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Abstract: Mueller matrix differential decomposition is a novel method for 
analyzing the polarimetric properties of optical samples. It is performed 
through an eigenanalysis of the Mueller matrix and the subsequent 
decomposition of the corresponding differential Mueller matrix into the 
complete set of 16 differential matrices which characterize depolarizing 
anisotropic media. The method has been proposed so far only for 
measurements in transmission configuration. In this work the method is 
extended to the backward direction. The modifications of the differential 
matrices according to the reference system are discussed. The method is 
successfully applied to Mueller matrices measured in reflection and 
backscattering. 
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1. Introduction 

The polarimetric characterization of optical media by Mueller matrices has become a widely 
used technique in many fields, mainly due to its capacity to characterize depolarization and to 
its suitability for experimental applications. The differential formulation of the Mueller 
calculus was first presented more than 30 years ago [1]. It constitutes a powerful method for 
studying the evolution of polarized light propagation in optical media. However, it was only 
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proposed for non-depolarizing media. Therefore, the ability of Mueller calculus to deal with 
partially polarized light and depolarization effects has been underutilized so far. 

Recently, the complete set of 16 differential Mueller matrices for describing general 
depolarizing anisotropic media has been presented and discussed [2]. They enable to apply the 
general differential Mueller calculus to a vast range of theoretical and experimental 
applications in many fields of interest in Optics. A novel Mueller matrix decomposition 
method has been proposed based on this theoretical frame [3]. Among its main advantages, it 
should be emphasized that it is especially adequate for the study of media with simultaneously 
occurring effects [3,4] and it remarkably constitutes the first unique Mueller matrix 
decomposition. 

Mueller matrix differential decomposition has only been proposed for the forward 
direction, i.e. for Mueller matrices measured in transmission. However, there is a wide range 
of applications in which measurements are performed in the backward direction. In this work 
we discuss the modifications in the basic differential Mueller matrices that are involved in 
light beam propagation direction reversal, and we apply them to extend the differential 
decomposition to measurements performed in the backward direction. The decomposition is 
successfully applied to several media measured in reflection and in backscattering. 

2. Mueller matrix differential decomposition for direction reversal 

We consider a beam propagating along the z axis in a right-handed Cartesian coordinate 
system and assume that the beam always travels towards the observer (Fig. 1). According to 
the differential formulation of Mueller calculus, the Stokes vector satisfies 

 ,S mSd dz  (1) 

where S  is the Stokes vector that describes the beam, and m  is the 4x4 differential Mueller 

matrix that characterizes the polarimetric behavior of an infinitesimal slab of the medium [1]. 
The differential matrix is related to a corresponding macroscopic Mueller matrix by 

   .d dz  1
m M M  (2) 

M  is the Mueller matrix that describes the medium from 
0z  to z . It can be shown that 

the eigenvalues of the macroscopic and differential Mueller matrices (
M  and 

m  

respectively) are related in full parallelism with Eq. (2), while remarkably, the eigenvectors of 

the macroscopic and the differential matrices (grouped by columns in matrices 
MV  and 

mV ) 

are the same [5]. The eigenvectors matrices will be thus denoted by V . If the initial condition 


0z =0

M I  is fulfilled ( I  being the 4x4 identity matrix), then  0 0
1

z





M , and the eigenvalues 

of M  and m  are related by 

  ln .z 
m M  (3) 

Therefore, assuming that the macroscopic Mueller matrix is diagonalizable, the 
differential Mueller matrix can be obtained from the eigenanalysis of M  by 

 , 1

λ
m Vm V  (4) 

where the non-zero diagonal elements of 
λm  are the eigenvalues given in Eq. (3). 

An infinitesimal slab of a general depolarizing anisotropic medium situated between z and 
z + ∆z can be divided into 16 lamellae corresponding to the basic types of optical behavior. 
This situation is schematically depicted in Fig. 1. Each of them has an associated differential 
Mueller matrix. The complete set of basic differential Mueller matrices has been previously 
presented and discussed elsewhere [2]. It is composed of 7 differential matrices corresponding 
to non-depolarizing effects and 9 additional differential matrices for depolarizing media. Each 
of them has an associated differential parameter that quantifies the contribution of each 
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optical effect to the total differential Mueller matrix. Specifically, the first matrix 
1m  

corresponds to isotropic absorption (associated differential parameter 
i ), matrices 

2,3,4
m  

describe linear x-y, linear ± 45° and circular dichroism, respectively (differential parameters 

, ,q u v ) and matrices 
5,6,7

m  account for the three types of birefringence (differential parameters 

, ,q u v ). Depolarizing differential matrices 
8,9,10

m  are the differential Mueller matrices for 

diagonal depolarization (characterized by differential parameters '

, ,iq iu iv ), while 
11,12,13

m  and 

14,15,16
m  correspond to the different types of anomalous dichroism and anomalous 

depolarization (differential parameters '

, ,q u v  and '

, ,q u v  respectively) [2]. The non-

depolarizing differential parameters are directly related to the propagation constant 

  i   , as already pointed out [2]. The depolarizing differential parameters are given in a 

generic form. The sign convention used in this work is  , , , 45, , 45, 2  q u v x rcp y lcpw w w , where 

w  is either   or  . The general form of the differential Mueller matrix for depolarizing 

anisotropic media in the forward direction is the summation of the 16 basic differential 
matrices 

 

' ' '

' ' ' '16

' ' ' '
1

' ' ' '

.

i q q u u v v

q q i iq v v u u

n u u v v i iu q q

v v u u q q i iv

      

       

       

       



   
 

     
     
 

       

f f

n
m m  (5) 

Therefore, any differential Mueller matrix can be expanded into a weighted sum of the 
complete set of basic differential Mueller matrices. The decomposition of m  according to the 
general expression given in Eq. (5) enables to obtain the 16 parameters associated with each 
optical effect [3]. It is important to emphasize that the differential matrix is order independent 
as a consequence of the commutative property of matrix addition and the infinitesimal nature 
of the differential Mueller matrix [5]. Moreover, it can be easily demonstrated that 
decomposing the Mueller matrix of a certain homogeneous sample into the 16 basic 
differential Mueller matrices is equivalent to describing the sample by an infinite number of 
identical slabs subdivided into 16 lamellae that account for each optical property [5]. This 
property reinforces the experimental suitability of this decomposition. As a result of the order 
independence, the differential Mueller matrix decomposition is a unique decomposition, 
which is particularly important for avoiding decomposition ambiguities in many applications 
[3]. It should be noted that the calculation of the differential matrix from a Mueller matrix 
requires to know z, i.e. the optical path undergone by the measured photons. The 
determination of z is not readily achievable in many applications. In general, for those 
situations in which z is unknown, the optical path weighted differential matrix zm m  will 
be obtained. This matrix contains the information about accumulated effects, instead of 
effects per unit length. The differential decomposition thus results in accumulated differential 
parameters, which will be denoted with an upper bar in parallelism with m . 

The procedure described above is limited to the forward direction. However, there are 
many applications in which the direction is modified and measurements are performed in the 
backward direction. The application of the differential decomposition for situations with light 
propagation reversal requires a detailed analysis. 

The modifications of the differential matrices for direction reversal have been previously 
discussed for differential Jones matrices [6]. In this work we will develop a similar procedure 
for Mueller differential calculus, and it will be applied to perform the differential Mueller 
decomposition for measurements performed in the reverse direction. 

#146875 - $15.00 USD Received 3 May 2011; revised 31 May 2011; accepted 31 May 2011; published 12 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  14350



 

Fig. 1. Definition of the reference system and the conventions used in this work. The 16 
lamellae for the infinitesimal slab of the medium between z and z + ∆z are depicted. 

We consider an optical medium with a generic fast axis to illustrate this situation, as 
shown in Fig. 1. It is assumed that the optical beam always travels towards the observer, in 
agreement with the reference system and the conventions adopted at the beginning of this 

work. The azimuth angle   is measured counterclockwise from the x axis. For the specific 

example considered, the observed azimuth angle is positive when the measurement is 
performed in transmission, but it remarkably takes the opposite sign when measuring in the 
backward direction as a result of the reference and sign convention (Fig. 1). Therefore, it is 
self-evident that the measurement configuration has to be taken into account for the correct 
analysis of the measured polarimetric properties of the sample. The introduction of these 
considerations into the basic differential Mueller matrices entails a change of sign of the basic 
types of optical behavior for the linear ± 45° direction. This result is analogous to the 
conclusion obtained for differential Jones matrices [6]. In particular, the sign of the 
differential matrices for ± 45° birefringence, dichroism, anomalous birefringence and 
anomalous dichroism must be inverted for direction reversal. As a result, the differential 
Mueller matrix for the backward direction is 

 

' ' '

' ' ' '16

' ' ' '
1

' ' ' '

.


    
 

      
      
 

       

b b

n
m m

i q q u u v v

q q i iq v v u u

n u u v v i iu q q

v v u u q q i iv

      

       

       

       

 (6) 

3. Application to experimental Mueller matrices 

The differential decomposition has been previously verified for several types of media in 
transmission configuration [3]. Now the method is applied to several homogeneous media 
measured in reflection and backscattering configuration. 

The first sample is a nylon target studied in specular reflection [7]. The measured matrix 

1M  is included in Table 1. The calculation of the corresponding differential Mueller matrix 

through the eigenanalysis described above enables one to obtain the accumulated matrix 
1m  

(Table 2). The application of the differential decomposition yields 
' 2.0509iq , ' 2.0542iu   

and ' 2.1497iv . The other parameters are negligible. The results are included in Table 3. 

The analysis indicates that it is a depolarizing medium with nearly polarization independent 
isotropic depolarization. 
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Table 1. Experimental Mueller Matrices Considered in this Work 

Samples measured in reflection configuration 

1M  
2M  

1.0000 0.0063 0.0157 0.0077

0.0031 0.1286 0.0005 0.0035

0.0016 0.0008 0.1282 0.0019

0.0025 0.0010 0.0040 0.1165

 
 
 
 
  
 
   

 

1.0000 0.1631 0.0322 0.0802

0.0083 0.4038 0.2555 0.2158

0.0026 0.4297 0.1376 0.2016

0.0116 0.0597 0.3175 0.3690

 
 


 
  
 
   

 

Samples measured in backscattering configuration 

3M  
4M  

1.0000 0.0034 0.0008 0.0058

0.0049 0.2277 0.0082 0.0016

0.0017 0.0102 0.2268 0.0045

0.0007 0.0026 0.0004 0.1001

  
 

 
  
 

  

 

1.000 0.115 0.066 0.023

0.111 0.759 0.061 0.001

0.018 0.151 0.435 0.139

0.046 0.006 0.128 0.334

  
 
  
 
   
 
  

 

In order to verify these results, we will compare differential decomposition with the well 
known polar decomposition [8,9]. It quantifies the depolarizing behavior by the depolarization 
power, which is obtained from the depolarizing component obtained from the decomposition 
process. In this case it takes a value of 0.8755. In order to verify our results, we obtain our 

depolarizing matrix from the diagonal depolarization differential matrices weighted by 
'

iq , 

'

iu  and '

iv  using the procedure involved in Eq. (3) and Eq. (4). The calculation of the 

depolarization power of this matrix leads to a value that is identical to the one obtained by the 
polar decomposition, which corroborates the validity of the results obtained with the 
differential decomposition. As well as that, it should be noted that a marginal total retardance 
value of 1.37 degrees is obtained, which is also in excellent agreement with the results 
reported elsewhere [7]. A similar comparison procedure will be performed for the remaining 
examples. 

Table 2. Differential Mueller Matrices Corresponding to the Experimental Matrices 
Included in Table 1 

Samples measured in reflection configuration 

1m  
2m  

0.0000 0.0149 0.0283 0.0151

0.0073 2.0508 0.0006 0.0013

0.0030 0.0001 2.0541 0.0156

0.0048 0.0003 0.0323 2.1497

 
 
  
 
   
 
  

 

0.0015 0.1178 0.1534 0.2332

0.0019 0.4872 0.3283 0.9559

0.0146 0.2462 0.5238 2.0819

0.0246 1.2127 2.2674 1.1306

 
 

  
 
 
 
   

 

Samples measured in backscattering configuration 

3m  
4m  

0.0000 0.0065 0.0009 0.0121

0.0094 1.4790 0.0000 0.0047

0.0021 0.0003 1.4828 0.0286

0.0015 0.0064 0.0030 2.3014

  
 
 
 
   
 

 

 

0.0143 0.1200 0.1559 0.1600

0.1344 0.2789 0.1122 0.1822

0.1208 0.2666 2.0020 3.1858

0.0023 0.3654 2.8916 0.1576

    
 
   
 
   
 

 

 

The second sample is a steel specimen with a film of MgF2. The measurement was also 

performed in reflection [10]. The Mueller matrix of this sample is 
2M  (Table 1). The 

decomposition of this matrix presents two dominant types of behavior, namely birefringence 
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and polarization dependent isotropic depolarization (diagonal depolarization). The differential 
parameters obtained for this medium are shown in Table 3. It can be observed the medium 
shows a significant total linear birefringence (2.43 radians). There is also some optical 
activity. Regarding depolarization it can be seen that it depolarizes circularly polarized light 
significantly over linearly polarized light. In this case, the coincidence with the values 
obtained by polar decomposition is also very good (we obtain 2.429 radians of total linear 
retardance and 0.491 depolarization power from the calculated depolarizing matrix, while the 
values obtained with polar decomposition are 2.377 radians and 0.492, respectively). 

The method can also be applied to measurements in backscattering configuration. We first 

consider the Mueller matrix 
3M  (Table 1) of a dielectric sample [7]. Again, the accumulated 

differential Mueller matrix 
3m  is included in Table 2. This matrix only presents three non-

zero accumulated differential parameters, which correspond to diagonal depolarization (Table 
3). In this case, the calculation of the depolarizing power by the two methods described above 
are identical, with a value of 0.8150 for both cases. 

Table 3. Accumulated Differential Parameters for the Experimental Mueller Matrices 
M1, M2, M3, and M4 

 i
 

q
 u

 v
 

q
 u

 v
 

'

iq  '

iu  
'

iv  
'q  'u

 
'v
 

'q  'u
 

'v
 

M1 0.00 0.00 −0.01 0.01 −0.02 −0.00 −0.00 2.05 2.05 2.15 0.01 −0.02 0.01 0.01 −0.00 −0.00 

M2 0.00 0.06 −0.08 0.10 2.17 1.08 −0.29 0.49 0.53 1.13 0.06 −0.07 1.13 −0.09 −0.13 −0.04 

M3 0.00 −0.01 0.00 −0.01 0.01 0.00 −0.00 1.47 1.48 2.30 0.00 −0.00 −0.01 −0.01 −0.00 0.00 

M4 −0.02 −0.13 0.14 −0.08 −3.04 −0.09 −0.19 0.26 1.99 −0.17 0.01 0.02 −0.08 −0.15 0.27 0.08 

Finally, we consider a birefringent chiral turbid sample measured in backscattering (
4M , 

Table 1). The sample is an aqueous suspension of polystyrene microspheres with a 5M 
concentration of glucose [11]. This medium is intended for its use as a biological tissue 
phantom. The results of applying the differential decomposition to this matrix are included in 
Table 3. They reveal that the sample presents linear retardance and diagonal depolarization. 
The optical activity of the sample nearly vanishes due to the reasons pointed out in [11]. The 
calculated total linear retardance is 3.04 radians, while polar decomposition gives a value of 
2.81 radians. The depolarizing power of polar decomposition is 0.4725. If that value is 
obtained by the method described above, we get a value of 0.3026. Although the differential 
decomposition appropriately characterizes the optical behavior of the sample, small 
discrepancies are observed in this case with polar decomposition. Further studies may be 
required to study the differences between both decompositions for turbid media with 
simultaneously occurring optical effects. 

4. Conclusion 

The extension of the Mueller matrix differential decomposition to systems with direction 
reversal has been presented. The validation of this method has been demonstrated for several 
types of media measured in reflection and backscattering configuration. The results of this 
work can significantly broaden the potential of the differential decomposition to applications 
where measurements have to be made in a non-invasive way, such as optical monitorization 
of fragile materials or in vivo polarimetric imaging of biological tissues. 

Acknowledgments 

This work has been partially funded by the San Cándido Foundation, Santander (Spain). 

#146875 - $15.00 USD Received 3 May 2011; revised 31 May 2011; accepted 31 May 2011; published 12 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  14353




