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We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The dif-
ferential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently re-
solved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for
depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples.
The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization.
This decomposition is particularly appropriate for studying media in which several polarization effects take place
simultaneously. © 2011 Optical Society of America
OCIS codes: 260.5430, 260.2130, 120.5410.

The differential Mueller calculus is a powerful technique
for studying the evolution of polarized light propagation
in optical media [1–3]. There are 16 basic types of optical
behavior for general depolarizing anisotropic media. In a
previous work, the authors presented the complete set of
differential Mueller matrices corresponding to each of
them [4]. They constitute a physically meaningful basis
of the 16-dimensional differential Mueller space. In this
Letter, we propose a Mueller matrix decomposition
based on the differential calculus. It is shown that the
macroscopic and differential matrices are related by
their eigenvalues and eigenvectors. Therefore, it be-
comes feasible to obtain the differential matrix from a
certain Mueller matrix and further resolve it into the
basic differential matrices. As a result, any medium
can be exhaustively characterized by the differential
parameters, seven of them corresponding to nondepolar-
izing effects, and the other nine characterizing the depo-
larizing behavior of the sample. The decomposition is
applied to several illustrative media of increasing
complexity. The proposed method is validated by com-
parison with the results obtained by other well-known
decompositions [5,6].
First, the differential Mueller calculus is briefly sum-

marized. We consider a beam described by the stationary
statistical ensemble of the TE plane wave field. We adopt
a right-handed Cartesian coordinate system [1] and
assume that the beam travels toward the observer.
The reference frame is set so that propagation is along
the z axis, and thus the field can be separated into a pair
of orthogonal polarization states aligned with x and y.
The polarimetric characteristics of the beam are de-
scribed by the Stokes parameters hSk¼0…3i in terms of
the field observables. They form the Stokes vector ~S.
According to the differential formulation of Mueller cal-
culus, the Stokes vector satisfies

d ~S =dz ¼ m~S; ð1Þ

where m is the 4 × 4 differential Mueller matrix that de-
scribes the polarimetric behavior of an infinitesimal slab
of the medium [1]. The differential matrix is related to a
corresponding macroscopic Mueller matrix by

m ¼ ðdMz=dzÞM−1
z : ð2Þ

Mz is the Mueller matrix that describes the medium from
z0 to z. A Taylor series expansion [2] resulting from the
differentiation of Eq. (2) enables one to express Mz as

Mz ¼
X∞
n¼0

f½mnðz − z0Þn�=n!gMzðz0Þ: ð3Þ

From now on, the dependence of the Mueller matrix
Mz on z will be assumed, so it will be simply denoted
as M. If we consider a linear homogeneous medium in
which Mz0¼0 ¼ I, the previous expression reduces to

M ¼ expðmzÞ: ð4Þ
The optical properties of a general depolarizing aniso-

tropic optical medium arise from 16 basic types of optical
behavior. They span the degrees of freedom of the
Mueller matrix in its entirety. In a previous paper by
the same authors [4], it was demonstrated that the 16
elemental differential matrices corresponding to each
single optical behavior are

m1 ¼ κiKi ¼ κiI; ð5Þ

m2 ¼ κqKq ¼ κq½0 1 0 0; 1 0 0 0; 0 0 0 0; 0 0 0 0�; ð6Þ

m3 ¼ κuKu ¼ κu½0 0 1 0; 0 0 0 0; 1 0 0 0; 0 0 0 0�; ð7Þ

m4 ¼ κvKv ¼ κv½0 0 0 1; 0 0 0 0; 0 0 0 0; 1 0 0 0�; ð8Þ

m5 ¼ ηqHq ¼ ηq½0 0 0 0; 0 0 0 0; 0 0 0 1; 0 0 − 1 0�; ð9Þ

m6 ¼ ηuHu ¼ ηu½0 0 0 0; 0 0 0 1; 0 0 0 0; 0 − 1 0 0�; ð10Þ

m7 ¼ ηvHv ¼ ηv½0 0 0 0; 0 0 1 0; 0 − 1 0 0; 0 0 0 0�; ð11Þ

m8 ¼ κ0i;qDq ¼ κ0i;q · diag½0;−1; 0; 0�; ð12Þ
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m9 ¼ κ0i;uDu ¼ κ0i;u · diag½0; 0;−1; 0�; ð13Þ

m10 ¼ κ0i;vDv ¼ κ0i;v · diag½0; 0; 0;−1�; ð14Þ

m11 ¼ κ0qK0
q ¼ κ0q½0 1 0 0;−1 0 0 0; 0 0 0 0; 0 0 0 0�; ð15Þ

m12 ¼ κ0uK0
u ¼ κ0u½0 0 1 0; 0 0 0 0;−1 0 0 0; 0 0 0 0�; ð16Þ

m13 ¼ κ0vK0
v ¼ κ0v½0 0 0 1; 0 0 0 0; 0 0 0 0;−1 0 0 0�; ð17Þ

m14 ¼ η0qH0
q ¼ η0q½0 0 0 0; 0 0 0 0; 0 0 0 1; 0 0 1 0�; ð18Þ

m15 ¼ η0uH0
u ¼ η0u½0 0 0 0; 0 0 0 1; 0 0 0 0; 0 1 0 0�; ð19Þ

m16 ¼ η0vH0
v ¼ η0v½0 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 0�: ð20Þ

The first seven matrices correspond to nondepolariz-
ing effects. Specifically, matrices m1;2;3;4 describe isotro-
pic absorption (subscript i), linear dichroism along the
x–y axis (q) and along the bisectors of the x–y axis
(u), and circular dichroism (v), while matrices m5;6;7
account for linear x–y, linear �45°, and circular birefrin-
gence. The nondepolarizing differential parameters are
directly related to the propagation constant ~η ¼ ηþ iκ.
We have adopted the convention wq;u;v ¼ ðwx;þ45;rcp−

wy;−45;lcpÞ=2, where w is either η or κ. The nine remaining
matrices correspond to depolarizing media [4]. In parti-
cular, m8;9;10 are the differential Mueller matrices for di-
agonal depolarization (alternatively anomalous isotropic
depolarization, i.e., polarization-dependent isotropic
absorption), while m11;12;13 and m14;15;16 correspond to
the different types of anomalous dichroism and anoma-
lous birefringence. The differential parameters asso-
ciated with the depolarizing differential matrices are
given in a generic form, as long as their analytical
expressions require a detailed analysis of the specific
situation [3,4].
The total differential Mueller matrix is the sum of the

basic differential matrices [1]. Therefore, the general
form of the differential Mueller matrix for depolarizing
anisotropic media is

m ¼
X16
n¼1

mn ¼

2
664

κi κq þ κ0q κu þ κ0u κv þ κ0v
κq − κ0q κi − κ0i;q ηv þ η0v ηu þ η0u
κu − κ0u −ηv þ η0v κi − κ0i;u ηq þ η0q
κv − κ0v −ηu þ η0u −ηq þ η0q κi − κ0i;v

3
775:

ð21Þ
As long as the sum of matrices is commutative, the dif-

ferential matrix is order independent. The order indepen-
dence of the basic differential matrices remains valid
even for large sections of a medium with simultaneous
optical effects [2].
Equation (1) establishes a system of four first-order lin-

ear differential equations that describes the evolution of
the Stokes parameters as a function of z. The coefficients
are given by the elements of the general differential
Mueller matrix. It has been shown that the macroscopic
and differential Mueller matrices are related by Eq. (2).

Their eigenvalues (λM and λm, respectively) present a
similar dependence:

λm ¼ ðdλM=dzÞλ−1M ; ð22Þ

while, remarkably, the eigenvectors of the macroscopic
and the differential matrices (grouped by columns in ma-
trices VM and Vm) are the same [1]. We denote them sim-
ply by V. When the initial conditionMz0¼0 ¼ I is satisfied,
then λMðz0¼0Þ ¼ 1, and Eq. (22) can be integrated to yield

λm ¼ lnðλMÞ=z: ð23Þ
Therefore, assuming that the macroscopic Mueller

matrix is diagonalizable, it can be decomposed by a
conventional eigenanalysis into

M ¼ VMλV−1; ð24Þ

in which the nonzero elements of the diagonal matrixMλ
are the eigenvalues of M. The differential Mueller matrix
can thus be obtained as

m ¼ VmλV−1; ð25Þ

where the diagonal elements of mλ are the eigenvalues
given in Eq. (23). Therefore, given a certain Mueller
matrix M, the corresponding differential Mueller matrix
can be obtained from Eqs. (23)–(25). Once m is calcu-
lated, it can be easily decomposed into the physically
meaningful basis of the 16-dimensional differential
Mueller space formed by Ki, Kq;u;v, Hq;u;v, Dq;u;v, K0

q;u;v,
and H0

q;u;v [implicitly given in Eqs. (5)–(20)]. The decom-
position of m according to the general form of Eq. (21)
thus yields the 16 differential parameters associated with
each basic optical effect, namely κi, κq;u;v, ηq;u;v, κ0i;q, κ0i;u,
κ0i;v, κ0q;u;v, and η0q;u;v. It should be noted from Eq. (23) that
the determination of the differential matrix from an ex-
perimentally measured Mueller matrix requires one to
know the value of z, i.e., the optical path undergone
by the measured photons, which is not an obvious issue
in many applications. If z is unknown, the optical path-
weighted differential matrix �m ¼ mz will be obtained
instead of m. Therefore, it involves accumulated effects.
In this situation, the decomposition of �m results in accu-
mulated differential parameters, which are denoted with
an upper bar.

The Mueller matrix differential decomposition de-
scribed above is now particularized for several media
in order to verify the proposed method. In particular,
we demonstrate the decomposition for Mueller matrices
of different homogeneous media measured in transmis-
sion configuration. Nonhomogeneous media and back-
scattering measurements will be discussed in future
works. The first one is a nematic liquid crystal plate.
An example measured Mueller matrix is [7]

M1 ¼

2
664

1:0000 0:0622 −0:0038 0:0023
0:0646 0:9888 −0:1407 −0:0468
−0:0026 −0:1227 −0:5846 0:7988
0:0015 −0:0829 −0:7838 −0:6029

3
775: ð26Þ

May 15, 2011 / Vol. 36, No. 10 / OPTICS LETTERS 1943



The accumulated differential Mueller matrix corre-
sponding to this sample is

�m1 ¼

2
664
−0:0020 0:0625 −0:0011 −0:0006
0:0644 −0:0022 −0:0260 0:1843
−0:0063 0:0255 0:0054 2:2264
0:0036 −0:1824 −2:1931 −0:0158

3
775: ð27Þ

The decomposition of this matrix into the complete ba-
sis described above yields �ηq ¼ 2:2097 and �ηu ¼ 0:1833.
The other parameters are very close to zero, which as-
serts that it is a birefringent nondepolarizing sample.
From these values, we obtain that the linear retardance
is 2:2175 rad, which is identical to the result derived by
other methods [7].
We now demonstrate the decomposition on a depolar-

izing medium. The measured Mueller matrix of a piece of
adhesive [7] in transmission configuration is

M2 ¼

2
664
1:0000 0:0056 0:0019 0:0064
0:0081 0:8461 −0:0028 0:0169
0:0037 −0:0002 0:7672 0:3358
0:0048 −0:0216 −0:3485 0:7728

3
775: ð28Þ

The differential decomposition of this matrix presents
four dominant components. Three of them correspond
to depolarizing accumulated differential parameters
�κ0i;q ¼ 0:1668, �κ0i;u ¼ 0:1747, and �κ0i;v ¼ 0:1676, and the last
one is �ηq ¼ 0:4181. The rest of parameters are negligible.
Therefore, the analysis indicates that it is a linear bire-
fringent medium with nearly polarization-independent
isotropic depolarization. In order to compare these
results with the macroscopic depolarization power in-
volved in polar decomposition [5], we obtain the macro-
scopic depolarizing matrix from the differential
depolarizing parameters mentioned above, and we calcu-
late the depolarization power of this matrix, which is
found to be 0.1561. The calculated total linear retardance
is 23:99°. These values fully coincide with the results
obtained by polar decomposition [7].
Once those relatively simple media have been studied,

we analyze a turbid medium with several simultaneous
effects. The measured Mueller matrix of a birefringent
chiral turbid sample [8] is

M3 ¼

2
664
1:0000 0:0185 0:0029 0:0042
0:0172 0:7569 −0:0405 0:0462
0:0034 0:0524 0:5450 −0:5466
0:0024 −0:0070 0:6244 0:5967

3
775: ð29Þ

The sample is a tissue phantom that shows a scattering
coefficient of 30 cm−1 and an anisotropy parameter of
0.95 at 633 nm, with a 1M concentration of sucrose
characterized by an optical activity parameter of χ ¼
1:96°=cm and linear birefringence induced by vertical
strain. The polarimetric analysis of this sample has been
performed using polar decomposition and is reported
elsewhere [8]. The control values are a linear retardance

of 0:83 rad, optical rotation of 0:0373 rad, depolarization
power of 0.19, and null diattenuation, while the calcu-
lated values from the measured matrix are respectively
0.79 and 0:0357 rad, 0.21, and 0.02. If we apply the differ-
ential decomposition to this sample, the parameters
graphically shown in Table 1 are obtained. The analysis
reveals that the medium presents linear retardance along
the y axis, polarization-dependent isotropic depolariza-
tion, and optical activity. It also has marginal anomalous
birefringence along the x axis and linear birefringence
along the x–y bisector. The remaining contributions
are negligible. The linear retardance is found to be
0:8022 rad, while the calculated net optical rotation is
0:0338 rad. The depolarization power is 0.2016, and a
value of 0.0210 for total diattenuation is obtained. All
the results are in excellent agreement with the previously
reported values.

These results validate the differential Mueller matrix
decomposition proposed in this Letter. This decomposi-
tion is particularly appropriate for the study of media in
which several effects take place simultaneously, as long
as no assumption about the order in which effects take
place has to be made aprioristically. In fact, differential
decomposition constitutes the first unique Mueller
matrix decomposition. We believe this method can defi-
nitely help overcome the ambiguities entailed by the non-
unique Mueller matrix product decompositions proposed
so far [5,6,9]. The exhaustive description performed by
the 16 differential parameters enables one to develop
detailed studies about the optical properties of complex
media, with a foreseeable potential for a wide range of
applications.
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Table 1. Accumulated Differential Parameters of the
Tissue Phantom Characterized by the Matrix in Eq. (29)

Nondepolarizing Parameters

�κi �κq �κu �κv �ηq �ηu �ηv
0.000 0.021 0.003 0.003 −0:799 0.036 −0:067

Depolarizing Parameters

�κ0i;q �κ0i;u �κ0i;v �κ0q �κ0u �κ0v �η0q �η0u �η0v
0.276 0.236 0.167 0.001 −0:001 0.002 0.052 −0:001 −0:007
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