (0,T) and ¥ =T x (0,T).
We will study the following control problem:

(P) min J(u),

u€U,q

where
Usa = {u € L=(0, 7)™ : aj < u;(t) < B, foraa.te (0,7), 1<j<m}

with —oco < a; < B; < +o0 for 1 < j <m, m > 1 is a fixed integer number, and

J(u):/QL(x,t,yu(x,t))dxdt.

Above y,, denotes the state associated to the control u related by the following state
equation:

Oy, u .
S Ay o+ flasty) = Y (g (@) in Q.
(1.1) i=1
Yu =0 on X,

yu(0) = yo in Q.

On the data A, f, g, yo, and L we make the following assumptions:
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(A1) A denotes the elliptic operator

d
- Z 893]‘ (aiaj (x)a%y)7

i,j=1
where the coefficients a; ; € L () satisfy the uniform ellipticity condition

d
IAa>0:Malé? <D a5 5(2)&8, VE € R and aa. 2 € Q.
i,j=1

(A2) We assume that f: @ x R — R is a Carathéodory function of class C? with
respect to the last variable satisfying the following properties:

(1.2)
of

ACf e R: a—y(m,t,y) > Cr Vy € R,

(1.3)
R N 1 d

f(,-,0) € LP(0,T; LY(Q2)) for some p, G > 2 with 7 + 2% <1,

(1.4)
o f .

VM >0 3Csn >0: a—yj(x,t,y) <CymVyl <Mandj=1,2,

(1.5)
Vp > 0 and VM > 0 de > 0 such that
*f >’f

< pVyil,ly2] < M with |y —y2| <e

oy 5 (@t y) — 3y a5 (@t y2)

for almost all (z, ) € . Abusing notation, we will sometimes shorten
fla,ty) as f(y), SL(a.ty) as 2(y) and 3h(x,t,y) as 3L(y) when this
does not lead to confusmn

(A3) We assume that {g;}72; C L>(2) and there exist pairwise disjoint sets with
positive Lebesgue measure {w;}72; such that g; vanishes outside w; and

gj(z) # 0 for a.a. x € w,.

(A4) For the initial datum we assume yo € L™ (€2).

(A5) L : @ xR — R is a Carathéodory function of class C? with respect to the
last variable satisfying the following properties:

(1.6)
L(-,-0) € LY(Q) and VM > 0 3, € LP(0,T; LI(R)) and Cp, us

such that
2

L
2($,t7y)‘ S CL,M v|y| S MJ

oL
i <
’8y (ac,zﬁy)‘ < Wps(zx,t) and ‘ay

(1.7)
Vp > 0 and VM > 0 Je > 0 such that
’62L

9’L .
Sz (@ ty1) = a9y = (@, 6, y2)| < p Vyil, [y2| < M with |y; —ya| <e

for almost all (z,t) € Q.
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All these assumptions are required in the whole paper. Some additional assump-
tions will be specified later.

Though there are some recent papers concerning the second order optimality
conditions for problems of type (P), where the cost J does not involve the control
itself, this is still a field of active current research. There is vast literature on second
order optimality conditions for control problems where the Tikhonov term appears
in the functional J. However, the method of proof for these cases does not work
for problems with an objective functional depending only on the state. In addition,
the results for both type of problems are very different. The reader is referred to
[8, 11, 13, 14, 16, 15, 24] for sufficient second order conditions for bang-bang or bang-
singular-bang control problems. Another issue that has gained the interest of the
researchers is the derivation of second order conditions for strong local minimizers
(Definition 3.1); see [1, 2, 13, 14]. In this paper, we present a second order condition
for strong local minimizers of (P) based on the usual extended critical cone. This
makes a difference with the only results in this direction proved in [11, 13, 14], where a
different cone was required. The reader can find in section 3 a more detailed discussion
on these issues.

A second novelty of this paper is the proof of error estimates for the difference
between the discrete and continuous controls in the framework of parabolic control
problems with bang-bang controls. As far as we know, the only results in this direc-
tion are obtained for linear state equations: in [17], a quadratic convergence order
is obtained for the error with respect to the time step size in the case of bang-bang
controls using a variational discretization; in [3], the authors study a time optimal
control problem and obtain results similar to ours (compare [3, Table 1.1] and The-
orem 6.5). For results in the case of the control of elliptic equations the reader can
consult [18] for linear equations with variational discretization and [15] for semilinear
equations with full discretization. In [15], a structural assumption on the optimal
adjoint state is needed to prove the error estimates; see (6.1). In the absence of this
condition, we still prove error estimates for the difference between the continuous and
discrete optimal states; see also [9] for a similar result in the context of control of two
dimensional evolutionary Navier—Stokes equations.

The plan of this paper is as follows. In section 2, we present some auxiliary results
about the state equation and the differentiability of the cost functional. The first and
second order optimality conditions are studied in section 3. In section 4 we discretize
the control problem and in section 5 we prove convergence of the discretizations and
derive error estimates for the states. In section 6 we prove error estimates for the
controls and improve the estimates for the states under the additional assumption
(6.1). Finally, we present some numerical results in section 7.

2. Auxiliary results. In this section we establish some properties of the state
equation and the cost functional J. First, we state the existence and uniqueness and
some regularity properties for the solution of (1.1).

THEOREM 2.1. For every uw € LP(0,T)™ with p > 1 there exists a unique y, €
Y = L?(0,T; H}(Q)) N L*°(Q) solution of (1.1). Moreover, there exists a constant
K, > 0 independent of u such that

[Yull 20,7512 () HYul L= (@)
< Kp(HUHLp(o,T)m + llvoll £ () + 1, 'aO)HLﬁ(O,T;L@(Q)))-
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Further, there exists a constant My, such that
yullLo(@) £ Moo Vu € Una.

This is a well known result. See, for instance, [7, Theorem 5.1] for some details
concerning the nonlinearity of the equation. We also have the following continuity

property.

LEMMA 2.2. If up, — u weakly in LP(0,T)™ for some p > 1, then the strong
convergence ||Yu, — YullL(q) — 0 holds.

Proof. Define zj, = y,, — y». This function satisfies the equation

ot

0z " .
b + Azk + .f(yuk Z uk,] — Uj t))gj ($) m Qa
0 on 2
0 in

2k
2(0)

By the mean value theorem, we know that there exist measurable functions 0 <
O (x,t) < 1 such that, if we name gy = vy, + 0k (Yu, — Yu), then we have

) 9 R i )
%5 4t Dt gm = 3 (s (0) — w3 ()05 () in @,
(2.1) ot dy =1
. zr =0on X,
2;(0) = 0in Q.

Since the sequence {uy}r converges weakly in LP(0,T)™, it is bounded in this space.
Applying [20, Theorem III-10.1], we infer the existence of v and C > 0 independent
of k such that

1, - < (.
||Zk‘|c'Ya§(Q) — C
Since C% (Q) is compactly embedded in L>(Q), we can extract a subsequence that
converges in L>°(Q) to some z. Taking the limit in (2.1), we deduce that z = 0. Since

all convergent subsequences of {zj}; converge to 0, the sequence itself converges to
0. d

LEMMA 2.3. Given u,v € LP(0,T) with p > 1 and u # v, then y, # y, holds.

Proof. Taking z = y, — y,, subtracting the equations satisfied by y, and y,, and
using the mean value theorem, we get for some 3 intermediate between y,, and y,

Oz 9 . “ )
% et Diwtg)s =3 us(t) - vy(1))g(x) in @,
ot dy =
z=0on X,
2(0) =0 in Q.

From the assumption (A3), we deduce that the right-hand side of the above equation
is not zero, and hence z # 0. O

Given p > 1, let us denote G : LP(0,T) — Y the mapping associating to each
control the corresponding state G(u) = y,.
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THEOREM 2.4. The control-to-state operator G is of class C? and for every u,v,w €
LP(0, 7)™, p > 1, we have that z, = G'(u)v is the solution of

0%y 0
+ Az, + factyu Zy Zvj )g;(x) in Q,

(2.2) ot 8y
= O on %,
2y (O) =01nQ,
and zy . = G" (u)(v, w) solves the equation
azv,w 2f

(2,6, Yu) 202w = 0 in Q,

Zpw =0 on X,
2y (0) =0 in Q.

0
+ Azyw + aijc(x, tYu) 2w +

ot ay?

(2.3)

We will use the following regularity result for linear equations.

LEMMA 2.5. Consider ag € L>=(Q) andv € L*(0,T)™. Letz € L>(0,T; L*(Q))N
L2(0,T; H(Q)) be the solution of

0
—Z—i—Az—i—aoth—Zvj t)g;(x) in Q,

ot
z = 0 on X,
(0) =0 in Q
Then, the following inequality holds:
(2.4) 12l oo (0,1522(02)) < 2exp (|laol| L) T) ax lgjllr2 ) 10l 22 0,7y -

Proof. By taking the change of variables y(z,t) = exp (—|lao| = (g)t)z(z,t) the
above equation is transformed into the following one:

n Y Ay + [ao(w,t) + [lao|| L= (@) ly = exp (—[laol| L= (0)t) Z: in Q,
y=0on X,
y(0) =01in Q.

Multiplying the equation by y and integrating in Q x (0,t) for ¢ < T we have

t 8 t
| [ Sydsds+ [ [ (Ay+ laofe.s) + laoll @Iy o ds
0 Ja Ot 0o Ja
mo ot
SZ/ / vi(s)g;(z)y(x, s) de ds.
j=170 Jw;

Using the ellipticity condition (A1) and the fact that aty = %aa—y: we get

ly(-, )||L2 ) <2 max ||g]||L2(wJ vl 1o, mym |9l Lo 0,13 22(2)) for a.a. ¢ € [0,T].

We readily deduce that
||yHL°°(O T;02(Q)) < ngﬁx gl 2 wJ)HU”Ll(O T)m

Inserting z = exp (||ag|| L~ (@)t)y(x,t) in this inequality, (2.4) follows. d
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LEMMA 2.6. The solution operator G is Lipschitz from Usq to L®(0,T; L*(2)),
i.e., there exists a constant Ly > 0 such that

Yur = Yus | Lo 0,7522 () < Lallur — w2l prorym  Yur, uz € Uaa.

Proof. Denote z = y; — y2. Using again the mean value theorem, there exists an
intermediate ¢ such that

82‘ af m

5 TAEt a—y(m,t,@)z = ;(Ul,j(t) — uz,(t))g;(x) in Q,
z=0o0n %,
z(0) =0 in Q.
Using Theorem 2.1, (1.4), and (2.4), we obtain the desired result. |

Next, we state the differentiability properties of the objective functional. As
usual, to every u, we relate the adjoint state ¢, that satisfies

Opuy . 0] oL )
- d +A Pu + i(.’E,LyU)QpU = 7(%@%) mn Qa
’ @y =0o0n %,
¢u(T) =0in Q,

where A* denotes the adjoint operator of A. Assumption (1.6) together with Theo-
rem 2.1 implies that o, € L2(0,T; H}(Q)) N C(Q) for every u € Uygq

(2.6) loullz20,m;m1 @) + [Pullo@@) € Koo Vu € Uad;

see [20, sections III-7 and III-10]. We also introduce the continuous functions

(2.7) WP, (1) z/ oul(z,t)gi(x)de, 1<j<m.

J

The next theorem follows from the chain rule, Theorem 2.4, and assumptions
(A2) and (A5).

THEOREM 2.7. Given p > 1, the functional J : LP(0,T)™ — R is of class C?
and for every u,v,w € LP(0,T)™

(2.8) J' (u)v = ; /0 Y (t)v; (1) dt,

2 2
29 J(w)(v,w) = /Q (gy’j(x,t,yu>sou‘;y§<x,t,yu>) sy da dt.

Remark 2.8. The functionals J'(u) and J”(u) can be extended to continuous
linear and bilinear forms, respectively, in L'(0,7)™. Notice also that assumptions
(A2) and (1.6), Theorem 2.1, Lemma 2.5, and (2.6) imply the existence of some
M5 > 0 such that

(210)  J"(w)(v,w) < Ma|lzll 20 2wl z2(@)  Vau € Una, Yo,w € L'0,T)™.
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3. First and second order optimality conditions. The existence of a global
solution of (P) follows in a standard way. Since (P) is not a convex problem, we have
to consider local solutions as well. Let us state precisely the different concepts of a
local solution.

DEFINITION 3.1. We say that u is an LP-weak local minimum of (P), p € [1, +o0],
if there exists some € > 0 such that

J(w) < J(u) Yu € Usg with ||@ —u| pro,rym < €.
We say that @ is a strong local minimum if there exists some € > 0 such that
J(@) < J(u) Vu € Uag with ||ya — yullL=(0) < €.

We say that @ is a strict (weak or strong) local minimum if the above inequalities are
strict for u # .

LEMMA 3.2. The following properties hold:
1. @ is an L'-weak local minimum if and only if it is an LP-weak local minimum
for every p € [1,+00).
2. If u is an LP-weak local minimum for some p < 400, then it is an L -weak
local minimum.
3. If u is a strong local minimum, then it is an LP-weak local minimum for all
p € [1,00].

Proof. Statement 1 follows from the boundness of U,q in L°(0,T)™. Statement
2 follows from the inclusion L*°(0,T7)™ C LP(0,T)™; cf. [10, p. 14].

To prove statement 3, notice that the set {u € Uaa : ||u — |10,y < d} is a
subset of {u € Uaa : |7 — yullz~(q) < p} if ¢ is sufficiently small. o

First order optimality conditions read as follows.

THEOREM 3.3. Suppose @ is a local solution of (P) in any of the senses given in
Definition 3.1. Then, there exist § and @ in L*(0,T; Hg(2)) N L>=(Q) such that

0y = )
5 AT+ f@ D) = Y a(0)g(@) in Q,
(3.1a) j=1
y=0 on X,
g(0) = yo in Q,
0p 0 OL
_i + A*(ﬁ + i(l‘,t, 7)@ = 7('1:7757?]) in Q7
(3.1b) ot dy Jy
’ p=0 on%,
o(T) =0 1in Q,

(3.1c) /OT i (1) (u(t) — a;(t))dt >0 Yoy < u(t) < B; ae in (0,T), 1 <j<m,

where
(z,t)dz.

<
o
—
Nt

Il

T

&
&
Y

As usual, we can deduce from (3.1c) that

_ >0 ifa;(t) =aq
-~ ifi(t) >0, _ - / 77
4 vi(t) and ;(t){ <0 ifa,(t) = By,

ﬂj if ’lﬁj (t) <0 . X _

if a; < Uj(t) < Bj'

(32)  a() = {
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Now, we establish the second order optimality conditions. In what follows, u will
denote a control of Uy, satisfying (3.1a)—(3.1c) along with the associated state § and
adjoint state @. We define the cones of critical directions, for any 7 > 0,

> ) j
Cr ={ve L20,T)™: v;(t){ <0 ifu,(t)=p;

u

For 7 > 0, C7 can be considered as an extension of the classical cone of critical
directions Cy = C2. Tt is well known that J”(@)v? > 0 for all v € Cy is a necessary
second order condition for local optimality of @; see, for instance, [5, section 3.2] or
[12]. In order to have a minimal gap between the necessary and sufficient second order
conditions, we would like to formulate a sufficient condition as J”(#)v? > 0 for all
v € Cy \ {0} or J"(@)v? > 6[|v]|Z2 (g 1ym for all v € Cy. Indeed, these two conditions
are equivalent and sufficient if the Tikhonov term is included in the cost functional;
see [4, 12] or [14]. However, when the Tikhonov term is absent, as in our case, these
two conditions are no longer equivalent and they are not sufficient, in general, for
local optimality. Furthermore, observe that Cy = {0} if @ is a bang-bang control, and
hence the above inequalities do not provide any information. Due to these arguments,
some researchers have suggested considering extended cones as C7 with 7 > 0; see
[19] and [21]. Then the reader can be tempted to write the sufficient second order
condition in this way: J”(u)v? > 6”””%2(0,T)m for all v € CZ. Unfortunately, this
condition does not hold; see [8]. In [8] and [14], a different condition was assumed:

(3.3) 36 > 0and 3r > 0: J"(@)v* > 0||z)|72) Vv € Cf,

where z, = G'(@)v is the solution of (2.2) for y, = §. Then, it was proved that if
(a,y, p) satisfy (3.1a)—(3.1c) and (3.3), then there exist € > 0 and x > 0 such that

(34) J(ﬂ) + ||yu - QHZLZ(Q) S J(U) Yu € Uad : ||U — ﬂHLz(O,T)"‘ <e.

| x

This inequality proves that u is a strict L2-weak local minimum of (P). To deduce
error estimates for finite element approximations for the state variable (see section 4
below) we would like to use (3.4) with u = 4, the solution of the discrete problem.
Nevertheless, the technique would work only if we have that 4, converges strongly
in L2(0,T)™ to i, which is something we cannot deduce due to the absence of the
Tikhonov regularization term.

A possible solution, also suggested in [14, Corollary 4], is to use a different cone.
Define

>0 ifaj(t):aj,

1/ —
<0 iae) =g 2S@vsTlnlze

u

El ={veLl*0,T)™: vj(t){

It is established in [14, Corollary 4] that if (@, 7, @) satisfy (3.1a)—(3.1c) and
(3.5) 3r>0and 30 > 0: J"(@)v* > 6272 Vv € Ef,
then there exist € > 0 and x > 0 such that

_ K _ _
(3.6) J(@) + Sllye = 3lli2 (@) < J(w) Yu € Vaa s lgu = Bll~(@) <&

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/11/19 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ERROR ESTIMATES IN THE ABSENCE OF TIKHONOV TERM 2523

Hence, @ is a strict strong local minimum of (P). The reader should observe that
the cones C7 and E] represent two different ways of extending C%; none of them
is included in the other. We finish this section proving that condition (3.3) is also
sufficient to deduce (3.6).

THEOREM 3.4. If (u,y,p) satisfy (3.1a)—(3.1c) and (3.3), then there exist € > 0
and k > 0 such that (3.6) holds.

Before proving this theorem, let us establish the following auxiliary lemma.

LEMMA 3.5. The following statements hold.
L. for all v > 0 there exists € > 0 such that if u € Uaq and ||y, — §ll=(Q) < €,
then

(3.7) lYa+6(u—a) — Il <~ V0 €[0,1].

2. for all p > 0 there exists €, > 0 such that if u € Uaq and ||yu — Y|z~ (q) < &p,
then
(38)  |[J"(a+0(u—1u)—J"(@)]v*| < pllzullF2q) Yo € L*(0,T)™ V0 € [0,1].

Proof. According to [14, Lemma 6], for every p > 0 there exists €, > 0 such that
if u € Uaq and [Jyy — 9|z (@) < €p, then

(" () = J"(@)v?] < pllzollZaq) Yo € L*(0,T)™.

Therefore, (3.8) is an immediate consequence of (3.7) and this inequality. Let us prove
(3.7). Take u € Us,q such that ||y, —7|| < e with e > 0 to be defined later. Let us prove
that (3.7) holds for an arbitrary 6 € (0,1). Consider z = Yy g(u—a) — [J + 0(yu — )]-
The function z satisfies

% + Az + f(Wato-a) — [F (@) +0(f(yu) — f(9))] =0in Q,
z=0on%,
2(0) =0 in Q.

Applying the mean value theorem, we have that there exist measurable functions
0 < 0i(x,t) <1and 0 < fz(x,t) <1 such that, if we name

Y1 =9+ 01 (Yarou—a) —Y) and y2 =y + 02(yu — 7),

we have
0z af _ af _ .
%t Az + iy(yl)(ywe(u—a) —9) — 9@(2/2)(% —y)=0in Q.
Note that
(39) Ya+o(u—a) — Y=z+ e(yu - g)

So, applying again the mean value theorem, there exists another measurable function
0 < f5(z,t) < 1 such that, if we name y3 = yo + 03(y1 — y2), then

0 0
a—jj(yl)(yw(u,m . ea—§<y2><yu )
- %@nzw%(yl)@u g - 92—5@2)% %)
of 82f

= a—y(yl)z + HaTJZ(y?,)(yl —42)(Yu — ¥)-
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So the function z satisfies

2
% + Az + %(yl)z = —92—%(1/3)(% —y2)(yu — ¥) in Q.

From Theorem 2.1 it is clear that y1, y2, and y3 are uniformly bounded in L*°(Q) by
M. Using assumption (A2) and the fact that ||y, — 7= (g) < €, we deduce with
[20, section IIL.7] the existence of a constant C; > 0 independent of u such that

(3.10) 2]l (@) < Che.

With (3.9), (3.10), 0 < 0 < 1, and the condition ||y, — ||z~ (q) < €, we deduce that
[Yato(u—a) — UllL=(@) < (C1+1)e.

So (3.7) holds if we define

0
E71—&-01'

(3.11)

Proof of Theorem 3.4. Consider u € U,q such that ||y, — §llz~q) < €, where
e will be fixed later independently of u; see (3.21) below. A second order Taylor
expansion yields the existence of 6 € (0, 1) such that

(3.12) J(u) =J(u) + J' (@) (u — u) + %J”(a +0(u— 1)) (u — ).
Define for 1 < j <m

[ ug(t) =) if ()] <
v;(t) = { 0

otherwise,

and w =u — @ —v. It is clear that v € C7. Taking into account (3.2) we also have
m T
P =3 [ 000 - a0
j=1

m T m T
(3.13) >3 [ b= Y [ ol = vl
j=1 j=1

Using (3.12), u—u = v+w, (3.13), v € CI, the second order sufficient condition (3.3),
the estimate (2.10) for the bilinear form J" (%), and Young’s inequality, we obtain

J) 2 J(@) + 7wl oy + 57 @0 + 21 @ 7 (@) 0, w)
+ % [J"(a+ 0(u— 1)) — J"(@)] (u—u)?
> 1) + 7wl o + Szt — 2lzlae)
Mzl oyl ) + g 1+ 0 — ) ()] (u — )
> (@) + ol + i - M2 (54 55 ) laulie)

(3.14) + % " (@ + 0(u — @) — J"(@)] (u — @)2.
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Using this inequality and Lemma 3.5 with p = §/8 and v = v — @ and assuming that
e < g, given at the start of the proof, we have

_ 4] 1 M,
) 2 @ + lhwloam + 3l — M (5 + 52 ) lula

1)
We notice now that

lzu-alliz) = ll2v+wliaig) < l20llizg) + l2uwllzz @) + 220l ll2wllz2(@)
< 2llz0lZ2(g) + 2lzwlliz(g)

and hence sz||2L2(Q) > %qu_ﬁ”%z(@) - ||zw||%2(Q). Inserting this in (3.15) we get

1 My 6

5
lzu—allzz oy +7 el s o,mym = M2 (2 + =+ 4> 2132 (q)-

(3.16) J(u) > J(@)+ 14

Let us estimate 7|lwl|1(o,7ym. Using again (3.13) and the expression for the derivative
of J obtained directly by the chain rule, we have

oL
lwllzr o,y < J'(0)(u — 1) = / (@1, 9)zu—adwdt
Q 9y
oL _
(3.17) < IIafy(w,t7y)llm(@)llzu—al\m(cz)-

Define now 7 =y, — (§ + zu—a)- The function 7 satisfies the equation

0 0
G A+ F) = S(8) - 5 Dza=0in
n=0on X,
n(0) =0 in Q.

Using a second order Taylor expansion and the definition of 7, we have that there
exists 0 < 0(z,t) < 1 such that, if we name § = § + 0(y,, — §), we have that

) d 9?
At = 5 L@ -9 e

Again from assumption (A2), and the condition ||y, — 9|z~ (@) < €, we deduce the
existence of a constant C; > 0 independent of £ and u such that

(3.18) 17220y < Crellyu — Gllr2@) < VTINIC:E™

Using this, the definition of 7, and ||y, — 7|z~ (@) < €, we infer

lzu-allz2@) < Mllz2@) + lyu = ¥llL2@) < (Cre + D)V T|Qe.
Now, from (3.17) we deduce the existence of a constant Co independent of u such that

(3.19) TllwllLro,mym < Coe.
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Next we use (2.4) and (3.19) to obtain

C3
I2wllZ2@) < Tllzwlieor:12(0)) < 75Hw||L1(0,T)m
and, hence,

2
T 2
(3.20) 7'||w||L1(0,T)m > CTEHZme(Q)-

Using this and (3.16), we have that

_ ) 2 7'2 1 MQ ) 2
J(w) = J(@) + 6 llzu-aliz o) + [036 — M, (2 +5 1) | vz

So the condition

2
(3.21) € < min q &y,
" CsMy (3 + 22+ %)
yields
- J
(3.22) J(u) >J(u) + 1*6”2%&”%2(9)'

Finally, using again the definition of the function n and (3.18), we have that
19u = FllL2@) < Inll2(@) + llzu—allL2@) < Crellyu = Ullr2(@) + l2u-allL2(q)-

So imposing also € < ﬁ we have that ||zy—allr2(Q) = 3||¥u — ¥ll22(g). Using this
and (3.22) we obtain

L, 0 _
J(u) = J(u) + @Hyu — 9l
and the result follows for k = 6/64. |
Remark 3.6. In the above proof, we have established that
J()(u — 1) = 7wl Lo,y
_ _ _ 0
T (@4 0(u—w)(u = 0)* > Zllzu-alizq) = Cllzwliz g V0 € [0,1];
assuming that u € Uaq and ||y, — 9|z (@) < € for any 0 < & < ¢ with g conveniently
chosen. From these two inequalities, we get for any number p > 0

i i N i N )
pJ' (@) (u—1)+J" (u+0(u—u))(u—u)* > pT”wHLl(O,T)’"+§”'zU*ﬁH%?(Q)_CszH%Q(Q)'
Now, using (3.20) and replacing the requirement (3.21) by ¢ < p72/(C3C) we get that

prlwl L o,mym — OHZw||2L2(Q) > 0.

Hence, we obtain that
)
pJ' (@) (u—a) + J" (@ + 0(u —a))(u —u)* > g”zu—ﬁH%z(Q)'

Finally, taking again ¢ smaller if necessary, we get as in the above proof ||z, —al|2(0) >

219w =7l 2(0), and thus there exist A > 0 and e, > 0 such that for ||y, —7|| L~ (q) < &,

(3.23) pJ (@) (u—a) + J"(@+0(u—1a))(u—1a)? >
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4. Numerical approximation of the control problem (P). The goal of this
section is to get a discrete version of the control problem (P). To this end, we need
to make some additional hypotheses to (A1)-(A5) that we will assume in the rest of
the paper.

(H1) Qis a polygonal (if d = 2) or polyhedral (if d = 3) convex domain.

(H2) The initial state yo belongs to H(Q2) N HJ (), the coefficients a;; of A are
Lipschitz functions in Q, and f(-,-,0) € L>=(Q).

(H3) For every M > 0 there exists a constant Cp, as such that

L
‘gy(x,t,y)’ <Cpm foraa. (z,t)eQVyl <M.

These assumptions imply extra regularity for the states ¥y, and adjoint states ,,.

THEOREM 4.1. For every u € U,q we have that y,,p, € WHP(0,T;L*(Q2)) N
LP(0,T; H%(Q)) for all p < oo. Furthermore, there exists a constant My independent
of u and p such that

19eyull e 0,722 () + [1Yulle 0,751 ()
2

p
(4.1) < M0p — (||U||L°o(o,T)m +1£( 5 0) |l 0, 1322(02)) + HyOHH?(Q))a

p2

(4.2) 10cpullro,r;22(9) + l@ullLeo1m2(0)) < Mo Cr.Mo.s

p—1

where My, was introduced in Theorem 2.1 and Cp, ., is defined in assumption (H3).

The reader is referred to [22] for the proof.

We consider (cf. [6, Definition (4.4.13)]) a quasi-uniform family of triangulations
{Kn}n>0 of Q and a quasi-uniform family of partitions of size 7 of [0,T], 0 =ty <
t1 <--- <ty =T. We will denote N, and Ny j the number of nodes and interior
nodes of Kp, I, = (tp—1,tk), Tk =tk — tk—1, 7 = max{7;}, and o = (h,7). In what
follows we will use the notation |o| = 7 + h.

Now we consider the finite dimensional spaces

Vi ={zn € C(Q) : zpx € Pi(K) VK € Kj, and 2z, =0 on '},
Vo ={yo € L*(0,T;Y3) : Yoir, € Yo Vb =1,..., N, }.

The elements of ), can be written as

N, N, Nin
Yo = E Yh,k Xk = E E Yi,k€iXk>
k=1 k=1 i=1

where yp € Yy for k=1,... N, y;p € Rfori =1,...,Nyp,and k =1,...,N,,
{ei}ﬁ\;’ih is the nodal basis associated to the interior nodes {xi}f-v:]ih of the triangula-
tion, and xj denotes the characteristic function of the interval Iy = (tx—1,%x). For
every u € L'(0,T)™, we define its associated discrete state as the unique element
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Yo (u) € Yy such that

/(yh,lc — Yn,k—1)2ndx + Ta(Yh ks Zh) +/ / f(@, t, yn i) zndadt
Iy,
(4.3) = Z/ / uj(t)gj(x)zpdedt Yz, € Vi, and all k= 1,..., N,
Ik wj

/yh,ozhdm:/yozhdx Vzp € Yy,
Q Q
where

a(y Z / 4§00z, YOy, 2dx  Vy,z € HY(Q).
4,j=1
From a computational point of view, this scheme can be interpreted as an implicit
Euler discretization of the system of ordinary differential equations obtained after
spatial finite element discretization. The proof of the existence and uniqueness of a
solution for (4.3) is standard assuming that 7|Cy| < 1 with Cy given by (1.2).
From [22, Corollaries 6.2 and 6.4], we have that for all u € U,q

(4.4) 1Yo (1) = yullL2(@) < C(B* +7),
(4.5) 1Yo (1) = Yull Lo 0,7522(0)) < C(h* +7)[log 7.
The control is discretized using piecewise constant functions. Consider
U, = {u, € L*(0, 7)™ : ur, €R™ Vk=1,...,N:}.

We denote 7, the Lagrange nodal interpolation operator in space, 7, the L2(0,7)
projection onto U, and 7, = m o m,= m, o w. Notice that for all u € Ll(O, T)m
have that

(4.6) Yo () = Yo (mru) and J,(u) = J, (7 ).
Notice that if u € L1(0,7)™ \ L?(0,T)™, m u is still well defined by the expression
1
), = — tydt, k=1,...,N,.
(m u)|1k " u(t)

We formulate the discrete problem as

(Py) min J,(ur),

Ur €Ur aa

where
To(u) = / Lz, b, yo (u) (2 1)) e dt,
Q

and U;aq = Ur N U,q. Since this set is compact and nonempty, the existence of a
global solution of (P,) follows immediately from the continuity of J, in U,.

For every u € L*(0,T)™, we define the related discrete adjoint state ¢, (u) € Y,
as the unique solution of

0
/(‘ph,k_@h,k+1)2hd$+7ka(zh7@h,k)+/ /a*f(ﬂf,tayh,k)wh,kzhdwdt
Q I, J 9Y

L
(4.7) = / / g—y(ﬂc,t, Yn.k)zpdxdt Vzp € Yy and all k= N, ..., 1,
Iy,

onN.+1 =0,
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where the functions yj, , € ), are defined by y,(u) = 211:/;1 Yn.kXk- We also define
Ve (u) € Uy as

Yoy (W) (1) = / o (1) (5, )5 () for 1 < § < m.

With this notation, we have that for every u,v € L(0,7)™
m_ T
Ty =" [ tasta)os (0
j=1"0

and first order conditions read as follows.

THEOREM 4.2. Suppose Uy € Uraq is a local solution of (P,) with associated
discrete state J, = Yo () and discrete adjoint state ¢, = py(Uy). Then

T
| 0 00 = s ()1 2 0 Vi € Uraa 15 <
0

where QZU = wa (ﬂ/(r)'

Analogously to (3.2), we can deduce that

- >0 ifu, 5, =0
_ o; if P, g >0, - = il T T
ua:j“k = { 6J ifq;[}/_)m],llk <0 and '(/}U,j‘fk < 0 if uO’J‘Ik = ﬂja
J 7,311 =0 if a; < ﬂa,j“k_ < Bj‘

5. Error estimates for the optimal states. In this section, we first analyze

the convergence of the approximations (P,) of (P) in a sense to be made precise

below. Then we prove error estimates for the difference between the discrete and the
continuous optimal states.

THEOREM 5.1. Let @ be a strict strong local minimizer for (P), i.e.,
(5.1) p>0:J() < J(u) Yu€ Uy \{t}: |y —Fllr=@Q) < p-

Then, there exists a sequence {ty}s of local minimizers of (Py) such that G, — @
weakly* in L>°(0,T)™. Moreover,

(5.2) oo : Jo(ts) < Jo(ur) Yur € Upaq with ||[yo(ur) — Jo | oo (@) < g, V|| < |og
holds. Conversely, let {Uy}o be a sequence of local minimizers of (P, ) satisfying (5.2)
for some given p > 0 and such that i, — @ in L°°(0,T)™. Then @ is a strong local
solution of (P) such that

(5.3) J(@) < J(w) Y€ Und: lyu — Fll1~0) < g

Before proving this theorem, we establish some auxiliary results.

LEMMA 5.2. There exists i € (0,1) and C,, such that

(5.4) Ve — Toyull Lo (@) < Cu(ht + T™2) Yu € Upg.
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Proof. First, we observe that H2(Q) ¢ CY/2(Q) for d < 3. Then, according to
(20, Theorem III-10.1], Theorem 2.1, and assumptions (A2), (H2), and (H3), we infer
the existence of u € (0,1) and C,, > 0 such that y, € C**/2(Q) and

(55) HyuHC#»#/Z(Q) S CIJ« Yu € Uad~
Now, given (zg,%p) a point in a K x Ij, we have with the Holder continuity of y,

[yu (0, t0) — Toyu(o, to)|
[Yu (205 t0) — Tryu(To, to)| + 77 [Yu — Thyu] (0, o)

1 1
L / a0, o) — (0, O] dt + — / (0, 1) — Tt (0, )] dt
Iy Tk J1p,

IN

IN

C
< o) ( |t0 _ tlu/Q dt—i—/ At dt> < CM(T“/Q + h“),
Tk I Iy,

which implies (5.4) due to the arbitrary selection of (zo, o). d
COROLLARY 5.3. There exists a constant M, such that

T
69 ) = vuli=io) < Mylog (7 ) lloghl(i# +77%) ¥u € Ui
Proof. From [22, Theorem 6.5] we know that

T
Iom0) = (@) < Clog (7 ) 108l = liec@y Yo € Vi o€ Ui

Then it is enough to combine this inequality with (5.3) to deduce (5.6). O

LEMMA 5.4. Consider a sequence {uy}n C Uag such that u, N L0, 7)™
and a sequence {op}n with |oy| = hy, + 7 — 0. Then, J,, (u,) — J(u) holds.

Proof. We first write
o, (un) = J(u)] < [Jo, (un) = J(un)| + [ (un) = J(u)].

For the first term, by the mean value theorem, we know that there exists a measurable
function 0 < 6, (z,t) < 1 such that, if we name ¢, = Yo, (Un) + On(Yu, — Yo, (Un)),
then using (4.4), (H3), and (A2) we obtain

| (un) = o, (un)]

:// L&t (1)) = L2, b, i, () (2,1)) ) i

< Ll

< ||ZZ
_‘aymyn)

(2, t, Gn (2, 1) (Yu, (%,1) — Yo, (un)(m,t))’ dx dt

||yun Yo, (“n)HLz(Q) < C(hi + Tn)'
L2(Q)

The convergence to zero of the second term follows from assumption (A2) and
Lemma 2.2. O

Proof of Theorem 5.1. Part I: Consider the set

Vadop = {tr € Uraa: Yo (ur) — Jllo=(q) < p}-
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From Corollary 5.3 we deduce the existence of oy such that ||y, (%) — 7|z~ (g) < p for
every |o| < |o1|. Since y, (@) = yo(7,u) and obviously 7.4 € U, a4, we conclude that
T4 € Vad,o,p for all |o| < |o1|. Hence, Vaq,0,, is compact and nonempty. Therefore
the problem
min  J,(u
urevad,o‘,p U( T)

has a solution u,. We can extract a subsequence, denoted in the same way, such that
Uy = @ in L>(0,T)™. Since Uy aq C Uag and U,q is weakly™* closed in L*(0,T7)™,
U € Upg. We also have that §, = Yo (lie) — ya in L(Q). To check this we write

(5.7) 190 — vall= @) < 1Yo (o) = va, L= @) + 1Va, — vallL=(@)-

From Corollary 5.3 and Lemma 2.2 we infer that both terms converge to 0. Since
U € Vad,o,p, We have that

lya = Ull=(@) < lya — Yo (o)l (@) + 140 (o) = ¥l (@)
< lya = Yo (ts)||Loe (@) +p — p as o] = 0.

Passing to the limit in J, (%) < Jo(7m,@) with Lemma 2.2, we infer that J (@) < J(a).
Due to (5.1), this is possible only if & = @, and so (5.7) implies that ||7o — 7| L (g) — 0
as |o| = 0. Let us take o¢ such that ||jo — §||L=(0) < p/2. Then for any u, € Ur aq
such that ||y0'(u‘l') - QUHLOC(Q) < p/2’ we get

1Yo (ur) = Gl @) < 1Yo (Ur) = Foll oo @) + [1To — Ul (@) < p Vo] < |ool.

Then u, € V,4,5,, and, hence, J(t,) < J(u,) for every |o| < |og|, which proves the
first part of the theorem.

Part II: We denote, as above, 3, and § the discrete and continuous states asso-
ciated with @, and @, respectively. We observe that, proceeding as in (5.7), |7, —
Ullze(@) — 0 as |o] — 0. Let us take an arbitrary element u € U,q such that
Iy — FllL=(0) < p/2. We have to prove that J(u) < J(u). To this end, we consider
the discrete controls mru. It is obvious that m.u € U; .q and, from Corollary 5.3 and
the fact that yo(m-u) = yo(u) (see (4.6)), we have that ||y, (7-u) — yu| () — 0 as
|o| — 0. Therefore, we get

_ _ p
||y0(7rru) - yo||L°°(Q) — Hyu - yIILoo(Q) < B as o0 — 0.
Hence, there exists o1 with |o1] < |og| such that
. p
Yo (Tr1) = Yo | Lo (@) < 5 Vio| < |oq].

Thus, from (5.2) and Lemma 5.4 we infer

J(@) = lim J, (i) < lirr%) Iy (mru) = J(u),
o—

o—0

which concludes the proof. 0

Remark 5.5. Let us observe that if {@,}, is a sequence of global minimizers of
(P, ), then there exist subsequences converging to elements @. Any of these controls
@ is a global minimizer of (P). This is an immediate consequence of the second part
of Theorem 5.1. Indeed, it is enough to take p sufficiently large.
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Assuming the second order optimality conditions we can prove some error esti-
mates for the difference between the continuous and discrete optimal states.

THEOREM 5.6. Let u be a local solution of (P) satisfying the first order conditions
(3.1a)—(3.1¢) and the second order sufficient conditions (3.3). Let {u,} be a sequence

of local minima of (Py) such that (5.2) holds and @, — @ in L°°(0,T)™. Then, there
ezists a constant C' such that

(5.8) 90 — llz2(Q) < C(h+ /7).

Proof. By the triangle inequality we have

19 = 9llL2@) < 100 — Yu, l2@) + va, = lle2(@)-
The first term in the right-hand side is of order O(h? + 7); see (4.4). We just need to
study the second term. From Lemma 2.2 we know that yz, — ¢ strongly in L*°(Q).
From Theorem 3.4, we deduce the existence of € > 0 and x > 0 such that (3.6) holds.

Then, there exists o9 > 0 such that for all 0 < |o| < |oo|, |ya, — ¥llz=(qQ) < &. Thus,
using (3.6) we have

5y, = 7l32q) < J(30) — (@)
< (o) = Jo(tie)] + [Jo () — Jo(m-1)]
+ [Jo(mrt) — Jo(w)] + [Jo (u) — J(u)]
=I+1II4+III+1IV.

Let us estimate the first term. By the mean value theorem, there exists a measurable
function J, = ¥, + 0(ya, — ¥o) with 0 < 0(x,t) < 1 such that

J(itg) — Jo(y) = /Q (L.t o, (2,1)) — L(a,t, G (2,1))) dr
oL . _
= /Q aiy(xataya(xat))(yﬁg ((E,t) - ya(xat)) dx di

1Ya, = YollL2@) < C(h* + 1),
L2(Q)
where we have used (A2), Theorem 2.1, and (4.4) for the last two inequalities. The
fourth term can be estimated exactly in the same way.

Since @, satisfies (5.2), we have that IT <0 for |o| small enough. Indeed, we can
argue as in the second part of the proof of Theorem 5.1 to deduce the existence of
o1 such that 7@ € Ur aq and ||y, (7+0) — o ||z (@) < p/2 for |o| < |o1|. Finally, the
term III is zero because of (4.6).

Collecting all the estimates, we achieve the desired result. O

oL R
< Hay(a B ya')

6. Bang-bang control and control error estimates. In the last section we
have used the quadratic growth property of the states (3.6) to prove error estimates
between discrete and continuous optimal states. The reader could be wondering if it
is possible to get an analogous condition involving a quadratic term for the controls.
The answer is negative in general. In [16], the authors prove that if @ is a local
minimizer of (P), which is not bang-bang, then there do not exist ¢ > 0, K > 0,
v > 0, and 7 > 1 such that the inequality

J(a)+E

5 [lu — 12||ZT(07T)M < J(u) Vu €U :|lu—al|piorm <e
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holds. However, if we make a certain structural assumption on the associated adjoint
state with u, which implies the bang-bang property of %, then we can get the desired
inequality. Following [16], the next hypothesis will be assumed in the rest of the

paper.
(6.1) 3K >0, Fy € (0,1] : meas{t € [0,T] : [¢h;(t)] <e} < Ke" Ve >0, 1 <j<m.

Remark 6.1. Notice that under this assumption @ is a bang-bang control. Let
us comment on this. Assumption (6.1) rules out the possibility of having meas{t €
[0,7] : 4;(t) = 0} > 0, so we will not have singular arcs.

If 15]» is regular enough and there is a finite number of points {t;}2_, such that
¢ (tr) = 0 for 0 < n < my and 9™ () # 0, then (6.1) is fulfilled by ¢; with
v=min{l/my: k=1,...,N}.

Suppose now that ¢; € C1[0,T]. Then, (6.1) holds with v = 1 if and only if
the number of points where @j vanishes is finite and the derivatives at these points
are not zero. To prove this, first we suppose that there is an infinite number of
points in [0, T] where ; vanishes. Then, we can extract a sequence {t,}°2; C [0,T]
converging to some point to € [0,7]. By continuity of ¥;, 1;(tg) = 0. By the mean
value theorem, between every two consecutive terms of this sequence there is a point
t% such that ¢} (t,) = 0, and hence ¢(to) = 0. In a neighborhood of to, we have that
|1 (t)] = o(t — to). This contradicts (6.1).

The converse implication follows from the first part of this remark.

Next we prove that, under the assumption (6.1), the sufficient second order con-
dition (3.3) leads to a better growth condition than the one given in (3.6). Actually,
this new growth condition involves also the controls. Before stating this result, we
establish a lemma whose proof is the same as the one of [24, Proposition 3.2] with the
obvious changes; see also [16, Proposition 2.7] for the case v = 1.

LEMMA 6.2. Let @ € U,q satisfy (3.1a)—(3.1c) and (6.1), and then
= - s
(6.2) J'(@)(u—1a) > v|u— UHLl(O,T)m Vu € Us,d,

where v = %(QK Z}ll(ﬂj - Oéj))fl/w'

THEOREM 6.3. Under the assumptions and notation of Lemma 6.2 and supposing
that u satisfies the sufficient second order condition (3.3), then there exist € > 0 and
K > 0 such that

N i+ K _ _
(6.3) J(U)+§||U—U\|L1(0,T)mr+§Hyu—y\|%2(Q) < J(u) Vu € Una : [[yu =7l (@) <é;

where 4 is the state associates with u.

Proof. To prove (6.3) it is enough to make a Taylor expansion and to use (6.2) as
follows:

J(u) = J(u) + %J'(ﬂ)(u — 1) + %[J’(ﬂ)(u —a)+ J" (a4 0(u—u))(u—u)?]
1

> 7() + 2wl e + 57 () ) (i B — 1)) (s — )7

Now we can estimate the last term with (3.23) taking p = 1. d
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Remark 6.4. In the case v = 1, it was proved in [15] (see also [16]) that the
condition
J" (@ > = |vlliz0ym Yo € CF

with 0 < v/ < 2v implies the existence of € > 0 and x > 0 such that
_ R _ _
J(a) + §||u — “||2L1(0,T)m < J(u) Yu € Usq:|lu—1al|piomrm <e.

Next, we consider the discrete control problems (P,) defined in section 4. Let @ be
a local minimizer of (P) satisfying the second order condition (3.3) and the assumption
(6.1). Then, from Theorem 5.1 we get the existence of a sequence {i,}, of local
minimizers of problems (P,) such that @, = @ in L=(0,7)™, ||§o — ¥l z=(q) — 0 as
|o| = 0, and (5.2) is fulfilled. In addition, since @ is a bang-bang control, we have that
iy — @ strongly in LP(0,T)™ for every p € [1,00). Indeed, it is enough to observe
that

T
/ |ﬂg7j —ﬂj|dt:/ (amj—ﬂj)dt-F/ (aj —ag7j)dt—>0 as 7 — 0,
0 I, Is,
where
I, ={t€(0,T):a(t) = a;} and Ip, = {te (0,T): a;(t) = B;}.

This proves the strong convergence in L!(0,T)™. Moreover, due to the boundedness
in L*(0,T)™ of the sequence {u, }», we conclude the strong convergence in L?(0,7)™
for every p < oo.

The next theorem provides an estimate for the difference @, — .

THEOREM 6.5. Under the previous notation and assumptions, there exists a con-
stant independent of o such that
(6.4) te — @llL10,rym < C[(h* + 1)|log 7|*]7,
241

(6.5) 177 = FllL2(@) < ClR* +7)[log 7|*] =

Proof. Since iy — @, for any € > 0 there exists og > 0 such that ||§,—7||L~(0) < €
for every |o| < |og|. Now, using (6.2) and the fact

m T
J/ U ) (U — Uy) = o"_'*_a'd
! () (@ — o) Z/ B (5 — 1 3)

m T
= Z/ Vo j (Trllj — TUg, ;) dt = J, (U ) (70 — 1Uy) > 0,
j=1"0
we get with the mean value theorem the existence of 6 € (0,1) such that we have for
ug = i+ 0(t — iiy)
v 1+t 1., ., _
§Hug — u||L1(07T)m + §J/(u)(ug — u)
< J'(u)(te — 1) < [J'(u) = J;(te)](0s — 1)
= [J'(@) = J'(ug)|(tg — u) + [J'(tho) — J; (tho)] (U — )

m T
= —J"(ug) (G — 1) + Z/O (Y, = Vo) (U — Toj) dt.
j=1
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Equivalently, we have

v, _ 142 | N _ _ _
,||uo - uHLl(QT)m + {2J’(u)(ug — @) + J" (ug) (s — 0)?

(6.6) <Z// 0, — o ))9; (U5 — Ty ) dz dt.

From Remark 3.6 we deduce the existence of A > 0 such that for ¢ as above
sufficiently small

)\ ! — ! — —
(6.7) 5 v, — il2a(q) < J( )tg — @) + J" (ug) (g —w)* Vo] < |oo]-

Let us estimate the right-hand side of (6.6). To this end, we introduce the function
©° € WHP(0,T; L?(Q)) N LP(0,T; H(Q)) for all p < co as the solution of

Op of _ oL .
it Ry ‘L -
8{; + + ay (‘/I;at7y0')%0 ay (x’taya) m Q7
p=0o0n%,
©(T)=0in Q.

Obviously, estimate (4.5) can be applied to estimate p? — @,, and hence we have

(6.8) l7 = @ollLe= (0,502 (0) < Ci(h? + )| log 7.

Now, we estimate the difference 27 = p5, —¢”. Subtracting the equations satisfied
by ¢, and @7 we obtain

027 « 0 af -
_ﬁ—’_A ay(x7t7yug)z
of of

-  [OL oL _ .
- ay (.’IJ 3 ya) - aiy(fl%t,yﬁa)}@ + [aiy(xjayﬁa) - aiy(x7t7yo):| n Q7
z22=00n%, 27(T)=0 in Q.

From assumptions (A2) and (A5) and Theorem 2.1 and using the mean value theorem
we infer

127l Lo 0,7522(0)) < Callya, — UollL2(@)-
Now, (4.4) and the definition of 2z imply
(6.9) lpa, = 7 llLeo.r:L2@) < Ca(h® + 7).

Finally, applying (6.8) and (6.9) we obtain with Young’s inequality for p = v+ 1
and ¢ = (y+1)/v

Z/ / iy — Po))9i (U — o ;) dx dt

< 11<na<X 95l 2 llpa, — Pollze 0,22 |8 — ol L1 0,7y
< C4(h2 T)|10g7’|2||1_t7I_LU||L1(07T)m

T
(6.10) < Cs[(W? + )] 1og 7P + 2 = ol 12 -
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Finally, combining (6.6), (6.7), and (6.10) we get

s e A —112 2 21741
ZHUU - u”Ll(o,T)m + 5”?/0 - y||L2(Q) < 05[(h + T)l IOgT‘ ] s

which leads straightforwardly to (6.4) and (6.5). 0

7. Numerical experiment. Consider Q = (0,1), T =1, A = =92, yo(z) =
(1 — ), and m = 1. Define w = [0.25,0.75] and g(z) = xwo(z). We will take
flx,t,y) = v° + e(x,t) and L(z,t,y) = y* + b(x,t)y, where e(x,t) and b(z,t) are
defined later. Finally, we take the control constraints @ = 0 and 5 = 1.

The state equation is given by

2
O Tyt elwt) = u(t)gla) in © x (0,7),
y(0,t) = y(1,t) =0 for t € (0,7,

y(z,0) = z(1 — x) for x € (0,1)
and the adjoint state equation is given by

Op 03¢ 3 .
v %—0—3?;@ 4y’ + b(x,t) in Q x (0,T),
©(0,t) = ¢(1,t) =0 for t € (0,T),

o(x, T) =0 for z € (0,1).

We fix g(x,t) = 2(1 — x) cos(2nt), which satisfies the boundary and initial conditions
of the state equation. For specific examples, we just need to define ¢ and u. With
these choices, we define

oy 0%y

e(z,t) = ~ o + 92 y* + u(t)g(x)
and 5 55
0P 0P g
b(x,t) = % 92 +3 7o — 45°.

We have that (@, 7, @) satisfies the first order optimality conditions (3.1a)—(3.1c).
To solve the problem we do a Tikhonov regularization (cf. [23]), i.e., we solve

_ Vi 2
uléllljl;ld Ju, (u) = J(u) + §||U||L2(0,T)m

for a sequence v; N\, 0. This problem is solved using a semismooth Newton method
as described in [10, section 14]. We use the following algorithm.

Algorithm 7.1 Optimization algorithm.

Set j = 0, an initial vy > 0, and an initial guess ug, Yo, @o Perform one iteration of
the semismooth Newton method for the functional .J,, (u) starting at u;. Name the
result wiy1, Yj+1, @41 Set vjp1 = max{v;/2, vmin} if |Jujr1 — uj||L1(0’T) + lyj+1 —

Yille2@) + lpj+1 — ¢jll2(@) < € then
| stop

else
| Set j=j4+1and goto 7.1
end
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To discretize the problem, we use two families of uniform partitions in time and
space. In time we take 7, = 37T, k = ko,..., K, so that @ ¢ U,. In space, we take
h; :27i,7;:i0,...71.

We measure the error in the state variable with respect to 7, I, 24, where 7,
is the numerical approximation of 7w, given by

1 (bt
=3 = ) dtx; ~ v = 41971y, Wweco,T
o= [ g = S ) wech

j=1
i.e., the midpoint quadrature formula is replacing the integral.

7.1. Bang-bang control. We define ¢(x,t) = x(1 — z)sin(27t/T). This func-
tion clearly satisfies the boundary and end conditions of the adjoint state equation.
For T > 0 small enough, L"(7) — ¢f”(y) > 0 in Q and second order sufficient condi-
tions hold.

We have that the switching function is

0.75
P(t) = /0 @(z, t)dx = ;—é sin(27t/T).

.25

So we define

(t) = 0 if 0<t<0.5T,
L1 i 05T <t < T.

Assumption (6.1) is satisfied for v = 1.

We perform two experiments: In the first one, we fix a small time step 7 = 3787
and we measure the error e?’y in the state variable as the space mesh size varies. We
have not been able to measure the dependence of the error in the control with respect
to the spatial discretization parameter.

In the second one, we fix h = 27! and measure the errors in the state e, and
in the control ;™ = ||& — || L1 (0,7 as the time step decreases. Error in the control
can be computed exactly.

The experimental orders of convergence in space and time are defined as

log(egjl) —log(e;™)
log(3—%=1) —log(3—*)"

h, h,
log(e;;%) — log(e;"”)

hy _
FOCT = log2 1) ~1og(2 1)

and FOC,™ =

Since the error in space is much smaller than the error in time, we take T'= 0.1. For
the optimization process, we choose vy = 1E — 4, ¢ = 1E — 14, vpin = 1E — 8. As
a starting point we take ug = 0, yo = yo(up), and g = @, (ug). In all cases, the
algorithm finishes in less than 8 iterations.

The results are shown in Table 1. It can be noticed that the EOC in space is
O(h?), while the EOC in time is O(7). These results are quite in agreement, up to
logarithmic terms, with the theoretical results given in Theorem 6.5.

7.2. Singular control. Define ¢(z,t) = 2(1—2)(1—X[0.257,0.757](t)) sin(4nt/T)

and
0 if t < 0.257T,
w(t) =< 16(t —0.25T)%(T —t)/T% if 0.25T <t < 0.757T,
1 if t > 0.757T.

We fix T = 1. For the optimization process, we choose vy = 1, ¢ = 1E — 14, vy, =
1E — 8. We initialize the algorithm with ug = 0, yo = ys(uo) and o = @ (ug). These
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k=8
ev | EoC!Y
L1E - 2 =
27E-3 | 20
6.6E—4 | 20
1.7E — 4 2.0
4.4E -5 2.0
1.3E-5 1.8

O UL W N | o

TABLE 1
Error and EOC in space (left) and time (right). Bang-bang control. Example 7.1.

i =10

k ey? EOC]Y e EOC)
1| 50E—-3 — 1.7E — 2

2| 1.7E-3 1.0 5.6E —3 1.0

3| 5.7TE—4 1.0 1.9E — 3 1.0

4 | 1.9E — 4 1.0 6.2E — 4 1.0

5| 63E—-5 1.0 2.1E -4 1.0

6| 21E—-5 1.0 6.9E — 5 1.0

0
0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

0 of 02 03 04 05 06 07 08 03 1

Fic. 1. Discrete optimal control for different time steps. Example 7.2.

TABLE 2
State error, and function values for problem with a singular arc. Example 7.2.

k ey | EOCTY Jo(is) Jo(mr10)

2 [ 3.6E —2 —0.04728096 | —0.04629675
3] 1.9E—2| 056 —0.04639788 | —0.04619277
4| 10E-2]| 060 —0.04629958 | —0.04623007
5| 1.2E—2| —0.15 | —0.04623967 | —0.04622969
6| 3.6E—3 1.1 —0.04623509 | —0.04623015
71 27E—-3| 0.26 —0.04623024 | —0.04623015
8| 1.4E—-3| 0.60 —0.04623044 | —0.04623016

0.49

problems are much more difficult to solve: in all cases, the algorithm finished in about
40 iterations and discrete optimal controls are quite different from @ (see Figure 1).

Despite this, we have in all cases but one that J, (i) < J, (7 @); see Table 2.

Also, the order of convergence is harder to measure. We have only been able to
perform experiment 2, i.e., we fix h = 27'° and measure the error in the state for
T, = 37%, k =3,...,8. The discretization errors are quite big and seemingly behave
as /7 in time, which is in accordance with the result of Theorem 5.6; see Figure 2
and Table 2. The part of the error depending of h is much smaller, and we have not

been able to measure it.
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7
7
L6
7
7
7
102 s ® 1
7
70
e
o,
7/
- = O(y7)
® ¢
10—3 n n n
10 1073 1072 10t
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Fic. 2. Ezperimental and theoretical order of convergence for problem with a singular arc.
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