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The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The
nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the
16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this
work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical
implications of each of them. Group theory is applied to establish the relationship between the differential matrix
and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular
subgroup. © 2011 Optical Society of America
OCIS codes: 260.5430, 260.2130, 120.5410.

Among the matricial methods for the study of polarized
light interaction with media, Mueller calculus has
emerged as a powerful technique due to its ability to deal
with partially polarized light and depolarization effects.
In addition, the fact that it is based on observables makes
it an appropriate approach for experimental applications.
It has been used for the study of a wide range of media,
namely crystals, atmosphere and oceanic water, optical
fibers, and biological tissues [1].
In 1948 Jones proposed the differential formulation of

his calculus for the study of the evolution of totally po-
larized light in anisotropic media [2]. Some years later, an
analogous procedure was performed for Mueller calcu-
lus, and the differential Mueller–Jones matrices for non-
depolarizing anisotropic media were obtained in full
parallelism with Jones’ approach [3]. The relationship be-
tween group theory and Mueller calculus [4] and the use
of group theory to derive the differential matrices [5]
have been discussed in detail for Jones and Mueller–
Jones matrices, and the feasibility of separating the
dichroism and birefringence effects has been demon-
strated remarkably [5]. The existence of an infinitesimal
generator matrix for a general Mueller matrix has been
recently proved for Mueller matrices associated with a
definite positive coherency matrix [6].
The extension of the differential Mueller calculus to

depolarizing media has remained an unresolved issue,
and thus the capacity of the differential Mueller calculus
to deal with depolarization phenomena is partly under-
used. In this Letter we present and discuss the differ-
ential Mueller matrices for depolarizing media. They
complete the set of 16 differential Mueller matrices that
fully describe general anisotropic depolarizing media.
First, we consider a fluctuating beam described by the

stationary statistical ensemble of its transversal
Gaussian-distributed electric plane wave field. We adopt
a right-handed Cartesian coordinate system and assume
that the beam travels toward the observer with a com-
plex propagation constant ~η ¼ ηþ iκ. The reference
frame is set so that propagation is along the z axis,
and thus the field can be resolved into a pair of orthogo-
nal polarization states along x and y. Stokes parameters
hSk¼0…3i describe the polarimetric characteristic of the
beam in terms of the field observables, which are directly

related to the coherency matrix [7,8]. They form the
Stokes vector ~S, which satisfies

d ~S =dz ¼ m~S; ð1Þ
where m is the 4 × 4 differential Mueller matrix that de-
scribe the polarimetric behavior of an infinitesimal slab
of the medium [3]. The differential matrix is related to the
macroscopic Mueller matrix by

m ¼ lim
Δz→0

½ðMz;Δz − IÞ=Δz�; ð2Þ

whereMz;Δz is the Mueller matrix that describes the med-
ium from z to zþΔz, and I is the 4 × 4 identity matrix.
Equation (1) establishes a system of four first-order lin-
ear differential equations that describe the evolution of
the Stokes parameters as a function of z. The solution
of the system for a linear homogeneous medium between
z0 and z that verifies Mz0¼0 ¼ I is

M ¼ expðmzÞ: ð3Þ
In general, the behavior of nondepolarizing anisotropic

media arises from eight basic properties, which reduce to
seven for Mueller calculus as a result of the loss of abso-
lute phase information. Each of them is associated with a
basic optical devicewhosemacroscopicMueller matrix is
well defined [1]. Equation (2) enables us to obtain the se-
ven differential Muellermatricesmn for each basic type of
nondepolarizing optical behavior [3]. Four of them are re-
lated to changes in the amplitude of the beam:

m1 ¼ κiKi ¼ κiI; ð4Þ
m2¼ κqKq

¼ κq½ 0 1 0 0 ; 1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 �; ð5Þ

m3¼ κuKu

¼ κu½ 0 0 1 0 ; 0 0 0 0 ; 1 0 0 0 ; 0 0 0 0 �; ð6Þ

m4¼ κvKv

¼ κv½ 0 0 0 1 ; 0 0 0 0 ; 0 0 0 0 ; 1 0 0 0 �; ð7Þ
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which correspond to isotropic absorption (subscript i),
linear dichroism along the x–y axis (q), the bisectors of
the x–y axis (u), and circular dichroism (v). The other
three are related to phase variations:

m5 ¼ ηqHq

¼ ηq½ 0 0 0 0 ; 0 0 0 0 ; 0 0 0 1 ; 0 0 −1 0 �;
ð8Þ

m6 ¼ ηuHu

¼ ηu½ 0 0 0 0 ; 0 0 0 1 ; 0 0 0 0 ; 0 −1 0 0 �;
ð9Þ

m7 ¼ ηvHv

¼ ηv½ 0 0 0 0 ; 0 0 1 0 ; 0 −1 0 0 ; 0 0 0 0 �;
ð10Þ

which account for linear x–y, linear�45°, and circular bi-
refringence. The differential parameters are directly re-
lated to ~η [8]. We have adopted the convention wq;u;v ¼
ðwx;þ45;rcp −wy;−45;lcpÞ=2, where w is either η or κ. The
general differential matrix of a nondepolarizing medium
is obtained as the sum of these seven matrices:

mnd ¼
X7
n¼1

mn ¼

2
664
κi κq κu κv
κq κi ηv ηu
κu −ηv κi ηq
κv −ηu −ηq κi

3
775: ð11Þ

Each parameter weights the contribution of the corre-
sponding effect to the differential matrix of the medium.
For nondepolarizing media there is a direct correspon-
dence between the differential Mueller matrix mnd and
the differential Jones matrix [5,8].
A deeper analysis of differential Mueller matrices can

be performed from a distinct point of view. It has been
shown that the Stokes vector is a column vector in a four
dimensional fictitious Minkowski space [9,10]. Therefore,
group theory can be applied to the study of Mueller cal-
culus. In particular, the mathematics of Lorentz transfor-
mations is first considered. A ð1=2; 1=2Þ Lorentz
transformation is a matrix given by

Λð1=2;1=2Þ ¼ exp

�X3
j¼1

κjKj þ ηjHj

�
; ð12Þ

where K1…3 and H1…3 are the Lorentz generators for
boosts and rotations. They form a closed set for Lorentz
transformations in the Minkowski space [4]. The remark-
able fact is that they are identical to Kq;u;v and Hq;u;v, the
basic matrices involved in differential Mueller matrices
m2…6 defined above (the sign and the presence of the
imaginary unit depend on the author). Lorentz transfor-
mations operate on Minkowskian vectors by

~S0 ¼ Λð1=2;1=2Þ~S; ð13Þ

where the four-vector has been denoted as the Stokes
vector in order to highlight the parallelism with Mueller

matrix transformations. Comparing Eqs. (12) and (13)
with Eqs. (3) and (11) enables us to assert that nondepo-
larizing differential matrices and Lorentz generators are
intimately connected. It can be easily demonstrated that
the degree of polarization of a light beam remains invar-
iant upon Lorentz transformations [9].

Nondepolarizing Mueller matrices show a one-to-one
correspondence with a Jones matrix [11]. However, de-
polarizing Mueller matrices no longer arise from a single
Jones matrix, but from a statistical ensemble of non-
depolarizing matrices. In that case, the Mueller matrix
can be obtained as a sum of a maximum of four non-
depolarizing matrices [11].

A wide number of well-known media produce depolar-
ization by decreasing the degree of polarization of a light
beam [8]. This depolarization effect can be modeled by a
generic diagonal Mueller matrix

diag½ 1; 1; 1; expð−κ0i;vÞ �; ð14Þ

which corresponds to the particular case of the modifi-
cation of the degree of polarization of the light beam [1]
by the variation of the last Stokes parameter. The corre-
sponding differential matrices for diagonal depolariza-
tion of hS1i, hS2i, and hS3i can be obtained from the
macroscopic Mueller matrices using Eq. (2), in an analo-
gous way as it was previously performed for nondepolar-
izing matrices. Therefore, three depolarizing differential
matrices are obtained:

m8 ¼ κ0i;qDq ¼ κ0i;q · diag½ 0; −1; 0; 0 �; ð15Þ

m9 ¼ κ0i;uDu ¼ κ0i;u · diag½ 0; 0; −1; 0 �; ð16Þ

m10 ¼ κ0i;vDv ¼ κ0i;v · diag½ 0; 0; 0; −1 �: ð17Þ
These matrices are the differential Mueller matrices for

the three types of diagonal depolarization. The generic
differential parameters κ0i;q, κ0i;u, and κ0i;v thus model
anomalous isotropic absorption of Stokes parameters
hS1i, hS2i, and hS3i, respectively.

Regarding group theory, the basic Dq;u;v matrices asso-
ciated withm8;9;10 differential matrices are the generators
for diagonal depolarization. The commutation of Dq;u;v
with the Lorentz generators and the isotropic absorption
generator Ki enables us to obtain the six additional
generators:

K0
q ¼ ½ 0 1 0 0 ; −1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 �;

ð18Þ
K0

u ¼ ½ 0 0 1 0 ; 0 0 0 0 ; −1 0 0 0 ; 0 0 0 0 �;
ð19Þ

K0
v ¼ ½ 0 0 0 1 ; 0 0 0 0 ; 0 0 0 0 ; −1 0 0 0 �;

ð20Þ

H0
q ¼ ½ 0 0 0 0 ; 0 0 0 0 ; 0 0 0 1 ; 0 0 1 0 �;

ð21Þ
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H0
u ¼ ½ 0 0 0 0 ; 0 0 0 1 ; 0 0 0 0 ; 0 1 0 0 �;

ð22Þ

H0
v ¼ ½ 0 0 0 0 ; 0 0 1 0 ; 0 1 0 0 ; 0 0 0 0 �:

ð23Þ
The whole group of Ki, Kq;u;v, Hq;u;v, Dq;u;v, K0

q;u;v, and
H0

q;u;v forms a closed set of 16 generators. However, we
have not discussed the physical significance of the last
six depolarization generators yet.
In order to gain an insight into the physical implica-

tions of these matrices, we consider a nondeterministic
medium that presents stochastic fluctuations in its aniso-
tropic properties. This type of medium has been pre-
viously studied [4]. Specifically, a birefringent medium
with spatial fluctuations in the birefringence magnitude
is analyzed. In this particular example it is assumed that
the birefringence directors coincide with the Cartesian
reference frame and do not vary. If the fluctuation is a
purely random Gaussian process, it can be shown that
the Mueller matrix that contains the information about
fluctuations is given by the following expression:

G¼

2
664
1 0 0 0
0 Aþa2qð1−AÞ aqauð1−AÞ aqavð1−AÞ
0 aqauð1−AÞ Aþa2uð1−AÞ auavð1−AÞ
0 aqavð1−AÞ auavð1−AÞ Aþa2vð1−AÞ

3
775; ð24Þ

where A is a constant that depends both on the medium
thickness and on the statistical parameters of birefrin-
gence variations, while aq, au, and av are the components
of the birefringence constant unit vector [4]. If we obtain
the corresponding differential Mueller matrix g, it is ob-
served that it shows six differential parameters in the po-
sitions indicated by Dq;u;v and H0

q;u;v. A similar procedure
can be developed for dichroism, which gives rise to the
presence of additional differential parameters in the
positions indicated by Dq;u;v and K0

q;u;v. These considera-
tions demonstrate that spatial fluctuations in the medium
result in the presence of depolarizing components in the
differential Mueller matrix. The presence of temporal
randomness produces an analogous effect. A particular
example of such a situation is given in [12] for temporal
perturbations in the molecular ordering of the inner
structure of a cholesteric liquid crystal. In addition, the
contribution of the depolarizing matrices proposed in
this work can also be observed in other types of media,
such as biological Bouligand structures and cholesteric
liquid crystal blue phases [13].
Subsequently, H0

q;u;v and K0
q;u;v constitute valid genera-

tors for depolarization effects that correspond to specific
physical phenomena, which can be described as anom-
alous birefringence and anomalous dichroism. A simple
inspection reveals their close similarity to Hq;u;v and
Kq;u;v, but with inverted symmetries (symmetric compo-
nents become skew-symmetric, and vice versa). This
aspect was postulated by Azzam to be the main charac-
teristic that should be shown by depolarizing differential
Mueller matrices [3].
The previous considerations result in the following dif-

ferential Mueller matrices for anomalous birefringence
and dichroism:

m11 ¼ κ0qK0
q; ð25Þ

m12 ¼ κ0uK0
u; ð26Þ

m13 ¼ κ0vK0
v; ð27Þ

m14 ¼ η0qH0
q; ð28Þ

m15 ¼ η0uH0
u; ð29Þ

m16 ¼ η0vH0
v; ð30Þ

where the differential parameters κ0q;u;v and η0q;u;v are gi-
ven in a generic form. Therefore, the complete set of 16
basic differential Mueller matrices has been obtained.
The nondepolarizing effects are contained in seven of
them, while the nine differential matrices proposed in
this work correspond to depolarizing phenomena. Conse-
quently, the most general differential Mueller matrix for
depolarizing anisotropic media is

m ¼
X16
n¼1

mn ¼

2
664

κi κq þ κ0q κu þ κ0u κv þ κ0v
κq − κ0q κi − κ0i;q ηv þ η0v ηu þ η0u
κu − κ0u −ηv þ η0v κi − κ0i;u ηq þ η0q
κv − κ0v −ηu þ η0u −ηq þ η0q κi − κ0i;v

3
775:

ð31Þ
The results of this work are of particular interest for

the comprehensive study of depolarizing effects in light
propagation through samples such as turbid media, liquid
crystals, optical fibers, Bragg gratings, and biological tis-
sues [14,15]. It is worth noting that the complete set of
matrices proposed in this work span all the 4 × 4 real ma-
trices, from which physically realizable Mueller matrices
are a particular subset [10].

The depolarizing differential Mueller matrices pro-
posed in this Letter enable us to establish a theo-
retical basis for the application of the general differential
Mueller calculus to a vast range of theoretical and experi-
mental applications in many fields of interest in optics.
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