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ABSTRACT

The performance of statistical downscaling (SD) techniques is critically reassessed with respect to their

robust applicability in climate change studies. To this end, in addition to standard accuracy measures and

distributional similarity scores, the authors estimate the robustness of the methods under warming climate

conditions working with anomalous warm historical periods. This validation framework is applied to in-

tercompare the performances of 12 different SD methods (from the analog, weather typing, and regression

families) for downscalingminimum andmaximum temperatures in Spain. First, a calibration of thesemethods

is performed in terms of both geographical domains and predictor sets; the results are highly dependent on the

latter, with optimum predictor sets including near-surface temperature data (in particular 2-m temperature),

which appropriately discriminate cold episodes related to temperature inversion in the lower troposphere.

Although regression methods perform best in terms of correlation, analog and weather generator ap-

proaches are more appropriate for reproducing the observed distributions, especially in case of wintertime

minimum temperature. However, the latter two families significantly underestimate the temperature

anomalies of the warm periods considered in this work. This underestimation is found to be critical when

considering the warming signal in the late twenty-first century as given by a global climate model [the

ECHAM5–Max Planck Institute (MPI) model]. In this case, the different downscaling methods provide

warming values with differences in the range of 18C, in agreement with the robustness significance values.

Therefore, the proposed test is a promising technique for detecting lack of robustness in statistical down-

scaling methods applied in climate change studies.

1. Introduction

Statistical downscaling (SD) methods are nowadays

routinely applied for generating local climate change

projections from the coarse-resolution outputs of global

climate models (GCMs) (Timbal et al. 2003; Haylock

et al. 2006; Hewitson and Crane 2006; Timbal and Jones

2008; Benestad 2010; Brands et al. 2011b; Gutzler and

Robbins 2011). These methods are based on empirical

relationships linking large-scale atmospheric variables

(predictors) with some local-scale variables of interest

(predictands). Different SD techniques have been pro-

posed to infer these relationships from data under the

so-called perfect prog approach (Maraun et al. 2010). In

this case, reanalysis outputs for a representative period

of the past (typically 30 yr) are used as predictors while

simultaneous historical observations at the local scale

are used as predictands for model training. Once the opti-

malmodel configurationhas been foundusing these (quasi)

observed data (Brands et al. 2012), the model is applied to

the output of different GCM scenario runs to obtain future

projections in different climate change scenarios.

This perfect prog downscaling approach is affected by

some well-known limiting factors, which are especially

relevant when applying it to GCM scenario runs. Some

of these factors are usually taken into account when

generating climate change projections. For instance, the

reanalysis variables selected as large-scale predictors

should be well simulated by GCMs, should capture the

climate change ‘‘signal,’’ and should have a significant

and physically interpretable association with the pre-

dictand (Wilby et al. 2004).

However, there are other important limiting factors

that have been rarely assessed in earlier studies. First, for

the particular choice of predictors made, the statistical

downscaling method should provide a stable/stationary

statistical relationship between the predictors and the
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predictand in order to remain valid under climate change

conditions. This is usually referred to as the robustness

or stationarity assumption, and only a few studies have

focused on this problem, using either global or regional

climate model outputs as pseudo-observations (Frı́as

et al. 2006; Vrac et al. 2007) or analyzing the stationarity

of empirical relationships (Schmith 2008). Second, the

downscaled and observed time series should have simi-

lar climatological properties (i.e., similar distributions)

in order to avoid any form of post hoc correction such as

bias correction or more advanced postprocessing tech-

niques such as quantile mapping (Déqué 2007), which if

applied must additionally be assumed to be stationary

in time (Hagemann et al. 2011). Finally, since future sea-

sonal climates might not exactly correspond to the pres-

ent ones, the calibration process should not be applied

separately for each season—as is common in most SD

studies (Maraun et al. 2010)—but for the training period

as a whole (Imbert and Benestad 2005; Teutschbein et al.

2011). This requires controlling the seasonal variability of

the results, which may be difficult to achieve, since the

most informative predictor combination may potentially

vary from season to season (Wetterhall et al. 2005, 2007).

If some of the above factors are not fulfilled, the results of

any SD application should be interpreted with caution,

since the choice of the predictors and/or the downscaling

methodology can have a large influence on the local cli-

mate change scenarios.

In this paper we provide a comprehensive validation

framework to test the suitability of common perfect prog

SD techniques for their applicability in climate change

studies, taking into account the abovementioned limi-

tations. The final aim of this work is to find robust

downscaling schemes that can be applied under climate

change conditions without the necessity of any form of

post hoc correction. To this aim, we combine standard

accuracy validation scores with additional scores ob-

tained by statistically testing 1) the distributional simi-

larity of the downscaled and observed series and 2) the

robustness of the bias to warmer climatic conditions. In

the former case, we consider the significance level of the

two-sample Kolmogorov–Smirnov test for the null hy-

pothesis of equal downscaled and observed distributions.

In the latter case, we compare the bias of the methods in

an historical warm period (defined by the eight warmest

years in the analysis period) with that obtained in ‘‘nor-

mal’’ conditions (characterized by the 8-yr random sam-

ples given from a fivefold cross-validation approach).

As an illustrative example, we consider minimum and

maximum temperatures in Spain using the publicly avail-

able daily gridded dataset Spain02 (Herrera et al. 2012)

as predictands. It covers peninsular Spain and the Bal-

earic Islands at a resolution of 0.28 and has been found to

be of particular interest for impact studies in this region.

To obtain general conclusions, we apply an ensemble of

the most commonly used statistical downscaling ap-

proaches (analogs, weather typing, regression, regression

conditioned on weather types) to the most commonly

used predictor variables considering both local and spa-

tial predictors, given by the values at the nearest grid box

and by the principal components (PCs), respectively.

Special focus is given to compare the results of using

either free-tropospheric or near-surface temperature as

a predictor for the downscaling methods, since there has

been some scientific debate onwhich height level to prefer

[see Hanssen-Bauer et al. (2005) for more details].

This work is structured as follows. In section 2, the

geographical domains and applied data are presented.

Section 3 describes the different statistical downscaling

methods. The conducted cross-validation approach, as

well as the proposed validation scores, is presented in

section 4. Section 5 refers to the screening of the different

geographical domains and predictors by using two ref-

erence SD methods (analogs and regression using PCs).

On the basis of the optimal configuration of domain and

predictors, the performances of all SD methods are

intercompared in section 6. Finally, some conclusions

are given in section 7.

2. Geographical zones and data

The target region of this work is the Iberian Peninsula.

Therefore, we defined different predictor areas, Z1, . . . ,

Z10, with different sizes, as shown in Fig. 1; note that

hereafter Zi stands for a specific zone. Over this region

we considered a number of atmospheric variables (see

Table 1) typically used as predictors in temperature down-

scaling studies (Benestad 2002; Huth 2002; Hanssen-Bauer

FIG. 1. Different domains used in this study, numbered from east

to west, and decreasing in size toward the center: 1) esTcena,

2) W, 3) NW, 4) SW, 5) NWsmall, 6) Iberia, 7) SEsmall, 8) SE,

9) NE, and 10) E.
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et al. 2005; Huth et al. 2008). It has been recently shown

that these variables—considering anomalies—are suit-

able predictors for climate change studies, since their

distribution is skillfully reproduced byGCMs in the area

under study (see Brands et al. 2011a). The only excep-

tions aremaximumandminimum temperatures (denoted

Tx and Tn, respectively), since their use as predictors in

climate change downscaling studies has shown to be

problematic (Palutikof et al. 1997); thus, these variables

are only used as predictors in this study for benchmarking

purposes. All these variables were downloaded from the

publicly available 40-yr European Centre for Medium-

RangeWeather Forecasts (ECMWF)Re-Analysis (ERA-

40) data (Uppala et al. 2005) with 2.58 resolution for the

period 1961–2000 and will be used to test the different

SD methods in perfect prog conditions focusing on vali-

dationmeasures informative for climate change conditions.

We considered the predictor combinations listed in

Table 2, including the typical settings used in down-

scaling studies; for instance, since the climate change

signal is much weaker for circulation variables than for

temperature and/or absolute humidity—linked to changes

in the radiation budget (Wilby et al. 1998, 2004)—we do

not consider predictor datasets including only circula-

tion variables [Z, sea level pressure (SLP), U, and V].

Note also that those combinations marked with a letter

d (P1, P2, P3, P4, and P6) have been tested with two

temporal setups: static and dynamic, as suggested by

Gutiérrez et al. (2004). The ‘‘static’’ temporal setup only

takes into account 0000UTCvalues for the instantaneous

variables (Z, T, Q, U, and V) for day D, whereas the

‘‘dynamic’’ temporal approach additionally includes the

0000UTC values for dayD1 1, thus providing a window

covering the observation period. We want to remark that

using 1200 UTC values instead of 0000 UTC values for

downscalingTmax did not improve the results (not shown).

Note that hereafter Pi, or Pid, stands for a specific static,

or dynamic, predictor configuration, respectively.

For different configurations of the downscaling tech-

niques (see Table 3), we either consider the standardized

anomalies of the ERA-40 data at nearby grid boxes as

predictors or, alternatively, use spatial patterns as

given by the PCs of the predictor field (Preisendorfer

1988). In this case, the total number of PCs considered

is limited to the leading PCs yielding a fraction of ex-

plained variance of 95% (note that a maximum of 30 PCs

is not exceeded in any case). In the former case, the spatial

homogeneity of the downscaled series is expected to be

low, since different predictors are used for each target

location; however, in the latter case, the predictors are

shared by all locations, which should considerably en-

hance the spatial homogeneity of the results.

The local target variables of interest in this work

(predictands) are the daily 2-m maximum (Tmax) and

minimum (Tmin) air temperatures from the recently

developed publicly available gridded interpolated ob-

servations dataset Spain02 (Herrera 2011; Herrera et al.

2012, freely available online at http://www.meteo.unican.

es/datasets/spain02). The data come on a regular 0.28 grid
and cover the complete time period under study (1961–

2000). Figures 2a,b and 2c,d show the corresponding

means and standard deviations for Tmax and Tmin,

respectively, at each grid box of Spain02, as well as the

inter- and intra-annual variability of the spatial mean

anomalies (Figs. 2e,f). Note that Tx (Tn) hereafter refers

to the maximum (minimum) temperatures as predictors,

TABLE 1. Predictor variables used in this work. Note that Tx and Tn have been only considered for benchmarking purposes only, as their

GCM performance for the region of study is poor; see the text for more details.

Code Name Levels Time Unit

Z Geopotential 850, 700, 500, 300 0000 UTC m2 s22

T Temperature 850, 700, 500, 300 0000 UTC K

Q Specific humidity 850, 700, 500, 300 0000 UTC kg kg21

U U-wind component 850, 700, 500, 300 0000 UTC m s21

V V-wind component 850, 700, 500, 300 0000 UTC m s21

SLP Mean sea level pressure Mean sea level Daily mean Pa

T2m Daily mean temperature Model surface Daily mean Pa

Tx Maximum temperature Model surface Instantaneous K

Tn Minimum temperature Model surface Instantaneous K

TABLE 2. Tested predictor combinations, ranked by decreasing

complexity; the combinations marked by the letter d have been

tested with both the static and dynamic temporal setup.

Code Predictor variables

P1, P1d SLP, T850, Q850, U500, V500

P2, P2d SLP, T850, Q850, Z500

P3, P3d SLP, T850, Q850

P4, P4d SLP, T850

P5 SLP, T2m

P6, P6d T850

P7 T2m

P8 Tx

P9 Tn

1 JANUARY 2013 GUT I É RREZ ET AL . 173



whereas Tmax (Tmin) will be used as abbreviation for

the predictands, respectively.

Because of the differing spatial extent of the different

climatic regions in the area under study, we will consider

the 17 grid boxes shown in Fig. 2 for calculating spatial

averages, since this will impede that the results are dom-

inated by the larger climatic regions. Note that the time

series associated with these grid boxes are very close to

those of 17 high-quality observed time series, which are

publicly available from the Spanish Meteorological

Agency (AEMET; http://www.aemet.es) and, thus, the

interpolation error of the interpolation/gridding scheme

is minimized in this case. This will be important when

considering warm anomalous periods in section 4c, with

magnitudes around 18C, where spurious warm spatial

patterns may arise in regions with sparse data due to the

interpolation method.

3. Downscaling methods

In this paper we intercompare a number of different

statistical downscaling methods, including the most pop-

ular ones used for climate change applications. These

methods are described in Table 3 and have been classi-

fied according to the following categories:

d M1: Analog methods (AM);
d M2: Weather typing methods (WT);
d M3: Multiple linear regression, from PCs, point-wise,

or both (LR); and

FIG. 2. Daily mean and daily standard deviation of the Spain02 daily dataset for (a),(b) maximum and (c),(d)

minimum temperatures for the period 1961–2000. The boxes in these figures show the location of the 17 represen-

tative grid points used in the study; the point labeled by (A) in (a) will be referred to for illustrative purposes in

section 5. Also shown are the (e) inter- and (f) intra-annual variability of the spatial mean values for these variables;

note that in these cases, anomalies with regard to the annual mean value are shown.
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d M4: Linear regression conditioned on weather types

(LR-WT).

The first group of downscaling schemes (M1a to M1c)

includes three different versions of the analog method

(AM), which was introduced in the atmospheric sciences

by Lorenz (1963, 1969) and compared with other SD

techniques by Zorita and von Storch (1999). In this

study, the Euclidean distance was used to obtain the

analogs from the predictor field (Matulla et al. 2008).

The technique labeled M1a is based on the nearest

analog, whereas M1b and M1c consider the 5 and 15

nearest analogs, respectively. M1b uses the mean of the

corresponding observed values as the target value,

whereas M1c randomly selects one of them (Brandsma

and Buishand 1998; Beersma and Buishand 2003). These

three configurations have been chosen after a sensitivity

analysis (with regard to the number of analogs, the ap-

plied distance measures) and roughly reflect the differ-

ent methodological approaches. On the one hand, the

optimum configuration for M1b was selected after com-

paring the results obtained for 5, 10, 15, and 20 analogs,

obtaining similar results (correlation), but progressively

underestimating the variance. On the other hand, 15

analogs for M1C was shown to yield a reasonable

tradeoff between a decreasing correlation and an in-

creasing and thus more realistic ratio of modeled to

observed variance (see, e.g., Timbal and McAvaney

2001).

Because of its conceptual simplicity and applicability

to any predictand variable, the AM is still widely used as

a benchmark method in statistical downscaling applica-

tions (Brands et al. 2011a; Pons et al. 2010; Teutschbein

et al. 2011; Timbal et al. 2003; Timbal and Jones 2008;

Wetterhall et al. 2005). However, its main drawback is

its inability to extrapolate unobserved values and, hence,

its tendency to underestimate warming in climate change

conditions. A possible correction for this issue has been

recently suggested by Benestad (2010), but it has not

been considered in this study.

The second group of downscaling methods contains

three different classification or weather typing tech-

niques (M2a–M2c) based on the k-means clustering

algorithm, which was applied to the atmospheric state

vector formed by all the considered predictors standard-

ized at a gridbox level to avoid biased results due to dif-

ferent scales (Gutiérrez et al. 2004). M2a and M2b are

modifications of the abovementioned analog method,

with the search space being quantized into weather types

(WTs). Weather types are first calculated applying the

k-means method (obtaining their corresponding ‘‘cen-

troids’’), and then each day is assigned to the closest WT

(closest centroid). This consequently reduces the com-

putational cost and allows for an interpretation of the

results in terms of frequencies of the different WTs. A

sensitivity study revealed an optimum number around

100WTs, obtained as the threshold value where both the

correlation and variance of the results saturate, allowing

us to keep the size of each group large enough to guar-

antee robust results [see Huth et al. (2010) for a detailed

overview of classification techniques in the atmospheric

sciences]. M2a estimates the downscaled value as the

mean of the observations corresponding to the particu-

lar weather type, whereas M2b picks one value at ran-

domwithin those in the correspondingWT.M2c combines

the k-means weather typing approach with a Gaussian

weather generator in order to avoid using the empirical

WT distribution and to partially overcome the analog

method’s limitation to extrapolate values unobserved in

the past. In the training period, each observed temper-

ature time series is partitioned into 100 subseries cor-

responding to 100WTs. The parameters of the Gaussian

distribution are then fitted to each of these subseries and

are used for randomly generating temperature series

conditioned to the corresponding weather type in the

independent test periods.

The third group of methods contains three differ-

ent versions of multiple linear regression (M3a–M3c)

(Benestad 2002, 2005; Huth 2002, 2004). On the one hand,

PCs are used as predictors—considering those explain-

ing 95% of the variance (with a maximum of 30 PCs)—

making up the ‘‘global’’ predictor setup M3a. On the

other hand, the standardized values from the nearest

grid box are applied, making up the ‘‘local’’ predictor

setup M3b. Note that we also tested the performance

when considering several neighboring grid boxes, but

similar results were obtained. Finally, we combine both

the global (15 PCs) and local (nearest gridbox values)

TABLE 3. Downscaling methods of four different families con-

sidered in this work: AM—Analog methods, WT—weather typing,

LR—linear regression, and LR-WT—regression conditioned on

weather types.

Code Type Method and predictor field

M1a AM Nearest neighbor (1 analog)

M1b AM Mean of 5 neighbors

M1c AM One out of 15 neighbors, random selection

M2a WT 100 WTs (k means), mean of the observations

M2b WT 100 WTs (k means), random selection

M2c WT 100 WTs (k means), simulation from Gaussian

distribution

M3a LR Linear regression with n PCs (95% variance)

M3b LR Local predictor values in the nearest grid box

M3c LR 15 PCs 1 nearest grid box

M4a LR-WT M3c conditioned on 10 WTs (all predictors)

M4b LR-WT M3b conditioned on 10 WTs (all predictors)

M4c LR-WT M3b (T, Q) conditioned on 10 WTs (SLP only)
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predictors, obtaining the mixed predictor configuration

M3c. The comparison of these three setups will allow us

to assess the performance of spatial versus pointwise

predictors. Note that this family of methods has ex-

trapolation capabilities and hence may be more robust

in climate change conditions.

The fourth group of methods (M4a–M4c) is a combi-

nation of weather typing (M2) and multiple linear re-

gression (M3). As in M2, a k-means clustering is first

applied to determine a number of WTs. As a result of

a previously applied sensitivity study, 10 WTs were con-

sidered for this family of methods. Note that although

a higher number ofWTs was considered forM2methods

in order to increase accuracy, for theM4 family accuracy

is provided by the regression step rather than by the

weather typing step and, thus, these methods can work

with fewer WTs—actually, they should do so in order to

prevent working with too small a sample when adjusting

the regression model. In the first two cases (M4a and

M4b), the clustering is performed upon all predictor

variables, while in the third case (M4c), it is performed

on SLP (representing circulation) only. Afterwards,

a linear regression is computed conditioned on each

weather type, considering either both the local and

global predictor info (M4a) or the local predictor in-

formation (M4b andM4c) only. For M4c, the regression

step is limited to those variables that have not been used

in the clustering process (temperatures and humidity).

The idea behind the method M4c is that temperature

and humidity values some hundreds of kilometers away

do not physically affect the predictand at a given loca-

tion. Hence, they are excluded from the clustering of the

large-scale data but included as regressors (from the grid

box that is nearest to the location of the predictand).

Moreover, this avoids the redundance of using the same

variables for clustering and then for regression condi-

tioned on the resulting clusters.

To obtain the optimum configuration of thesemethods,

different combinations of the geographical zones (Fig. 1)

and predictors (Table 2) are tested in the following

sections.

4. Cross-validation scheme and validation scores

To appropriately assess and compare the performance

of different SD methods, a cross-validation approach is

considered to avoid model overfitting. Themost popular

and simple of these approaches is data splitting, which

considers independent data for training (e.g., 80% of the

available data) and validation/test (e.g., the remaining

20%). To avoid spurious effects of the particular parti-

tion performed, the process needs to be repeated several

times, which leads to more robust average scores and

additionally permits for the application of statistical in-

ference in order to estimate confidence intervals of the

results. However, in this case, the test subsets for the

different realizations may overlap, thus providing non-

independent results. To avoid this problem, we consider

a nonoverlapping test set selection, namely a k-fold cross-

validation approach (Markatou et al. 2005), which is

commonly used in the machine learning community to

compare the performance of different models. The avail-

able data (n years in our study) is divided into k non-

overlapping data subsets, each of which contains n/k

elements. Each data subset is then used as a test set, with

the remaining data acting as a training set in each case.

Thus, the resultingk scores are obtained from independent

test samples, allowing for a proper statistical inference.

In our case, we consider five replicas (fivefold cross-

validation) each containing 8 years for testing, and 32

years for training. To circumvent statistical artifacts po-

tentially arising from trends (see Fig. 2e), we considered

a stratified regular sampling where the first test sample

was formed by the years 1961, 1966, 1971, 1976, 1981,

1986, 1991, and 1996, the second by the years 1962, 1967,

etc., and so on. Note that with this approach we keep an

80%/20% balance in the training/test data, typically used

in this type of studies.

Finally, in order to take into account future seasonal

shifts as projected by GCM scenario runs, no season-

specific models have been considered in this work.

a. Accuracy

Accuracy validation scores assess the correspondence

of the simulated and observed day-to-day temperature

sequences, which is the basis of the statistical down-

scaling approach. The Pearson correlation coefficient is

used in this paper for this purpose, although there are

other popular measures, such as the root-mean-square

error (RMSE). Note that correlation (r) and RMSE are

relatedby the equationRMSE5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
p 1s2

o 2 2rspso 1 b2
q

(Murphy 1988), where b is the bias and sp and so are

the standard deviations of the prediction and obser-

vation, respectively. Thus, since the bias of the statistical

downscaling methods was found to be relative low (see

section 5), the correlation can be seen as a standardized

version of the RMSE, the latter not being shown in this

paper. To assess the seasonal dependence of the results,

correlation coefficients are calculated both for the annual

and season-specific time series.

b. Distributional consistency

Distributional consistency scores evaluate the down-

scalingmethods’ capability to reproduce the distribution

of the target time series. Themost popular scores are the

bias (mean difference) and the ratio of variances. In
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addition, some studies have focused on the higher-order

moments of the distribution (skewness, kurtosis; Huth

et al. 2003), trying to obtain a more complete description

of distributional similarity. Note that the observed distri-

bution should be reproduced by any SD method applied

in a climate change context in order to avoid the post hoc

correction of the downscaled time series—such as bias

removal, quantile mapping, or output rescaling (Déqué

2007)—which would require the additional assumption of

the error being constant under climate change conditions.

In this paper we apply the classical two-sample

Kolmogorov–Smirnov (KS) test to evaluate the hypoth-

esis that the observed and downscaled time series come

from the same underlying distribution. We computed the

KS statistic and the corresponding p values at a gridpoint

level. Note that low p values indicate significant distri-

butional dissimilarities between the observed and down-

scaled series. To avoid the effect of serial correlation on

the analysis, we consider time series formed by every

tenth day only. Alternatively, we could have modified

the test considering the effective sample size (Wilks

2006), but since the length of the series is long enough

we preferred using the standard test. As was the case for

the correlation coefficient, we applied this test both to

the annual and to season-specific time series in order to

assess the seasonal dependence of the results.

Besides the KS p value, the annual bias of the down-

scaled series, as well as the standard deviation of the

resulting seasonal biases (sbias, indicator of the seasonal

dependence of the bias), is calculated as additional dis-

tributional similarity score. Both the bias and sbias should

be kept small, since large errors are likely to nonlinearly

propagate in future climate conditions (Raisanen 2007).

c. Robustness/stationarity to climate change
conditions

To test the robustness of the downscaling methods to

changing climate conditions (and hence the hypothesis

of model stationarity), in this paper we present a test to

determine whether or not the performance of a given

downscaling method in a historical warm period is sig-

nificantly different from the performance in a normal/

random period, measured in terms of the bias. If the bias

in the former case is significantly different, then the

method fails to properly predict the warming signal and

it is prone to miss the warming signal in future climate

change projections. This is done by comparing the biases

obtained in the 5-fold test periods with the bias obtained

in a ‘‘warm’’ test period, defined by the eight warmest

years in the period 1961–2000 on the basis of the max-

imum temperatures, considering the spatial mean of

the standardized anomalies at the 17 high-quality grid

boxes of Spain02 as reference value. The resulting

years were 1995, 1989, 1994, 1997, 1961, 1990, 1998, and

2000, in decreasing rank order. Applying the analysis to

the minimum temperatures leads to an identical ranking

of the warm years, with the exception of the coldest one.

Thus, to keep consistency of the results, we decided to

use the same period for both variables. The resulting

warm anomalies for Tmax and Tmin, with respect to the

remaining 32 years, have a spatial mean value of 10.978
and 10.758C, respectively, and thus can be taken as

surrogates of a possible moderate warming allowing to

test the methods in conditions similar to those projected

by scenario runs for the next few decades.

To quantify whether the bias in the warm period,

bw, is significantly different from the five biases ob-

tained in the normal test periods, bk, k5 1, . . . , 5, (the

fivefolds of the cross-validation process) we apply a

standard t test to the mean difference d 5 (1/5)�5
k51dk 5

(1/5)�5
k51(bw 2bk) in order to test whether this differ-

ence is significantly different from zero. Thus, we con-

sider the following test statistic (Dietterich 1998):

t5

ffiffiffi
5

p
dffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(d)
p ; var(d)5

1

4
�
5

k51

(dk 2 d)2 , (1)

which follows a t distribution with four degrees of free-

dom. Although it has been recently reported that this

approach (k-fold cross validation) may slightly over-

estimate the variance (Markatou et al. 2005), we apply

this conservative procedure in order to minimize the

type-1 errors (false detection of significant differences)

(DeGroot and Schervish 2002). Note also that although

five samples could be considered an insufficient number

to estimate the sample variance, the k-fold cross-validation

approach has shown to provide similar values to the

more computationally intensive leave-one-out cross val-

idation, especially when the size of the test data becomes

large (Markatou et al. 2005), as is the case in our study.

Therefore, we will consider the p value corresponding

to a two-sided hypothesis test with null hypothesis

H0 [ d5 0 from (1) as a measure of robustness of the

SD methods in climate change conditions. Low values

(e.g., below 0.05) document a significant difference of the

bias in warm conditions compared to the bias in ‘‘normal’’

conditions. Large values, in turn, indicate an only spurious

difference between both bias types, the associated SD

method being robust to warmer climate conditions.

As an illustrative example, Fig. 3 shows the applica-

tion of this test to the analog method M1a (based on the

closest analog; see Table 3) for minimum temperatures,

considering two different predictor sets (see Table 2): P5

(SLP1T2m, left column) and P3 (SLP1T8501Q850,

right column) over the domain Z8 (see Fig. 1). The fig-

ure shows (first row) a comparison of the biases in
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normal climatic conditions (as represented by the five-

fold cross validation and visualized by the box-and-

whisker plots) and in the warm period (red triangles) for

each of the 17 representative grid boxes shown in Fig. 2a

and for their mean (shaded in the figure). Note that

whereas for SLP1T8501Q850 (right column) the mag-

nitude of the biases is clearly smaller for the warm con-

ditions than for the normal ones (i.e., the warming is

underestimated by this predictor combination), the re-

sults for SLP1T2m (left column) are more favorable at

most of the grid points. This is qualitatively shown in the

figures in the second row, showing the significance level

(p values) corresponding to these differences, as ob-

tained from a t test. Thus, this test allows for estimating

the statistical significance of these differences and pro-

vides a quantitative measure of robustness. Moreover,

the results for the spatial mean (labeled bym and shaded

in the above figures) are representative of the behavior

found for the set of stations, so the corresponding p values

can be used for comparison purposes for the area under

study as a whole. In the following sections we will follow

this approach to characterize the robustness of the meth-

ods (and their configurations) in warming conditions.

5. Selection of geographical domains and
predictors

This section is dedicated to a screening of the different

domains (see Fig. 1) and predictor combinations (see

Table 2) in order to find optimal configurations for

downscaling maximum (Tmax) and minimum (Tmin)

temperatures. Two commonly used downscaling methods,

the nearest neighbor analog method (M1a) andmultiple

linear regression on PCs (M3a), are applied in this

screening process (see Table 3). For validation purpose,

the downscaled series corresponding to the five non-

overlapping test periods of the cross-validation approach

(see section 4) are joined into single continuous 40-yr

series that are then evaluated with the abovementioned

scores (sections 4a–4c). To avoid spurious effects of se-

rial autocorrelation on the test results, only every tenth

time step of these joined series was considered for val-

idation. For simplicity, the results for the individual grid

boxes (we considered the 17 high-quality grid boxes

shown in Fig. 2) are averaged to obtain a single quanti-

tative measure, except in the case of the robustness test

in the warm period, which is applied to the time series of

the daily spatial mean biases. Since the 10 domains dis-

played in Fig. 1 are fully combined with the 14 predictor

sets listed in Table 2, the two methods were tested for

140 different configurations.

The dynamic temporal predictor setup (recall: 00001
2400 UTC values) was found to generally outperform

the static one (recall: 0000 UTC values only) for down-

scaling Tmax, while the opposite is true for downscaling

Tmin. Hence, for the sake of simplicity, Fig. 4 shows the

results of the dynamic predictor combinations (P1d,

P2d, P3d, P4d, P5, P6d, P7, and P8) for Tmax, and of the

FIG. 3. Robustness of the analog method (M1a) for minimum temperature using two different predictor sets:

(left) SLP1T2m and (right) SLP1T8501Q850 considering the 17 stations shown in Fig. 2, indicated along the

x axes of each subplot, and themean of these stations, shaded and labeled asm. The first row shows a comparison of

the biases in normal conditions (corresponding to the fivefold cross-validation approach, shown by the box plots)

and in warm conditions (red triangles). The second row shows the significance level (p values) of these differences,

as obtained from a t test; note that in this case, logarithmic coordinates are used in the y axis.
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static combinations (P1, P2, P3, P4, P5, P6, P7, and P9)

for Tmin. Along the columns, the results of the two ap-

plied methods are displayed for Tmax (columns 1 and 2)

and Tmin (columns 3 and 4), respectively. Along the rows,

the following validation scores are shown: the Pearson

correlation coefficient (R), p values of the Kolmogorov–

Smirnov test for distributional similarity (KS2 p value),

p values of the robustness test for warm climate conditions

(warm 2 p value), the bias of the complete time series

(Bias), and the intraseasonal variability of the bias (s bias),

the latter being defined as the standard deviation of the

seasonal biases. In each matrix subplot, the results for all

possible combinations of domains (along columns) and

predictor sets (along rows) are shown. Note that the geo-

graphical domains have been numbered from east to west,

with smaller domains lying in the center and bigger ones at

the margins of the x axis (see Fig. 1).

The results are more sensitive to the predictor choice

than to the applied geographical domain, although in the

case of the analog method (M1a) better results are gen-

erally obtained with smaller domains. In particular, in-

formation on the near-surface temperature (in terms of

T2m and Tx or Tn) generally yields the best results. The

correlation and KS p values are highest in these cases,

FIG. 4. Calibration results for the 10 domains (x axes of each subplot) and 8 predictor combinations (y axes) of each

subplot; the letter d indicates dynamical configuration of the corresponding predictors (see the text for more details).

Shown are (top) the Pearson correlation, (second row) KS p value, (third row) warm p value, (fourth row) bias, and

(bottom) bias seasonal variability. The first column corresponds to Tmax and the second to Tmin. White/black

marked cells are used in the text for illustrative purposes.
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while the bias and its associated seasonal variability are

negligible.Moreover, the warm p values are larger in these

cases, indicating a robust behavior in warming climate

conditions. With p values lower than 0.01 in most of the

cases, the remaining predictor combinations are clearly

less robust.

At a seasonal scale, the results are poorest in winter,

especially for Tmin, with low correlation values and

significant distributional inconsistencies (see more de-

tails in the sections below). Moreover, a more pronounced

error is found when excluding surface temperature

predictors, with a systematic overestimation of low tem-

perature values. As an explanation for this problem we

found that T850 does not appropriately discriminate

cold episodes related to temperature inversion in the

lower troposphere/boundary layer. To characterize this

problem we defined the inversion strength as the tem-

perature difference between T850 and T2m [a similar

approach was used in Pavelsky et al. (2011)] and studied

the relationships between minimum temperature and

the predictors focusing on this variable. Figure 5 illus-

trates this analysis for a particular point by plotting the

minimum temperature observations (x axis) versus the

closest T2m (Fig. 5a) and T850 (Fig. 5b) predictor values.

This figure shows that whereas the cold episodes with

strong inversions are appropriately captured by T2m,

exhibiting a good linear relationship with Tmin, they

correspond to high T850 values, destroying the linear

correlation with Tmin. These events have an annual fre-

quency of approximately 4% and typically occur in winter,

associated with stable conditions with high surface pres-

sure (see the inset in Fig. 5a for a typical situation, obtained

as the weather type with highest inversion frequency,

from the set of 25 weather types obtained applying the

k-means algorithm to SLP).

As a general result, the best configuration of predictors

and geographical domains found to robustly downscale

both Tmin and Tmax is predictor P5 (SLP and T2m) in

combination with domain Z8 [southeast (SE)]. This con-

figuration will be used to compare the performance the

different statistical downscaling methods in section 6.

As an extension to these general calibration results,

more detailed information including a comparison to

earlier studies is given in the next three subsections.

Alternatively, these subsectionsmay be skipped, inwhich

case the reader should directly proceed to the full com-

parison of the SD methods (see section 6).

a. Accuracy (correlation)

The results for the Pearson correlation coefficient

(first row in Fig. 4) are generally better for Tmax than

for Tmin. Moreover, correlation decreases in both cases

if near-surface temperature information is excluded

from the predictor field. This underlines the predictive

power of the latter and gives confidence in the strategy

adopted by theNorwegian downscaling community, which

exclusively uses T2m for temperature downscaling in

many studies (see, e.g., Benestad 2002, 2011). Among the

lower free-tropospheric fields (i.e., at 850 hPa), Q—in

combination with T—plays an important role for down-

scaling Tmin whereas it does not improve the results for

Tmax. This finding is consistent with Timbal et al. (2003)

and Brands et al. (2011b), who applied a version of the

analog method for western France and the northwestern

Iberian Peninsula. For both Tmax and Tmin, information

on middle-tropospheric fields (500 hPa) does not provide

FIG. 5. Analysis of the effect of temperature inversion on the relationship of minimum

temperature observations (x axis) vs two predictors: (a) T2m and (b) T850. Colors indicate

inversion strength, defined as the temperature difference between T850 and T2m. The values

correspond to an illustrative grid box labeled as (A) in Fig. 2a. The inset in (a) shows a typical

situation of temperature inversion, obtained as the weather type with highest inversion fre-

quency out of a set of 25 weather types obtained applying the k-means algorithm to SLP.
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an added value to the above mentioned predictors. Multi-

ple linear regression using PCs (M3a) outperforms the

nearest neighbor analog method (M1a). For the latter

method, small domains generally perform better than

larger ones, which is consistent with Gutiérrez et al.

(2004). The largest domain covering thewholeEuropean–

North Atlantic sector performs worse in any case.

Similar results are obtainedwhen analyzing the season-

specific time series (see Fig. 6). Highest correlations are

found in autumn (.0.9) and lowest in winter (,0.6 for

some predictor–domain combinations).

b. Distributional similarity (KS p values)

In contrast to the results for accuracy (see former

section), the results for distributional similarity (in terms

of the KS p value) are better for the nearest neighbor

analog method (M1a) than for regression using PCs

(M3a), particularly in the case of Tmin.

In agreement with the accuracy results, distributional

consistency is generally best for autumn and poorest for

winter, where, in the case of downscaling Tmin with

M3a, significant distributional inconsistencies are found

for all combinations of predictors and domains. Figure 7

shows the areas where distributional dissimilarities for

Tmin are significant at a test level of 5% (black areas).

Results are shown for two different predictor combi-

nations (marked by white boxes in Fig. 4), putting em-

phasis on the effect of including/excluding surface

temperature information. P3 combines SLP with T850

andQ850, whileP5 combines SLPwithT2m (seeTable 2).

Both predictor combinations are applied on the same

geographical domain (Z8). The first column corresponds

to the analog method (M1a) for which significant dis-

tributional inconsistencies are virtually absent in any

season and for both combinations of predictors (only

the results for one of the combinations are shown). The

second and third columns show the results for linear

regression with PCs (M3a) applied to the just mentioned

predictor combinations. Although the area of significant

inconsistencies can be considerably reduced by using

T2m (i.e., P8) instead of T850 andQ850 (i.e., P3), results

for the winter season are far from being satisfactory.

In case of Tmax, domains extended to the south and/

or east (e.g., domain 8, SE) yield the best performance,

as they allow for solving the problem of systematic dis-

tributional inconsistencies in winter (not shown).

c. Robustness in climate change conditions
(warm p values)

One of the most surprising results obtained in this

study is that related to the robustness of the downscaling

methods in anomalous warm periods. In particular, Fig.

4 (third row) shows that the only combinations of

predictors with no significant differences between the

bias in warm and normal conditions are those consid-

ering T2m. For instance, as we have briefly described

previously, Fig. 3 shows the robustness of the analog

method (M1a) for Tmin with different predictors (P5 on

the left and P3 on the right), but the same geographical

domain (Z8). Note that they differ in the use of T2m or

T850 and Q850 in addition to SLP, respectively (see

Table 2). This figure shows a comparison of the biases

for normal conditions as represented the fivefold cross

validation (box plots) with the biases for the warm

period (red triangles), considering the time series of the

spatial mean over the 17 stations shown in Fig. 2. Ob-

viously, P5 leads to more robust results than P3, a result

consistently found for all applied SD methods.

d. Bias and seasonal bias variability

Unlike the bias for multiple regression on PCs, the

bias of the nearest neighbor analog method (M1a) is

especially sensitive to the predictor and domain choice

(see fourth row in Fig. 4). Varying the predictor com-

bination for a given domain, or conversely changing the

domain while keeping the predictor combination con-

stant, may lead to considerable modifications in the

magnitude of the bias. For seasonal bias variability (s

bias, fifth row), however, results are more sensitive to

the predictor choice, again obtaining better results when

using near-surface (instead of free) tropospheric tem-

perature predictors. Figure 8 gives an illustrative ex-

ample of the seasonal bias variability for Tmax, applying

the nearest neighbor analog method with two different

predictor sets: P5 (left column) and P4d (right column)

on the same domain Z8 (the corresponding spatial mean

results are indicated by the black boxes in Fig. 4). Biases

for the complete time series are shown in the first row

(annual), while the season-specific ones are shown in

rows 2 to 5. Note that although the bias for the complete

time series is smaller for P4d than for P5, the opposite is

the case for the season-specific results, the latter being

more important if working in a climate change context,

in which it is important to keep validation results con-

stant throughout all seasons of the year.

6. Intercomparison of the downscaling techniques

In this section, a full comparison of the 12 SDmethods

listed in Table 3 is given for both Tmax and Tmin, based

on the results obtained in the former section (i.e., using

the predictor–domain configuration P5-Z8; P5: SLP and

T2m, Z8: SE Iberia). Figure 9 shows the results for Tmax

(first column) and Tmin (second column) for the 17

high-quality grid boxes of Spain02. Note that instead of

providing mean values, box-and-whisker plots of the 17
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corresponding validation scores are given in this section,

which allows analyzing the spatial variability of the re-

sults. Since distributional inconsistencies were found in

section 5 particularly for the winter season, we show the

KS p values for both the complete series (annual) and

the winter-specific ones.

The overall performance of the different SD methods

is very similar for both target variables. With the ex-

ception of method M1b, the family of analog methods

exhibits a good performance, with reasonable corre-

lations (although smaller than for the rest of methods)

and optimum distributional consistency results (par-

ticularly in winter). Although a systematic warm bias

is found for this family (with median values around

0.28C), the seasonal variability of the bias is small, as

compared with the rest of the methods, and hence

M1a and M1c could be suitable for climate change

applications.

For the family of weather typing methods (M2),

overall results are best for the Gaussian variant (M2c),

yielding highest KS p values particularly for Tmin.

However, the bias variability is too large, particularly for

Tmax, so these methods have to be carefully used in

climate change conditions. Therefore, M2c is the only

weather typingmethod that could be suitable for climate

change applications, particularly for Tmin. Note that in

spite of its stochastic nature, it yields reasonable corre-

lation coefficients of at least 0.65, due to the weather

typing component.

The family of regression methods (M3) exhibits a good

overall performance, with the exception of the technique

relying only on the predictor from the closest reanalysis

grid box (M3b), which suffers from significant distribu-

tional inconsistencies and a large seasonal variability of

the bias. Methods M3a and M3c (based on PCs or PCs

combined with predictors from the closest reanalysis

FIG. 6. Correlation, as in Fig. 4 (first row), but for all seasons (in rows). For the sake of comparison, the same color

bar has been used for the seasonal panels (both for maximum and minimum temperatures) of a particular method

(analogs from 0.55 to 0.85 and regression from 0.7 to 0.95 correlations values, respectively).
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grid box) exhibit high correlation values, good distri-

butional consistency (with the exception of winter for

Tmin), and small biases in all seasons. Therefore these

methods could be suitable for climate change studies.

In the case of regression conditioned to weather types

(family M4), and in contrast to the M3 family, perfor-

mance is better when using predictors from the nearest

reanalysis grid box (M4b andM4c) than when using PCs

(M4a). Note that this is a reasonable result, since the

weather types already provide spatial information and,

thus, the PCs become redundant in the regression phase.

However, the overall performance of the conditioned

regressionmethods (M4) family is worse than that of the

simple/nonconditioned regression (M3), and only method

M4c could be considered to be suitable for climate

change studies. Note that in the latter case, the circula-

tion predictor (SLP) is used for weather typing and the

regression is based on the T2m temperature values.

Finally, Fig. 10 shows the results for testing the ro-

bustness of the methods under climate change condi-

tions considering both historical warm periods, used as

surrogate of future warming (Figs. 10a–d), and future

projections downscaled from a state-of-the-art GCM

(the ECHAM5 model), considering the warming signal

FIG. 7. Distributional similarity (KS p value) of the downscaled and observed series for Tmin and two different predictors (P5 and P3)

applied of the same domain (Z8). (left) Results of the nearest neighbor analog method (M1a) for any of the two predictor combinations.

Also shown are results for linear regression using PCs for (middle) including and (right) excluding surface temperature information (T2m)

from the predictor field. Regions where significant distributional differences between the downscaled and observed series were detected at

a test level of 5% are shown in black.
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for 2071–2100 (A1B scenario) with regard to 1971–2000

(20C3M scenario) (Figs. 10e,f). In this case, following

the results from Figs. 3 and 4, the mean temperature of

the 17 stations is considered for the analysis. The first

row shows the box-and-whisker plots corresponding to

the fivefold test periods (indicating normal climate

conditions), together with a red triangle indicating the

bias of the warm period. Differences between warm and

normal periods can be visually established from this

figure. The second row shows the statistical significance of

these differences, as given by the p values obtained from

(1); note that three significance levels (a) 0.01, (b) 0.05,

and (c) 0.1 are indicated with the dashed lines in the fig-

ures. No significant differences are found for regression

and regression conditioned on weather types (except for

M4a), indicating their robustness to warmer climate

conditions. Significant differences with p values smaller

than 0.01 are found for all weather typing techniques

(M2, with the exception of M2b for Tmin, which ex-

hibits a large bias variance in normal periods) and

also for analog techniques M1b and M1c for Tmin.

Moreover, all the analog techniques exhibit significant

differences at the level 0.05. In case of the nearest

neighbor analog method (M1a), the relative bias dif-

ferences for the warm period (with respect to the lower

bound of the interquartile range; i.e., the 25th per-

centile of the normal periods) are below 0.18C
(slightly higher for Tmin than for Tmax), which is less

than 10% of the warm anomaly. However, these dif-

ferences may nonlinearly propagate in future climate

conditions, as given by GCM projections, that are con-

siderably warmer than those considered in this study, so

FIG. 8. Annual (first row) and seasonal (in rows) biases for the same downscaling method

(analogs,M1a) and geographical region (Z8), but with two different predictor sets: (left) P5 and

(right) P4d.
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the downscaling method may critically underestimate

the warming signal.

To test this possibility, we consider a state-of-the-art

GCM, the ECHAM5model by theMax Planck Institute

of Meteorology, Germany (Roeckner 2008), and compute

the warming signal in the late twenty-first century as the

difference of temperatures in the period 2071–2100 (A1B

scenario) and the control period 1971–2000 (20C3M

scenarios). Figures 10e and 10f show the warming signal

for maximum and minimum temperatures, respectively,

as projected by several statistical downscaling methods.

Note that, depending on the method, warming values

FIG. 9. Performance of the 12 SD methods for (left) Tmax and (right) Tmin according to (top) the

Pearson correlation coefficient, (rows 2 and 3) the KS p values for annual and winter series, and (rows 4

and 5) the annual bias and bias seasonal variability; all methods (displayed along the x axes of each

subplot) were configured using the same optimal combination of predictors and domain (P5: SLP and

T2m; Z8: SE Iberia); see text for details on the construction of the box-and-whisker plots.
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range from 2.58 to 3.78C and from 28 to 38C, respectively,
with a variability of 30%. Note also that these differ-

ences are in good agreement with the values given in

Figs. 10c and 10d, so the methods failing the historical

warm period test are those leading to smaller climate

change signals. Therefore, if we consider only the robust

statistical downscaling methods given by the test pro-

posed in this paper, the variability of the warming signal

would be greatly reduced, leading to robust mean in-

crements of 3.68 and 2.98C for maximum and minimum

temperature, respectively.

7. Conclusions

To determine the suitability of statistical downscal-

ing methods for climate change studies we propose

a validation framework using three criteria: accuracy

(based on correlation), distributional consistency

(based on a two-sample Kolmogorov–Smirnov test),

and stationarity under global warming (based on a t

test for a historical warm period), building on a k-fold

cross-validation scheme. Note that the first two criteria

are currently being used in similar studies to assess the

reliability of statistical downscaling methods (see, e.g.,

Bürger et al. 2012), whereas the latter is a novel ap-

proach to assess the robustness of statistical downscaling

methods.

Concerning the most suitable predictors and geo-

graphical domains for climate change studies, the result

of an intercomparison validation analysis of different

combinations of factors has shown that 2-m air tem-

peratures are preferable to free-tropospheric temper-

atures (in particular, temperature at 850 hPa) since, if

the latter are applied, results are not reliable and are

nonrobust to warming climate conditions for any of

the applied methods. An explanation of this result is

also provided, related to temperature inversion episodes

in the lower troposphere, with high pressure and low

FIG. 10. Robustness of the SDmethods (along the x axis of the figures) for (left) Tmax and (right) Tmin

under (top) warm climate conditions. The box-and-whisker plots for the five k-fold normal test periods,

together with a red triangle indicating the bias of the warm test period. (middle) The statistical signifi-

cance of these differences, as given by the p values obtained from (1). (bottom) The warming signal in the

late twenty-first century (defined as the difference of temperatures in the period 2071–2100 and the

control period 1971–2000, considering A1B and 20C3M projections, respectively) for the ECHAM5

(run 3) model. (c),(d) Alpha 5 0.01, 0.05, and 0.1 is indicated by a, b, and c, respectively.

186 JOURNAL OF CL IMATE VOLUME 26



surface temperatures, the latter being systematically

overestimated when using T850 as predictor.

The proposed validation framework was applied to

a number of downscaling methods commonly used for

downscaling temperature, including analog methods,

weather typing techniques, multiple linear regression,

and regression conditioned on weather types. Overall,

regression methods are most appropriate for climate

change studies, although they fail to reproduce the ob-

served winter distribution of minimum temperature.

Weather typingmethods are less appropriate for climate

change studies, as they significantly underestimate the

temperatures in moderately warmer conditions. Analog

methods best reproduce the observed distributions, but

they significantly underestimate the observed values in

warm periods, although with magnitude smaller than

10% for a warm anomaly close to 18C. This underes-

timation is found to be critical when considering the

warming signal in the late twenty-first century (differ-

ences of the period 2071–2100 with respect to 1971–2000

for A1B and 20C3M scenarios, respectively), as given by

a state-of-the-art GCM, the ECHAM5–MPI model. In

this case, the different warming values resulting from the

statistical downscaling methods—ranging from 2.58 to
3.78C and from 28 to 2.98C, for maximum and minimum

temperature, respectively—are in good agreement with

the robustness significance values, so the methods de-

tected to be nonrobust are those leading to wrong cli-

mate change signals with low values. For instance, critical

differences of approximately 18C are found when com-

paring analog and regression methodologies. Therefore,

the proposed test for robustness based on warm histor-

ical periods provides an objective criterion for discard-

ing non robust statistical downscaling techniques for

climate change future projections. This is the case for the

analog and pure weather typing methods, which should

not be used for climate change projection of tempera-

tures in the Iberian Peninsula.

Note that analyzing the uncertainty due to different

GCMs is out of the scope of this paper and here we just

present some evidence of the suitability of the robust-

ness test in warm historical conditions to detect non-

robust methods when applied to future climate change

projections.

Finally, note that the configurations considered in this

paper are of quite general nature and better performance

could be obtained for each particular algorithm with

some further adaptation for the particular application at

hand.
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