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Summary 
 
 

The separation of propane/propylene gaseous mixtures entails great 

challenges from the point of view of the economic and environmental 

sustainability of the manufacture processes of propylene and its derivative 

products. These challenges arise, on the one hand, from the large energy 

and capital intensity of the current separation processes, mainly based on 

cryogenic and high pressure distillations, and caused by the similar 

physico-chemical properties of both substances. On the other hand, 

environmental considerations dictate that propylene-containing purge and 

vent streams from polypropylene reactors and polymer facilities, which 

were traditionally flared, must be recycled and recovered. For these 

reasons, the need for process intensification by means of efficient and cost-

effective technologies has led to a growing research activity on alternative 

materials and processes. In this regard, membrane-based gas and vapor 

separation has consolidated during the last thirty years into an important 

unit operation of the chemical industry with great potential for process 

intensification. However, the efficiency of this technology strongly relies 

on the physico-chemical properties and the transport mechanisms featured 

by the selected membrane materials. 

In view of the above, this thesis aims at the synthesis and development 

of innovative membrane materials and the assessment of their separation 

performance when implemented in alternative membrane-based processes. 

For this purpose, the facilitated transport of propylene by means of π-

complexation with silver cations has been studied; with this promising 

transport mechanism high permeability and selectivity towards the olefin 



have been reached. The separation is achieved through the synthesis of 

novel dense polymeric membranes integrating the use of a high 

performance fluoropolymer (PVDF-HFP), an imidazolium-based ionic 

liquid (IL) as a non-volatile additive (BMImBF4) and the silver salt that 

provides the silver cations upon dissociation inside the membrane 

(AgBF4). 

The complexity of the resultant structure requires a thorough 

characterization work in order to identify the interactions between the 

membrane constituents. This characterization has been supported by 

spectroscopic, thermogravimetric and microscopy techniques and the 

results confirm the existence of the chemical species and interactions 

required to yield the fixed-site and mobile carrier transport mechanisms.  

Afterwards, the separation performance of the synthesized membranes 

has been assessed through gas permeation experiments. First, the pure gas 

diffusivity and solubility of propane and propylene in the PVDF-HFP and 

PVDF-HFP/BMImBF4 matrices have been calculated through the time-lag 

technique. Then, the mixed-gas separation performance of the PVDF-

HFP/BMImBF4/AgBF4 composite membranes under several operating 

conditions, namely feed pressure, temperature and membrane composition, 

has been analyzed using the continuous-flow permeation technique. The 

experimental data obtained are later used for the development of a semi-

predictive mathematical model able to describe the propylene 

transmembrane flux in the studied range of the operating variables.  

Additional permeation experiments reveal the influence of silver 

degradation during long-term permeation and the effect of feed humidity 

on the membrane performance. Eventually, real gas mixtures provided by 



a petrochemical company have been tested to assess the effect of potential 

trace contaminant on the membrane stability. 

In further pursuit of the main objective of this thesis, the industrial 

applicability of the developed membranes has been explored through 

design and optimization of membrane-based separation processes. First, 

the retrofitting of an existing distillation process with a membrane stage 

has been proposed, quantifying the potential operating costs reduction 

achieved compared with the distillation base-case. Several membrane 

materials including the proposed facilitated transport membranes are 

considered for this optimization, which provides a wider insight into the 

state-of-the-art of propylene-selective membranes. Lastly, multistage 

membrane processes implementing the PVDF-HFP/BMImBF4/AgBF4 

system have been studied to determine the feasibility of a complete 

distillation replacement. In this case-study, the previously developed 

mathematical model accounting for the gas transport mechanisms has been 

introduced in the optimization, which allows a simultaneous optimization 

of the membrane process and the membrane material. 

  



Resumen 
 
 

La separación de mezclas gaseosas propano/propileno entraña grandes 

retos desde el punto de vista de la sostenibilidad económica y 

medioambiental de los procesos de fabricación de propileno y sus 

productos derivados. Estos retos surgen, por un lado, de la elevada 

intensidad energética y de capital de los actuales procesos de separación, 

principalmente basados en destilaciones criogénicas o a alta presión, y 

causada por las similares propiedades fisicoquímicas de ambas sustancias. 

Y, por el otro lado, las nuevas consideraciones medioambientales dictan 

que las corrientes de purga y venteo de los reactores de polimerización y 

fábricas de polímeros que contienen propileno, tradicionalmente 

quemadas, deben ser recicladas y recuperadas. Por ello, la necesidad de 

alcanzar la intensificación de procesos por medio de tecnologías eficientes 

y rentables ha dado lugar a una creciente actividad de investigación sobre 

materiales y procesos alternativos. En este sentido, la separación de gas y 

vapor basada en membranas se ha consolidado en los últimos treinta años 

como una importante operación unitaria de la industria química con un 

gran potencial para la intensificación de procesos. Sin embargo, la 

eficiencia de esta tecnología depende enormemente de las propiedades 

fisicoquímicas y de los mecanismos de transporte presentados por los 

materiales de membrana seleccionados. 

En vista de lo anterior, esta tesis tiene como objetivo la síntesis y el 

desarrollo de materiales de membrana innovadores y el estudio de su 

capacidad de separación cuando se implementan en procesos alternativos 

de separación basados en membranas. Para este propósito, se ha estudiado 



el transporte facilitado de propileno por medio de complejación π con 

cationes de plata; con este prometedor mecanismo de transporte se han 

obtenido elevados valores de permeabilidad y selectividad hacia la olefina. 

La separación se consigue mediante la síntesis de novedosas membranas 

densas poliméricas que integran el uso de un fluoropolímero (PVDF-HFP), 

un líquido iónico (IL) basado en el imidazol como aditivo no-volátil 

(BMImBF4) y una sal de plata que provee los cationes plata tras su 

disociación en el interior de la membrana (AgBF4). 

La complejidad de la estructura resultante requiere un exhaustivo 

trabajo de caracterización para identificar las interacciones entre los 

componentes de la membrana. Esta caracterización se ha soportado en 

técnicas espectroscópicas, termogravimétricas y de microscopía y los 

resultados confirman la existencia de las especies químicas y las 

interacciones necesarias para dar lugar a los mecanismos de transporte por 

carrier fijo y móvil. 

Posteriormente, la capacidad de separación de las membranas 

sintetizadas se ha analizado mediante experimentos de permeación. 

Primero, la difusividad y solubilidad de propano y propileno en las 

matrices de PVDF-HFP y PVDF-HFP/BMImBF4 se ha calculado 

mediante la técnica de time-lag con gases puros. Luego, la capacidad de 

separación de mezclas gaseosas de la membrana compuesta PVDF-

HFP/BMImBF4/AgBF4 bajo diferentes condiciones de operación, 

principalmente presión de alimentación, temperatura y composición de la 

membrana, se ha analizado usando la técnica de permeación de flujo en 

continuo. Los datos experimentales obtenidos son usados posteriormente 

para el desarrollo de un modelo matemático semipredictivo capaz de 



describir el flujo transmembranal de propileno en el rango estudiado de las 

variables de operación. 

Experimentos de permeación adicionales revelan la influencia de la 

degradación de la plata durante la permeación en períodos prolongados y 

el efecto de la humedad de la corriente de alimentación en el desempeño 

de la membrana. Finalmente, mezclas reales suministradas por una 

compañía petroquímica han sido empleadas para analizar el efecto de 

potenciales contaminantes minoritarios en la estabilidad de la membrana. 

Continuando con el objetivo principal de esta tesis, la aplicabilidad 

industrial de las membranas desarrolladas se ha analizado mediante el 

diseño y la optimización de procesos de separación basados en estas 

membranas. Primero, se propone el reacondicionamiento de una columna 

de destilación existente por medio de una etapa previa de membranas, 

cuantificando los potenciales ahorros en los costes de operación logrados 

en comparación con el caso base, esto es, cuando solo se emplea la 

columna. Para esta optimización se consideran diferentes materiales de 

membrana, incluyendo las membranas desarrolladas durante esta tesis, lo 

que da una visión más amplia del estado del arte de las membranas 

selectivas al propileno. Finalmente, se han estudiado procesos de 

membrana de múltiples etapas implementando el sistema PVDF-

HFP/BMImBF4/AgBF4 para determinar la viabilidad de un sustitución 

completa de la destilación. En este caso de estudio se ha introducido en la 

optimización el modelo matemático previamente desarrollado, lo que ha 

permitido una optimización simultánea del proceso  y el material. 
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Abstract 

Propylene (C3H6) is the second-largest-volume chemical produced 

globally, mainly driven by the production of polypropylene resins. The 

impact of this commodity chemical in the world’s economy has been 

growing in the last decades and the notable importance of its wide list of 

derivative products guarantees that this trend will continue. This 

introductory chapter offers a general overview of the propylene industrial 

relevance, as well as the current production methods and the issues 

concerning the separation of propylene/propane mixtures. Then, 

membrane technology for propylene purification is introduced, 

emphasizing the facilitated transport membrane technology and the use of 

ionic liquids as novel additives. Moreover, a brief review on mathematical 

modeling and process design and optimization of membrane processes is 

presented. Finally, the background and scope of this thesis is summarized.  
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1.1. Propylene industrial relevance 

Propylene is one of the most important building blocks in the 

petrochemical industry. Its global annual demand is estimated at, roughly, 

90 million tonnes, only exceeded by ethylene, the other major light olefin 

[1]. Nonetheless, propylene shows a greater diversity of derivatives. The 

major derivative produced from propylene is polypropylene, the second 

most produced thermoplastic material, with a market share of 26% among 

all thermoplastics [2]. But other specialized products derived from 

propylene include the cumene value chain (phenol, acetone, bisphenol A, 

polycarbonate), epoxies, propylene oxide, phenol-formaldehyde resins, 

acrylic acid, acrylonitrile, n-butyl alcohol, isopropyl alcohol and 2-

ethylhexanol. Figure 1.1 depicts the propylene demand contribution of 

each derivative. 

 

Figure. 1.1. Propylene demand. 
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Propylene has been traditionally manufactured as a coproduct in the 

steam cracking (SC) of naphthas and in the refinery fluid catalytic cracking 

(FCC) of heavier hydrocarbons. However, steam crackers produce a 

variety of other coproducts in larger quantities than propylene, typically 

ethylene, hydrogen and methane. Likewise, in the FCC units where heavy 

gas oil is converted to gasoline and light gas oil, propylene is usually a 

minor by-product [3]. Despite this, by controlling the feedstocks and the 

operating conditions in these two processes it is possible to increase the 

propylene yield to approach propylene-oriented processes. However, in the 

last few years, the change in the steam cracking feedstocks to favor the 

ethylene production and a growing demand of propylene for new 

applications have resulted in a “propylene gap” between production and 

demand, Figure 1.2.  
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Figure. 1.2. Propylene production and production-demand gap [4]. 

 

Recently, a third category of industrial processes, exclusively 

conceived to produce propylene has emerged to fill the gap and is gradually 
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gaining importance among the production processes. These so called “on-

purpose” processes, include propane dehydrogenation, olefin metathesis 

and methanol-to-olefins process (MTO). Figure 1.3 summarizes the 

propylene production routes.  

 

 

 

Figure. 1.3. Propylene production routes. 

 

After the cracking processes, sequential distillation columns are used 

to split each fraction of the resulting gas stream. In this way, after 

separating the C1 and C2 fractions in the so called deethanizer column, a 

depropanizer is used to split the C3 fraction from C4+ products. Figure 1.4 

schematizes the distillation sequence. 
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Figure. 1.4. Post-cracking separation sequence. 

 

Typical product specification for propylene is divided into two 

categories: the high-pure polymer-grade, dedicated to the polypropylene 

industry, and the less pure chemical-grade, further used in most of the 

derivatives industry [3]. Table 1.1 displays the product specifications of 

each grade.  

The polymerization reactions that take place during the polypropylene 

production require high propylene purity with propane concentrations 

typically below 0.5 mol.%, along with a complete removal of minor 

contaminants, such as carbonyl sulfide, which can poison the 

polymerization catalysts. 
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Table 1.1. Propylene most common product specification.  

 
Chemical grade Polymer grade 

Propene, mol. % 92-95 99.5-99.8 
Acetylene, ppm <10 <2 
Ethylene, ppm <20 <20 
Ethane, ppm <2000 <100 
Propyne, ppm <20 <5 
Propadiene, ppm  <20 <5 
C4+,ppm <1000 <10 
Hydrogen, ppm <10 <10 
Nitrogen, ppm <50 <50 
Oxygen, ppm <5 <5 
Carbon monoxide, ppm <5 <5 
Carbon dioxide, ppm <5 <5 
Sulfur, mass ppm <5 <1 
Water, mol. ppm <25 <10 
Propane remainder remainder 

 

Given that the C3 fraction from the depropanizer head stream contains 

both the olefin and its homologous paraffin (i.e. propane), effective 

separation methods are required to produce a propylene product in the 

specified purities.  

1.2. Propane/propylene separation. Traditional methods and 

membrane technology. 

 The propane and propylene molecules show very similar 

physicochemical properties, as shown in Table 1.2. For this reason, the 

industrial separation of propane/propylene mixtures has traditionally relied 

on cryogenic and high pressure distillation, exploiting the minor boiling 

point variation between these two components. Typically, the columns 
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used in these distillation processes exceed 120 equilibrium stages to be able 

to deal with the boiling points proximity and reach the desired high 

propylene purity.  

Table 1.2. Propylene and propane physicochemical properties.  

 
Propylene Propane 

Molecular formula C3H6 C3H8 
Molecular weight (g mol-1) 42.07 44.09 
Melting point (K) 88.0 85.5 
Normal boiling point (K) 225.6 231.1 
Water solubility, kᵒH (mol kg-1 bar-1)a 0.0048 0.0015 
Liquid density (kg m-3)b 613.9 582 
Vapor pressure (bar)c 10.3 8.7 
Critical temperature (K) 364.15 369.75 
Critical pressure (bar) 46.1 42.5 
Gas density (kg m-3) b 2.365 2.423 
Specific gravity (air=1)d 1.48 1.55 

a at 298 K 
b at boiling point and 1 bar 
c at 293 K 
d at 1 bar and 293 K 
 

All these equilibrium stages require large distillation columns, usually 

higher than 90 meters, which involves major capital investments. 

Additionally, high pressure and cryogenic distillation generate large 

energy consumption. In this sense, the energy consumption for propylene 

and ethylene purification alone has been calculated at roughly 0.3% of the 

world total energy demand [5]. 

These drawbacks have encouraged the search for alternative separation 

methods capable of reducing both the capital and energy intensity of the 

purification step. Among the conventional processes, extractive 
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distillation, physical adsorption and physical/chemical absorption are the 

most commonly studied [6–8]. However, the economic feasibility of the 

first two processes is hampered by solvent usage and capital costs, and, 

although chemical adsorption through transition metal complexation has 

proven certain competitiveness, it has not been widely introduced in the 

industry due to complex regeneration cycles and low olefin load capacities 

[9].  

In the last few years, increasing attention has been paid to membrane 

technology, a compact, modular and energy efficient solution that allows 

process intensification by implementing: “…more or less complex 

technologies that replace large, expensive, energy-intensive equipment or 

processes with ones that are smaller, less costly and more efficient…” [10]. 

The synthesis of effective olefin/paraffin separation membranes has 

been approached exploring several transport phenomena. The simplest way 

is to exploit the intrinsic separation properties of dense polymers, based on 

the solution-diffusion theory [11]. In this way, the membrane can 

discriminate different molecules due to permeability and/or solubility 

differences. Dense polymeric membranes made of glassy, rubbery and 

cellulosic polymers have been reported, but they usually perform high 

propylene selectivity at the expense of low permeability [12–15]. 

Another widely reported approach contemplates the molecular sieving 

effect of some advanced materials. These materials feature a combination 

of micro and ultramicropores able to discriminate different molecules 

based on their molecular size [16]. Among these materials, polymers with 

intrinsic microscopy (PIMs) [17,18], metal organic frameworks (MOFs) 
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[19,20], carbon molecular sieves (CMSs) [21,22] and graphene-based 

membranes [23] are the most notable. 

However, the intrinsic separation properties of polymers are vastly 

improved when the capability of some transition metals (i.e. copper and 

silver) to form olefin-metal complexes is exploited. This complexation 

phenomenon, explained through the Dewar-Chatt-Duncanson model 

(Figure 1.5), consists in a selective and reversible bonding caused by the 

donation of electrons from olefin to metal [24]. The use of this 

complexation mechanism has given rise to a new kind of membrane 

materials featuring facilitated transport mechanisms [25]. 

 

Figure. 1.5. Dewar-Chatt-Duncanson model of π-complexation (adapted from [24]). 

 

The first attempts to introduce facilitated transport in membrane 

technology involved the use of liquid membranes, most notably in the form 

of supported liquid membranes (SLM). In these membranes a liquid 

solvent containing the carrier (i.e. silver salt) is introduced into the pores 
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of a polymeric support where the complexation reaction dramatically 

increases the olefin solubility. Due to the partial pressure gradient, the 

complex is transported to the permeate side, where decomplexation takes 

place. However,  poor mechanical stability and solvent losses caused by 

evaporation and dragging prevent SLMs from becoming an industrial 

alternative [26–28]. 

 Recently, researchers have tried to solve these drawbacks by replacing 

traditional organic solvents with novel room temperature ionic liquids 

(RTILs). These compounds are exclusively formed by ions. The relative 

size difference between the anion and the cation prevents these ionic 

substances from organizing in crystalline structures, which results in the 

liquid state at room temperature. Besides their negligible vapor pressure, 

ionic liquids are non-flammable excellent solvents whose chemical and 

physical properties can be tailored by a judicious selection of cation, anion, 

and substituents [29,30]. However, although their negligible vapor 

pressure eliminates the solvent evaporation issue, the introduction of 

RTILs cannot solve the other major issue of supported liquid membranes, 

which is the expelling out of solvent from the support pores due to the 

transmembrane pressure. 

Advanced mechanical stability and separation performance can be 

achieved combining the properties of dense polymeric membranes with 

facilitated transport through the synthesis of polymer/salt systems. In these 

systems, the silver salt is dissolved along with the polymer and the 

membrane is then fabricated through solvent casting, which results in a 

dense facilitated transport membrane usually described as a polymer 

electrolyte [31,32]. In polymers containing electron donor heteroatoms 

such as oxygen or fluorine, the Pearson’s Hard-Soft–Acid-Base (HSAB) 
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theory predicts the formation of weak interactions between the Ag+ cations 

(soft acid) and the polymer heteroatoms (hard bases) [33]. These 

interactions are weak enough to still allow the π-complexation between the 

metal cation and the olefin. As a result, the silver cations remain “fixed” to 

the polymer backbone and the permeating olefin molecules follow a 

“hopping” pathway from active site to active site, this has come to be called 

“fixed site carrier transport mechanism” [34,35]. Figure 1.6 schematizes 

the fixed site carrier mechanism. 

 

Figure. 1.6. Fixed site carrier transport mechanism. 

 

Room temperature ionic liquids can be effectively implemented to 

improve the membrane performance of polymer electrolyte membranes. 

The presence of an ionic liquid within the free volume of the polymer 

promotes dissociation and mobility of the silver cations, which, after 

binding to the olefin, will diffuse through the membrane following a 

“mobile carrier” transport mechanism, similar to that of the facilitated 

transport liquid membranes [36].  

Finally, the selection of the silver salt counterion plays a major role in 

the cation capability to dissociate and interact with the olefin. Low 
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electronegative large anions such as BF4
-, CF3SO3

-, and ClO4
- form salts 

featuring a low lattice energy, whereas high electronegative small anions 

like F-, Cl- and NO3
- form high lattice energy salts, hindering olefin-silver 

coordination and impeding facilitated transport [37,38]. 

Solid state facilitated transport membranes have proven promising 

potential for olefin/paraffin separation, thanks to their mechanical stability 

and remarkable performance. However, a future replacement of traditional 

distillation by facilitated transport membranes requires of rigorous process 

design and optimization based on comprehensive mathematical models 

able to predict the system response to a wide range of operational variables 

and parameters.  

1.3. Facilitated transport modelling  

Several approaches have been reported in the literature for the 

mathematical modeling of facilitated transport in solid membranes. The 

dual sorption model, originally developed to interpret gas sorption in 

glassy polymers, has been commonly used to explain facilitated transport 

due to its simplicity and conceptual analogy to the mass transport with 

fixed carrier membranes. However, this model does not predict facilitated 

transport without direct diffusion between carriers [39].  

A more rigorous analysis of facilitated transport in solid membranes is 

achieved by introducing the “effective diffusion coefficient” between fixed 

site carriers. In this analysis, the concentration of unreacted fixed carrier is 

assumed to be constant, implying large excess of carrier. If the reaction 

rate is much faster than the diffusion rate, then the model is reduced to the 

dual sorption transport model at low partial pressure of the solute. But, at 
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high solute partial pressures, the assumption of excess carrier is violated 

and the model stars to gradually deviate from experimental data [35,40]. 

Another interesting model proposed by Cussler et al. [34] introduces 

the concept of “limited mobility of chained carriers”. This model assumes 

fast reaction on the membrane surface, thus, no uncomplexed solute can 

exist within the membrane. The polymer chains rearrangement motion 

allows a complexed molecule to find another uncomplexed carrier in the 

vicinity, resulting in facilitated transport. 

All these models explain facilitated transport considering only direct 

diffusion between carriers and such diffusion requires the distance between 

carriers to be shorter than the diffusional jump distance of a given 

gas/polymer pair. However, facilitated transport has been experimentally 

observed in membranes that do not satisfy this condition, suggesting that 

some sort of solute diffusion in uncomplexed state may also occur between 

fixed sites [41].  

 Finally, the “concentration fluctuation model”, a description of 

facilitated transport that does not consider solute “hopping” between fixed 

sites has been reported [42,43]. Apart from the thermodynamic constant, 

this model also considers the reaction kinetics. According to this model the 

facilitation effect is produced by the local fluctuation in the solute 

concentration along the membrane thickness due to complexation-

decomplexation reactions. This fluctuation increases the chemical 

potential of the permeant species according to Cahn’s theory [44], which 

results in a higher driving force. 

A good mathematical model capable of describing the solute 

transmembrane flux in the common operating conditions range can be 
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decisive for the rigorous design and optimization of facilitated transport 

membrane processes. 

1.4. Facilitated transport membrane processes. Design and 

optimization. 

The complete replacement of traditional distillation by a single-stage 

membrane process capable of producing polymer grade propylene and fuel 

grade propane simultaneously is not feasible, due to the purity-recovery 

trade-off inherent in membrane operation and the industrially achievable 

pressure ratio [45]. Accordingly, alternative strategies should be 

considered to introduce membrane technology in the olefin/paraffin 

separation. 

A first approach consists in the implementation of hybrid separation 

processes combining membrane and distillation technology [46,47]. Such 

processes can potentially reduce the energy intensity of the olefin/paraffin 

separation process by a factor of 2 or 3 [5]. The membrane/distillation 

hybrid processes comprise a limited number of arrangements, including 

one or more membrane stages [46,48,49]. Figure 1.7 shows commonly 

studied hybrid configurations. However, membranes become increasingly 

efficient as the product requirements are relaxed from 100% purity target, 

which means that they are very efficient concentrators [50]. For this reason, 

parallel configurations, whereby a membrane contactor is intended for the 

bulk separation and distillation is just left for the final product refining, are 

preferred. This approach allows maintaining the existing distillation 

columns by just retrofitting them with the new membrane stages [51–53].  
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Figure. 1.7. Membrane/distillation hybrid processes. 

 

According to the definition of a hybrid process by Lipnizki et al. [54], 

as “…a process package consisting of generally different, unit operations, 

which are interlinked and optimized to achieve a predefined task.”, 

optimization is a key step in hybrid process design, which allows solving 

the trade-off between the membrane total cost and the column operating 

expenses. 

On the other hand, complete replacement of distillation by membrane 

technology can be achieved by designing and optimizing appropriate 

multistage/multistep membrane processes [55,56]. Designing multistage 

membrane process based on facilitated transport membranes involves 

several trade-offs that should be balanced through optimization. In the first 

place, the total membrane area of each stage determines the flowrates and 

purities of the product streams of that stage. Thus, higher stage areas 

generate larger permeate flowrates at the expense of permeate purity. 

Additionally, the solute transmembrane flux by facilitated transport 

mechanisms is strongly dependent on the carrier loading, as evidenced 
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from the experimental analysis and the mathematical models [57,58]. 

However, high carrier concentrations imply high membrane cost per unit 

area, which could affect the process economics. Finally, higher 

transmembrane pressures increase the driving force available for the 

permeation but at the expense of higher recompression requirements.  

Unlike hybrid processes, membrane processes can be designed in 

many different configurations combining multiple stages, stages with 

multiple steps and recycle streams. Hence, optimization is crucial to 

determine the optimal layout for each specific separation. Although it is 

possible to expand the optimization to cover all configurations by building 

a complex superstructure that includes membranes, mixers, splitters and 

compressors, such optimization results in a complex mixed integer 

nonlinear programming problem (MINLP) [59]. MINLP problems are 

difficult to solve because they combine challenges of nonlinear and mixed 

integer programming, and require dedicated methods for its resolution 

[60]. Additionally, most studies dealing with superstructure optimization 

for gas separation conclude with a two-stage optimal configuration [61–

64]. 

For this reason, selecting the most promising configurations based on 

the extensive literature seems to be the most efficient strategy. This allows 

solving less complex non-linear programming problems (NLP) and pay 

more attention to the facilitated transport particularities through the 

implementation of transport models in the optimization.  
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1.5. Background and scope 

This thesis has been performed in the Advanced Separation Processes 

research group of the University of Cantabria. In previous works of this 

group, the propane and propylene solubility in RTIL/Ag+ mixtures was 

studied, revealing the exothermic character of the complexation reaction 

and its reversibility through vigorous agitation and vacuum [65,66].  

Subsequently, the reactive absorption kinetics of propylene in 

RTIL/Ag+ media was assessed, determining the required physicochemical 

parameters to predict the absorption rates [67].  

In order to study the industrial applicability of propylene reactive 

absorption in the proposed RTIL/Ag+ media, several works reported the 

use of membrane contactors, assessing the influence of feed composition 

and silver loading [68]. Furthermore, supported ionic liquid membranes 

(SILMs) were also synthesized and tested [57]. 

During this period, the quantum chemical COSMO-RS method was 

applied to determine the most suitable system (ionic liquid/silver salt) to 

carry out the separation of propane/propylene gas mixtures by reactive 

absorption, concluding that the optimal medium should be based on an 

ionic liquid with the BF4 anion and an ammonium or imidazolium-based 

cation and silver tetrafluoroborate (AgBF4) as a silver salt. 

Finally, a first study on polymer/ionic liquid composite membranes for 

propane/propylene separation was reported [69]. The use of ionic liquids 

as additives had previously proven certain advantages such as improved 

carrier stability and enhanced membrane permeability. In that study, 

PVDF-HFP/BMImBF4 membranes were characterized through polarized 
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light microscopy, gas permeation and tensile tests, concluding that the 

membrane with 80% polymer-20% IL w/w showed the best compromise 

between separation properties and mechanical resistance.  

Based on the above-mentioned results, the main objective of this thesis 

is to assess the potential of the proposed facilitated transport membranes 

to offer a more efficient alternative to current propane/propylene 

separation processes. In the first place, this work contributes and makes 

progress to the fundamental knowledge of the phenomena involved in the 

propylene permeation in PVDF-HFP/BMImBF4/AgBF4 facilitated 

transport membranes. With this regard, a wide range of characterization 

techniques has been implemented to study the internal structure and the 

interactions between the membrane constituents. Additionally, time-lag 

and gas-mixture continuous-flow permeation techniques allowed 

determining the separation performance under different operating 

conditions, including changes in temperature, feed pressure, silver loading, 

feed humidity and feed composition. On the other hand, this work advances 

in the implementation of facilitated transport membranes in alternative 

separation processes. For this purpose and based on experimental data, a 

mathematical model able to describe the propylene permeation through 

carrier-mediated mechanisms under the previously studied operating 

conditions has been developed. Finally, based on process economics, 

hybrid membrane/distillation and multistage membrane processes have 

been proposed and optimized using computer aided process design. These 

studies predicted the economic savings that these membranes can 

potentially produce. 
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Abstract 

In this chapter, the materials and the experimental and modeling 

procedures used during this thesis are summarized. First, the materials and 

the experimental methods regarding membrane synthesis, characterization 

of the membrane structure and determination of the separation 

performance are presented. Next, the modeling methodology used to 

develop a mathematical description of the propylene transmembrane flux 

through facilitated transport mechanisms is described. Finally, the design 

and optimization strategies used to assess the facilitated transport 

membranes industrial applicability are discussed.  
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2.1. Experimental Methods 

This section presents the materials and methods used for membrane 

synthesis, followed by a brief presentation of the membrane 

characterization techniques and a more detailed description of the gas 

permeation set-ups and methodologies.  

2.1.1. Chemicals 

Propylene and propane gases were supplied by Praxair with a purity of 

99.5%. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) 

was purchased from Sigma Aldrich. 1-Butyl-3-methylimidazolium 

tetrafluoroborate (BMImBF4) with a minimum purity of 99% and halide 

content of less than 500 ppm was supplied by Iolitec. Silver 

tetrafluoroborate (AgBF4) with a minimum purity of 99% was supplied by 

Apollo Scientific Ltd. Tetrahydrofuran (THF) purchased from Panreac was 

used as solvent for membrane synthesis. The industrial propane/propylene 

gas mixture was kindly provided by Petronor S.A., Table 2.1 shows the 

industrial mixture composition. All chemicals were used as received 

without further purification.  

2.1.2. Membrane synthesis 

The proposed membranes for propane/propylene separation are 

composed of a polymer, an ionic liquid and a silver salt. Poly(vinylidene 

fluoride-co-hexafluoropropylene) (PVDF-HFP) is a high performance 

fluoropolymer featuring high thermal, chemical and mechanical stability, 

and is used to form the polymeric dense matrix. Based on previous results 

of the research group, the ionic liquid used in this work has been 1- butyl3-

methylimidazolium tetrafluoroborate (BMImBF4) since it provided the 
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best results in terms of separation selectivity and propylene solubility and 

presents good miscibility with both the PVDF-HFP and the silver salt. 

Finally, silver tetrafluoroborate (AgBF4) provides the silver cations upon 

dissociation inside the membrane thanks to the low lattice energy provided 

by the anion [1]. 

Table 2.1. Industrial gas mixture composition.  

Component Concentration (mol.% ) 

Methane 0.0034 

Ethane 0.1503 

Ethylene 0.0099 

Propane 24.8837 

Propylene 74.7208 

Isobutane 0.1872 

N-butane 0.0016 

Trans-butene 0.0214 

Iso-butene 0.0218 

Hydrogen sulfide < 0.2 ppm 

Acetylene < 0.2 ppm 

Hydrogen < 0.2 ppm 

 

All the studied membranes were prepared by the solvent casting 

method. The desired amount of PVDF-HFP was dissolved in THF using a 

10 ml sealed glass vial to avoid solvent losses by evaporation. The content 

was stirred during 24 h at room temperature. To achieve complete 

dissolution of the polymer, the mixture was subjected to a heating step at 
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50 °C during 5 min. After that, the selected amounts of ionic liquid and 

silver salt were added to the solution and the whole mixture was stirred at 

room temperature during 15 min. The membrane precursor was poured in 

a glass petri dish and then introduced in a vacuum oven overnight at 800 

mbar and 25 °C. Finally, a more severe evaporation step at full vacuum (~1 

mbar) during 1 h was performed for further solvent removal. Light 

exposure was avoided during the whole synthesis process to prevent silver 

reduction. The thickness of the synthesized membranes ranged from 40 to 

100 µm depending on the specific composition. For calculation purposes, 

the real membrane thickness was measured using a digital micrometer 

Mitutoyo Digimatic MDC-25SX (accuracy±0.001 mm). 

2.1.3. Characterization techniques 

The cross-section and surface morphology of the membranes were 

observed using scanning electron microscopy (Carl Zeiss EVO MA 15). 

The samples were prepared by immersing and fracturing the membranes in 

liquid nitrogen followed by gold sputtering with a Balzers Union SCD040 

sputter coating system. 

Further knowledge on membrane structure can be extracted from the 

energy dispersive X-ray spectroscopy (EDX). EDX makes use of x-ray 

spectrum emitted by the solid sample bombarded with a focused beam of 

electrons to obtain a localized chemical analysis. When the sample is hit 

by the electron beam, electrons are ejected from the atoms of the sample's 

surface. The resulting electron vacancies are filled by electrons from a 

higher energy state, and an x-ray is emitted to balance the energy difference 

between the two electrons' states. The x-ray energy is characteristic of the 

element from which it was emitted. EDX was used in conjunction with 
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SEM to obtain scan-lines and plot-mapping patterns of elemental silver on 

cross-sectional images of the composite membrane.  

Thermogravimetric analyses were performed using a TG-DTA 60H 

Shimadzu thermobalance to assess the potential water uptake of the studied 

membranes under humid feed conditions.  

The interactions between the Ag+ cations and the fluorine atoms of the 

polymer chains were studied through Fourier transform infrared 

spectroscopy (FTIR) analyzing the polymer CF2 symmetrical stretching 

mode. FTIR spectra were recorded using a Perkin Elmer Spectrum Two 

spectrometer 

Better insight on the AgBF4 dissociation behavior was achieved using 

Raman spectroscopy to analyze the regions of the BF4
- stretching bands in 

the pure AgBF4 and the silver-containing membranes. Raman 

spectroscopy was carried out using a Horiba T64000 triple spectrometer 

equipped with a confocal microscope and a Jobin Yvon Symphony CCD 

detector cooled with liquid nitrogen. A 488 nm beam from a Kr-Ar ion 

laser was focused through a 100x objective, using 2 mW laser power in all 

measurements. The spectral curves were fitted using Lorentzian functions. 

X-ray photoelectron spectroscopy (XPS) was used to expand the 

knowledge on membrane structure and silver degradation though the 

analysis of the silver oxidation states. Additionally, the Ag 3d regions of 

the XPS spectra can confirm the interactions between the silver cations and 

the polymer fluorine atoms. XPS spectra were acquired using an SPECS 

(Berlin, Germany) X-ray photoelectron spectrometer. The samples were 

analyzed using a Mg anode operated at 225 W (E=1253.6 eV, 13 kV, 17.5 

mA). The carbon (C 1s) line at 284.8 eV was used as reference in our 
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determinations of the silver binding energies. A scanning interval of 0.1 

eV was used for the final spectrum acquisition. 

2.1.4. Gas permeation techniques 

The constant-volume variable-pressure time-lag technique was used to 

experimentally obtain the transport and equilibrium parameters (i.e. 

diffusivity and solubility) of the gaseous species in the membrane matrix 

according to the solution-diffusion theory.   

Figure 2.1 shows the experimental setup used to conduct the 

permeation experiments using the time-lag technique. This apparatus 

consists of two chambers separated by the membrane (47 mm in diameter). 

Before each run, the residual gas in both chambers and in the permeation 

cell is evacuated using a vacuum pump. At time zero the gas of interest is 

introduced into the upper chamber. The feed pressure is maintained 

constant at the upper chamber while the pressure increase in the lower 

chamber, which occurs due to the passage of gas through the membrane, is 

recorded. The pressure increase in the lower chamber starts only after a 

period of time known as the time-lag (Ө). After the time-lag, the diffusion 

process continues in the quasi-steady state until the pressure in both 

chambers is equalized.  
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Figure. 2.1. Time-lag apparatus: 1) gas cylinder, 2) pressure controller, 3) gas valves, 

4) pressure transducers, 5) permeation chamber, 6) vacuum pump, 7) data 

recording, 8) permeation cell, 9) temperature-controlled section. 

 

The mathematical expression that describes the pressure increase in the 

lower chamber can be deduced by applying Fick’s second law in the limits 

of the membrane. By integrating Fick’s equation with the boundary 

conditions using Laplace transforms, operating and neglecting terms, the 

expression for the pressure in the permeate chamber versus time in the 

quasi-steady state flux is obtained:  
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𝑃𝑃𝐿𝐿(𝑡𝑡) = 𝐴𝐴
𝑅𝑅 · 𝑇𝑇 · 𝑆𝑆 · 𝐷𝐷 · 𝑃𝑃0

𝑉𝑉 · 𝐿𝐿 �𝑡𝑡 −
𝐿𝐿2

6𝐷𝐷�
 

(1) 

The above equation is a straight line, from which, the slope and the 

term that subtracts the time, known as “time- lag” (Ө), can be extracted: 

Ө = 𝐿𝐿2
6𝐷𝐷�  (2) 

After re-arranging terms, diffusivity, solubility and permeability 

parameters can be obtained as: 

𝐷𝐷 = 𝐿𝐿2
6𝜃𝜃�  (3) 

𝑆𝑆 =
𝑉𝑉 · 𝐿𝐿 · (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝐴𝐴 · 𝐷𝐷 · 𝑅𝑅 · 𝑇𝑇 · 𝑃𝑃0

 (4) 

𝑃𝑃 = 𝐷𝐷 · 𝑆𝑆    (5) 

Where, L is the membrane thickness, Ө is the “time-lag”, V is the 

permeate side volume, A is the permeation area, R is the gas constant, T is 

temperature and P0 is the feed pressure. 

On the other hand, the gas mixture permeation in facilitated transport 

membranes was studied using a continuous flow technique, Figure 2.2 In 

this technique, the membrane is placed in a permeation cell (90 mm in 

diameter) and the gas mixture, which is adjusted using mass flow 

controllers, is continuously fed into the upper chamber. Nitrogen gas is 

used in the lower chamber as sweeping gas. The pressure of both streams 

is controlled using two micrometric valves and two pressure transducers. 

The retentate and permeate streams are finally analyzed using gas 

chromatography and the experimental propylene flux is then calculated by 
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a simple mass balance, as shown in Eq. 6. The analysis was performed in 

a gas chromatograph HP 6890 equipped with a thermal conductivity 

detector (TCD) and a column HP Al/S (30 m length, nominal diameter of 

0.53 mm). 

𝐽𝐽𝐶𝐶3𝐻𝐻𝑥𝑥 =
1
𝐴𝐴𝑚𝑚

𝑥𝑥𝐶𝐶3𝐻𝐻𝑥𝑥
𝑥𝑥𝑁𝑁2

𝐹𝐹𝑁𝑁2 (6) 

 

 

Figure. 2.2. Gas-mixture continuous-flow permeation setup: 1) gas cylinders, 2) mass 

flow controllers, 3) gas valves, 4) permeation cell, 5) temperature-controlled section, 

6) pressure transducers, 7) needle valves, 8) three-way valves, 9) gas chromatograph. 

 

For the permeation experiments under humid feed conditions a 

modification of the setup shown in Figure 2.2 was required. This 

modification is depicted in Figure 2.3. This setup allows generating any 
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desired relative humidity in the feed stream by controlling the ratio of dry 

to humid feed. 

 

Figure. 2.3. Modification of the feed line setup to control the relative humidity of the 

feed stream. 

 

Finally, permeation tests with real gas mixtures provided by the 

petrochemical industry were performed to assess if the membrane 

performance is affected by known contaminant trace components 

potentially present in industrial streams (i.e. acetylene, hydrogen sulfide 

and hydrogen [2]). The composition of these mixtures is shown in Table 

2.1. 
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2.1.5. Experimental sequence 

The experimental sequence for the time lag permeation tests is shown 

in Table 2.2. The feed pressure in the upper chamber was fixed at 3.5 bar 

while the permeate chamber was under vacuum. 

Table 2.2. Time-lag technique experimental sequence. 

Temperature (K) Membrane C3H6 C3H8 

298 
PVDF-HFP • • 
PVDF-HFP/BMImBF4

a • • 

308 
PVDF-HFP • • 
PVDF-HFP/BMImBF4

a - - 

318 
PVDF-HFP • • 
PVDF-HFP/BMImBF4

a - - 
a Polymer/ionic liquid membrane composition was 80/20 wt.% 

On the other hand, the experimental conditions for the gas-mixture 

continuous-flow permeation tests are shown in Table 2.3. The synthetic 

feed used in these experiments consisted of an equimolar 

propane/propylene gas mixture.  

The silver loading indicated in Table 2.3 was calculated as the mass of 

silver salt added to 1 g of polymer or polymer/ionic liquid matrix. In this 

regard, silver loadings of 20, 40, 60 and 80 % were used during the 

experimental studies. However, these silver loadings produced different 

silver concentrations, expressed in mol/l, depending on the resulting 

membrane thickness of each specimen. For this reason, the specific silver 

concentration of each membrane will be indicated in the results section. 
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Table 2.3. Experimental conditions for the gas-mixture continuous-flow 

permeation tests. 

Experimental condition Value 
T (K) 293/303/313 
Feed composition Synthetic/Industrial 
Feed side pressure (bar) 1-4 
Permeate side pressure (bar) 1 
Silver load (wt.%)a 20/40/60/80 
Polymer/ionic liquid mass ratio (100/0) - (80/20) 
Relative humidity (%RH) 0/25/50/100 
a Calculated as the silver mass added over the polymer or 
polymer/ionic liquid mass. 

 

2.2. Facilitated transport modeling 

The gas transport mechanisms occurring inside the membrane are the 

result of the complex membrane structure. For this reason, the complexity 

of the composite membrane was approached by simplifying its nature, 

considering that the facilitated transport mechanism is shared between 

fixed site and mobile carrier, accounting for bounded and unbounded silver 

cations, respectively. A schematic representation of the transport 

mechanisms is depicted in Figure 2.4. 
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Figure. 2.4. Schematic representation of the gas transport mechanisms. 

 

The total propylene flux through the membrane may be calculated as 

the sum of the contribution of each transport mechanism [3]: 

𝐽𝐽𝐶𝐶3𝐻𝐻6 = −𝐷𝐷𝐶𝐶3𝐻𝐻6,𝑚𝑚
𝑑𝑑𝐶𝐶𝐶𝐶3𝐻𝐻6
𝑑𝑑𝑥𝑥

− 𝐴𝐴
𝑑𝑑𝐶𝐶𝐶𝐶3𝐻𝐻6
𝑑𝑑𝑥𝑥

− 𝐵𝐵
𝑑𝑑𝐶𝐶𝐶𝐶3𝐻𝐻6
𝑑𝑑𝑥𝑥

 
(7) 

The parameters A and B represent the “effective diffusivity” of the 

organometallic complex species in the mobile carrier and fixed-site carrier 

mechanisms respectively. Eq. 7 can be integrated along the membrane 

domain: 

𝐽𝐽𝐶𝐶3𝐻𝐻6 = 𝐷𝐷𝐶𝐶3𝐻𝐻6,𝑚𝑚
𝐶𝐶𝐶𝐶3𝐻𝐻6
0 − 𝐶𝐶𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
+ 𝐴𝐴

𝐶𝐶𝐶𝐶3𝐻𝐻6
0 − 𝐶𝐶𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿

+ 𝐵𝐵
𝐶𝐶𝐶𝐶3𝐻𝐻6
0 − 𝐶𝐶𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
 

(8) 

Where subscripts 0 and L refer to feed and permeate sides, 

respectively. If sorption equilibrium at the interphase is assumed, Eq. 8 can 

be reformulated as: 

Propylene Propane Ag+

SOLUTION-DIFFUSION FIXED-SITE CARRIER MOBILE CARRIER
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𝐽𝐽𝐶𝐶3𝐻𝐻6 = 𝐷𝐷𝐶𝐶3𝐻𝐻6,𝑚𝑚 · 𝑆𝑆𝐶𝐶3𝐻𝐻6,𝑚𝑚
𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
+ 𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐

𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿

+ 𝐾𝐾𝐻𝐻
𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
 

(9) 

Where 𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 is the permeability of the olefin based on the olefin-silver 

complex transport and 𝐾𝐾𝐹𝐹𝐶𝐶 acts as an effective permeability or “hopping 

parameter” for the olefin through the fixed carrier reactive pathway. 

The permeability of the olefin-silver complex attributed to the mobile 

carrier mechanism 𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 is the product of its diffusivity in the ionic liquid 

times its chemical solubility; this latter parameter can be obtained from the 

complexation reaction between the silver cations and the propylene [4]:  

𝐴𝐴𝐴𝐴+ + 𝐶𝐶3𝐻𝐻6
𝐾𝐾𝑒𝑒𝑒𝑒.
�� 𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+ (10) 

The equilibrium constant can be expressed as: 

𝐾𝐾𝑒𝑒𝑒𝑒 =
[𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+]
[𝐴𝐴𝐴𝐴+][𝐶𝐶3𝐻𝐻6] 

(11) 

While the concentration of free cations is given by: 

[𝐴𝐴𝐴𝐴+] = [𝐴𝐴𝐴𝐴𝑇𝑇] − [𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+] (12) 

And solving for the complex species concentration: 

[𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+] =
𝐾𝐾𝑒𝑒𝑒𝑒[𝐴𝐴𝐴𝐴𝑇𝑇][𝐶𝐶3𝐻𝐻6]
1 + 𝐾𝐾𝑒𝑒𝑒𝑒[𝐶𝐶3𝐻𝐻6]  

(13) 
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Introducing the relationship between the concentration of propylene 

physically absorbed and the partial pressure in the gas phase through a 

Henry type isotherm, the chemical solubility can be derived: 

𝑆𝑆𝐶𝐶3𝐻𝐻6,𝑐𝑐ℎ𝑒𝑒𝑚𝑚 =
𝐾𝐾𝑒𝑒𝑒𝑒 · [𝐴𝐴𝐴𝐴𝑇𝑇] · 𝐻𝐻𝐶𝐶3𝐻𝐻6

1 + 𝐾𝐾𝑒𝑒𝑒𝑒 · 𝑠𝑠𝐶𝐶3𝐻𝐻6 · 𝐻𝐻𝐶𝐶3𝐻𝐻6
 

(14) 

Finally, the olefin permeability through the mobile carrier mechanism 

can be expressed as: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 =
𝐾𝐾𝑒𝑒𝑒𝑒.[𝐴𝐴𝐴𝐴𝑇𝑇] ·  𝐻𝐻𝐶𝐶3𝐻𝐻6   

1 + 𝐾𝐾𝑒𝑒𝑒𝑒. · 𝑠𝑠𝐶𝐶3𝐻𝐻6 ·  𝐻𝐻𝐶𝐶3𝐻𝐻6
· 𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 

(15) 

Where the equilibrium constant 𝐾𝐾𝑒𝑒𝑒𝑒., the physical solubility of the 

propylene in the ionic liquid 𝐻𝐻𝐶𝐶3𝐻𝐻6, the olefin-paraffin complex diffusivity 

𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐, and the influence of temperature on these parameters have been 

reported in previous works of the research group [4,5]: 

𝐻𝐻𝐶𝐶3𝐻𝐻6  = 𝐻𝐻𝐶𝐶3𝐻𝐻6,0  · 𝑠𝑠
−∆𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 
𝑅𝑅𝑇𝑇  (16) 

𝑠𝑠𝑙𝑙
𝐾𝐾𝑒𝑒𝑒𝑒

𝐾𝐾𝑒𝑒𝑒𝑒,𝑟𝑟𝑒𝑒𝑟𝑟
 =

−∆𝐻𝐻𝑟𝑟 
𝑅𝑅

 · �
1
𝑇𝑇
−

1
𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟

� 
(17) 

𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐  = 𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐,𝑟𝑟𝑒𝑒𝑟𝑟  · 𝑠𝑠
−𝐸𝐸𝐸𝐸𝐷𝐷 
𝑅𝑅 �1𝑇𝑇 − 1

𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟
�
 

(18) 

On the other hand, the transport flux due to the fixed site carrier 

mechanism is characterized by the “hopping parameter” 𝐾𝐾𝐹𝐹𝐶𝐶 , which is a 

function of the silver loading in the membrane and the temperature [6]. A 

mathematical expression can be derived for the dependence of 𝐾𝐾𝐻𝐻 on 

temperature and silver concentration. The concentration of free cations 
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ready to coordinate with propylene molecules to form the coordination 

complex can be derived from the chemical equilibrium. In this regard, the 

heterogeneous complexation reaction between propylene and silver cations 

bound to the polymer matrix is depicted by the following equation: 

[𝐴𝐴𝐴𝐴+] + 𝑠𝑠𝐶𝐶3𝐻𝐻6
𝐾𝐾𝑝𝑝
⇔ [𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+] (19) 

The equilibrium constant can be expressed as: 

𝐾𝐾𝑐𝑐 =
[𝐴𝐴𝐴𝐴(𝐶𝐶3𝐻𝐻6)+]
[𝐴𝐴𝐴𝐴+]𝑠𝑠𝐶𝐶3𝐻𝐻6

0  
(20) 

Introducing Eq. 12 and solving for the free silver cations 

concentration: 

[𝐴𝐴𝐴𝐴+] =
[𝐴𝐴𝐴𝐴𝑇𝑇]

1 + 𝐾𝐾𝑐𝑐 · 𝑠𝑠𝐶𝐶3𝐻𝐻6
0  

(21) 

The proportionality between the value of  𝐾𝐾𝐹𝐹𝐶𝐶 and the variables is 

defined through the fitting parameter α: 

𝐾𝐾𝐹𝐹𝐶𝐶 = 𝛼𝛼 �
[𝐴𝐴𝐴𝐴𝑇𝑇]

1 + 𝐾𝐾𝑐𝑐 · 𝑠𝑠𝐶𝐶3𝐻𝐻6
0  �  𝑠𝑠

𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹
𝑅𝑅 � 1

293−
1
𝑇𝑇� 

(22) 

In Eq. 22 the influence of temperature in the hopping mechanism has 

been described through an Arrhenius-type expression, and the term in 

brackets refers to the concentration of free “uncomplexed” silver cations, 

as obtained from the heterogeneous chemical equilibrium, Eq. 19. The 

parameter α and the activation energy of the hopping parameter (𝐸𝐸𝐸𝐸𝐹𝐹𝐶𝐶) are 

the two fitting parameters of the model. 
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To summarize, the propylene flux is described as the sum of three 

contributions as follows: 

𝐽𝐽𝐶𝐶3𝐻𝐻6 = 𝐽𝐽𝐶𝐶3𝐻𝐻6,𝑆𝑆𝐷𝐷
+ 𝐽𝐽𝐶𝐶3𝐻𝐻6,𝑀𝑀𝐹𝐹

+ 𝐽𝐽𝐶𝐶3𝐻𝐻6,𝐹𝐹𝐹𝐹
 (23) 

𝐽𝐽𝐶𝐶3𝐻𝐻6,𝑆𝑆𝐷𝐷
= 𝐷𝐷𝐶𝐶3𝐻𝐻6,𝑚𝑚 · 𝑆𝑆𝐶𝐶3𝐻𝐻6,𝑚𝑚

𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
 

(24) 

𝐽𝐽𝐶𝐶3𝐻𝐻6,𝑀𝑀𝐹𝐹
=

𝑘𝑘𝑒𝑒𝑒𝑒 · [𝐴𝐴𝐴𝐴] · 𝐻𝐻𝐶𝐶3𝐻𝐻6
1 + 𝑘𝑘𝑒𝑒𝑒𝑒 · 𝑠𝑠𝐶𝐶3𝐻𝐻8

𝑃𝑃 · 𝐻𝐻𝐶𝐶3𝐻𝐻6
𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐

𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
𝑥𝑥𝐼𝐼𝐿𝐿 

(25) 

𝐽𝐽𝐶𝐶3𝐻𝐻6,𝑀𝑀𝐹𝐹
= 𝐾𝐾𝐹𝐹𝐶𝐶 ·

𝑠𝑠𝐶𝐶3𝐻𝐻6
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻6

𝐿𝐿

𝐿𝐿
(1 − 𝑥𝑥𝐼𝐼𝐿𝐿)  

(26) 

The contribution of the two different facilitated transport mechanisms 

was weighted based on the mass fraction of ionic liquid in the membrane 

composition 𝑥𝑥𝐼𝐼𝐿𝐿. This approach assumes that the available silver cations 

are distributed according to the polymer/ionic liquid mass ratio. 

The propane flux is caused by simple Fickian diffusion along the 

membrane, as described by the following equation: 

𝐽𝐽𝐶𝐶3𝐻𝐻8,𝑆𝑆𝐷𝐷
= 𝐷𝐷𝐶𝐶3𝐻𝐻8,𝑚𝑚 · 𝑆𝑆𝐶𝐶3𝐻𝐻8,𝑚𝑚

𝑠𝑠𝐶𝐶3𝐻𝐻8
0 − 𝑠𝑠𝐶𝐶3𝐻𝐻8

𝐿𝐿

𝐿𝐿
 

(27) 

The values of the organometallic complex diffusivity and its 

dependence on temperature were taken from an experimental study on 

supported ionic liquid membranes (SILMs). These membranes where 

synthesized introducing the BMImBF4/AgBF4 mixture in the pores of a 

hydrophilic PVDF support [5]. The value of the equilibrium constant for 

the complexation reaction, the propylene solubility in the ionic liquid 
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media, and their enthalpies were extracted from absorption equilibria of 

propylene in ionic liquid/Ag+ solutions [4]. 

 

2.3. Modeling and optimization of hybrid and multistage membrane 

processes  

In this part of the PhD thesis, the potential economic savings generated 

by hybrid membrane-distillation and membrane multistage processes were 

assessed by comparing the economics of these processes with the 

distillation base case. In all the studied processes, the feed stream was the 

head product of a depropanizer column, as is the case for the benchmark 

distillation [7]. 

2.3.1. Distillation base case 

To quantify the potential economic savings, the conventional 

distillation was established as base case. The feed stream consists of 360 

kmol/h of a liquid propane/propylene equimolar mixture at 323 K and 

20.27 bar. The product specifications are 0.995 propylene mole fraction in 

the distillate stream (i.e. polymer grade) and 0.95 propane mole fraction in 

the bottoms stream. Table 2.4 itemizes the base case details and economics, 

which were calculated using the “Guthrie’s Modular Method for Costing 

and Sizing” [8]. 
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Table 2.4. Base case distillation details.  

Parameter Value 
Feed temperature (K) 323 
Feed pressure (bar) 20.27 
Feed flowrate (kmol h-1) 360 
Feed composition (C3H6 mol frac.) 0.5 
Feed traya 51 
Distillation column number of stages 135 
Reflux ratio 14.91 
Reboiler duty (kW) 15128 
Condenser duty (kW) 14169 
Dist. temperature (K) 320.05 
Dist. pressure (bar) 19.05 
Dist. flowrate (kmol h-1) 171.43 
Dist. composition (C3H6 mol frac.) 0.995 
Bott. temperature (K) 331.57 
Bott. pressure (bar) 20.41 
Bott. flowrate (kmol h-1) 188.57 
Bott. composition (C3H6 mol frac.) 0.05 
Process CAPEX (MM$) 8.87 
Process OPEX (MM$ y-1) 4.05 
Process NPV COST (MM$) 39.67 

a Column trays are numbered from bottom to top. 

 

2.3.2. Multistage membrane processes modeling and optimization 

The membrane processes assessment was focused on the optimization 

of the implicit trade-offs in two multistage facilitated transport processes, 

specifically, one conventional two-stage configuration and another two-

stage configuration with a two-step second stage, commonly known as 

“two-and-one-half” stage process [9]. Figure 2.5 displays the studied 

flowsheets. 
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Figure. 2.5. Facilitated transport multistage membrane processes. 

In this manner, the complex mixed-integer nonlinear formulations 

associated to superstructures could be avoided. Additionally, a 

simultaneous optimization of the process and the membrane material (i.e. 

carrier load) was possible thanks to the introduction of the previously 

developed facilitated transport model. 

The membrane modules were modelled as hollow fiber modules, 

which is the most adequate configuration for gas separation, featuring high 

packing densities and energy efficiency [10–12]. Furthermore, the mass 

balances in the membrane modules were described as ordinary differential 
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equations and were solved using orthogonal collocation on finite elements 

[13]. 

 

Figure. 2.6. Schematic diagram of the hollow fibers module. 

 

The membrane model is depicted in Figure 2.6 and is based on the 

following assumptions: 

• The feed and retentate streams flow through the shell and lumen 

sides of the fibers respectively. 

• The module operates isothermally and in the steady state. 

• The feed and product streams flow in co-current mode. 

• Plug-flow is assumed at both sides of the membrane. 

• The total feed and permeate pressures are operation constants. 

• The only pressure drop in the membrane module is the 

transmembrane pressure. 
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The component molar flowrates were discretized according to the 

following mass balances: 

𝑑𝑑𝐹𝐹𝑗𝑗𝐹𝐹(𝑧𝑧) = −𝐽𝐽𝑗𝑗(𝑧𝑧) · 𝑑𝑑𝐴𝐴 (28) 

𝑑𝑑𝐹𝐹𝑗𝑗𝑃𝑃(𝑧𝑧) = 𝐽𝐽𝑗𝑗(𝑧𝑧) · 𝑑𝑑𝐴𝐴 (29) 

where 𝐹𝐹𝑗𝑗 and 𝐽𝐽 are the molar flowrate and the transmembrane flux of 

component j, respectively, and 𝑑𝑑𝐴𝐴 is the fiber outer wall area differential 

element. The dimensionless fiber axial length is defined as:  

𝑧𝑧̅ =
𝑧𝑧
𝐿𝐿

             𝑧𝑧̅ ∈  [0,1] (30) 

where L is the total fiber length. Rearranging terms, the mass balances 

(ODEs) and the boundary conditions can now be rewritten as: 

𝑑𝑑𝐹𝐹𝑗𝑗𝐹𝐹(𝑧𝑧̅)
𝑑𝑑𝑧𝑧̅

= −𝐽𝐽𝑗𝑗(𝑧𝑧̅) · 𝐴𝐴 
(31) 

𝑑𝑑𝐹𝐹𝑗𝑗𝑃𝑃(𝑧𝑧̅)
𝑑𝑑𝑧𝑧̅

= 𝐽𝐽𝑗𝑗(𝑧𝑧̅) · 𝐴𝐴 
(32) 

𝐹𝐹𝑗𝑗𝐹𝐹|�̅�𝑧=0 = 𝐹𝐹𝑗𝑗𝐹𝐹(𝑧𝑧̅ = 0) (33) 

𝐹𝐹𝑗𝑗𝑃𝑃|�̅�𝑧=0 = 0 (34) 

The propylene transmembrane flux was described by implementing the 

specific model for facilitated transport previously developed. This avoided 

the use of a fixed permeability parameter and introduced the carrier 

concentration as a decision variable. In this way, the membrane material 

and the multistage process could be optimized at the same time.  
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The ordinary differential equations (Eq. 31-34) were solved as 

algebraic equations after discretization through implicit Runge-Kutta 

collocation methods using 100 finite elements and 3 internal collocation 

points. 

The pressure, temperature and composition of the original feed, stream 

F in Figure 2.5, were fixed by common refinery specifications [7]. Table 

2.5 displays the properties of the propylene/propane mixed stream, the 

target product purities and the process constants and constraints. 

Table 2.5. Process feed specifications, parameters and constraints. 

Parameter Value 
Feed temperature (K) 323 
Feed pressure (bar) 18 
Feed flowrate (kmol h-1) 360 
Feed composition (C3H6 mole frac.) 0.50 
Permeate pressure (bar) 1-18 
Required C3H6 purity (xi) ≥ 0.995 
Required C3H8 purity (xi) ≥ 0.950 
C3H8 permeability (Barrer)a 20 
Membrane thickness (µm) 20 
Silver loadingb (M) 0-6 

a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1. 
b Silver loading delimited according to the experimentally 

studied concentration range [7,10]. 

 

Finally, the objective function (NPVC) was calculated as a 

combination of OPEX and CAPEX, correcting the operating expenses 

according to the time value of money: 
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𝑁𝑁𝑃𝑃𝑉𝑉𝐶𝐶 = 𝐶𝐶𝐴𝐴𝑃𝑃𝐸𝐸𝐶𝐶 + 𝑂𝑂𝑃𝑃𝐸𝐸𝐶𝐶 · (1 − (1 + 𝑟𝑟)−𝑇𝑇) 𝑟𝑟⁄  (35) 

The compressor expenses were calculated according to the “Guthrie’s 

Modular Method for Costing and Sizing “ [8] and the membrane cost was 

calculated using the market prices for its constituents and the optimized 

composition.  

The model constraints accounted for the same propane and propylene 

product purities established for the distillation base case. 

Once the optimization model was solved, it returned: 

• The optimal membrane area of each module. 

• The optimal carrier concentration of each membrane. 

• The optimal permeate pressure. 

• The minimal NPVC to reach the separation specifications. 

2.3.3. Hybrid membrane-distillation process modeling and 

optimization 

In this work, the performance of state-of-the-art membrane materials 

to retrofit an existing distillation process was assessed. Taking advantage 

of the membranes effectiveness when used as concentrators [14], the 

proposed hybrid configuration uses a membrane stage to perform the bulk 

separation and the distillation column is left for the final product polishing. 

Figure 2.7 displays the proposed hybrid arrangement. Given that this 

hybrid process is intended to retrofit an existing distillation column, the 

operating costs (OPEX) of the hybrid process were evaluated and 
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compared with the previously described base case distillation. For this 

reason, the same number of equilibrium stages of the benchmark 

distillation column was considered in the hybrid configuration. 

The design of a membrane/distillation hybrid process involves solving 

an optimization problem, driven by the existing compromise between the 

membrane total cost and the column operating expenses.  

 

 

Figure. 2.7. Schematic diagram of the hybrid process. 

 

In this case-study, the mathematical model for the membrane separator 

described before was implemented. Since the performance of diverse 

membrane materials was investigated, both propane and propylene 

transmembrane fluxes were calculated considering the permeability of 

each species as a material constant. For this reason, a selection of 

membrane materials to represent the current industrially attractive 
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possibilities for a hybrid process was proposed, including the facilitated 

transport membranes developed in this PhD thesis. Table 2.6 summarizes 

the selected membranes features. 

Table 2.6. Separation performance of the selected membranes. 

Membrane 
C3H6 

Permeance 
(GPUa) 

C3H6 
Selectivity Source 

CMS 42 23 [15] 
ZIF-8 90 50 [16] 
ZIF-8/ZIF-67/ZIF-8 111 210 [17] 
PVDF-HFP/BMImBF4/AgBF4 40 150 [18] 
6FDA-TeMPD 37b 8.6 [19] 
EC 7 7 [20] 

a 1 GPU=3.35x10-10 mol/m2 Pa s 
b Calculated from reported permeability assuming 1 µm thickness 
 

 

Finally, in a second part of this case-study, the permeability-selectivity 

trade-off exhibited by membrane materials was assessed, introducing an 

updated trade-off expression in the optimization model. In this way, a 

wider insight into state-of-the-art membrane performance can be provided.   

The model for the distillation column was adapted from the work of 

Lang and Biegler [21]. A complete description can be found in the original 

source, here a brief description is presented. Figure 2.8 provides a 

schematic representation of the modeling strategy.  
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Figure. 2.8. Schematic diagram of the Distributed Stream-Tray Optimization 

Method (DSTO) and detail of reflux stream DDF. 

 

In order to avoid discrete decision variables, this model uses 

differentiable distribution functions (DFF) for the feed, reflux and 

intermediate product streams (if present), in the form: 

𝑑𝑑𝑖𝑖 =
𝑠𝑠𝑥𝑥𝑠𝑠 �− �𝑖𝑖 − 𝑁𝑁𝑐𝑐

𝜎𝜎 �
2
�

∑ 𝑠𝑠𝑥𝑥𝑠𝑠 �− �𝑘𝑘 − 𝑁𝑁𝑐𝑐
𝜎𝜎 �

2
�𝑘𝑘

    𝑖𝑖,𝑘𝑘 ∈ 𝐼𝐼 (36) 

which corresponds to the discretization of a Gaussian distribution with 

mean 𝑁𝑁𝑐𝑐  and standard deviation σ. Thus, using DDFs, the feed and reflux 

streams can be distributed to all trays: 

𝐸𝐸𝑖𝑖 = 𝐸𝐸 · 𝑠𝑠𝑖𝑖 (37) 

𝑅𝑅𝑖𝑖 = 𝑅𝑅 · 𝑟𝑟𝑖𝑖 (38) 

where 𝐸𝐸𝑖𝑖  and 𝑅𝑅𝑖𝑖  are the feed and reflux flowrates entering into the i-

th tray,  𝑠𝑠𝑖𝑖 and  𝑟𝑟𝑖𝑖 are the corresponding differentiable distribution functions 
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and 𝐸𝐸  and 𝑅𝑅  and   are the total feed and reflux streams, respectively. Once 

the feed and reflux streams are defined through a DDF, the model uses the 

conventional MESH equations (material balances, equilibrium, summation 

and enthalpy balances) to formulate the distillation model. As described in 

[21] the model is also capable of calculating the number of trays by 

relaxing the equilibrium equations in the MESH equations so that the liquid 

phase disappears. This modification of the MESH equations allows dry 

trays to appear without pressure drop in the non-existing trays space above 

the reflux insertion point. The optimization model then chooses the column 

operation with the optimal number of dry trays, which translates to the 

optimum number of trays required. 

The vapor-liquid equilibrium was introduced using the K-value charts 

for C3 mixtures [22]. These charts are constructed upon experimental data, 

later displayed in nomograms. To allow its implementation in computer 

calculations, a corresponding states type approach has been reported in the 

bibliography [23]. This approach considers the equilibrium constant value 

as a function of pressure and temperature exclusively, neglecting the 

effects of composition. This assumption is valid for propane/propylene 

mixtures at the pressure and temperature range covered in this study.  

The optimization objective was to minimize the total operating costs. 

Here it was included:  

• Membrane depreciation. 

• Permeate and retentate recompression. 

• Reboiler and condenser duties. 
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The membrane depreciation was easily calculated as the membrane 

cost divided by the membrane lifetime, thus obtaining the annualized cost. 

The compressors, reboiler and condenser annualized operating expenses 

were calculated converting the resulting duties with the market price of the 

respective utilities.   

Table 2.7 displays the properties of the propylene/propane feed stream, 

the target product purities and the process constants and constraints. 

Table 2.7. Process feed specifications, parameters and constraints. 

Parameter Value 
Feed temperature (K) 325 
Feed pressure (bar) 18 
Feed flowrate (kmol h-1) 360 
Feed composition (C3H6 mol frac.) 0.5 
Membrane feed side pressure (bar) 18 
Membrane permeate side pressure (bar) 1 
Distillation column number of stages 135 
Distillate purity, 𝑥𝑥𝐶𝐶3𝐻𝐻6,𝑚𝑚𝑖𝑖𝑚𝑚

𝐷𝐷  ≥ 99.5 
Bottoms purity, 𝑥𝑥𝐶𝐶3𝐻𝐻8,𝑚𝑚𝑖𝑖𝑚𝑚

𝐵𝐵  ≥ 95.0 
 

Finally, the model constraints accounted for the same propane and 

propylene product purities established for the distillation base case. 

Once the solver was run, it provided: 

• The minimal operating expenses (and the partial contributions). 

• The optimal membrane area. 

• The optimal reflux ratio. 
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• The optimal feed tray locations. 

2.3.4. Optimization software  

The optimization models of both case-studies were implemented in the 

General Algebraic Modelling System (GAMS) and solved using the 

multistart heuristic algorithm OQNLP on a 3.40 GHz Intel® CoreTM i7-

3770 processor. CONOPT has been used as local NLP solver for OQNLP 

with a time limit of 3000 seconds and a maximum of 3000 trial points and 

3000 CONOPT calls. The GAMS code of both case-studies can be 

consulted in Appendices A.3 and A.4.  
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Abstract 

In this chapter, the main results obtained during the PhD thesis are 

summarized. In the first place, the experimental results regarding the 

membrane characterization though spectroscopic, thermogravimetric and 

microscopy techniques are discussed, paying special attention to the 

influence and relationships of the membrane structure with the resultant 

gas transport mechanisms. Then, gas permeation results obtained through 

time-lag and continuous-flow techniques are presented, exploring the 

influence of the most relevant operating conditions on the membrane 

performance and assessing the facilitated transport mathematical model 

fitting.  Finally, the main results on process design and optimization of 

hybrid and multistage membrane processes are presented. This allowed 

evaluating the potential of the proposed membranes to intensify the 

propane/propylene separation process.  
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3.1. Membrane characterization  

In this section, the results of the membrane characterization are 

presented. SEM and EDX techniques were used to study the membrane 

morphology and the silver distribution within the facilitated transport 

membrane, respectively. The thermogravimetric measurements allowed 

determining the potential water uptake, which is related to the feed 

humidity influence on the membrane performance. Finally, the 

spectroscopic techniques (FTIR, Raman and XPS) revealed the 

interactions between the membrane components, which explain the nature 

of the facilitated transport mechanisms occurring inside the membrane.  

3.1.1. SEM-EDX  

Figure 3.1 shows the cross-section and surface of PVDF-HFP, PVDF-

HFP/BMImBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes.  

 
Figure. 3.1. Cross-section and surface morphology of: A) PVDF-HFP membrane B) 

PVDF-HFP/BMImBF4 membrane, C) PVDF-HFP/BMImBF4/AgBF4 (5.23 mol/l). 

   

   

A B C 
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The cross-section micrographs show a non-porous homogenous 

structure without cavities or voids in all three cases. There is no evidence 

of pure ionic liquid domains in the ionic liquid-containing membranes, 

Figure 3.1b and 3.1c, proving the complete mixture compatibility between 

the ionic liquid and the polymer. Furthermore, the addition of the silver 

salt, Figure 3.1c, does not modify the structure and maintains the original 

dense and homogeneous pattern. 

 
Figure. 3.2. Energy dispersive X-Ray spectroscopy distribution patterns of silver in 

the PVDF-HFP/BMImBF4/AgBF4 (5.23 mol/l) membrane: A) dispersion plot, B) 

scan-line. 

The energy dispersive x-ray spectroscopy patterns in Figure 3.2 show 

a uniform distribution of the element silver along the cross-section of the 

membrane, with no evidence of silver particles or aggregation formation.  
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3.1.2. Thermogravimetric analysis (TGA) 

The thermogravimetric curves of PVDF-HFP, PVDF-HFP/AgBF4 and 

PVDF-HFP/BMImBF4/AgBF4 membranes are displayed in Figure 3.3. 
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Figure. 3.3. TGA curves of the studied membranes. 

 

 The membrane samples were vacuum dried at 30 mbar and 298 K for 

24 hours after casting to completely remove the remaining solvent. Prior 

to testing the samples were exposed to ambient moisture (~80% RH at 

room temperature) for 24 hours. In this manner, any water loss appearing 

at the beginning of the temperature ramp can be attributed to water 

evaporation. According to Figure 3.3, the pure polymer membrane exhibits 

no weight loss until it reaches its degradation temperature around 680 K, 

which reveals no water uptake. This is in good agreement with the 

hydrophobic nature of the fluoropolymer [1]. However, Figure 3.3 shows 

prominent mass losses of the silver-containing membranes in the 300-436 
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K temperature range. Thus, it can be concluded that the addition of the 

AgBF4 salt to the membrane composition dramatically changes the nature 

of the facilitated transport membranes due to its high hygroscopicity, 

which results in water uptakes of around 25 wt.% when exposed to moist 

conditions. Moreover, the ionic liquid-containing membrane features a 

similar water uptake as the PVDF-HFP/AgBF4 membrane, this is because 

BMImBF4 is also a hygroscopic substance. Finally, the PVDF-

HFP/BMImBF4/AgBF4 membrane starts degrading at 625 K, slightly 

below the pristine PVDF-HFP and PVDF-HFP/AgBF4 membranes. This 

is caused by the influence of the ionic liquid on the polymer structure, 

which yields a multistep decomposition mechanism, as reported by Shalu 

et al. [2]. 

3.1.3. Fourier transform infrared spectroscopy (FTIR) 

Figure 3.4 shows the polymer CF2 symmetrical stretching band of 

PVDF-HFP, PVDF-HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 

membranes. The CF2 peak of the pure polymer appears in the 1178 cm-1 

band. After incorporation of the silver salt, the stretching band shifted to 

1174 and 1172 cm-1 in the PVDF-HFP/AgBF4 and PVDF-

HFP/BMImBF4/AgBF4 respectively. This shift to lower wavelength 

indicates a weakening of the C-F bond caused by the interaction of silver 

cations with the fluorine atoms of the fluoropolymer, which is the basis of 

the fixed site carrier transport mechanism. This phenomenon has been 

previously observed by Chang and Kang [3] using FTIR on PVDF-

HFP/HBF4 polymer electrolytes. 
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Figure. 3.4. FTIR spectra of the studied membranes. 

 

3.1.4. RAMAN spectroscopy  

Raman spectroscopy was used to analyze the regions of the 

BF4
- stretching bands in the pure AgBF4, and the silver-containing 

membranes. Figure 3.5 shows the BF4
- stretching band region of PVDF-

HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes. The 

symmetric stretching mode of BF4
- has been previously reported at 774 

cm-1 in the pure AgBF4 [4]. However, the spectrum in Figure 3.5a shows 

a wavenumber shift to 767 cm-1 when the silver is added to the polymer. 

According to previous studies, this wavenumber corresponds to free ions 

[5,6], which means that this change in the Raman spectra is due to well-

dissociated Ag+ cations interacting with the PVDF-HFP backbone. 

Furthermore, this wavenumber shift from 774 to 767 cm-1 is still 

observable after addition of the ionic liquid BMImBF4, Figure 3.5b. As the 
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BF4
- stretching band also appears at 774 cm-1 in the pure ionic liquid [6], 

this shift suggests that the ionic liquid is also interacting with the Ag+ 

cations and, to a certain extent, with the polymer backbone, as reported by 

Fallanza et al. [7].     

3.1.5. X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy was used to expand the knowledge 

on membrane structure and silver degradation. The Ag 3d regions of the 

XPS spectra can confirm the interactions between the silver cations and the 

polymer fluorine atoms. Figure 3.6 shows the XPS spectra of a PVDF-

HFP/BMImBF4/AgBF4 composite membrane after a long term permeation 

experiment (110 days). Table 3.1 summarizes the two silver species 

observable after signal deconvolution. The Ag 3d5/2 band of pure AgBF4 

has been previously reported at 369.2 eV. However, in the composite 

membrane, the binding energy shifted to 368.47 eV. This reduction in the 

photoelectron binding energy is caused by the coordination between the 

silver atoms and the polymer backbone as demonstrated by Kim et al. [8], 

who found the same phenomenon for several AgBF4/polymer blends. 

Additionally, a second silver species (Ag 3d5/2=368.26 Ag 3d3/2=374.25) 

is associated with the presence of metallic silver [9], presumably due to the 

silver reduction caused by the long term permeation test. 
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Figure. 3.5. Raman spectra of A) PVDF-HFP /AgBF4 and B) PVDF-

HFP/BMImBF4/AgBF4 membrane. 
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Table 3.1. XPS regions of PVDF-HFP/BMImBF4/AgBF4 membrane after 
permeation test. 

  
 Region Position 

Species A 
Ag 3d 5/2 368.47 
Ag 3d 3/2 374.54 

Species B 
Ag 3d 5/2 368.26 
Ag 3d 3/2 374.25 

 

 

Figure. 3.6. XPS spectra of the PVDF-HFP/BMImBF4/AgBF4 membrane after 

permeation test. 
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3.2. Gas permeation and mathematical modeling   

In this section, the results of the gas permeation experiments and the 

mathematical model fitting are discussed. First, the results of time-lag 

experiments with pure gases are presented. These experiments allowed to 

determine the gas transport properties of pristine PVDF-HFP and PVDF-

HFP/BMImBF4 membranes. Later, continuous-flow experiments with 

synthetic gas mixtures were performed to study the separation performance 

of the facilitated transport membranes, assessing the influence of the most 

important operating conditions (temperature, feed pressure and membrane 

composition). Additionally, the fitting of the developed mathematical 

model to the experimental data is reported in this section. Finally, the 

results of the long-term permeation and the permeation experiments with 

industrial gas mixtures are discussed. 

 3.2.1. Time-lag permeation  

The experimental diffusivity, solubility and permeability values of 

propane and propylene in PVDF-HFP and PVDF-HFP/BMImBF4 (80/20 

wt.%) at different temperatures were obtained using the time-lag 

technique. Table 3.2 summarizes the experimental values of diffusivity, 

solubility and permeability of propane and propylene in PVDF-HFP 

membranes at different temperatures.  

The results in Table 3.2 show a significant increase in permeability 

with increasing temperature. Given that the physical solubility slightly 

decreases, this effect of the temperature in the final permeability value is 

mainly caused by the influence of the diffusivity. 

 



Chapter 3 

71 

Table 3.2. Diffusivity, solubility and permeability of propylene and propane in 
PVDF-HFP at 298, 308 and 318 K. 
 

 Temperature 
(K) 

Diffusivity 
(x1013 m2 s-1) 

Solubility 
(mol bar-1 m-3) 

Perm. 
(Barrer) 

C3H6 
298 0.13 92.4 0.035 
308 0.4 63.1 0.075 
318 1.97 28.4 0.167 

C3H8 
298 0.04 77.8 0.01 
308 0.11 112 0.036 
318 0.16 118 0.058 

a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1. 

Table 3.3 shows the effect of adding the BMImBF4 ionic liquid to the 

membrane composition. In the ionic liquid-containing membrane the gas 

diffusivity is markedly enhanced while the solubility decreases. The result 

is a remarkable permeability increase. This is caused by the ionic liquid 

entrapped within the dense polymeric matrix, which lowers the polymer 

chains rigidity and increases the free volume, facilitating the diffusion of 

the permeant species. 

Table 3.3. Diffusivity, solubility and permeability of propylene and propane in 
PVDF-HFP and PVDF-HFP/BMImBF4 at 298 K. 
 

  Diffusivity 
(x1013 m2 s-1) 

Solubility 
(mol bar-1 m-3) 

Perm. 
(Barrer) 

PVDF-HFP 
C3H6 0.13 92.4 0.035 
C3H8 0.04 77.8 0.01 

PVDF-
HFP/BMImBF4 

(80/20) 

C3H6 37.5 16.3 1.821 

C3H8 20.3 12.5 0.759 

a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1. 

b Silver loading delimited according to the experimentally studied concentration range . 
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However, these results confirm that the separation of 

propane/propylene mixtures by means of solution-diffusion mechanisms 

in PVDF-HFP membranes is ineffective due to the low permselectivity 

achieved. 

The diffusivity and the physical solubility of propane and propylene in 

the polymer matrix are later used in the mathematical description of gas 

transport in the facilitated transport membranes, for this reason, the 

determination of these parameters is an important step for the mathematical 

modeling. 

3.2.2. Gas-mixture permeation and model fitting 

Figure 3.7 shows the propylene transmembrane flux in PVDF-

HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 with increasing feed 

partial pressure. As the partial pressure gradient offers the driving force for 

the separation process, it has a direct effect on the propylene flux. 

Nonetheless, the composite membrane performs high olefin fluxes even at 

the lower assessed partial pressures.  

On the other hand, the effect of the temperature increase on the 

propylene flux is also observable in Figure 3.7. Higher temperatures favor 

the thermal rearrangements of the polymer chains, enhancing the fixed site 

carrier transport. Additionally, the diffusion of the gaseous species and the 

organometallic complex is increased with higher temperatures. As a result 

the propylene flux increases in both membranes. All these effects hinder 

the negative influence on the complexation equilibrium constant and the 

lower gas solubility caused at higher temperatures. 
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Finally, the addition of the ionic liquid, which gives rise to the mobile 

carrier transport mechanism, has a major effect on the propylene transport, 

as can be concluded by comparing the propylene transmembrane flux with 

and without BMImBF4. 

Regarding the separation performance, the high propylene fluxes 

combined with very low propane fluxes, typically below 1x10-5 mol m-2 s-

1, yield selectivity values of around 150. 

The mathematical model prediction is noted with black lines in Figure 

3.7, and suggests a good fitting of the calculated values. These results 

demonstrate the model capability to predict the propylene transmembrane 

flux in the studied range of the variables. 

 

Figure. 3.7. Propylene experimental flux and model prediction in PVDF-HFP/AgBF4 

(5.53 mol/l) and PVDF-HFP/BMImBF4/AgBF4 (5.23 mol/l) with increasing partial 

pressure and 293-303K. 

Regarding the propane flux, it can be easily predicted through the 

solution-diffusion theory using the experimentally obtained permeability. 
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In order to determine the separation behavior of the composite 

membranes over an extended period of time, a 110 days long-term 

permeation test on a PVDF-HFP/BMImBF4/AgBF4 membrane was 

performed. Furthermore, the effect of the feed gas humidity was assessed. 

Figure 3.8 shows the propylene and propane transmembrane flux during 

the experiment, which is divided into five sections (I-V) accounting for the 

relative humidity conditions. 

 

Figure. 3.8. Long term permeation experiment of a PVDF-HFP/BMImBF4/AgBF4 (4 

mol/l) composite membrane at 298 K and 1.2 bar feed total pressure (C3H8/C3H6 

50:50) under different relative humidity conditions. 
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observed during the first 5 days, which confirms that the characteristic 

curve observed under dry gas conditions is due to solvent and water 

moisture evaporation. 

 After 27 days, during section II, the feed was changed to dry gases, 

which resulted in a major propane and propylene transmembrane flux 

decrease as water evaporation occurred within the membrane. 

When the humidified gas mixture (100% RH) was fed again into the 

system (section III), the flux increase of both gaseous species was almost 

immediate, reaching the flux values attained prior to drying. This abrupt 

increase, noted with red arrows in Figure 3.8, reveals the exceptional 

capability of these membranes to absorb water from the environment. 

During sections III, IV and V a feed gas relative humidity of 100, 50 and 

25% was used, respectively. These variations in the humidity conditions 

resulted in moderate changes in the propylene transmembrane flux while 

the propane flux remained almost constant at its highest level. 

On the other side, it should be noted that, apart from the humidity 

influence, the propylene transmembrane flux undergoes a continuous slight 

decrease, evidenced by a constant slope in Figure 3.8. On the contrary, the 

propane flux does not suffer such decrease, which suggests that this 

phenomenon is caused by carrier deactivation. It was possible to quantify 

the deactivation rate by fitting the data for each section (I-V), to an 

exponential curve, which yielded the following expression: 

𝐽𝐽𝐶𝐶3𝐻𝐻6(𝑡𝑡) = 𝐽𝐽𝐶𝐶3𝐻𝐻6(𝑡𝑡0) · 𝑒𝑒−5.5𝑥𝑥10−3·𝑡𝑡 (39) 
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where  𝐽𝐽𝐶𝐶3𝐻𝐻6(𝑡𝑡0) is the initial propylene transmembrane flux at a given 

membrane composition, temperature, pressure and relative humidity 

conditions and the time t is introduced in days. This expression allows for 

membrane lifetime calculation if a minimum required performance is 

established. 

Finally, combining a mathematical expression for the drying curve 

(Figure 3.8 section II) with the propylene flux at each relative humidity, it 

was possible to obtain a fitting curve for the propylene transmembrane flux 

as a function of the relative humidity (Eq. 40), Figure 3.9. 

𝐽𝐽𝐶𝐶3𝐻𝐻6(𝑅𝑅𝑅𝑅) = 5.82𝑥𝑥10−5𝑅𝑅𝑅𝑅0.49 (40) 

Figure 3.9 evidences a sharp increase in the propylene flux with the 

relative humidity for RH<10% and a smooth increase after that value (dash 

line in Figure 3.9). A similar trend was reported by Catalano et al. [10] for 

oxygen and nitrogen in PFSI membranes.  

Finally, Table 3.4 displays the permeability and selectivity values of 

the facilitated transport membrane for each relative humidity condition. 

The humidification of the feed gases produces major changes in the 

membrane performance, reducing the selectivity and increasing the 

permeability of both the olefin and the paraffin. This is a characteristic 

effect of water vapor-induced swelling [11,12]. The enlargement of the 

polymer free volume caused by the water uptake increases the diffusivity 

of the gaseous species and the propylene-silver complex, which leads to 

remarkable permeability values but at the expense of membrane 

selectivity. 
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Figure. 3.9. Experimental data and mathematical regression for the dependency of 

the propylene transmembrane flux on the relative humidity. 

 

Table 3.4. Average permeability and selectivity values of the PVDF-
HFP/BMImBF4/AgBF4 membrane for each relative humidity during the long-term 
permeation test. 
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3.2.3. Industrial gas mixture permeation 

Figure 3.10 shows the facilitated transport membrane performance 

when the feed consists of a real propane/propylene mixture compared with 

a synthetic gas mixture. The industrial gas mixture is the product stream of 

a fluid catalytic cracking unit and its composition is displayed in Table 2.1. 

It mostly consists of a propane/propylene mixture (25:75) containing minor 

quantities of light paraffins and olefins.  

Given that both feeds differ in composition, permeability, which is 

normalized by the partial pressure gradient, has been plotted instead of the 

transmembrane flux. Both permeation experiments have been performed 

under dry conditions to simulate refinery conditions, hence, both suffer the 

characteristic permeability decrease due to solvent and water evaporation 

in the first hours of operation. Since the propylene transmembrane flux is 

similar in both cases, Figure 3.10 evidences that the membrane 

performance is not affected by known contaminant trace components 

potentially present in industrial streams (i.e. acetylene, hydrogen sulfide 

and hydrogen [13]) during the experiment extent. 
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Figure. 3.10. Synthetic and industrial gas mixture permeation experiments on a 

PVDF-HFP/BMImBF4/AgBF4 membrane under dry conditions at 298 K and 1.2 bar 

total feed pressure. 
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study on membrane performance, aiming at the global objective of 

assessing the role of facilitated transport membranes in the intensification 

of propylene/propane separation processes. 

3.3.1. Membrane/distillation hybrid process 

The hybrid process optimization allowed calculating the operating 

expenses reduction achieved by retrofitting an existing distillation column 

with a membrane contactor. In the first place, several state-of-the-art 

membrane materials were studied for its implementation in the hollow 

fiber configuration, including the PVDF-HFP/BMImBF4/AgBF4 

composite membranes developed by the research group. Next, the current 

membrane upper bound was introduced in the model to study the desirable 

permeability/selectivity combination of a hypothetically optimal 

membrane material. Additionally, the impact of the membrane cost on the 

economic evaluation was assessed. 

The purity constraints introduced in all calculations considered a 

propylene purity of 99.5 mol.% and a propane purity of 95.0 mol.% in the 

head and tail streams of the distillation column, respectively. 

Table 3.5 displays the resultant membrane area, reflux ratio and 

potential savings derived from the implementation of each selected 

membrane material in a hybrid configuration. The highly permeable and 

highly selective zeolitic imidazolate frameworks (ZIFs), carbon molecular 

sieves (CMS) and facilitated transport membranes (membranes A-D) can 

potentially reduce the operating expenses by around 30 to 55%. In addition, 

advanced polyimides, as 6FDA-TeMPD (E), which provide high 

permeance but moderate selectivity, are still capable of reducing the total 

operating costs “TOC” by 18%. Finally, the cellulosic membrane (F), due 



Chapter 3 

81 

to its low permeance and selectivity, achieves a total operation costs 

reduction of around 10%. 

Table 3.5. Membrane/distillation hybrid process optimization results. 
 

ID Membrane Area 
(x103 m2) Reflux 

TOC 
Savings 

(%) 
- None - 14.9 0 
A ZIF8 / ZIF67/ZIF8 2.8 4.5 56.2 
B PVDF-HFP/AgBF4/BMImBF4 7.4 5.3 50.3 
C ZIF 8 2.9 7.4 38.3 
D 6FDA-based polyimide  CMS 5.8 8.7 29.2 
E 6FDA-TeMPD 5.3 10.5 17.6 
F EC 23.2 11.2 9.9 

 

The operating expenses reduction due to the implementation of a 

hollow fiber module in series is clearly related to the decrease in the 

required reflux ratio for a given product quality. Although the reboiler and 

condenser duties are very similar, the use of steam requires that more than 

95% of the base case operating costs are generated by the reboiler. Figure 

3.11 unfolds the total operating expenses for each case. As expected, the 

membrane module helps reducing the required reflux ratio, decreasing the 

steam supply to the reboiler and its associated cost. It is worth noting that, 

despite this reduction, the reboiler operating cost is still the largest 

contribution to the total operating costs, while the condenser and retentate 

compressor operating costs are almost negligible.  
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Figure. 3.11. Disaggregated operating costs for each case. A-F defined in Table 3.5. 

 

Since the hybrid configuration may become uncompetitive compared 

to the conventional distillation depending on the membrane unitary cost, a 

sensitivity analysis of the optimum solutions was performed. Figure 3.12 

displays the total operating cost variation for each membrane with 

increasing membrane prices up to 200$/m2. In all cases, with the exception 

of the cellulosic membrane (F), the optimal configuration does not vary 

significantly, and the resultant TOC increase is proportional to the optimal 

membrane area. On the other hand, the cellulosic membrane hybrid 

configuration, due to the large area required, is not suitable for replacing 

the base case distillation when the membrane cost exceeds ~100$/m2, and 

consequently, the membrane module has been removed during the 

optimization run.  
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Figure. 3.12. Effect of the membrane cost on optimal TOC for the studied 

membranes.   

This analysis reveals a remarkable range of suitability for medium to 

high performance membrane materials when implemented in a hybrid 

configuration, regarding the membrane production cost. 
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Figure. 3.13. Robeson plot for propane/propylene separation membranes displaying 

the upper-bound. 

 

The corresponding mathematical expression is: 
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addition to membrane area, reflux ratio and stream locations, the program 
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Table 3.6. Upper-bound optimization results. 
 

 Membrane cost ($/m2) 
 20 100 200 

Propylene permeability (Barrera) 16 74 134 
Propylene selectivity 36 21 17 
Membrane area (x103 m2) 15 3.1 1.6 
Reflux ratio 8 8.9 9.3 
TOC (MM$/y) 2.77 3.02 3.13 
Savings (%) 31.5 25.5 22.8 

a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1. 

 

It is worth noting the strong influence of the membrane cost on the 

optimal permeability/selectivity trade-off. As the membrane cost weight 

on the objective function increases, the membrane tends to increase the 

permeability at the expense of selectivity. In the most unfavorable case (i.e. 

200$/m2) the membrane is highly permeable and the selectivity falls to a 

value closer to the feed-to-permeate pressure ratio (18/1), which allows a 

prominent decrease in the required area while still maintaining an adequate 

permeate purity. These results are in good agreement with Huang et al. [16] 

findings on the pressure ratio-selectivity relationship: “High permeance 

membranes are always good, but the optimum membrane selectivity 

depends on the process and the operating conditions, particularly the 

pressure ratio”. Increasing the membrane selectivity far beyond the 

industrially suitable pressure ratio produces minor increments in the 

product purity at the expense of larger membrane areas, as the process 

enters in the pressure ratio-limited region.  
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3.3.2. Multistage membrane processes 

This section presents and discusses the main results regarding the 

design and optimization of the proposed multistage membrane flowsheets. 

The feed stream to both flowsheets consisted of an equimolar 

propane/propylene mixture and the objective was to obtain propylene and 

propane purities of 99.5 mol.% and 95 mol.% respectively. The Net Present 

Value Cost (NPVC) of both multistage processes was compared with the 

NPVC of the reference distillation column. Additionally, a case-study 

considering a required propylene purity of 99.9 mol.% was studied to 

determine the influence of the purity constraints on the optimal solutions. 

The optimized two stage flowsheet is displayed in Figure 3.14. The 

optimal design comprises two membrane stages showing considerable size 

differences. The first stage requires more than 14000 m2 of membrane area 

to generate a propylene depleted retentate stream, thus achieving the 

desired propane purity. However, the second stage area is almost ten times 

smaller and is intended to produce a high purity propylene permeate 

regardless of the retentate purity.  

Regarding the optimal carrier loading, its value is allowed to vary 

between the experimentally studied range from 0 to 6 M, where 0 M 

implies no facilitated transport and 6 M is the highest concentration 

assessed for PVDF-HFP/BMImBF4/AgBF4 membranes. Eventually, the 

optimization balances the cost-performance trade-off of the first stage at 

2.51 M Ag+, far below the upper limit. Since higher concentrations of 

carrier result in high membrane prices per unit area, this decreased optimal 

value helps to reduce the expenses caused by the large size of this stage. 

On the other hand, the second stage carrier loading hits the highest allowed 
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level of 6 M Ag+, which is consistent with the purity-oriented nature of this 

stage. Although the high carrier loading of the second stage raises the 

membrane specific cost to 324 $/m2, the relative small size of this stage 

dampens the total membrane cost.  

 

Figure. 3.14. Two stage process optimal design. 

 

Finally, it should be noted that this multistage configuration generates 

a large reflux stream with high associated compression costs. Nonetheless, 

the optimal permeate pressure of both stages falls to 1 bar, promoting 
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second stage feed, in this manner the outer loop recycle is reduced, 

minimizing the total membrane area requirements in the stage M1 and the 

subsequent compression duty. 

 

Figure. 3.15. Two-and-one-half stage process optimal design. 
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distillation and to sharply decrease the investment expenses when 

implementing the two stage membrane process. On the other hand, the 

introduction of an additional separation step in the “two-and-one-half” 

stage flowsheet produces minor savings compared to the two stages 

process and, therefore, a less complex process may be preferred. It is worth 

noting that the main difference between the base case distillation and the 

membrane processes is not in the capital expenses but in the operating 

costs, which is consistent with the use of process steam in the distillation 

reboiler. Consequently, process intensification through membrane 

technology plays here a major role in energy saving.   

Table 3.7. Multistage processes Net Present Value Cost compared to the 
distillation base case. 
 

 Distillation Two 
Stages 

"Two-and-
one-half" Stages 

OPEX 
  (MM$ y-1) 4.1 0.86 0.85 

CAPEX 
 (MM$) 8.9 5.0 4.9 

NPVC 
 (MM$) 39.7 11.56 11.4 

 

Although propylene purities higher than 99.5% are not demanded by 

the polypropylene industry, it is instructive to consider a final comparison 

between the two-stage and two-and-half stage optimization models. For a 

propylene permeate specification of 99.9% we observe that the two stage 

process becomes infeasible and has no solution. In contrast, the two-and-

half stage model is able to provide any permeate concentration, and 

consequently satisfies this specification. As shown in Table 3.8, the 

optimum for this process is achieved at a much higher cost, with more than 

double the NPVC. 
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Table 3.8. Multistage processes Net Present Value Cost for 99.9% propylene 
specification 
 

 Propylene 99.5 % Propylene 99.9 % 
 2 St. 2.5 St. 2 St. 2.5 St. 

OPEX 
(MM$ y-1) 0.86 0.85 

 
Not 

Feasible 

2.05 

CAPEX 
(MM$) 5.0 4.9 8.74 

NPVC 
(MM$) 11.56 11.4 24.3 
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Abstract 

This chapter highlights the most important findings achieved in the course 

of this thesis. The main conclusions extracted from both the experimental 

and the modeling work are presented, along with a brief discussion on the 

future outlook of the proposed technology. Even more important, some 

remarks on the remaining challenges that can condition the industrial 

applicability of the developed membranes are showcased for further 

research.  
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4.1. General conclusions 

The main objective of this thesis is to assess the potential of novel 

PVDF-HFP/BMImBF4/AgBF4 composite membranes to replace current 

propane/propylene separation processes. In order to fulfill this objective, a 

thorough work on experimental characterization and modeling has been 

performed. The main conclusions drawn from the analysis of the results 

are now itemized: 

a) PVDF-HFP/BMImBF4/AgBF4 facilitated transport composite 

membranes have been synthesized through the solvent casting method. 

The result is a dense homogeneous material with good mechanical 

properties. 

 

b) The characterization techniques used to reveal the membrane structure 

confirm the formation of dense membranes and the existence of the 

chemical species and the interactions required to enable the facilitated 

transport mechanisms (i.e. fixed-site and mobile carriers). The 

evidences of such interactions comprise, on the one hand, the 

weakening of the C-F bound of the polymer CF2 groups detected 

through FTIR and XPS, which is caused by the interaction between 

Ag+ cations and the fluorine atoms of the PVDF-HFP, giving rise to a 

fixed-site carrier mechanism. And, on the other hand, the existence of 

free silver ions and uncomplexed ionic liquid within the polymer free 

volume, as revealed by Raman spectroscopy, which induces a mobile 

carrier transport mechanism.  

 

c) The time-lag permeation technique of propane and propylene pure 

gases in PVDF-HFP and PVDF-HFP/BMImBF4 membranes allowed 
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calculating the diffusivity and solubility parameters of the permeant 

species in the polymer and polymer/ionic liquid matrices, which are 

valuable data for the rigorous development of a mathematical model. 

Additionally, these data confirm that the separation of 

propane/propylene mixtures only by means of the solution-diffusion 

mechanism in PVDF-HFP is unsuccessful. Finally, the addition of 

BMImBF4 dramatically increases the gas diffusivity and slightly 

decreases the gas solubility. The result is a remarkable permeability 

enhancement caused by the plasticization effect of the ionic liquid 

upon addition in the polymer matrix. 

 

d) Continuous-flow permeation experiments with gas mixtures 

determined the promising propylene/propane separation capabilities of 

the composite membranes under several operating condition, namely 

temperature, feed pressure, membrane composition and feed relative 

humidity. The results show propylene permeability values of roughly 

200 Barrer and a propylene selectivity higher than 150 under dry 

conditions. On the other hand, it is worth highlighting the accused 

influence of the feed humidity on the membrane performance, yielding 

a propylene permeability higher than 2000 Barrer at 100%RH of the 

feed stream. However, this is achieved at the expense of the propylene 

selectivity, which is lowered to 20 at the above mentioned conditions. 

The TGA results confirm water uptakes of 25 wt.% of the silver-

containing membranes, which explain this behavior under humid 

conditions.     

 

e) A 110-days-long permeation experiment allowed quantifying the 

influence of silver degradation on the long-term membrane 
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performance, which, albeit subtle, could affect the industrial 

applicability of the proposed membranes. This will depend on the 

membrane lifetime required for the economic sustainability of the 

separation process. XPS spectroscopy revealed that the degradation 

mechanism comprises the reduction of Ag+ to Ag0. Eventually, 

permeation experiments with real propane/propylene mixtures 

supplied by a petrochemical company revealed no additional 

degradation caused by the potential presence of minor contaminants.   

 

f) The experimental data served to develop a semi-predictive 

mathematical model able to describe the transmembrane flux of the 

permeant species in the studied range of the operating variables. The 

model fitting to the experimental data confirms its usefulness for later 

process design and optimization. 

 

g) The viability of the proposed membrane material for its industrial 

application has been studied through the design and optimization of 

membrane separation processes. A partial introduction of this 

technology in the form of a hybrid membrane/distillation process, as 

well as a full replacement of the distillation by multistage membrane 

processes have been assessed. The results reveal that the hybrid system 

could generate OPEX savings between 33 and 50% compared to the 

distillation base-case, depending on the final composite membranes 

price. On the other hand, a comparison of the Net Present Value Cost 

revealed that a two-stage process has a total NPVC of around 25% of 

the traditional distillation, while a two-and-one-half-stage process has 

no advantages unless the propylene purity required exceeds the current 

industry demands. 
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On the whole, these results confirm the remarkable potential of PVDF-

HFP/BMImBF4/AgBF4 membranes implemented in alternative 

membrane-based separation processes to attain process intensification in 

the industrial propylene/propane separation. However, achieving full 

industrial applicability requires solving further challenges. First, the carrier 

degradation issues may shorten the membrane lifetime beyond a 

competitive standard. On the other hand, the membrane configuration 

plays a major role at the industrial scale, where high packing densities and 

ultrathin active layers are almost mandatory to ensure the economic 

sustainability of the whole process.  

4.2. Recommendations for future research 

Based on the general conclusions extracted from this thesis, and having 

identified the main obstacles encountered in the path to full industrial 

applicability, this section offers a brief guidance for future research works: 

- Study possible strategies to solve the carrier degradation issues. 

This goal can be approached by developing degradation inhibitors 

that can be added as additives in the membrane composition. Other 

possibility comprises the development of regeneration methods 

that reverse the reduction process from Ag0 to Ag+. 

 

- Synthesize industrially attractive membrane configurations, 

namely hollow fibers. This could be achieved either by coating of 

porous hollow fibers with the PVDF-HFP/BMImBF4/AgBF4 

composite material, or by direct spinning of dual-layer fibers. In 

both approaches the objective should be the formation of a dense 
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selective layer as thin as possible, in the range of a few hundred 

nanometers. 

4.3. Conclusiones generales 

El principal objetivo de esta tesis es estudiar el potencial de las 

novedosas membranas compuestas de PVDF-HFP/BMImBF4/AgBF4 para 

reemplazar los actuales procesos de separación de mezclas 

propano/propileno. Para lograr este objetivo, se ha llevado a cabo un 

exhaustivo trabajo de caracterización experimental y modelado. Las 

principales conclusiones extraídas del análisis de los resultados se 

muestran a continuación: 

a) Se han sintetizado membranas compuestas de transporte facilitado 

de PVDF-HFP/BMImBF4/AgBF4 mediante la técnica de solvent 

casting. El resultado es un material denso y homogéneo con buenas 

propiedades mecánicas. 

 

b) Las técnicas de caracterización empleadas para determinar la 

estructura de la membrana confirman la estructura polimérica 

densa y la existencia de las interacciones y las especies químicas 

necesarias para dar lugar a los mecanismos de transporte tanto por 

carrier fijo como por carrier móvil. Las evidencias de dichas 

interacciones son, por un lado, el debilitamiento de los enlaces C-

F de los grupos CF2 del polímero, detectado por FTIR y XPS, y 

causado por la interacción entre los cationes Ag+ y los átomos de 

flúor del PVDF-HFP, lo que da lugar al mecanismo de transporte 

por carrier fijo. Y, por otro lado, la existencia de iones plata libres 

y líquido iónico no complejado dentro del volumen libre del 
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polímero, como revela la espectroscopia de Raman, lo cual induce 

un mecanismo de transporte por carrier móvil. 

 

c) La técnica de permeación de propano y propileno mediante time-

lag con gases puros en membranas de PVDF-HFP y PVDF-

HFP/BMImBF4 permitió calcular los parámetros de difusividad y 

solubilidad de las especies permeantes en el polímero y la mezcla 

polímero/líquido iónico, siendo estos unos valiosos datos para el 

desarrollo riguroso de un modelo matemático. Adicionalmente, 

estos datos confirman que la separación de mezclas 

propano/propileno únicamente mediante el mecanismo de 

disolución-difusión en PVDF-HFP resulta infructuosa. 

Finalmente, la adición de  BMImBF4 incrementa drásticamente la 

difusividad de los gases y reduce ligeramente su solubilidad. El 

resultado es un marcado aumento de la permeabilidad causado por 

el efecto de plastificación del líquido iónico en la matriz 

polimérica. 

 

d) Los experimentos de permeación de flujo continuo con mezclas 

gaseosas determinaron las prometedoras capacidades de 

separación de las membranas compuestas bajo diferentes 

condiciones de operación, principalmente temperatura, presión de 

alimentación, composición de la membrana y humedad relativa de 

la corriente de alimentación. Los resultados muestran valores de 

permeabilidad de propileno de aproximadamente 200 Barrer y 

selectividades superiores a 150 bajo condiciones secas. Por otro 

lado, cabe resaltar la acusada influencia de la humedad de la 

corriente de alimentación en las prestaciones de la membrana, 



General conclusions and prospective view / Conclusiones generales y perspectivas 
 

100 

resultando en permeabilidades de propileno superiores a los 2000 

Barrer con una humedad relativa del 100% en la corriente de 

alimentación. Sin embargo, esto se consigue a expensas de la 

selectividad hacia el propileno, que disminuye hasta un valor de 

20 en las condiciones antes mencionadas. Los resultados de las 

termogravimetrías confirman retenciones de agua del 25% en peso 

en las membranas que contienen plata, lo que explica este 

comportamiento bajo condiciones húmedas. 

 

e) Un experimento de permeación de larga duración llevado a cabo 

durante 110 días permitió cuantificar la influencia de la 

degradación de la plata en la capacidad de separación de las 

membranas a largo plazo. Dicha degradación, aunque sutil, podría 

afectar a la viabilidad industrial de las membranas propuestas. Esto 

dependerá fundamentalmente de la vida útil requerida para lograr 

la sostenibilidad económica del proceso de separación. La 

espectroscopia XPS reveló que el mecanismo de degradación 

comprende la reducción de Ag+ a Ag0. Finalmente, experimentos 

de permeación con mezclas reales suministradas por una compañía 

petroquímica no revelaron una mayor degradación causada por la 

potencial presencia de contaminantes menores. 

 

f) Los datos experimentales obtenidos sirvieron para desarrollar un 

modelo matemático semipredictivo capaz de describir el flujo 

transmembranal de las especies permeantes en el rango estudiado 

de las variables de operación. El ajuste del modelo a los datos 

experimentales confirman la utilidad de dicho modelo para el 

posterior diseño y optimización de procesos. 
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g) La viabilidad del material de membrana propuesto para una 

aplicación industrial se ha estudiado a través del diseño y la 

optimización de procesos de separación mediante membranas. 

Para ello, se ha analizado una aplicación parcial de esta tecnología 

en forma de proceso híbrido membrana/destilación, así como una 

sustitución completa de la destilación mediante procesos de 

membrana multietapa. Los resultados revelan que el sistema 

híbrido puede generar unos ahorros en los costes de operación 

(OPEX) de entre el 33 y el 50% comparado con la destilación, 

dependiendo del precio final de la membrana compuesta. Por otro 

lado, una comparación del Valor Actual Neto de Costes (NPVC) 

reveló que un proceso de membrana de dos etapas tiene un NPVC 

del 25% del proceso de destilación, mientras que el proceso de dos 

etapas y media no presenta ventajas salvo que la pureza de 

propileno requerida exceda la pureza actualmente demandada por 

la industria. 

En conjunto, estos resultados confirman el notable potencial de las 

membranas de PVDF-HFP/BMImBF4/AgBF4 implementadas en procesos 

de separación alternativos para alcanzar la intensificación de procesos en 

la separación industrial de mezclas propano/propileno. Sin embargo, 

alcanzar una completa viabilidad a escalada industrial requiere resolver 

retos adicionales. En primer lugar, los fenómenos de degradación del 

carrier pueden acortar la vida útil de la membrana más allá de un estándar 

competitivo. Por otro lado, la configuración de membrana juega un papel 

clave a escala industrial, en donde altas densidades de empaquetado y 
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capas activas extremadamente delgadas son casi obligadas para asegurar la 

sostenibilidad económica del proceso. 

4.4. Recomendaciones para investigación futura 

Basándose en las conclusiones generales extraídas de esta tesis, y 

habiendo identificado los principales obstáculos en el camino hacia una 

completa viabilidad a escala industrial, esta sección ofrece una breve guía 

para futuros trabajos de investigación: 

- Estudiar posibles estrategias para solucionar los problemas de 

degradación del carrier. Este objetivo se puede lograr 

desarrollando inhibidores de la degradación que pueden ser 

añadidos como aditivos en la composición de la membrana. Otra 

posibilidad comprende el desarrollo de métodos de regeneración 

que reviertan el proceso de degradación desde Ag0 a Ag+.  

 

- Sintetizar configuraciones de membrana atractivas desde un punto 

de vista industrial, como son las fibras huecas. Esto se puede 

conseguir mediante “coating” de fibras huecas porosas con el 

material compuesto PVDF-HFP/BMImBF4/AgBF4, o 

directamente mediante “spinning” de fibras huecas de doble capa. 

En ambas estrategias el objetivo debe ser la formación de una capa 

densa selectiva tan delgada como sea posible, en el rango de unos 

pocos cientos de nanómetros.  
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In this work, a new consistent mathematical model for the description of the olefin flux through Ag+-
containing polymeric dense membranes is proposed. A fixed site carrier ‘‘hopping” parameter acting as
an effective permeability for this specific transport phenomenon is defined and calculated for the first
time. This study reports a simple and versatile approach that can be incorporated into future models
to simulate the more complex mobile/fixed hybrid mechanism acting in composite membranes.
Furthermore, in order to validate the model, the proof of concept has been carried out with PVDF-HFP/

AgBF4 facilitated transport membranes. The experimental analysis has been performed by the continuous
flow permeation method through flat membranes containing increasing silver loads, from 17 to 38% w/w
at olefin partial pressures ranging from 0.5 to 1.5 bar and temperatures of 293 and 303 K. These mem-
branes showed a promising performance, reaching values of propylene permeability up to 1800 Barrer
and very high propylene/propane selectivities. The reported model constitutes a very useful tool for pro-
cess optimisation and scale-up.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The global production of ethylene and propylene exceeds 200
million tones per year, being the purification stage responsible
for 0.3% of the global energy use [1]. Current separation processes,
mainly cryogenic distillation, consist on highly energy and capital
intensive operations [2], which typically account for 45–55% of
industrial processes energy consumption [1]. Some alternative pro-
cesses to cryogenic distillation have been proposed over the last
times, being the most studied: extractive distillation [3], physical
adsorption on molecular sieves [4], and chemical adsorption [5].
Nonetheless, some problems as low olefin loads and complicated
regeneration cycles have prevent these alternatives from replacing
traditional distillation [6].

Recently, membrane technology has emerged as a possible
solution that allows process intensification [7], which will lead to
energy and capital savings in many gas separation processes, such
as CO2 capture [8], CO separation [9], natural gas purification [10]
and hydrogen production [11]. In the short term, membranes can
be used for bulk separation, using distillation for the final ‘‘refin-
ing” of the product. Such hybrid systems would reduce the energy
requirements of olefin production by a factor of two or three [1]. A
wide range of membrane compositions have been reported for
olefin/paraffin separation, including liquid, polymeric and inor-
ganic membranes [12–16]. However, these technologies face some
major drawbacks. Liquid membranes show a serious lack of stabil-
ity due to solvent evaporation [17]. Polymeric dense membranes
suffer from poor performance in terms of selectivity and perme-
ability due to the similar sizes of permeant species [18]. Lastly,
inorganic membranes usually require complex and expensive
preparation methods and show low mechanical resistance.

The development of new materials has promoted recent studies
on their application to gas separation. In this regard, new studies
assess the performance of nanocomposite membranes [19],
mixed-matrix membranes containing metal organic frameworks
(MOFs) [20–22], polymers with intrinsic microporosity (PIMs)
[23] and membranes containing metallic nanoparticles [24],
achieving high olefin/paraffin selectivities.

Among the membrane systems reported, those regarding the
facilitated transport of olefins using a transition metal cation as
carrier agent have shown great performance for olefin/paraffin
separations [25–27]. The main advantage of carrier mediated facil-
itated transport membranes is their capability to achieve high val-
ues of selectivity and permeability at the same time, thus
overcoming the existing tradeoff between these two variables

http://crossmark.crossref.org/dialog/?doi=10.1016/j.seppur.2017.02.050&domain=pdf
http://dx.doi.org/10.1016/j.seppur.2017.02.050
mailto:ortizi@unican.es
http://dx.doi.org/10.1016/j.seppur.2017.02.050
http://www.sciencedirect.com/science/journal/13835866
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Nomenclature

Am membrane effective area [m2]
C concentration [mol L�1]

D diffusion coefficient [m2 s�1]

Ea activation energy [kJ mol�1]
F molar flowrate [mol s�1]

J molar flux [mol m�2 s�1]

Keq equilibrium constant [m3 mol�1]
KH fixed carrier effective permeability [mol bar�1 m�1 s�1]
Kp heterogeneous equilibrium constant [bar�1]
L membrane thickness [m3 mol�1 s�1]
p pressure [bar]
R universal gas constant [8.314 J mol�1 K�1]
S gas solubility [mol bar�1 m�3]
T temperature [K]
x mole fraction [–]

Greek letter
a fitting parameter
b percolation threshold exponent [–]

Superscript/subscript
0 feed side
C3H6 propylene
C3H8 propane
L permeate side
N2 nitrogen
m membrane
ref reference
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[28,29]. Facilitated transport membranes for olefin/paraffin sepa-
ration are prepared dissolving a silver salt within a polymeric
matrix, forming a solid membrane, usually known as polymer elec-
trolyte. On this matter, Bai et al. [30] synthesized ethyl-cellulose
membranes modified with the incorporation of several metal-
ions, achieving higher selectivity when testing silver cations
instead of other transition metals. Kim et al. [31] tested EPR-
coated polyester membranes with physically dispersed silver
aggregates that dissolved in situ when in contact with the olefin,
resulting in high selectivity towards the olefin; in addition, poly-
merized ionic liquids have been also assessed as a matrix for the
incorporation of silver cations with promising results [32]. These
membranes make use of the silver cations ability to selectively
and reversibly coordinate with olefin molecules, following a p–
bond complexation mechanism [33,34]. Additionally, our research
group has developed composite membranes incorporating ionic
liquids to the matrix polymer in order to improve the separation
performance and stabilizing the silver cations in the membrane
[28,35].

In this work, the use of dense polymeric facilitated transport
membranes made of PVDF-HFP fluoropolymer and AgBF4 silver salt
is reported. When AgBF4 dissolves into the polymer, it dissociates
into Ag+ and BF4- -ions. Then, Ag+ ions tend to bond with those poly-
mer atoms that can donate electrons to stabilize silver cations. Pre-
vious experimental studies have widely proven this distribution of
cations, assessing their interactions with electron donor atoms of
the polymer by means of FTIR spectra [36,37]. Once the membrane
is in contact with the olefin, p-bonding complexation between the
olefin and the cation takes place. Finally, due to the partial pressure
gradient, the olefin follows a hopping movement from one fixed
cation to the next, giving place to fixed carrier transport mecha-
nism [38,39]. PVDF-HFP fluoropolymer was selected because of
its well-known chemical, mechanical and thermal stability and
its good miscibility with AgBF4 silver salt; furthermore, besides
the copolymerization with HFP decreases its crystallinity degree
to around 0.3 [40], certain crystallinity in the polymer structure
may reduce the paraffin sorption, while the olefin solubility
remains high due to its complexation with the silver cations,
increasing the selectivity of the membrane.

Previously, interesting works have been reported trying to
describe this facilitated transport phenomenon in similar systems.
In this regard, Smith and Quinn [41] studied the facilitated trans-
port of carbon monoxide through cuprous chloride solutions;
Ravanchi et al. [42] and Kasahara et al. [43] developed mathemat-
ical models for propane/propylene separation using supported
liquid membranes and ion-gel membranes composed of gelled
ionic liquids on PTFE supports, respectively.

The present work proposes a novel mathematical description
for propylene flux through solid PVDF-HFP/Ag+ facilitated trans-
port membranes. Although previous reports of this research group
have assessed the addition of ionic liquids as additives to promote
carrier mobility [28], its use has been avoided in this study in order
to limit the transport mechanisms to fixed site carrier and
solution-diffusion. The mathematical approach at this stage
involves the experimental determination of the activation energy
(Ea), the equilibrium constant (Kp) and the influence of silver con-
centration (b), whereas the fitting parameter (a) has been esti-
mated using Aspen Custom Modeler software. The model is able
to describe the influence of the main operating variables on propy-
lene flux, such as temperature, partial pressure and membrane
composition. This model is the necessary tool for future process
design, scale-up and optimization.
2. Experimental

2.1. Chemicals

Propylene and propane gases were purchased from Praxair with
a purity of 99.5% for both gases. Poly(vinylidene fluoride-co-hexa
fluoropropylene) (PVDF-HFP) was supplied by Sigma Aldrich. Silver
tetrafluoroborate (AgBF4) with a minimum purity of 99% was pur-
chased from Apollo Scientific Ltd. Tetrahydrofuran (THF) was used
as solvent for membrane synthesis. All chemicals were used as
received with no further purification.
2.2. Membrane synthesis

PVDF-HFP/AgBF4 membranes were synthesized using the sol-
vent casting method. The selected amount of PVDF-HFP is dis-
solved in 10 mL of THF by stirring in a sealed glass vial to
prevent solvent evaporation. After 24 h of stirring at room temper-
ature, the vial is heated at 50 �C during 5 min until the polymer is
completely dissolved. Once the polymeric solution is prepared, it is
mixed with the desired amount of silver salt and stirred for 10 min.
Finally, the membrane precursor is poured in a Petri dish and
located in a vacuum oven for 24 h at 25 �C and 300 mbar under
dark conditions. The resulting thickness of the prepared dense
films depends on the silver load, but in all cases, it is
around 60 ± 10 lm. For calculation purposes, the real thickness of



Table 2
Membrane set.

Membrane AgBF4 load (% w/w) Thickness (lm) [Ag] (mol L�1)

1 16.7 53 2.47
2 28.6 67 3.91
3 37.5 71 5.53

Fig. 1. Transport mechanisms acting within the membrane.
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each membrane has been considered, being measured using a
digital micrometer Mitutoyo Digimatic MDC-25SX
(accuracy ± 0.001 mm).

2.3. Membrane morphology characterization

The cross-section and surface morphology of the membranes
were observed using scanning electron microscopy (Carl Zeiss
EVO MA 15). The samples were prepared by immersing and frac-
turing the membranes in liquid nitrogen followed by gold sputter-
ing using a Balzers Union SCD040 sputter coating system. The line-
scan spectrum of energy dispersive X-ray spectroscopy (EDX) was
applied to the same samples of SEM to determine the silver distri-
bution profile in the membrane cross-section.

2.4. Gas permeation experiments

The permeation experiments were conducted using the gas
mixture continuous flow technique detailed elsewhere [28];
briefly, the membrane is placed in a permeation cell and the gas
mixture is continuously fed into the upper chamber. Nitrogen gas
is used in the lower chamber as sweeping gas. The retentate and
permeate streams are finally analyzed using gas chromatography
and the experimental propylene flux is calculated by a simple mass
balance, as shown in Eq. (1).

JC3H6
¼ 1

Am

xC3H6

xN2

FN2 ð1Þ

where Am is the effective membrane area, xC3H6 and xN2 are the
propylene and nitrogen mole fractions, respectively, in the perme-
ate chamber outlet stream and FN2 is the nitrogen molar flow rate.
Gas permeation experiments were carried out at the experimental
conditions displayed in Table 1.

In order to assess the influence of silver concentration a set of
three membranes with different silver loads were synthesized;
membrane composition is shown in Table 2.

3. Mathematical modeling

The transport of propylene through the membrane is the result
of two different transport mechanisms acting simultaneously, as
illustrated in Fig. 1.

When a gas bulk is in contact with a non-porous material, gas
molecules start to solubilize spontaneously in the polymer matrix.
Adsorbed molecules then diffuse through the membrane, resulting
in a net gas flux if a partial pressure gradient is applied. Further-
more, when a certain quantity of AgBF4 is added to the membrane,
it dissociates into its ions. Silver cations tend to form new bonds
with those atoms present in the polymer matrix that can donate
their electrons to stabilize Ag+. These fixed silver cations promote
the fixed carrier mechanism [44]. If the membrane is exposed to
olefins, complexation takes place between the olefin molecules
and the Ag+ cations that are partially coordinated with the polymer
matrix [45]. The olefin then follows a hopping mechanism until it
Table 1
Experimental conditions.

Experimental condition Value

T (K) 293–313
Permeation area (cm2) 53
N2 flow (mL min�1) 20
C3H6 flow (mL min�1) 10
C3H8 flow (mL min�1) 10
Feed side pressure (bar) 1–4
Permeate side pressure (bar) 1
reaches the other side of the membrane, where the olefin is
released. The chemical reaction between the olefin and the silver
cation is described as:

Agþ þ C3H6 $Keq AgþðC3H6Þ ð2aÞ
In the heterogeneous form:

½Agþ� þ PC3H6 $
Kp ½AgþðC3H6Þ� ð2bÞ

The olefin flux given by the joint action of the two transport mech-
anisms can be expressed by Eq. (3) [46]:

JC3H6
¼ �DC3H6 ;m

dCC3H6

dx
� A

dCC3H6

dx
ð3Þ

where the parameter A acts as an effective diffusivity in the fixed
site carrier transport. Integrating Eq. (3) in the membrane domain
results in Eq. (4):

JC3H6
¼ DC3H6 ;m

C0
C3H6

� CL
C3H6

L
þ A

C0
C3H6

� CL
C3H6

L
ð4Þ

Assuming a sorption equilibrium at the interface:

JC3H6
¼ DC3H6 ;m � SC3H6 ;m

p0
C3H6

� pL
C3H6

L
þ KH

p0
C3H6

� pL
C3H6

L
ð5Þ

where KH acts as an effective permeability or ‘‘hopping constant” for
the olefin through the reactive pathway. The values of diffusivity
(D) and solubility (S) of propylene in the PVDF-HFP matrix have
been calculated in previous works [35]; however, in this case, the
contribution of the solution diffusion mechanism can be neglected
compared with the fixed carrier contribution. The transport capabil-
ity of the fixed site carrier mechanism is a function of the mem-
brane silver loading and the temperature [38]. A mathematical
expression can be derived for the dependence of KH with tempera-
ture and silver concentration, as shown in Eq. (6).

KH ¼ a
½AgT�

1þ KP � p0
C3H6

 !b

e
Ea
R

1
293�1

Tð Þ ð6Þ
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The effect of temperature is given by an Arrhenius type expression,
while the term in brackets is the concentration of uncomplexed sil-
ver cations, as obtained from the chemical equilibrium. The expo-
nent b was introduced to correct the silver concentration
influence on the propylene flux, given the percolation threshold
observed in these membranes by several authors [47–49]. The
parameter a is the fitting parameter of the model.

On the other hand, given that propane is only affected by fickian
diffusion, its flux can be easily described by the solution-diffusion
equation:

JC3H8
¼ DC3H8 ;m � SC3H8 ;m

p0
C3H8

� pL
C3H8

L
ð7Þ

4. Results and discussion

4.1. Membrane morphology

Fig. 2 displays the SEM photographs of a PVDF-HFP membrane
and PVDF-HFP/AgBF4 membranes 1 and 3. In all cases the
Fig. 2. Cross-section and surface morphology of: (A) Pure PVDF-HFP mem

Fig. 3. SEM-EDX scan-line and silver distribution profile
PVDF-HFP forms a homogeneous dense polymeric matrix with no
signs of porosity or differentiated layers. Furthermore, no particle
clusters appear in the polymer electrolyte membranes, indicating
that the added salt is completely dissolved.

The EDX spectra of the membrane with the highest silver load-
ing displayed in Fig. 3 shows a uniform distribution of the element
silver along the cross-section of the membrane, with no evidence
of silver particles formation. This is in good agreement with the
previously discussed works on the interactions between the Ag+

cations and the polymer matrix [36,37].
4.2. Permeation results

In this section, the permeation results are discussed; the exper-
imental propylene flux through the membranes 1–3 as a function
of propylene partial pressure is depicted in Fig. 4 at 293 and
303 K, respectively.

As the difference of propylene partial pressure is the driving
force in the permeation process, the olefin flux increases when
brane, (B) membrane 1 [Ag] = 2.47 M, (C) membrane 3 [Ag] = 5.53 M.

in the cross-section of membrane 3 [Ag] = 5.53 M.
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its feed partial pressure rises. In contrast to the conventional
solution-diffusion transport mechanism, that describes a linear
increase of the permeate flux with increasing driving force, i.e. par-
tial pressure difference, these membranes display the characteris-
tic fixed-site-carrier facilitated transport profile described
elsewhere [50]. At very low values of the driving force, most part
of the transported molecules follow the complexing mechanism,
resulting in a non-linear profile. On the other hand, for high driving
forces, every silver cation is bound to propylene molecules and the
carrier becomes saturated. In this state, any flux increase is mainly
induced by the solution-diffusion mechanism, and thus, the linear
trend is only achieved after surpassing a threshold value of the par-
tial pressure gradient.

Comparing Fig. 4(a) and (b) it can be observed that the temper-
ature has a strong influence on the permeation process, increasing
the flux of propylene. This increase of the olefin flux is due to the
enhancement in the gas diffusivity, as reported before [35]. The
temperature also has a positive influence on the rate of complexa-
tion and decomplexation reactions, thus enhancing the olefin facil-
itated transport. In contrast to diffusivity, the solubility of both
gases slightly decreases with temperature; nonetheless, the influ-
ence of this trend is completely overlapped by the diffusivity effect.
However, as the paraffin diffusivity undergoes an increasing trend
with temperature, it results in a selectivity decrease towards the
olefin at higher temperatures.

Pristine PVDF-HFP copolymer is known for being a low perme-
able material. This property combined with transport facilitation
towards propylene yields very high selectivity. In fact, the propane
concentration in the permeate stream when testing membranes 1
and 2 was below the gas chromatograph detection limit (0.025 vol.
%). The permeate stream of membrane 3 contained a minor quan-
tity of propane at the higher feed pressures, as displayed in Fig. 5.
The resulting selectivity ranges from 100 to 300. Given that previ-
ous studies involving pure gases report lower values of propane
permeability in PVDF-HFP [35], a dragging effect caused by the
high propylene fluxes is probably happening in membrane 3,
resulting in a propane permeability increase. Fig. 5 shows the dif-
ference between the experimental fluxes of propylene and
propane.

Thus, these experimental results demonstrate that it is possible
to achieve high propylene flux and selectivity even at low partial
pressures and moderate temperatures.

Comparing all three membranes in terms of silver loading
and propylene flux, one can observe that the silver concentra-
tion has a major influence on the olefin permeability. When
the silver content increases within the membrane, more silver
cations are available to coordinate with olefin molecules. The
result is a noticeable increase in propylene facilitated transport
that follows an exponential trend, Fig. 6. A similar behaviour
was reported by Yoon et al. [47] in PEOx and PVP with AgBF4
and AgCF3SO3 silver salts, by Morisato et al. [48] in PA-12-
PTMO/AgBF4 membranes, and by Kim et al. [49] in different
polymer/silver membranes, although it has not been previously
reported in PVDF-HFP fluoropolymer. This trend evidences a
percolation threshold; at low carrier concentrations, the facili-
tated transport is almost negligible, while increasing the con-
centration results in a major increase of the olefin flux. This
phenomenon is related to the proximity between active sites;
at low concentrations, the distance between two consecutive
cations is too large to allow the facilitated transport; on the
other hand, at higher concentrations the silver cations are close
enough to transport the olefin. In these membranes, the perco-
lation threshold seems to be surpassed at silver concentrations
higher than 2.5 mol�L�1.

4.3. Mathematical model

One of the main targets of this work is to provide a simple yet
effective model to predict the olefin flux in this polymer/silver sys-
tem. This tool will be useful to design and optimize commercial
attractive configurations as spiral wound or hollow fiber geome-
tries. The model contains one fitting parameter and three calcu-
lated parameters.

In order to avoid interferences in parametric sensitivity, the
experimental determination of the activation energy, the equilib-
rium constant and the exponent b has been carried out isolating
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the influence of temperature from the influence of silver
concentration. The values of calculated parameters are shown in
Table 3.

To calculate the activation energy of the permeation process,
experimental data at constant pressure and constant silver concen-
tration, modifying the temperature, were fitted to an Arrhenius
type equation, Eq. (8):

lnKH ¼ lna0 þ Ea
R

1
Tref

� 1
T

� �
ð8Þ

Using the same methodology, the equilibrium constant KP and the
exponent b were determined by regression of permeability data at
constant temperature, with silver concentration and olefin partial
pressure, Eq. (9):

KH ¼ a00 Ag
1þ KP � pi

� �b

ð9Þ

Aspen Custom Modeler software was used to fit the experimen-
tal data to the model equations and estimate the fitting param-
eter a, which has a value of 3.24 � 10�11 for this particular case
study.
Table 3
Calculated model parameters.

Parameter Value

Activation energy, Ea (kJ mol�1) 61
Equilibrium constant, Kp (bar�1) 0.12
Beta exponent, b 4.235
Once the model parameters are determined, the model
describes the permeation process of propylene through the facili-
tated transport membrane, providing that all operating variables
are inside the studied range. Fig. 7 shows experimental and model
flux values of propylene at several temperatures and olefin partial
pressures with membranes 1 to 3.

The estimated propylene fluxes are represented against the
experimental propylene fluxes in the parity graph shown in
Fig. 8. In the parity graph, a 15% error range is also displayed, prov-
ing that the majority of points fall within this range, and checking
the adequacy of the proposed model to describe the experimental
behavior of propane/propylene separation using PVDF-HFP/Ag+

membranes.
4.4. Membranes comparison

Various polymer electrolytes comprising different polymer
matrices and silver salts have been previously reported for propy-
lene/propane separation. Table 4 displays the selectivity values
achieved by other authors when similar propylene/propane gas
mixtures were tested. It is remarkable the performance of the
PDMS/AgBF4 membranes reported by Kim et al. [51]; with the par-
ticularity that the silver cations are not bounded to the polymer
chains, according to the authors; silver remains forming ionic
aggregates that progressively dissolve upon its contact with the
olefin. The use of PVDF-HFP as polymeric matrix reported in this
work yields higher selectivity compared with other membranes
that use the same silver salt, and shows great potential for the
intensification of the olefin/paraffin separation process.
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Table 4
Comparison with previous reported facilitated transport membranes.

Membrane C3H6/C3H8 gas mixture Feed pressure (bar) Thickness (lm) Permeance (GPU) a Selectivity Ref.

Poly(ethylene-co-propylene)/62 wt.% AgBF4 50/50 1–2 7 55 [31]
PEBAX 1657/50 wt.% AgBF4 50/50 4 25 4b 17.2 [27]
PEBAX 1657/50 wt.% AgBF4 66/34 2 25 5b 20.2 [27]
PEOx/AgBF4 [Ag]/[C = O] 1:1 50/50 2.76 1 35 58 [47]
PEOx/AgCF3SO3 [Ag]/[C = O] 1:1 50/50 2.76 1 32 19 [47]
PVP/AgBF4 [Ag]/[C = O] 1:1 50/50 2.76 1 36 65 [47]
PVP/AgCF3SO3 [Ag]/[C = O] 1:1 50/50 2.76 1 28 18 [47]
PDMS/57 wt.% AgBF4 50/50 2 13 150 [51]
PVDF-HFP/37.5 wt.% AgBF4 50/50 2 71 25b 300 This work

a Permeance in GPU. 1 GPU = 1 � 10�6 cm3 (STP)/cm2 s cmHg.
b Calculated from reported permeability and thickness.
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5. Conclusions

A mathematical expression for the ‘‘effective permeability” of
propylene by the fixed carrier mechanism has been deduced and
the fitting parameter has been estimated based on experimental
data. The validity of the model has been checked by comparing
simulated and experimental permeation data for propylene/pro-
pane gas mixtures in PVDF-HFP/Ag+.

The resulting olefin fluxes follow the characteristic trend of
facilitated transport processes when increasing the feed pressure,
and indicate a promising performance in terms of propylene per-
meability. The silver loading dramatically increases the propylene
flux in an exponential trend, which suggests the existence of a con-
centration threshold. The comparison between experimental and
predicted values and the model parity graph suggest a reliable
goodness of fit.

The mathematical approach reported in this work is susceptible
to be applied in those membrane systems where the fixed carrier
mechanism is present and allows to calculate its contribution to
the total permeate flux in a fast and simple manner. Therefore, this
model will be a valuable tool for future design and optimization of
more complex propylene/propane separation systems (i.e. mobile-
fixed carrier hybrid membranes) in more efficient process
configurations.
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A B S T R A C T

The present work expands previous modeling knowledge on facilitated transport membranes for olefin/paraffin
separation. A new robust and practical mathematical model for the description of light olefin flux in composite
polymer/ionic liquid/Ag+ membranes is reported. The model takes into account three different transport me-
chanisms, i.e., solution-diffusion, fixed-site carrier and mobile carrier transport mechanisms. Fixed-site carrier
contribution that appears thanks to the bounding of silver cations with the polymer chains is described through a
“hopping parameter”. Furthermore, given that the addition of an ionic liquid to the membrane composition
promotes carrier mobility, the inclusion of a dedicated expression is necessary for a realistic description of
mobile-carrier transport phenomena. The contribution of each mechanism in weighted based on the membrane
composition.

In order to check the model suitability, simulated values have been matched to experimental data obtained by
continuous flow propane/propylene permeation experiments through PVDF-HFP/BMImBF4/AgBF4 composite
membranes, working with 50:50 gas mixtures at different temperature and pressure. The resultant model offers
good predictions for olefin flux and provides a very useful tool for process optimization and scaling-up. To our
knowledge, this is the first time that mobile and fixed site carrier mechanisms performance are simultaneously
modeled considering the influence of temperature, pressure and carrier loading.

1. Introduction

The separation of light olefin/paraffin mixtures has been recently
defined as one of the key chemical separations that can bring great
global benefits once improved. Replacing traditional distillation by new
processes that do not require a phase change could lower the energy
intensity of the process by a factor of ten [1]. In this sense, membrane
technology offers a modular and cost-effective solution able to reduce
the energy demand of the separation process by means of process in-
tensification [2].

Several approaches have been reported to synthesize effective
olefin/paraffin separation membranes. The simplest way is to exploit
the intrinsic separation properties of polymers in a dense membrane
configuration. Dense polymeric membranes made of glassy, rubbery
and cellulosic polymers perform high selectivities at the expense of low
permeabilities [3–6]. More recently, new materials have been tested for
their application in alkane/alkene separation, including polymers with
intrinsic microscopy [7,8], metal-organic frameworks [9,10], carbon
molecular sieves [11,12] and graphene [13], displaying a wide dis-
tribution of results.

However, the intrinsic separation properties of polymers are vastly
improved when a metallic cation with the ability to reversibly and se-
lectively react with the olefin is dissolved in the polymer matrix, re-
sulting in the facilitated transport mechanism [14]. In this context,
silver cations are known for their capability to form stable complexes
with the olefin via π-bonding mechanism [15,16].

Gas separation based on facilitated transport has been approached
working in liquid phase, mainly in the form of supported liquid mem-
branes [17–20], but their poor mechanical stability and the solvent
losses by evaporation are major drawbacks for real industrial applica-
tion, especially when subjected to pressure gradients [21]. In order to
overcome this handicap, the use of ionic liquids as liquid phase has
been recently assessed [22]. Besides their negligible vapor pressure,
ionic liquids are non-flammable excellent solvents whose chemical and
physical properties can be tailored by a judicious selection of cation,
anion, and substituents [23,24].

The unique properties of ionic liquids can be used to improve
membrane performance in polymer electrolyte membranes. On the one
hand, the presence of an ionic liquid within the free volume of the
polymer promotes mobility among the silver cations which, after

http://dx.doi.org/10.1016/j.memsci.2017.08.010
Received 21 June 2017; Received in revised form 27 July 2017; Accepted 4 August 2017

⁎ Corresponding author.
E-mail address: ortizi@unican.es (I. Ortiz).

Journal of Membrane Science 542 (2017) 168–176

Available online 09 August 2017
0376-7388/ © 2017 Elsevier B.V. All rights reserved.

MARK



binding to the olefin, will diffuse through a mobile-carrier transport
mechanism [25]; in this way, the characteristic fixed-carrier “percola-
tion threshold” is avoided and facilitated transport occurs even at low
silver concentrations [26]. On the other hand, the lack of volatility of
ionic liquids mitigates the stability issues produced by solvent eva-
poration during the first operating hours. In addition, it is remarkable
that silver ions are more stable when surrounded by ionic liquid mo-
lecules [16,27,28].

Composite facilitated transport membranes prepared by introducing
a room temperature ionic liquid inside the polymer electrolyte free
volume, have shown great performance for olefin/paraffin separation,
easily surpassing the trade-off between permeability and selectivity for
polymeric membranes [29]. Several approaches have been assessed,
including the use of polymerized ionic liquids as polymeric matrix [30].
The internal structure of a composite membrane consists of a polymeric
matrix with the ionic liquid molecules entrapped within the free vo-
lume. The silver cations are distributed; some are bonded to the
polymer electronegative atoms while others are solvated by the ionic
liquid. In the first case, the olefin “hops” from a cation site to a different
cation site in a sequence of complexation-decomplexation steps,
achieving a net flux thanks to the activity gradient [31,32]. In the
second case, the whole Ag+-olefin complex diffuses through the ionic
liquid domains existing within the polymer free volume [22].

The use of membranes to carry out this separation has been modeled
for various materials and configurations. Regarding polymeric mem-
branes, Najari et al. [33] studied and compared several models, in-
cluding the frame of reference/bulk flow and Maxwell-Stefan models
for polyimide membranes, while Sridhar and Khan [34] and Castoldi
et al. [35] developed mathematical models focusing on industrial
membrane configurations.

Regarding facilitated transport membranes, their promising per-
formance has promoted several works on mathematical modeling to
explain the transport phenomena in solid-state membranes; being the
most recognized the dual sorption model [36,37], the limited mobility
of chained carriers model [38,39] and the concentration fluctuation
model [40,41]. In addition, mobile carrier facilitated transport in the
liquid phase has been previously modeled for several separation sys-
tems as nitric oxide in ferrous chloride solutions [42] and enriched-air
production [43]. However, all of them find their application in mem-
branes that perform according to one facilitated transport mechanism,

making them unsuitable for composite membranes that perform ac-
cording to hybrid mobile/fixed carrier transport.

In this work, the main goal is to develop a general and broadly
applicable mathematical model able to describe the olefin flux through
polymer-IL composite membranes as a function of the membrane
composition and operating conditions. The model expresses the total
flux as a sum of the contributions caused by the three mentioned me-
chanisms. A new expression to define the fixed-site carrier effective
permeability through a “hopping parameter” is used along with the
mathematical expressions for mobile carrier and solution-diffusion
mechanisms. The model contains two fitting parameters that have been
estimated using modeling software, fitting the mathematical model to
experimental data.

The experimental values have been obtained by continuous flow
propane/propylene gas-mixture permeation experiments on composite
membranes made of PVDF-HFP, the ionic liquid 1-butyl-3-methylimi-
dazolium tetrafluoroborate (BMImBF4) and AgBF4 silver salt. The se-
paration capability of this membrane composition had been previously
checked by this research group [29] but the polymer/ionic liquid ratio
has been optimized for the experimental section of this work. The
imidazolium-based BMImBF4 ionic liquid was selected based on pre-
vious screening works that revealed a proper propylene solubility and
good miscibility with the PVDF-HFP fluoropolymer [44]. The use of a
silver salt with the same anion as the ionic liquid intends to reduce the
number of chemical species in the composite membranes, hence redu-
cing its complexity. Finally, the PVDF-HFP fluoropolymer presents
moderate crystallinity [45], which is related to the low physical solu-
bility of the gaseous species. Therefore, as the olefin sorption is vastly
enhanced by the chemical complexation, the use of a low permeable
polymer in conjunction with facilitated transport results in very high
selectivities and permeabilities. In addition, PVDF-HFP presents re-
markable mechanical, thermal and chemical stability.

As opposed to previous models reported in the literature, this model
is able to simulate the three transport mechanisms simultaneously
acting in the membrane, weighting at the same time their relative
contribution. Therefore, the reported model provides a useful pre-
dictive tool to be applied in such systems where fixed-site carrier and
mobile carrier transport mechanisms coexist, thus simplifying the op-
timization and scaling-up of composite membranes-based separation
units.

Nomenclature

A mobile carrier effective olefin diffusivity [m2 s−1]
Am membrane effective area [m2]
B fixed-site carrier effective olefin diffusivity [m2 s−1]
C concentration [mol L−1]
D diffusion coefficient [m2 s−1]
Ea activation energy [kJ mol−1]
F molar flowrate [mol s−1]
H Henry's solubility constant [mol bar−1 m−3]
ΔHsol Henry's constant enthalpy [kJ mol−1]
J molar flux [mol m−2 s−1]
Keq equilibrium constant [m3 mol−1]
KH fixed carrier effective permeability [mol bar−1 m−1 s−1]
Kp heterogeneous equilibrium constant [bar−1]
L membrane thickness [m]
P permeability [mol bar−1 m−1 s−1]
p pressure [bar]
R universal gas constant [8.314 J mol−1 K−1]
ΔHr complexation reaction enthalpy [kJ mol−1]
S gas solubility [mol bar−1 m−3]
T temperature [K]
X mole fraction [-]

x membrane thickness dimension [m]

Greek letter

α fitting parameter

Superscript / subscript

0 feed side
C3H6 propylene
C3H8 propane
comp organometallic complex
D organometallic complex diffusion
eq chemical equilibrium
FC fixed-site carrier
IL ionic liquid
L permeate side
N2 nitrogen
m membrane
MC mobile carrier
r reaction
ref reference
SD solution-diffusion
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2. Experimental

2.1. Chemicals

Propylene and propane gases were purchased from Praxair with a
purity of 99.5% for both gases. Poly(vinylidene fluoride-co-hexa-
fluoropropylene) (PVDF-HFP) was supplied by Sigma Aldrich. The ionic
liquid BMImBF4 with a minimum purity of 99% and a halide content of
less than 500 ppm was provided by Iolitec. Silver tetrafluoroborate
(AgBF4) with a minimum purity of 99% was purchased from Apollo
Scientific Ltd. Tetrahydrofuran (THF) was supplied by Panreac and was
used as solvent for membrane synthesis. All chemicals were used as
received with no further purification.

2.2. Membrane synthesis

The composite membranes for the experimental tests were prepared
by the solvent casting method. The desired amount of PVDF-HFP was
dissolved in THF using a 10 mL sealed glass vial to avoid solvent losses
by evaporation. The content was stirred during 24 h at room tem-
perature. To achieve complete dissolution of the polymer, the mixture
was subjected to a heating step at 50 °C during 5 min. After that, the
selected amounts of ionic liquid and silver salt were added to the so-
lution and the whole mixture was stirred at room temperature during
15 min. The membrane precursor was poured in a glass dish and then
introduced in a vacuum oven overnight at 800 mbar and 25 °C. Finally,
a more severe evaporation step at full vacuum (~1 mbar) during 1 h
was performed for further solvent removal. Light exposure was avoided
during the whole synthesis process to prevent silver reduction. The
resulting thickness of the prepared dense films was around 100 µm. For
calculation purposes, the real thickness of each membrane was mea-
sured using a digital micrometer Mitutoyo Digimatic MDC-25SX (ac-
curacy± 0.001 mm).

2.3. Gas permeation experiments

The gas permeation experiments were conducted using the gas-
mixture continuous-flow technique. A complete description of the
permeation method has been included in previous works [29]. Essen-
tially, the membrane was placed in a steel permeation cell and the
desired olefin/paraffin mixture was passed through the upper chamber.
Nitrogen was used as sweeping gas through the permeate side. The cell
was located in a temperature-controlled oven. The feed and permeate
streams were analyzed using a gas HP 6890 chromatograph equipped
with a thermal conductivity detector (TCD). A simple mass balance
allows calculating the experimental flow of each gaseous species
through the membrane:

=J
A

x
x

F1
C H

m

C H

N
NX

X
3

3

2
2 (1)

Where Am is the effective membrane area, xC H3 X and xN2 are the gaseous
species mole fractions, respectively, in the permeate chamber outlet
stream and FN2 is the nitrogen molar flow rate. The permeation ex-
periments were conducted at the experimental conditions shown in
Table 1, where the studied variables are the temperature, ranging from
293 to 303 K, the feed pressure, ranging from 1 to 3 bar and the
membrane silver loading from 1.3 to 5.2 mol L−1.

2.4. Membrane morphology characterization

Scanning electron microscopy (Carl Zeiss EVO MA 15) was em-
ployed to observe the cross-section and surface morphology of the
synthesized membranes. The samples were prepared by liquid nitrogen
fracturing to avoid altering the sectional morphology, followed by gold
sputtering in a Balzers Union SCD040 sputter coating system. The line-
scan spectrum of energy dispersive X-ray spectroscopy (EDX) was

applied to the same samples of SEM to assess the silver dispersion
profile in the membrane cross-section.

3. Mathematical modeling

The gas transport mechanisms occurring inside the membrane are
the result of the complex membrane structure. In the reported model,
we approach the complexity of the composite membrane structure by
simplifying its nature, considering that the transport mechanism is
shared between fixed site and mobile carrier, accounting for bounded
and unbounded silver cations, respectively. On the one hand, fixed-site
carrier mechanism appears when the silver cations bind to polymer
atoms that can donate electrons and stabilize (i.e. fluorine atoms pre-
sent in PVDF-HFP backbone). Experimental studies in the literature
report the capability of fluorine atoms in C-F groups to form co-
ordination bonds with cations as Ag+ [46,47]. In this regard, PVDF-
HFP has been previously reported for the preparation of polymer
electrolytes by blending with HBF4, resulting in the proton coordination
with the polymer fluorine atoms [48]. The AgBF4 solubility in a
polymer matrix by means of coordination with the electron-donor
atoms of the polymer chains has been also reported [49]. On the other
hand, the presence of ionic liquid molecules within the free volume of
the polymer facilitates the existence of unbound silver cations with
higher freedom to diffuse. When the olefin complexes with one of these
silver cations, the whole organometallic complex diffuses through the
membrane. This transport mechanism is known as “mobile carrier”. A
schematic representation of the transport mechanisms is depicted in
Fig. 1.

The total propylene flux through the membrane may be calculated
as the sum of the contribution of each transport mechanism [32]:

= − − −J D
dC

dx
A

dC
dx

B
dC

dxC H C H m
C H C H C H

,3 6 3 6
3 6 3 6 3 6

(2)

The parameters A and B represent the “effective diffusivity” of the
organometallic complex specie in the mobile carrier and fixed-site
carrier mechanisms respectively. Eq. (2) can be integrated along the
membrane domain:
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Where subscripts 0 and L refer to feed and permeate sides, respectively.
If sorption equilibrium at the interphase is assumed, Eq. (3) can be
reformulated as:
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Where Pcomp is the permeability of the olefin based on the olefin-silver
complex transport and KH acts as an effective permeability or “hopping

Table 1
Experimental conditions.

Experimental condition Value

T (K) 293–303
Permeation area (cm2) 53
N2 flow (mL min−1) 20
C3H6 flow (mL min−1) 15
C3H8 flow (mL min−1) 15
C3H8/C3H6 feed gas ratio 50:50
Feed side pressure (bar) 1–3
Permeate side pressure (bar) 1
Silver concentration (mol L−1) 1.3–5.2
Polymer/ionic liquid mass ratio 80:20
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parameter” for the olefin via fixed site carrier mechanism. The diffu-
sivity and solubility values of propylene in the PVDF-HFP/BMImBF4
matrix have been reported previously [50]; however, in many cases, the
contribution of the solution-diffusion mechanism can be neglected
compared with that caused by facilitated transport.

The permeability of the olefin-silver complex attributed to the mo-
bile carrier mechanism is the product of its diffusivity in the ionic liquid
times its chemical solubility; this latter parameter can be obtained from
the complexation reaction between the silver cations and the propylene
as follows [27]:

+ ←→+ +Ag C H Ag C H( )
Keq

3 6 3 6 (5)

The equilibrium constant can be expressed as:

=
⋅

+

+k
Ag C H
Ag C H

[ ( )]
[ ] [ ]eq

3 6

3 6 (6)

While the concentration of free cations is given by:

= −+ +Ag Ag Ag C H[ ] [ ] [ ( )]T
3 6 (7)

Solving for the complex specie concentration:
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Furthermore, after the relationship between the concentration of
propylene physically absorbed and the partial pressure in the gas phase
through a Henry type isotherm the resulting equation is:
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So that the ratio between the organometallic complex concentration
and the propylene partial pressure in the gas phase, i.e. a chemical
solubility coefficient, can be obtained as:
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Finally, the olefin permeability through the mobile carrier me-
chanism can be expressed as:
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Where the equilibrium constant keq, the physical solubility of the pro-
pylene in the ionic liquid HC H3 6, the olefin-paraffin complex diffusivity
Dcomp, and the influence of temperature on these parameters have been
reported in previous works [22,27]:
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In addition, it should be taken into account that the transport flux
due to the fixed site carrier mechanism, characterized by the “hopping
parameter” KFC, is a function of the silver loading in the membrane and
the temperature [51]. A mathematical expression can be derived for the
dependence of KFC on temperature and silver concentration. The con-
centration of free cations ready to coordinate with propylene molecules
to form the coordination complex can be derived from the chemical
equilibrium. In this regard, the heterogeneous complexation reaction
between propylene and silver cations bound to the polymer matrix is
depicted by the following equation:

+ ↔+ +Ag P Ag C H[ ] [ ( )]C H
k

3 6
p

3 6 (15)

Again, the equilibrium constant can be expressed as:
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Introducing Eq. (7) and solving for the free silver cations con-
centration:
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The proportionality between the value of KFC and the variables is
defined through the fitting parameter α:
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In Eq. (18) the influence of temperature in the hopping mechanism
has been described through an Arrhenius-type expression, and the term
in brackets refers to the concentration of free “uncomplexed” silver
cations, as obtained from the heterogeneous chemical equilibrium, Eq.
(16). The value of the heterogeneous equilibrium constant has been
taken from previous works based on the fixed-site carrier mechanism
[51]. The parameter α and the activation energy of the hopping para-
meter (EaFC) are the two fitting parameters of the model.

To summarize, the propylene flux is described as the sum of three
contributions as follows:

= + +J J J JC H C H SD C H MC C H FC, , ,3 6 3 6 3 6 3 6 (19a)
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The contribution of the two different mechanisms of facilitated
transport mechanism has been weighted based on the mass fraction of
ionic liquid in the membrane composition xIL. This approach assumes
that the available silver cations are distributed according to the
polymer/ionic liquid mass ratio and homogeneously dispersed as ob-
served in EDX analysis.

The propane flux is caused by simple Fickian diffusion along the
membrane, as described by the following equation:
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With the exception of the fitting parameters, α and EaFC, the values

Fig. 1. Schematic representation of the gas transport mechanisms.
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of model parameters have been extracted from previous works. In the
case of mobile carrier, the values of the organometallic complex dif-
fusivity and its dependence on temperature were taken from an ex-
perimental study on supported ionic liquid membranes (SILMs). These
membranes where synthesized introducing the BMImBF4/AgBF4 mix-
ture in the pores of a hydrophilic PVDF support [22]. The value of the
equilibrium constant for the complexation reaction, the propylene so-
lubility in the ionic liquid, and their enthalpies were extracted from
absorption equilibria of propylene in ionic liquid/Ag+ solutions [27].
The value of the heterogeneous equilibrium constant was calculated in
a previous study on fixed site carrier mechanism [51].

It is worth noticing that the values of the estimated parameters are
dependent on the chemical nature of the involved species (permeant
gas, polymer, carrier and ionic liquid) and the interactions between
them. As a result, the procedure to implement this model in similar
hybrid systems implies the use of case-specific model parameters and
the estimation of a new pair of values for both α and EaFC.

4. Results and discussion

4.1. Membrane morphology

Fig. 2 shows the cross-section and surface of a PVDF-HFP mem-
brane, a PVDF-HFP/BMImBF4 membrane and a composite PVDF-HFP/
BMImBF4/AgBF4. The cross-section micrographs show a non-porous
homogenous structure without cavities or voids in all three cases. There
is no evidence of pure ionic liquid domains in membranes B and C,
proving the complete mixture between the ionic liquid and the
polymer. Furthermore, the addition of the silver salt in membrane C
does not modify the structure but maintains the original dense and
homogeneous pattern.

Further knowledge on membrane structure can be extracted from
the EDX analysis. EDX makes use of x-ray spectrum emitted by the solid
sample bombarded with a focused beam of electrons to obtain a loca-
lized chemical analysis. When the sample is hit by the electron beam,
electrons are ejected from the atoms of the sample's surface. The re-
sulting electron vacancies are filled by electrons from a higher energy

state, and an x-ray is emitted to balance the energy difference between
the two electrons' states. The x-ray energy is characteristic of the ele-
ment from which it was emitted.

In this work, EDX was used in conjunction with SEM to obtain scan-
lines and plot-mapping patterns of elemental silver on cross-sectional
images of the composite membrane. The energy dispersive x-ray spec-
troscopy patterns shown in Fig. 3 confirm that no ionic aggregates or
silver particles are formed inside the membrane, which is in good
agreement with the previous discussion on silver salt dissolution. Thus,
the silver is homogeneously dispersed along the membrane thickness
with no layers of preferential accumulation.

4.2. Permeation results

Table 2 displays the experimental performance of the composite
membranes assessed in this work. The experimental effective perme-
ability has been calculated normalizing the experimental flux with the
membrane thickness and the partial pressure gradient, as shown in Eq.
(21).

=P J L
ΔpC H C H

C H
X X

X
3 3

3 (21)

Facilitated transport phenomena yielded remarkably high values of
propylene permeability. On the other hand, the composite material
causes very low propane permeability, as it is only due to Fickian dif-
fusion. As a result, the membrane provides remarkably high separation
selectivity values. The results show that the propane permeability suf-
fers a slight increase as the silver loading rises. Although the behavior
of the paraffin is unusual, similar behavior has been observed in some
previous studies, such as those reported by Kim et al. [52] and Surya
Murali et al. [53].

Fig. 4 depicts the influence of the feed partial pressure on the ex-
perimental olefin flux. As the partial pressure gradient offers the driving
force of the separation process, it has a direct effect on the propylene
flux. Nonetheless, the composite membrane performs high olefin fluxes
even at the lower assessed partial pressures, forecasting its suitability
for the separation of other olefin/paraffin mixtures with minor presence

Fig. 2. Cross-section and surface morphology of: A) PVDF-HFP membrane B) PVDF-HFP/BMImBF4 membrane, C) PVDF-HFP/BMImBF4/AgBF4 5.2 mol/L.
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of the olefin. On the other hand, the effect of the temperature increase
on the propylene flux is also depicted in Fig. 4. The resulting higher flux
at 303 K is mainly caused by the positive effect of temperature on the
organometallic complex diffusivity. Although the solubility of the gas-
eous species decreases at higher temperatures and the complexation
equilibrium constant is negatively affected by the temperature, these
effects are hindered by the diffusivity influence on the permeation
process [50].

The non-linear trend observed in Fig. 4 is an indication that a se-
lective reaction is taking place within the membrane, which is con-
sistent with the facilitated transport mechanism. It is a well known
behavior in facilitated transport membranes that the partial pressure
markedly influences the permeability of the gas that interacts with the
carrier [47]. Taking into account that the permeability has been defined
as a phenomenological parameter by means of Eq. (21), the values
calculated from the experimental fluxes are shown in Fig. 5. A typical
behavior of facilitated transport membranes can be seen, characterized
by a decreasing permeability value with the olefin partial pressure as
the carrier becomes saturated.

The effect of silver concentration on the propylene flux is shown in
Fig. 6. A linear increase of the experimental flux is clearly observed
with increasing silver concentration. As opposed to polymer electrolyte
membranes, ionic-liquid-containing composite membranes do not per-
form the characteristic “percolation threshold” [26,51,54,55]. This ef-
fect is caused when the silver concentration is low enough to prevent
hoping of the olefin molecules from site-to-site in systems where fixed
site carrier is the only facilitated transport mechanism. In composite

Fig. 3. Energy dispersive X-Ray spectroscopy patterns of silver in the PVDF-HFP/BMImBF4/AgBF4 5.2 mol/L membrane: A) dispersion plot, B) scan-line.

Table 2
Experimental permeability and propylene/propane selectivity at 293 K and 0.5 bar feed
partial pressure of each gas.

[Ag] (M) P C3H8 (Barrer) P C3H6 (Barrer) αi/j

1.31 6.1 890 146
2.62 10.8 1374 127
3.92 14.4 2342 163
5.23 24.7 3291 133

Fig. 4. Experimental and predicted propylene flux in the PVDF-HFP/BMImBF4/AgBF4
5.2 mol/L membrane at 293 (○) and 303 K (□) with increasing partial pressure.
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membranes, the presence of the ionic liquid ensures transport facilita-
tion via mobile carrier even at low silver concentrations.

Fig. 7 depicts the comparison between propylene and propane
fluxes in a logarithmic scale. The noticeable difference between the flux
values is due to two simultaneous phenomena, that is: in addition to the

Fig. 5. Propylene permeability at 293 (○) and 303 K (□) with increasing feed partial
pressure in the PVDF-HFP/BMImBF4/AgBF4 5.2 mol/L membrane.

Fig. 6. Experimental and predicted propylene flux in the PVDF-HFP/BMImBF4/AgBF4
membrane at 293 K and a propylene feed partial pressure of 0.5 bar with increasing silver
loading.

Fig. 7. Propylene (□) and propane (○) experimental flux at 303 K in the PVDF-HFP/
BMImBF4/AgBF4 5.2 mol/L membrane with increasing feed partial pressure.

Table 3
Values of model parameters from previous works.

Parameter Value Reference

Dcomp,ref (×1011 m2 s−1) 3.22a [22]
EaD (kJ mol−1) 7.13 [22]
kp (bar−1) 0.12 [51]
HC H3 6,0 (×103 mol ar−1 m−3) 4.28 [27]
ΔHsol (kJ mol−1) −24.1 [27]
keq,ref (m3 mol) 0.337b [27]
ΔHr (kJ mol−1) −11.0 [27]

a The reference temperature is 293 K.
b The reference temperature is 278 K.

Table 4
Estimated model parameters.

Parameter Value

Fixed-site carrier activation energy, Ea (kJ mol−1) 14.8
Fitting parameter, α (×1011 m2 bar−1 s−1) 1.35

Fig. 8. Model parity graph displaying a 10% error range: composite membranes (♦)
SILMs (•).

Fig. 9. Propylene flux prediction in PVDF-HFP/BMImBF4/AgBF4 5.23 M at 283 K (dot
line); 293 K (dot-dash line); 303 K (dash line) and 313 K (solid line) over an extended
propylene partial pressure range.

Fig. 10. Predicted contribution of each facilitated transport mechanism to the total flux
with increasing temperature at 0.5 bar propylene partial pressure in PVDF-HFP/
BMImBF4/AgBF4 5.23 M: fixed-site carrier (in stripes) and mobile carrier (in black).
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facilitated transport of propylene, the PVDF-HFP crystallinity reduces
the paraffin physical solubility, yielding very low flux via conventional
solution-diffusion [45]. As a result, permeability selectivities higher
than 150 are achieved, which satisfy the requirements for most of the
industrial applications.

4.3. Model results

The model parameters taken from previous experimental studies are
shown in Table 3. The proposed model has two estimated parameters:
the fitting parameter α, and the fixed site carrier activation energy
EaFC. Model regression to experimental data for each specific case study
is needed in order to determine the values of these parameters. Aspen
Custom Modeler software was employed in this work for estimation
tasks. The resulting values of the fitting parameters for this particular
case study are displayed in Table 4.

Once the fitting parameters are obtained, the model is able to de-
scribe the system performance providing that the input data are within
the studied range. Figs. 4 and 6 compare the model predicted values to
experimental data and prove the model accuracy to simulate the
transmembrane flux for changing temperature, feed pressure and silver
loading. The model values have been plotted against the experimental
data to build the model parity graph, displaying a 10% error range,
Fig. 8. Besides, this generalized model is also capable of simulating the
performance of SILMs when the fixed-site carrier contribution is ne-
glected; in order to confirm this possibility, the parity graph includes
the experimental and model results of supported ionic liquid mem-
branes (SILMs) reported in previous works [22]. It can be seen that the
majority of the points fall within the acceptable error interval, sug-
gesting an accurate fitting between the experimentally obtained values
and the model calculations.

With aim at the model application, it is also possible to extrapolate
the model calculations out of the range of the studied variables, while
taking into account the possible deviations associated with the extra-
polation method. In this manner, the present model is a useful pre-
dictive tool to calculate the transmembrane flux in composite mem-
branes performing a hybrid mobile/fixed carrier gas transport
mechanisms. Fig. 9 shows the predicted propylene flux in a wide range
of propylene feed partial pressures and four temperatures for the
highest silver loading assessed in this work. The values at pressures
outside the 0.5–1.5 bar interval and at 283 and 313 K are model ex-
trapolations. Process design and decision-making using composite
membranes could be improved implementing the proposed mathema-
tical expressions to predict the material performance.

Finally, with the model, it is possible to calculate the contribution of
the individual facilitated transport mechanisms to the total flux, as
shown in Fig. 10. The contribution of the solution-diffusion mechanism
has been neglected because it represents less than 1% of the total flux in
all cases. Note that the values at 283 K and 313 K have been extra-
polated. The results show that, although the flux always shows an in-
creasing trend with temperature, this variable has a greater effect on
the fixed-site carrier mechanism compared to the mobile carrier. This
behavior is explained through the negative effect of temperature on the
solubility term in the mobile carrier contribution.

5. Conclusions

A novel mathematical model able to describe the facilitated trans-
port of propylene in composite membranes is reported. The model takes
into account the different transport mechanisms featured in polymer/
ionic-liquid/carrier systems, namely, solution-diffusion, fixed-site car-
rier and mobile carrier transport, describing the total gas flux as the
sum of the contributions by each mechanism.

In order to check the suitability of the model simulated results
where compared to experimental data obtained working with PVDF-
HFP/BMImBF4/AgBF4 membranes in continuous-flow gas-mixture

permeation tests, varying the temperature, silver loading and feed
pressure. It has been checked that the addition of BMImBF4 ionic liquid,
which makes the membranes differ from solid state polymer electrolyte
membranes, avoids the characteristic “percolation threshold” phe-
nomena and allows transport facilitation even at low carrier con-
centration.

The model needs two fitting parameters α=
1.35×10–11 m2 bar−1 s−1 and Ea = 14.8 kJ mol−1 that are case-sen-
sitive depending on the chemical nature of the species (olefin, polymer,
silver salt, ionic liquid) and their interactions. The reported model be-
comes a useful tool to predict the transmembrane flux via facilitated
transport in those systems featuring fixed-site carrier and mobile carrier
mechanisms simultaneously. In this regard, it will allow further design
and optimization of more efficient membrane configurations.
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A B S T R A C T

The growing production of polyolefins, mainly polyethylene and polypropylene, currently demands increasing
outputs of polymer-grade light olefins. The most commonly adopted process for the separation of olefin/paraffin
mixtures is performed by energy intensive high pressure or cryogenic distillation, which is considered the most
expensive operation in the petrochemical industry. The use of membrane technology offers a compact and
modular solution for capital and energy savings, thanks to process intensification. In this work, we move one step
forward in the design of hybrid propane/propylene separation systems, using computer aided modeling tools to
identify economically optimal combinations of distillation and state-of-the-art membranes. A model is proposed
to optimize a hybrid configuration, whereby the membrane performs the bulk separation and the distillation
column is intended for the final product polishing, accounting for membrane investment cost and process op-
erating expenses. The decision variables are the membrane area and the column reflux ratio, and the model is
able to calculate the optimal feed trays. The upper-bound properties of selected membranes, which define their
performance and reliability criteria, have been studied, benchmarking the economic evaluation against con-
ventional distillation in order to assess the expedience of a hybrid system implementation.

1. Introduction

The use of ethylene and propylene as main building blocks for a
wide number of essential chemicals turns them into the most important
feedstocks of the petrochemical industry. The separation of these light
olefins from their homologous paraffin entails a costly high pressure or
cryogenic distillation with a prominent contribution to the worldwide
energy consumption [1]. Although major efforts have been carried out
to develop alternative separation processes, mainly enhanced distilla-
tions [2] and physical/chemical adsorptions [3,4], none of them have
succeeded in replacing traditional distillation.

Process intensification by means of membrane technology is one of
the most promising strategies to overcome this handicap, performing
the separation at mild temperature and pressure conditions using
modular and compact equipment [5]. A characteristic feature of
membrane materials is the existing trade-off between the amount of gas
that passes though the film (i.e. permeability) and the selectivity to-
wards the desired gaseous species. In addition, this effect can be a de-
cisive factor for further industrial application.

Dense polymeric membranes, based exclusively on solution-diffu-
sion transport, offer poor performance in terms of selectivity, and their

potential industrial application may be found in the recovery of un-
reacted olefin after polymerization, where selectivity values of 3–5 may
be adequate [6,7]. The search for better separation capabilities has led
to the development of new materials that excel in olefin/paraffin se-
paration applications. Carbon molecular sieves prepared through pyr-
olysis of polymer precursors display a complex morphology combining
ultramicropores and micropores, which are responsible for the mole-
cular sieving and the solubility, respectively. These show propane/
propylene selectivity values up to 50 and permeability values around 20
barrer [8–10]. Zeolitic imidazolate framework (ZIF) membranes pre-
sent a structure built upon metals with tetrahedral coordination geo-
metries interlinked with imidazolate ligands, which separates the
mixture based on the differences in diffusivity through the pore system.
These ceramic membranes perform selectivity values as high as 70 with
a permeability ranging between 100 and 400 barrer [11–13]. Finally,
facilitated transport membranes make use of silver cations as carrier,
selectively transporting the olefin through the membrane and, reaching
a selectivity higher than 100 with permeability values typically sur-
passing 1000 barrer [14–16]. Additionally, the use of ionic liquids and
silver nanoparticles to enhance the performance and carrier stability
has been reported to produce favorable effects [17,18]. These
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permeation results outperform the propylene/propane upper bound of
dense polymers [19,20]. However, it has been demonstrated by Park
et al. that, “designing materials with selectivity values much greater
than the pressure ratio yields little or no improvement in product
purity” [21].

Besides material separation performance, another critical aspect is
the membrane configuration. Among the possible configurations,
hollow fiber membranes are widely recognized for their adequacy in
industrial gas separations, offering high packing density and energy
efficiency [22]. In this regard, carbon molecular sieves, ZIF's and fa-
cilitated transport membranes can be processed to produce hollow fi-
bers [8,23].

Whilst the complete replacement of the conventional distillation
would require materials that exceed the current upper-bound, state-of-
the-art membranes could be effectively implemented in a hybrid pro-
cess [1,24,25]. A hybrid process is defined as a process array combining
different unit operations, which are interlinked and optimized to ac-
complish a predefined task [26]. It is worth noting that the hybrid
membrane/distillation concept comprises a limited number of ar-
rangements [27,28]. All these alternatives have been previously re-
ported in the literature by Moganti et al. [29], and Pressley and Ng
[24].

The design of a membrane/distillation hybrid process involves sol-
ving an optimization problem, driven by the existing compromise be-
tween the membrane total cost and the column operating expenses.
Although it is conceivable to expand the optimization problem to all
possible configurations using a complex superstructure, the limited
number of different arrangements allows optimizing each configuration
independently in a more efficient manner [30]. Following this strategy,
Caballero et al. [30] developed a model to optimize the ethane/ethy-
lene separation using the parallel arrangement (i.e. feeding the mem-
brane with an intermediate column product and then feeding back the
column with the permeate and retentate streams); likewise, Kookos
[31] optimized the same configuration for propane/propylene mix-
tures.

Recently, Wessling et al. [32] proposed the use of upper-bound
membrane properties coupled with process modeling to find the

optimal combination of permeability and selectivity for gas separation.
In this work, we extend this concept to hybrid systems by developing an
optimization model of a membrane/distillation hybrid process for
propylene/propane separation. A model of the membrane module is
proposed considering a co-current hollow fiber configuration. The dis-
tillation column is modeled formulating the MESH equations (material
balance, equilibrium, summation and enthalpy balance), and for tray
optimization we avoid the use of binary variables, and the subsequent
MINLP problem, by using the Distributed Stream-Tray Optimization
Method (DSTO) developed by Lang and Biegler [33].

This optimization is intended as a proof of concept of the state-of-
the-art membrane materials, introducing the selectivity and perme-
ability reported values and comparing the total operating costs re-
sulting from the implementation of a hybrid process with those of the
base case distillation.

2. Optimization methodology

2.1. Problem statement

In this work, the problem can be formulated as: given the head
product of an industrial depropanizer, assess the potential capability of
state-of-the-art membrane materials to reduce the economic impact of
the gas separation by optimizing a hybrid hollow fiber/distillation se-
paration system. As the hybrid system is highly suitable for retrofitting
existing distillation columns, the conventional distillation will be taken
as reference for the number of equilibrium stages.

2.2. Hollow fiber membrane model

In the proposed process configuration the membrane module re-
ceives the depropanizer head product. Although this stream is typically
condensed and fed into the next distillation column [34], we will as-
sume that the condenser would be partially by-passed if a hybrid pro-
cess were to be implemented. In this way, a vapor stream is available to
be directly introduced into the hollow fibers module.

The mathematical description of the membrane unit considers the

Nomenclature

A membrane permeation area [m2]
Cp heat capacity at constant pressure [J mol−1 K−1]
Cv heat capacity at constant volume [Jmol−1 K−1]
d differentiable distribution function
E feed stream
e feed stream DDF
ΔHvap enthalpy of vaporization [Jmol−1]
h set of model algebraic equations
J molar flux [mol m−2 s−1]
L hollow fiber length [m]

′L lower limit of the decision variables
L" upper limit of the decision variables
N compression stages
Nc DDF mean
P permeability [barrer]
p pressure [bar]
Q heat duty [W]
R reflux stream
r reflux stream DDF
T temperature [K]
t set of model constraints
v vector of model decision variables
W compression duty [W]
x liquid mole fraction [-]

y vapor mole fraction [-]
z hollow fiber axial dimension [m]

Greek letter

α selectivity [-]
δ active layer thickness [m]
γ permeate-to-feed pressure ratio [-]
η compressors efficiency [-]
λ C C/p v ratio [-]
μ molar flowrate [mol h−1]
Θ grouped parameter [-]
σ standard deviation [-]

Superscript / subscript

B bottoms stream
C3H6 propylene
C3H8 propane
D distillate stream
F feed side
I column tray
j component
k column tray
P permeate side
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following assumptions:

• The module operates isothermally and in the steady state.

• The feed stream is introduced in the shell side of the fibers, with the
permeate circulating in the lumen side.

• The feed and permeate streams flow in a co-current configuration.

• Plug-flow in both sides is assumed.

• The total pressure in the feed and permeate sides are kept constant
as operating conditions.

• There is no pressure drop due to fluid dynamics, the only pressure
gradient is the transmembrane pressure.

• The gas permeability is a material constant.

Fig. 1 shows a schematic diagram of the hollow fibers module. The
mass balances for component j in the feed and permeate sides are as
follows:

= − ⋅dF z J z dA( ) ( )j
F

j (1)

= ⋅dF z J z dA( ) ( )j
P

j (2)

where Fj is the molar flowrate of component j, and dA is the fiber wall
area differential element. Given that the reported permeability can be
considered as a normalized flux, we revert this conversion to calculate
the permeation flux through the active layer, as outlined by the solu-
tion-diffusion theory [35]:

= ⋅⎡
⎣⎢

− ⎤
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J z
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δ
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j
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where Ρj is the permeability of component j, δ is the thickness of the
active layer and pj

F and pj
P are feed and permeate partial pressures of

component j, respectively. This should be interpreted as an approx-
imation to homogenize the calculation method when evaluating
membrane materials that perform a variety of transport mechanisms.
The following dimensionless variables are defined:
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which stand for feed and permeate mole fraction, dimensionless axial
length, permeate-to-feed pressure ratio and dimensionless molar flow-
rate, respectively; L is the fiber length. In addition, a grouped parameter
is defined:

=
⋅ ⋅
⋅ =

Θ
A Ρ p
δ Fj

j
F

T z
F
, 0 (9)

where A is the total membrane area. Rearranging terms, the mass
balances can be rewritten as:

= − ⋅ −
dF
dz
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F

j j j (10)
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j j j (11)
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These ordinary differential equations (ODEs) (Eqs. (10–13)) are
discretized using implicit Runge-Kutta collocation methods and solved
as algebraic equations.

2.3. Distillation model

For the distillation column, the model is taken from the work of
Lang and Biegler [33]. A complete description of the mathematical
development can be found in the original manuscript, here we provide a
brief overview. In order to avoid discrete decision variables, the model
uses differentiable distribution functions (DFF) for the feed streams,
reflux stream and intermediate product streams (if present), in the
form:

=
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2
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which corresponds to the discretization of a Gaussian distribution with
mean Nc and standard deviation σ . Thus, using DDFs, the feed and re-
flux streams can be distributed to all trays:

= ⋅E E ei i (15)

= ⋅R R ri i (16)

where Ei and Ri are the feed and reflux flowrates entering into the i-th
tray, ei and ri are the corresponding differentiable distribution functions
and E and. are the total feed and reflux streams, respectively. Once the
feed and reflux streams are defined through a DDF, the model uses the
conventional MESH equations (material balances, equilibrium, sum-
mation and enthalpy balances) to formulate the distillation model. As
described in [33] the model is also capable of calculating the number of
trays by relaxing the equilibrium equations in the MESH equations so
that the liquid phase disappears. This modification of the MESH
equations allows dry trays to appear without pressure drop in the non-
existing trays above the reflux insertion point. The optimization model
then chooses the column operation with the optimal number of dry
trays, which translates to the optimum number of trays required. Fig. 2
depicts an overview of the modeling strategy.

The vapor-liquid equilibrium has been introduced using the K-value
charts for C3 mixtures [36]. These charts are constructed upon experi-
mental data, later displayed in nomograms. To allow its implementa-
tion in computer calculations, a corresponding states type approach has
been reported in the bibliography [37]. This approach considers the
equilibrium constant value as a function of pressure and temperature
exclusively, neglecting the effects of composition. This assumption is
valid for propane/propylene mixtures at the pressure and temperature
range covered in this study.

Fig. 1. Schematic diagram of the hollow fibers module.
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2.4. Distillation benchmark

To quantify the potential economic savings, we establish the con-
ventional distillation as base case. The feed stream consist of 360 kmol/
h of a liquid propane/propylene equimolar mixture at 323 K and
20.27 bar. The product specifications are 0.995 propylene mole fraction
in the distillate stream (i.e. polymer grade) and 0.95 propane mole
fraction in the bottoms stream. The column has 135 equilibrium stages
including the reboiler and condenser with a total reflux ratio of 14.9.
The base case distillation reflux ratio has been calculated using the
same vapor-liquid equilibrium method discussed before. In this way we
remove any bias caused by the use of different thermodynamic methods
when comparing results. More detailed information about the base case
can be found in Table 1.

2.5. State-of-the-art membrane materials

We propose a selection of membrane materials to represent the
current industrially attractive possibilities for a hybrid process. In the
field of carbon molecular sieves, Ma et al. [38] recently reported a high
performance membrane prepared via pyrolysis of defect-free polymers
on a γ-alumina support. In this way, they managed to synthesize CMS
membranes with an active layer of 0.3 µm, yielding propylene

permeances around 42 GPU with a selectivity of 23.
Regarding ZIF membranes, Pan et al. [39] reported a ZIF-8 mem-

brane performing propylene permeances up to 90 GPU and selectivity
values around 50. These membranes were synthesized by hydrothermal
seeded growth on α-alumina supports, and resulted in an effective layer
thickness of 2.2 µm. Using a heteroepitaxial growth method, Kwon et al.
[40] created a selective membrane displaying successive zeolitic se-
lective layers on α-alumina supports. They achieved a ZIF-8/ZIF-67/
ZIF-8 structure performing a propylene permeance of 110 GPU and
selectivity values around 210.

Recently, our research group has reported facilitated transport
membranes showing a propylene permeance up to 40 GPU with a se-
lectivity of 150 [15]. This membrane was synthesized incorporating
silver cations in a PVDF-HFP/BMImBF4 polymer/ionic liquid matrix.
The selective coordination of propylene with the silver cations is re-
sponsible for the high olefin solubility, while the dense nature of the
fluoropolymer limits the paraffin transport.

Furthermore, two well studied membranes, a polyimide [41] and an
cellulosic membrane [42] have been introduced in this study as ex-
ponents of previous generations of materials for comparison purposes.
Table 2 summarizes the selected membranes features.

Finally, the permeability-selectivity trade-off exhibited by mem-
brane materials has been assessed, introducing an updated trade-off
expression in the optimization model. In this way, a wider insight into
state-of-the-art membrane performance can be provided.

2.6. Hybrid process optimization

The hybrid process flowsheet is displayed in Fig. 3. Briefly, the
propane/propylene gaseous mixture coming from the previous

Fig. 2. Schematic diagram of the Distributed Stream-Tray Optimization Method (DSTO) and detail of reflux stream DDF.

Table 1
Distillation parameters.

Parameter Value

Feed temperature (K) 323
Feed pressure (bar) 20.27
Feed flowrate (kmol h−1) 360
Feed composition (C3H6 mol frac.) 0.50
Feed traya 51
Distillation column number of stages 135
Reflux ratio 14.91
Reboiler duty (kW) 15,128
Condenser duty (kW) 14,169
Dist. temperature (K) 320.05
Dist. pressure (bar) 19.05
Dist. flowrate (kmol h−1) 171.43
Dist. composition (C3H6 mol frac.) 0.995
Bott. temperature (K) 331.57
Bott. pressure (bar) 20.41
Bott. flowrate (kmol h−1) 188.57
Bott. composition (C3H6 mol frac.) 0.05

a Column trays are numbered from bottom to top.

Table 2
Separation performance of the selected membranes.

Membrane C3H6 permeance
(GPUa)

C3H6 selectivity Source

CMS 42 23 [38]
ZIF-8 90 50 [39]
ZIF-8/ZIF-67/ZIF-8 111 210 [40]
PVDF-HFP/BMImBF4/

AgBF4
40 150 [15]

6FDA-TeMPD 37b 8.6 [41]
EC 7 7.0 [42]

a 1 GPU=3.35× 10−10 mol/m2 Pa s.
b Calculated from reported permeability assuming 1 µm thickness.
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depropanizer unit is fed into the hollow fiber module. Then, the re-
sultant retentate and permeate streams are recompressed and in-
troduced in the distillation column to perform the final refining step. In
order to assess the membrane performance when retrofitting the ex-
isting process, and as far as only operating costs are evaluated, the same
number of equilibrium stages of the benchmark distillation column is
considered in the hybrid configuration. In addition, the base case dis-
tillate and bottoms purities are taken as the hybrid process constraints.
Heat integration strategies are not considered in the present work, as
they may depend upon the configuration of each specific production
plant. The process parameters are summarized in Table 3.

In this work, the optimization objective aims to minimize the total
operating costs. Here we include:

• Membrane depreciation.

• Permeate and retentate recompression.

• Reboiler and condenser duties.

The membrane depreciation can be easily calculated as the mem-
brane cost divided by the membrane lifetime, thus obtaining the an-
nualized cost. The compressors duty can be calculated as follows:

= ⎛
⎝ −
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(17)

where μ is the molar flowrate, N is the number of compression stages, η
is the compressor efficiency, λ is the C C/p v ratio of the compressed gas,
and pN is the outlet pressure. The reboiler and condenser duties are
calculated using the following expression:

∑=Q μ x ΔH
j

j vap j,
(18)

where xj and ΔHvap j, are the mole fraction and enthalpy of vaporization
of component j in the stream, respectively.

The compression and heat exchange duties are further converted to
annualized expenses using the respective utilities price. Table 4 shows
the parameters regarding the economic calculations.

To conclude, the objective function can be formulated in the stan-
dard form as:

=
≥

′ ≤ ≤ ″

Minimize TOC v
s t

h v
t v
L v L

( )
. .

( ) 0
( ) 0

(19)

where TOC is the total annualized operating cost, v is the vector of
model decision variables, h v( ) is the set of model algebraic equations,
t v( ) is the set of model constraints (Eqs. (20–21)) and ′L and L" are the
lower and upper limits of the decision variables, respectively.

≥x xC H
D

C H min
D

,3 6 3 6 (20)

≥x xC H
B

C H min
B

,3 8 3 8 (21)

The model has been implemented in the General Algebraic
Modeling System (GAMS) and solved using the multistart heuristic al-
gorithm OQNLP on a 3.40 GHz Intel® Core™ i7–3770 processor. The
GAMS code is available as electronic supplementary information.
CONOPT has been used as local NLP solver for OQNLP with a time limit
of 3000 s and a maximum of 3000 trial points and 3000 CONOPT calls.
The number of single equations and single variables, which depend on
the case study, are displayed in Table 5.

Once the solver is run, it provides:

• The minimal operating expenses (and the partial contributions).

• The optimal membrane area.

• The optimal reflux ratio.

• The optimal feed tray locations.

3. Results and discussion

In this section, we first present the results obtained for the hybrid
configuration with the selected membrane materials. Next, the current

Fig. 3. Schematic diagram of the hybrid process.

Table 3
Hybrid process parameters.

Parameter Value

Feed temperature (K) 325
Feed pressure (bar) 18
Feed flowrate (kmol h−1) 360
Feed composition (C3H6 mol frac.) 0.50
Membrane feed side pressure (bar) 18
Membrane permeate side pressure (bar) 1
Distillation column number of stages 135

Distillate purity, xC H min
D
3 6, (mol%) ≥ 99.5

Bottoms purity, xC H min
B
3 8, (mol%) ≥ 95.0

Table 4
Process parameters for the economic estimation.

Parameter Value

Membrane unitary cost ($ m−2) 20
Membrane lifetime (year) 2
Post-compression pressure (bar) 20.27
Post-compression temperature (K) 323
Permeate compressor number of stages 3
Retentate compressor number of stages 1
Compression efficiency 0.72

=γ C C/p v 1.15

Energy cost ($ kW h−1) 7.70E-02
Steam@150 psi cost ($ mol−1) 3.23E-04
Cooling water cost ($ mol−1) 5.70E-07
Plant service factor 0.904

Table 5
Models statistics.

BCDa HPb HP-OMPc

Number of single equations 4061 4669 4671
Number of single variables 4335 4945 4948

a Base Case Distillation.
b Hybrid Process.
c Hybrid Process- Optimal Membrane Properties.
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membrane upper bound is introduced in the model to study the desir-
able permeability/selectivity combination of a hypothetically optimal
membrane material. Additionally, the impact of the membrane cost on
the economic evaluation is assessed.

3.1. State-of-the-art membranes optimization results

Table 6 displays the resultant membrane area, reflux ratio and po-
tential savings derived from the implementation of each membrane in a
hybrid configuration. The highly permeable and highly selective ZIFs,
CMS and facilitated transport membranes (A-D) can potentially reduce
the operating expenses by around 30–55%. In addition, advanced
polyimides, as 6FDA-TeMPD (E), which provide high permeance but
moderate selectivity, are still capable of reducing the total operating
costs by 18%. Finally, the cellulosic membrane (F), due to its low
permeance and selectivity, achieves a TOC reduction of around 10%.

The TOC reduction due to the implementation of a hollow fiber
module in series is clearly related to the decrease in the required reflux
ratio for a given product quality. Although the reboiler and condenser
duties are very similar, the use of steam requires that more than 95% of
the base case operating costs are generated by the reboiler. Fig. 4 un-
folds the total operating expenses for each case. As expected, the
membrane module helps reduce the required reflux ratio, decreasing
the steam supply to the reboiler and its associated cost. It is worth
noting that, despite this reduction, the reboiler operating cost is still the
largest contribution to the total operating costs, while the condenser
and retentate compressor operating costs are almost negligible.

Focusing on the intermediate streams (F1 and F2 in Fig. 3), it is
noticeable how the optimal solution comprises, in all cases, approxi-
mately the same flowrates, and the total savings are eventually de-
termined by the purity achieved in these streams as can be seen in
Table 7. In this regard, the optimal membrane area for case B is higher
than that of case D. Though both have the same propylene permeance,

the first is far more selective. Here, the extra cost is offset by the purity
reached in the permeate stream. Comparing membranes with similar
selectivity (E and F), we observe the strong dependence of the optimal
required area on the membrane permeance.

Since the hybrid configuration may become uncompetitive com-
pared to the conventional distillation depending on the membrane
unitary cost, it is advisable to perform a sensitivity analysis of the op-
timum solutions. Fig. 5 displays the TOC variation for each membrane
with increasing membrane prices up to 200 $/m2. In all cases, with the
exception of the cellulosic membrane, the optimal configuration does
not vary significantly, and the resultant TOC increase is proportional to
the optimal membrane area. On the other hand, the cellulosic mem-
brane hybrid configuration, due to the large area required, is not sui-
table for replacing the base case distillation when the membrane cost
exceeds ~100 $/m2, and consequently, the membrane module has been
removed during the optimization run.

This analysis reveals a remarkable range of suitability for medium to
high performance membrane materials when implemented in a hybrid
configuration, regarding the membrane production cost.

3.2. Upper-bound role in the hybrid configuration

An interesting point when dealing with membranes is the trade-off
existing between selectivity and gas permeability, which is limited by
the upper-bound in the Robeson plot. By introducing the Robeson plot
upper-bound expression in the optimization model we can explore the
optimal permeability and selectivity values of a hypothetically optimal
membrane material, given the membranes state-of-the art [30,31].
Fig. 6 represents an updated Robeson plot for propane/propylene
mixtures.

The corresponding mathematical expression is:

= −α P97.51C H C H C H/
0.362

3 6 3 8 3 6 (22)

This updated upper-bound is slightly displaced towards the high-
performance region compared to the previous version reported by
Burns and Koros [19], as a result of the continuous research in mem-
brane materials over the recent years. In this section we will evaluate
the membrane productivity in terms of permeability instead of per-
meance, due to the nature of the Robeson plot, which is intended to
compare materials and not specific membrane morphologies.

Once the upper-bound is introduced in the optimization problem, in
addition to membrane area, reflux ratio and stream locations, the
program also provides the optimal balance between permeability and
selectivity. An active layer thickness of 1 µm has been assumed, as this
is a typical value in the hollow fiber manufacture. The same hybrid
process parameters considered in the previous discussion have been
used for this section (see Table 3). The results obtained in this section
are summarized in Table 8.

The optimal solution involves, in this case, very similar intermediate
flowrates to those discussed in the previous section (see Table 7), and
the potential reflux reduction is again determined by the purity of
theses streams (F1 and F2 in Fig. 3). It is worth noting the strong in-
fluence of the membrane cost on the optimal permeability/selectivity
trade-off. As the membrane cost weight on the objective function

Table 6
Optimization results.

ID Membrane C3H6 permeance (GPU) Selectivity Area (×103 m2) Reflux TOC (MM$/y) Savings (%)

– None – – – 14.9 4.05 0.0
A ZIF8 / ZIF67/ZIF8 111 209 2.8 4.5 1.78 56.2
B PVDF-HFP/AgBF4/BMImBF4 40 150 7.4 5.3 2.02 50.3
C ZIF 8 91 50 2.9 7.4 2.50 38.3
D 6FDA-based polyimide CMS 42 23 5.8 8.7 2.87 29.2
E 6FDA-TeMPD 37 8.9 5.3 10.5 3.34 17.6
F EC 6 7.0 23.2 11.2 3.65 9.9

Fig. 4. Disaggregated operating costs for each case. A-F defined in Table 6.
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increases, the membrane tends to increase the permeability at the ex-
pense of selectivity. In the most unfavorable case (i.e. 200 $/m2) the
membrane is highly permeable and the selectivity falls to a value closer
to the pressure ratio, which allows a prominent decrease in the required
area while still maintaining an adequate permeate purity. These results
are in good agreement with Huang et al. [43] findings on the pressure
ratio-selectivity relation: “High permeance membranes are always
good, but the optimum membrane selectivity depends on the process
and the operating conditions, particularly the pressure ratio”. In-
creasing the membrane selectivity far beyond the industrially suitable
pressure ratio produces minor increments in the product purity at the
expense of larger membrane areas, as the process enters in the pressure

ratio-limited region.
Comparing with the real membranes selected for this study, the

carbon molecular sieve (membrane D) would be the option of choice,
given the conservative upper-bound considered in Eq. (22), which is
below the performance of membranes A, B and C. This gives an idea of
the state-of-the-art membrane materials performance for process in-
tensification when implemented in a hybrid configuration.

4. Conclusions

Membrane technology offers remarkable opportunities to intensify
the olefin/paraffin separation process when implemented in hybrid
systems along with the conventional distillation. In this work, the op-
timization of a membrane/distillation hybrid process with state-of-the-
art membranes yielded total operating cost savings of 10–50% com-
pared with the distillation benchmark.

The evaluation of the Robeson plot upper-bound reveals the im-
portance of the operating conditions when it comes to select the most
suitable membrane. Especially, the pressure ratio may limit the ad-
vantages of highly selective membranes. In this regard, membrane re-
searchers should consider the particularities of each specific application
in order to tailor the membrane properties accordingly.
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Table 7
Intermediate streams results.

ID Membrane F1 flowrate (kmol/h) F2 flowrate (kmol/h) F1C3H6 purity (kmol/h) F2C3H6 purity (kmol/h) F1 feed traya F2 feed traya Savings (%)

A ZIF8 / ZIF67/ZIF8 159 201 0.985 0.115 108 19 56.2
B PVDF-HFP/AgBF4/

BMImBF4
157 203 0.981 0.127 102 19 50.3

C ZIF 8 158 202 0.950 0.149 83 18 38.3
D 6FDA-based polyimide CMS 161 199 0.906 0.170 75 19 29.2
E 6FDA-TeMPD 167 193 0.815 0.227 70 24 17.6
F EC 147 213 0.806 0.289 74 30 9.9

a Column trays are numbered from bottom to top.

Fig. 5. Effect of the membrane cost on optimal TOC for the studied membranes.

Fig. 6. Robeson plot for propane/propylene separation membranes displaying
the upper-bound.

Table 8
Upper-bound optimization results.

Membrane cost ($/m2)

20 100 200

Propylene permeability (barrera) 16 74 134
Propylene selectivity 36 21 17
Membrane area (×103 m2) 15.0 3.1 1.6
F1 flowrate (kmol/h) 155 158 157
F2 flowrate (kmol/h) 205 202 203
F1C3H6 purity 0.937 0.901 0.885
F2C3H6 purity 0.171 0.187 0.203
F1 feed trayb 82 76 76
F2 feed trayb 21 21 23
Reflux ratio 8.0 8.9 9.3
TOC (MM$/y) 2.77 3.02 3.13
Savings (%) 31.5 25.5 22.8

a 1 barrer= 3.348× 10–16 mol m/m2 Pa s.
b Column trays are numbered from bottom to top.
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Abstract: Separation of light gaseous olefins from paraffin’s
of the refinery process off-gasses has been traditionally
performed by cryogenic distillation, which is a highly capi-
tal and energy intensive operation. This handicap creates
an incentive for the investigation of alternative olefin/par-
affin separation technologies. In this regard, membrane
technology supposes a potential solution for process inten-
sification. Previous works of our research group reported
the use of facilitated transport composite membranes inte-
grating the use of PVDF-HFPpolymer, BMImBF4 ionic liquid
and AgBF4 silver salt. In this type of membranes, the silver
cations react selectively and reversibly with the olefin,
allowing the separation via mobile and fixed carrier
mechanisms. Ionic liquidswere selected asmembrane addi-
tives because in addition to their negligible vapor pressure
that avoids solvent losses by evaporation, they provide
stability to the metallic cation dissolved inside, and modify
the structure improving the facilitated transport. This tech-
nology offers a commercial attractive separation alternative
thanks to their modular form of operation, high values of
selectivity and permeability and low operational costs. In
the present work, propane/propylene permeation experi-
ments involving the use ionic liquids and different mem-
brane compositions were performed. Moreover, basing on
the transport and equilibrium parameters previously
obtained, a mathematical model description of the system
will be proposed fitting the remaining parameters and
allowing the design and optimization of the propane/pro-
pylene separation process at industrial levels.

Keywords: facilitated transport, propylene, ionic liquids,
silver, membrane composite

1 Introduction

Light olefins such as ethylene and propylene are impor-
tant petrochemical building blocks which are further pro-
cessed to yield a wide range of final products such as
cosmetics, textile products, paints, tools or plastics for
instance. Light olefins are usually obtained, as a mixture
with paraffins, by steam cracking processes, fluidized
catalytic cracking or alkane dehydrogenation.

The separation of these streams is a key issue
because it is one of the most difficult and also the most
costly separation process in the petrochemical industry.
Traditional separation processes like low-temperature
distillation, require voluminous equipment operating at
high pressures or low temperatures and very large reflux
ratios due to the very small difference in the relative
volatilities between olefins and their corresponding par-
affins [1]. In recognition of these costs alternative energy-
saving separation processes are required.

In this sense, membrane technology presents a great
potential for energy and capital saving and therefore the
use of membranes has been the focal point of research of
many authors. Criteria for selecting the most suitable
membrane for a given application are complex; nonethe-
less, durability, mechanical and thermal stability at the
operating conditions, productivity and separation effi-
ciency and costs are important stipulations that must be
considered [2]. Among these requirements selectivity and
permeation rate are clearly the most basic, while the
relative importance of the rest of them varies with the
application. Therefore a wide variety of different mem-
brane alternatives can be considered [3]. The use of poly-
meric, inorganic and supported liquid membranes for
olefin/ paraffin separation has been studied rather exten-
sively, however these membranes may suffer severe plas-
ticization effect, low stability, poor mechanical resistance
and expensive and complex preparation methods and
therefore their performance has not met the requirements
for commercial applications [4, 5].

Recently our research group proposed the use of
novel polymer-ionic liquid-Ag+ composite as facilitated
transport membranes to carry out the separation of
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propane/propylene mixtures [6]. The separation perfor-
mance is mostly associated to the ability of the olefins to
react selective and reversibly with silver cations Ag+ , by
π-complexation mechanism. Consequently silver ions act
as carriers for the transport of olefins, thus facilitating
their selective permeation across the membrane [7, 8].
Ionic liquids (IL) were selected as membrane additives
because in addition to their negligible vapor pressure
that avoids solvent losses by evaporation, they offer
more affinity for the olefinic compounds compared to
saturated hydrocarbons and at the same time they pro-
vide stability to the metallic cation dissolved inside act-
ing as a medium for facilitated transport with mobile
carrier [9, 10]. Based on previous results the ionic liquid
used in this work has been 1-butyl 3-methylimidazolium
tetrafluoroborate (BMImBF4) since it provided the best
results in terms of separation selectivity and propylene
solubility [11–13]. On the other hand, the polymer used in
this work is poly(vinylidene fluoride-co-hexafluoropropy-
lene) (PVDF-HFP) due to its well-known thermal, chemi-
cal and mechanical properties. Furthermore it is partially
miscible with BMImBF4 and compatible with hydrocar-
bons which avoid plasticization effects. Once the mem-
brane is fabricated the ionic liquid remains integrated
within the polymer matrix, thereby increasing the stabi-
lity of the membrane even at high transmembrane pres-
sures. As the composite membrane is composed by a
polymeric matrix and a liquid phase entrapped inside
the polymeric matrix, the silver salt added to the mem-
brane is distributed between these two phases. Therefore
both facilitated transport mechanisms (fixed carrier and
mobile carrier) take place, leading to high permeabilities
combined with high separation selectivities. Figure 1
shows and schematic diagram of the transport mechan-
isms of propane and propylene across polymer/ionic
liquid composite membrane. The PVDF-HFP/BMImBF4–
Ag+ facilitated transport membranes reported in a pre-
vious work provided very promising results when tested

with 50/50%v/v C3H8/C3H6 mixtures obtaining C3H6 per-
meabilities up to 6,630 barrer and C3H8/C3H6 selectivities
over 700 combined with good long term stability [6].

In this work permeation experiments using constant
volume time-lag method were performed in order to
obtain diffusivity and solubility parameters of propylene
and propane in PVDF-HFP polymer matrix and ionic
liquid/polymer composite membranes. These results
combined with facilitated transport experimental data
obtained from our previous works [6, 11] will allow the
development of a mathematical model able to describe
the behavior of the facilitated transport mechanisms of
propylene through the composite membrane and esti-
mate the unknown facilitated transport parameters.

2 Experimental section

2.1 Membrane preparation

The PVDF-HFP/BMImBF4 composite membranes were pre-
pared by the solvent casting technique. First of all the
polymer is dissolved in 10 mL of THF at 40 °C for 8 h in a
closed vial to avoid the evaporation of the solvent. Once the
polymer has been dissolved, it is mixed with the ionic
liquid and stirred for 5 min. Finally the membrane precur-
sor mixture is placed in a Petri dish and the solvent is
evaporated at 25 °C and 300 mbar under dark conditions
for 24 h. The thickness of the membranes prepared in this
work depends on the membrane composition, but in all
cases the prepared membranes presented a range thickness
between 40–100 μm. Permeabilities have been calculated
taking into account the real thickness of each membrane
which was measured using a digital micrometer Mitutoyo
Digmatic Series 369 (accuracy ± 0.001mm).

2.2 Time-lag experiments

Figure 2 shows the experimental setup used for conduct-
ing permeation experiments using the time-lag technique
at constant-volume and variable pressure. This apparatus
consists of two chambers separate by the membrane
(47mm diameter). At time zero the gas of interest is
introduced into the upper chamber. The feed pressure is
maintained constant at the upper chamber while the
pressure increase in the lower chamber, which occurs
due to the passage of gas through the membrane, is
recorded. The appreciable increase in pressure in the

Figure 1: Proposed facilitated transport composite membrane
structure.

2 R. Zarca et al.: Facilitated Transport of Propylene

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 2/5/16 10:43 AM



lower chamber occurs only after a period of time known
as time-lag (Ө). After the time-lag a diffusion process
begins in quasi-steady state until the pressure in both
chambers is equalized. The mathematical expression that
describes the increased pressure in the lower chamber
can be obtained by applying Fick’s second law in the
limits of the membrane. By integrating Fick’s equation
with the boundary conditions by Laplace transforms,
operating and neglecting terms, we reach the expression
for the pressure in the permeate chamber versus time for
the quasi-steady flux:

PL tð Þ=AR � T � S � D � P0

V � L t −
L2

6D

� �
(1)

The above equation is a straight line, from which one can
extract the term that subtracts the time, known as “time-
lag” (Ө) and the slope:

θ=
L2

6D
(2)

After re-arranging terms, diffusivity, solubility and per-
meability parameters can be obtained as:

D=
L2

6θ
(3)

S=
V � L � Slopeð Þ
A � D � R � T � P0

(4)

P =D � S (5)

Where, L is the membrane thickness, Ө is the “time-lag”,
V is the permeate side volume, A is the permeation area,
R is the gas constant, T is temperature and P0 is the feed
pressure.

3 Results and discussion

The results of permeation experiments are discussed.
Permeability of propylene, propane and carbon dioxide,
as a reference gas, at different temperatures in PVDF-HFP
and PVDF-HFP-BMImB4 (80/20%wt.) membranes are
experimentally obtained.

Figure 3 shows the propylene permeation time lag
experiment at 289 K in a PVDF-HFP membrane. The
characteristic initial stage corresponds to the time-lag
(Ө) and the straight line corresponds to the quasi-steady
state permeation stage. We can observe the long duration
required for the experiment to reach quasi-steady state
permeation flux and the slight increase in pressure in the
permeate chamber, which gives an idea of the low per-
meability values expected in this polymer. In all cases the
supply pressure described here is 3.5 bar. The permeate
chamber has a volume of 16.6 cm3.

Table 1 summarizes the experimental values of diffusivity,
solubility and permeability of CO2, propane and propylene in
PVDF-HFP membranes at different temperatures.

Permeability of CO2 in the dense polymer membrane
is an order of magnitude higher than that of propylene
and propane. This effect is due to a significant increase in
diffusivity because the smaller size of the CO2 molecule.

Furthermore, permeability values for propylene and
propane are very similar. So it is confirmed that this type
of dense membranes, in which the mass transfer takes
place only by the solution-diffusion mechanism, cannot
be used to carry out the separation of propane/propylene

Figure 2: Time-lag apparatus scheme.

Figure 3: Permeate side pressure increase for propylene in PVDF-HFP
membrane at 298 K.
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mixtures. For the three pure gases is observed that the
diffusion coefficients are inversely proportional to their
kinetic diameters, as shown in Table 2.

Results in Table 1 show a significant increase in
permeability when temperature increases. The tempera-
ture significantly increases diffusivity whereas the solu-
bility decreases slightly. Activation energies for the three
gases using Arrhenius equation were calculated in order
to know the influence of temperature on the permeation
process. Activation energies are shown in Table 3, from
which it can be observed that the permeation of propane
is more sensitive to temperature than propylene and
being the lowest for the CO2.

In order to study the influence of the addition of an ionic
liquid to the polymer matrix permeation experiments in an

80% PVDF-HFP and 20% of BMImBF4 composite mem-
brane were conducted. The addition of the ionic liquid
(BMImBF4) increases the diffusivity between two and
three orders of magnitude and thus the permeability is
enhanced between one and two orders given that the
solubility slightly decreases, as can be observed in Table 4.

This increase in diffusivity is a result of the presence of
the ionic liquid that is entrapped in the polymer matrix,
lowering the rigidity of the polymer chains and increas-
ing the free volume, which facilitates the diffusion of the
permeant species.

4 Conclusions

Experimental diffusivity, solubility and permeability
values of propane and propylene in PVDF-HFP and
PVDF-HFP-BMImBF4 (80/20 wt%) membranes at differ-
ent temperatures have been successfully obtained using
the time-lag technique. These parameters along with
other previously obtained and C3H6/C3H8 separation
experimental data will allow the development of a math-
ematical model able to describe the behavior of the facili-
tated transport mechanisms of propylene through the
composite membrane considering all three mechanisms
and design, sizing and optimization of industrial units.

Funding: This research was supported by the Spanish
Ministry under the projects CTQ2012-31639 (MINECO,
SPAIN-FEDER 2007–2013) and (CTM2013-44081-R).
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Abstract 

In this work, we explore the capabilities of an NLP optimization model to determine the 

viability of facilitated transport membrane processes intended to replace traditional 

distillation currently employed for propane/propylene separation. An NLP optimization 

model for multistage membrane processes has been formulated, introducing the 

mathematical description of the facilitated transport mechanisms in the PVDF-

HFP/BMImBF4/AgBF4 membranes previously developed by our research group. For 

the first time, a simultaneous optimization of the process and the membrane material 

(i.e. carrier concentration) has been performed, thanks to the implementation of the 

governing equations for the fixed site and mobile carrier mechanisms. Once the model 

is solved in GAMS it returns the optimal membrane area, carrier loading and permeate 

pressure of each stage based on Net Present Value Cost (NPVC) minimization. 

Different process flowsheets were evaluated and the results show prominent reductions 

on NPVC for facilitated transport multistage processes when compared to distillation. 

Keywords 

Optimization, propylene, propane, multistage process, membrane, mathematical model, 

process intensification. 
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1. Introduction

Propane/propylene gaseous mixtures resulting from fluid catalytic cracking and steam 

cracking are commonly separated using high pressure or cryogenic distillation, which is 

associated to major energy and capital consumptions.1 Through the last years, process 

intensification by means of membrane technology has emerged as a promising 

alternative to large, expensive and energy-intensive distillation units.2  

Many membrane materials have been reported for olefin/paraffin separation, including 

polymers,
3,4

 and more complex materials, such as carbon molecular sieves,
5-7

 zeolitic 

imidazolate frameworks (ZIFs)8-11 or facilitated transport membranes.12,13 Among these, 

facilitated transport membranes can easily surpass the permeability-selectivity trade-off 

of polymeric membranes thanks to the reversible reaction between the olefin and a 

carrier cation, typically silver, which is added to the membrane composition.14 

Facilitated transport membranes have been synthesized following different approaches, 

from supported liquid membranes (SLM)15,16 to supported ionic liquid membranes 

(SILM)17 that replace organic solvents with non-volatile room temperature ionic liquids 

(RTILs)18 in order to avoid solvent losses through evaporation.19 Recently, composite 

facilitated transport membranes prepared by solvent casting of a polyvinylidene fluoride 

- hexafluoropropylene (PVDF-HFP) polymeric solution containing the ionic liquid and

the silver salt have been reported.20 In these dense membranes, which feature a 

combination of fixed site and mobile carrier transport mechanisms,21 selectivities up to 

150 and propylene permeabilities higher than 1000 Barrer have been achieved that 

avoid the issues of supported liquid membranes. 

Since a single-stage membrane process that produces polymer grade propylene and fuel 

grade propane simultaneously is not feasible due to the purity-recovery trade-off 

AIChE Journal

AIChE Journal



4 

inherent in membrane operation, the implementation of membrane technology to 

intensify the olefin/paraffin separation process can be carried out according to two 

different approaches. The first one involves the use of membrane modules along with 

new or existing distillation columns to create a hybrid process that reduces the required 

reflux ratio and its associated expenses.22-27 The second approach achieves complete 

replacement of the distillation column with membrane technology by designing and 

optimizing appropriate multistage/multistep membrane processes.28,29  

In particular, several trade-offs should be balanced when designing a multistage 

membrane process based on facilitated transport membranes. Firstly, the total 

membrane area of each stage determines the flowrates and purities of the product 

streams in that stage. Thus, higher stage areas generate larger permeate flowrates at the 

expense of permeate purity. In addition, the transmembrane flux of the transported 

species in these membranes is strongly dependent on the carrier loading, as derived 

from the experimental analysis and the mathematical models.17,21 However, high carrier 

concentrations imply high membrane cost per unit area, which could affect the process 

economics. Finally, higher transmembrane pressures increase the available driving force 

for the permeation but at the expense of higher recompression requirements. 

Moreover, the whole process flowsheet can be optimized in order to obtain the optimal 

process configuration in terms of number of stages, mixers, splitters and compressors. 

This type of optimization involves the design of superstructures that are solved using 

binary variables, which result in complex mixed integer nonlinear programming 

problems “MINLP”.30 However, MINLP problems are difficult to solve because they 

combine challenges of nonlinear and mixed integer programming, and require dedicated 

methods for its resolution.31 Instead, while it is often possible to study all potential 

multistage configurations in one single superstructure, most studies dealing with 
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superstructure optimization for gas separation conclude with a two-stage optimal 

configuration.32-35  

Therefore, in this work we focus on the optimization of the implicit trade-offs in two 

multistage facilitated transport processes, specifically, one conventional two-stage 

configuration and one two-stage configuration with a two-step second stage, commonly 

known as “two-and-one-half” stage process.28 In this manner, the complex mixed-

integer nonlinear formulations associated to superstructures can be replaced with a 

nonlinear programming problem. The membrane modules have been modelled as 

hollow fiber modules, which is the most adequate configuration for gas separation, 

featuring high packing densities and energy efficiency.34,36-38 Furthermore, the mass 

balances in the membrane modules have been described as ordinary differential 

equations and have been solved using orthogonal collocation on finite elements.39 

Consequently, black box modeling approaches can be avoided, thus allowing the study 

of the transmembrane flux profiles along the fibers. These profiles will show how the 

optimization works in balancing the recovery-purity trade-off by varying the membrane 

total area of each stage. Additionally, a simultaneous optimization of the process and 

the membrane material (i.e. carrier load) has been possible thanks to the introduction of 

the equations that govern the facilitated transport mechanisms.
21

 To the best of our 

knowledge, this is the first time that this joint optimization is performed without solving 

an upper-bound type equation for the selectivity-permeability trade-off, whose solution 

does not necessarily represent a real membrane material.40 Finally, the objective 

function accounts for the process economics, which assesses the potential of facilitated 

transport multistage processes to replace current distillation. 
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2. Theoretical Background

2.1. Single-Stage and Multistage Membrane Processes 

In membrane process design the basic unit is the membrane stage, which can be defined 

as an operating unit, comprising one or more membrane modules, which performs a 

specific task different from any other membrane stages existing in the same process. A 

single-stage process, shown in Figure 1, is the simplest membrane process that can be 

designed, although some major limitations in membrane operations affect these 

processes. In particular, membrane material selectivity and the industrially reachable 

pressure ratio prevent satisfying high product purity and recovery simultaneously, and 

process engineers may have to sacrifice one of these specifications. Therefore, single-

stage processes are often used for bulk concentration prior to further purification 

processes.41 

Figure 1. Single-stage membrane process. 

 To overcome the limitations of single-stage membrane processes more stages could be 

interconnected, generating different multistage configurations. Staging a membrane 

process involves solving the trade-off between capital expenses (additional compressors 

F R

P

M1
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and membrane modules) and product recovery. Although there are many multistage 

configurations, the two-stage and the so-called two-and-one-half stage processes,42 are 

preferred over three stage or higher multistage processes.28 In the two-stage process, 

shown in Figure 2, the recompressed permeate of the first stage is fed into a second 

stage for a further purification step. The retentate of the second stage is then recycled 

and mixed with the original feed. 

Figure 2. Two-step membrane process. 

In comparison, the two-and-one-half process shown in Figure 3 uses a two-step 

separation for the second stage and the permeate of the second step is recycled to the 

first step feed. This configuration can achieve any desired concentration of the more 

permeable gas by controlling the relative size of the second stage modules. Moreover, to 

balance the tradeoffs and calculate the feed and permeate pressures and the membrane 

area of each stage, process optimization is required. 
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Figure 3. Two-and-one-half membrane process. 

2.2. Discretized membrane model 

Previous studies on membrane process optimization usually make use of simplified 

membrane models. These shortcut models are typically implemented within 

superstructures that are solved as mixed-integer optimization problems.32 For processes 

where a more detailed description of the membrane separator is needed as in the case of 

hollow fibers modules, a perfect cross-flow model is usually employed. This model 

assumes plug-flow in the high pressure side of the fiber, usually the lumen side, and 

perfect mixed flow in the permeate side, i.e. shell side.23 However, assuming that the 

feed flows through the lumen side may seem unrealistic in gas separation hollow fibers, 

whereby the active layer is often formed in the outer fiber surface. In addition, most 

membrane models assume fixed permeability/selectivity values for a given membrane 

material. In contrast, the rigorous facilitated transport model used in this work requires 

calculating the partial pressure profiles along the module. To address these issues, a 

fully discretized optimization model has been developed in this work. 
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The membrane model is depicted in Figure 4 and is based on the following 

assumptions: 

• The feed and retentate streams flow through the shell and lumen sides of the

fibers respectively.

• The module operates isothermally and in steady state.

• The feed and product streams flow in co-current mode.

• Plug-flow is assumed at both sides of the membrane.

• The total feed and permeate pressures are operation constants.

• The only pressure drop in the membrane module is the transmembrane

pressure.

Figure 4. Schematic diagram of the hollow fibers model. 

The component molar flowrates are discretized according to the following mass 

balances: 

( ) ( ) dAzJzdF j

F

j ⋅−= (1) 

dZ

Z=0 Z=L

Jj·dA
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( ) ( ) dAzJzdF j

P

j ⋅= (2)

where jF and �� are the molar flowrate and the transmembrane flux of component �,

respectively, and dA  is the fiber outer wall area differential element. The dimensionless 

fiber axial length is defined as: 

L

z
z = [ ]1,0∈z (3) 

where L is the total fiber length. Rearranging terms, the mass balances (ODEs) and the 

boundary conditions can now be rewritten as: 

����(	̅)
�	̅ = −��(�̅) · � (4) 

����(	̅)
�	̅ = ��(�̅) · � (5) 

���|	̅�� = ���(�̅ = 0) (6) 

���|	̅�� = ���(�̅ = 1) (7) 

One of the main features of this work is that the membrane material optimization (i.e. 

carrier concentration) and the multistage process optimization are performed 

simultaneously. For this purpose, the rigorous facilitated transport model previously 

developed by this research group has been implemented in the optimization,21 

particularly for PVDF-HFP/BMImBF4/AgBF4 membranes containing silver as carrier. 

In this model, which was specifically developed for facilitated transport membranes that 

combine fixed and mobile carrier mechanisms, the permeability of the paraffin can be 

considered constant. Thus its transmembrane flux is described through the solution-

diffusion model:43 
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�����(�̅) =
�����
 !"����� (�̅) − "����� (�̅)# (8) 

where $���� is the paraffin permeability, % is the active layer thickness and "�����  and 

"�����  are the feed and permeate partial pressure of the paraffin.

Conversely, the olefin flux, i.e. the preferentially transported species, is affected by the 

complexation reaction with the silver cations: 

&�'() + +,-.
/0123�'((+,-.) (9) 

The flux can be calculated as the sum of the contributions of three transport 

mechanisms: solution-diffusion, fixed-site carrier and mobile carrier: 

����4(�̅) = ����4,67(�̅) + ����4,8�(�̅) + ����4,��(�̅) (10) 

����4,67(�̅) = 9���4,: · ;���4,:
<���4� (	̅)=<���4� (	̅)

(11) 

����4,8�(�̅) =
/01·&>?)·����4

�(/01·<����� (	̅)·����4
9@A:<

<���4� (	̅)=<���4� (	̅)
 BCD (12) 

����4,8�(�̅) = E��(�̅) · <���4
� (	̅)=<���4� (	̅) (1 − BCD) (13) 

E��(�̅) = F G !>?H#
�(/I<���4� (	̅)J (14) 

where KLM is the complexation constant, -���4 is the propylene solubility in the

composite membrane, BCD is the ionic liquid mass fraction in the membrane

composition, F  is a fitting parameter for the fixed-site carrier mechanism and &�'N) is
the silver concentration in the membrane. The temperature dependencies have been 
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omitted as isothermal operation has been assumed. The contribution of the Fickian 

diffusion to the olefin transmembrane flux (Eq.11) is negligible compared to the 

contribution of the facilitated transport mechanisms (Eq. 12-13) and, in consequence, it 

has not been included in the optimization. A detailed description of the model can be 

found in the original source.21 Table 1 shows the values of the model parameters. 

Table 1. Facilitated transport model parameters at 323 K. 

Parameter Value Reference 

Dcomp (x10
11 

m
2
 s

-1
) 4.30 [17] 

BCD (-) 0.20 [21] 

-���4	(mol bar-1 m-3) 31.97 [18] 

keq (m
3 mol-1) 0.17 [18] 

α (x1011 m2 mol-1 s-1) 2.37 [21] 

 As commented before, the use of this specific model for facilitated transport avoids 

using a fixed permeability parameter and introduces carrier concentration as a decision 

variable. In this way, the membrane material and the multistage process can be 

optimized at the same time. 

Finally, the ordinary differential equations (Eqs 4-7) are solved as algebraic equations 

after discretization through implicit Runge-Kutta collocation methods using 100 finite 

elements and 3 internal collocation points. 

2.3. Optimization details 

The aim of this work is to optimize two multistage membrane processes: a) a two-stage 

and b) a two-and-one-half stage, intended to produce polymer grade propylene, and 
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enriched propane, from a C3 refinery stream minimizing the Net Present Value Costs 

(NPVC) of both configurations. The pressure, temperature and composition of the 

original feed, stream F in Figures 1-3, are fixed by common refinery specifications.
44

 

Table 2 displays the properties of the propylene/propane mixed stream, the target 

product purities and the process constants and constraints. 

Table 2. Process feed specifications, parameters and constraints. 

Parameter Value 

Feed temperature (K) 323 

Feed pressure (bar) 18 

Feed flowrate (kmol h-1) 360 

Feed composition (C3H6 mole frac.) 0.50 

Permeate pressure (bar) 1-18

Required C3H6 purity (xi) ≥ 0.995 

Required C3H8 purity (xi) ≥ 0.950 

C3H8 permeability (Barrer)
 a

20 

Membrane thickness (µm) 20 

Silver loadingb (M) 0-6

a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1. 

b Silver loading delimited according to the experimentally 
studied concentration range.20,21 

The decision variables of the model are: 

• The membrane area of each module.

• The carrier concentration of each membrane.

• The permeate pressure.
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The mathematical standard form of the optimization problem can be described as: 

PQRQSQ�T	U$V+(W)
X. Z.																														

ℎ(W) = 0
Z(W) ≥ 0

]^ ≤ W ≤ ]"

(15) 

where v  is the vector of decision variables, )(vh represents the set of model algebraic 

equations, )(vt  is the set of constraints (Eqs. 16-17) and ]^and ]" are the lower and

upper limits of the decision variables, respectively. 

B���4 ≥ B���4,:ab (16) 

B���� ≥ B����,:ab (17) 

Finally, the objective function (NPVC) has been calculated as a combination of OPEX 

and CAPEX, correcting the operating expenses according to the time value of money: 

U$V+ = +�$cd + e$cd · (1 − (1 + f)=N) f⁄ (18) 

The parameters and constants used are shown in Table 3.  A detailed description of the 

economic calculations can be found in a previous work.45 Briefly, the compressor 

expenses have been calculated according to the Guthrie’s Modular Method for Costing 

and Sizing 46 and the membrane cost is calculated using the market prices for its 

constituents and the optimized composition: 

P+� = % · ($h · $$ + ihh · ih$ + &�')( · P>? · �j$) (19) 

where P+� is the membrane cost per unit area, δ is the membrane thickness and P>? is

the molar mass of AgBF4. The membrane replacement cost has been introduced through 

a membrane replacement factor Pk.
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Table 3. Economic evaluation parameters. 

Parameter Symbol Value 

Membrane 

Membrane replacement factor (%) MR 1 

Polymer load (g m-3) PL 1.11x106 

Ionic liquid load (g m-3) ILL 2.76x105 

Polymer cost ($ g-1) PP 0.7 

Ionic liquid cost ($ g-1) ILP 0.8 

Silver salt cost ($ g
-1

) AGP 13.0 

Compressor 

Compressor stages Nst 3 

Cost function exponent a 0.77 

Electricity price ($ kWh-1) EP 0.15 

Isentropic efficiency ηc 0.70 

Material and pressure factor MPF 1 

Compression ratio Crmax 2.62 

Module factor MF 3.11 

Ratio of heat capacities ϒ 1.15 

Reference cost ($) C0 23000 

Reference size (kW) S0 74.57 

Update factor UF 4.71 

Project 

Annual operation (h y
-1

) OF 8000 

Investment rate (%) r 10 

Period (y) labm 15 

The optimization model renders a NLP problem solved in GAMS using as solver the 

multi-start heuristic algorithm OQNLP on a 3.40 GHz Intel® Core™ i7–3770 

processor. The model statistics are detailed in Table 4. The model is solved in less than 

0.1 seconds when CONOPT is used as local solver for OQNLP. 

Table 4. Models statistics 

Two-stages Two-and-one-half stages 

Number of single equations 4314 8122 

Number of single variables 4321 8130 

AIChE Journal

AIChE Journal



16 

3. Results and Discussion

This section presents and discusses the main results regarding the design and 

optimization of the proposed flowsheets. The feed stream to both flowsheets consists of 

an equimolar propane/propylene mixture and the objective is to obtain propylene and 

propane purities of 99.5 mol% and 95 mol% respectively. The Net Present Value Cost 

(NPVC) of both multistage processes will be compared with the NPVC of the reference 

distillation column. 

3.1. Multistage membrane process optimization results 

The optimized two stage flowsheet is displayed in Figure 5. The optimal design 

comprises two membrane stages showing considerable size differences. The first stage 

requires more than 14000 m2 of membrane area to generate a propylene depleted 

retentate stream, thus achieving the desired propane purity. However, the second stage 

area is almost ten times smaller and is intended to produce a high purity propylene 

permeate regardless of the retentate purity. 

Regarding the optimal carrier loading, its value is allowed to vary between the 

experimentally studied range from 0 to 6 M, where 0 M implies no facilitated transport 

and 6 M is the highest concentration assessed for PVDF-HFP/BMImBF4/AgBF4 

membranes. Eventually, the optimization balances the cost-performance trade-off of the 

first stage at 2.51 M Ag+, far below the upper limit. Since higher concentrations of 

carrier result in high membrane prices per unit area, this decreased optimal value helps 

to reduce the expenses caused by the large size of this stage. On the other hand, the 

second stage carrier loading hits the highest allowed level of 6 M Ag
+
, which is 

consistent with the purity-oriented nature of this stage. Although the high carrier 
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loading of the second stage raises the membrane specific cost to 324 $/m2, the relative 

small size of this stage dampens the total membrane cost. 

Finally, it should be noted that this multistage configuration generates a large reflux 

stream with high associated compression costs. Nonetheless, the optimal permeate 

pressure of both stages falls to 1 bar, promoting higher driving force in the modules at 

the expense of higher compression duty. 

Figure 5. Two stage process optimal design. 

In order to gain better insight on the optimal stage design, the transmembrane flux 

profiles along the fiber modules have been calculated. Figure 6 displays the propylene 

and propane transmembrane flux along the dimensionless axial length in each 

membrane stage. As it can be observed in Figure 6A the propylene transmembrane flux 

of stage M1 starts at a high level (~6x10-3 mol m-2 s-1) thanks to the facilitated transport 
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mechanisms and the significant driving force achieved in the hollow fibers. The 

resulting high permeation flux in combination with the large membrane area depletes 

the propylene concentration of the retentate stream and, eventually, its driving force 

falls until the transmembrane flux of propane (~6x10
-4 

mol m
-2

 s
-1

) exceeds that of the 

propylene. In contrast, Figure 6B shows the same profiles in stage M2, but in this case 

the propylene transmembrane flux remains almost constant due to the reduced 

membrane area required, which produces a polymer grade propylene stream as permeate 

but maintains a notable propylene concentration in the retentate. 
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Figure 6. Propylene and propane transmembrane flux in stages M1 (A) and M2 (B) of 

the two stage process. 

This is a good example of how optimization can solve the intrinsic tradeoff between 

productivity and purity, and displaces it towards high permeate volume production or 

high product purity depending on the specific task of each stage within the multistage 

process. 
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Figure 7. Two-and-one-half stage process optimal design. 

The “two-and-one-half stage” process optimization results are shown in Figure 7. The 

main feature of this process is the introduction of a third stage intended to recycle a 

propylene enriched stream back to the second stage feed, in this manner the outer loop 

recycle is reduced, minimizing the total membrane area requirements in the stage M1 

and the subsequent compression duty. As in the two stage process, the first stage (M1) 

is significantly larger than the next stages (M2 and M3) and its optimal carrier 

concentration is below the upper bound, at 2.48 M Ag+. Again, the M2 and M3 stages 

require the maximum carrier loading of 6 M Ag+, which increases the membrane 

performance at the expense of higher membrane costs. However, although the 

introduction of a third stage helps to minimize the compression requirements by 

decreasing the recycle flowrate, this reduction is not significant enough and may not 

justify its implementation. This can be observed by the relatively small size of stage 

M3, which is almost negligible compared with the other stages. The optimization results 

of both processes are detailed in Table 5. 
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Table 5. Optimization results of the multistage processes 

Two Stages Two-and-one-half Stages 

Compressor power (kW) 697 688 

M1 total area (m2) 14083 13338 

M2 total area (m
2
) 1574 1575 

M3 total area (m
2
) n/a 206 

M1 carrier loading (M) 2.51 2.48 

M2 carrier loading (M) 6 6 

M3 carrier loading (M) n/a 6 

M1 membrane cost ($ m
-2

) 147 145 

M2 membrane cost ($ m-2) 324 324 

M3 membrane cost ($ m-2) n/a 324 

M1 permeate pressure (bar) 1 1 

M2 permeate pressure (bar) 1 1 

M3 permeate pressure (bar) n/a 1 

A brief analysis of the transmembrane flux profiles in the “two-and-one-half” stage 

process reveals similar design criteria as in the first studied case. Figure 8A-C displays 

the propylene and propane transmembrane flux along the dimensionless axial length of 

the fibers module. 
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Figure 8. Propylene and propane transmembrane flux in stages M1 (A), M2 (B) and M3 

(C) of the “two-and-one-half” stage process.
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As commented before, the large membrane area required in the first stage is intended to 

achieve the desired propane purity in one single pass, as a result, most of the propylene 

permeates and its driving force is reduced until its transmembrane flux falls below the 

propane level, see Figure 8A. Notice that this is not detrimental when the product 

stream is the retentate, as is the case for stage M1. However, the subsequent stages, 

Figures 8B-C, are intended to produce a propylene-enriched permeate and consequently, 

the propylene transmembrane flux remains high along the fiber modules, thanks to the 

relatively small areas involved in these stages. 

 3.2. NPVC comparison 

The NPVC of both membrane processes and the base case distillation are itemized in 

Table 6. The results reveal the prominent potential of facilitated transport membrane 

processes to replace the traditional distillation and to sharply decrease the investment 

expenses when implementing the two stage membrane process. On the other hand, the 

introduction of an additional separation step in the “two-and-one-half” stage flowsheet 

produces minor savings compared to the two stages process and, therefore, a less 

complex process may be preferred. It is worth noting that the main difference between 

the base case distillation and the membrane processes is not in the capital expenses but 

in the operating costs, which is consistent with the use of process steam in the 

distillation reboiler. As expected, process intensification through membrane technology 

plays here a major role in energy saving. 

Table 6. Multistage processes Net Present Value Cost compared to the distillation base 

case. 

Distillation Two Stages "Two-and-one-half" Stages 

OPEX  (MM$ y-1) 4.1a 0.86 0.85 

CAPEX (MM$) 8.9
a
 5.0 4.9 

NPVC (MM$) 39.7
a
 11.56 11.40 

a Calculated according to the “Guthrie’s Modular Method for Costing and 
Sizing” 46 based on the design parameters presented elsewhere.24

AIChE Journal

AIChE Journal



24 

3.3. Comparison for an Extreme Purity Specification 

Although propylene purities higher than 99.5% are not demanded by the polypropylene 

industry, it is instructive to consider a final comparison between the two-stage and two-

and-half stage optimization models. For a propylene permeate specification of 99.9% 

we observe that the two stage process becomes infeasible and has not solution. In 

contrast, the two-and-half stage model is able to obtain any permeate concentration, and 

consequently satisfies this specification. As shown in Table 7, the optimum for this 

process is achieved at a much higher cost, with more than double the NPVC. 

Table 7. Multistage processes Net Present Value Cost for 99.9% propylene specification

Propylene 99.5 % 
Propylene 99.9 % 

Two stages "Two-and-one-half" stages Two stages "Two-and-one-half" stages 

OPEX  (MM$ y
-1

) 0.86 0.85 

Not 

feasible 

2.05 

CAPEX (MM$) 5.0 4.9 8.74 

NPVC (MM$) 11.56 11.4 24.3 

4. Conclusions

The complete replacement of propane/propylene distillation processes by membrane 

technology strongly relies on adequate membrane processes and materials design. In 

this work, the simultaneous optimization of multistage processes and facilitated 

transport membrane composition reveals potential Net Present Value Cost reductions of 

around 70% compared to the base case distillation. Additionally, the optimization 

results showed minor differences between the two studied multistage processes. Thus, 

the simpler two-stage layout may be more adequate in a real scenario. Finally, full 
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discretization of the model reveals how the recovery-purity trade-off and the position of 

each stage within the multistage flowsheet affect the transmembrane flux profiles along 

the modules. In this sense, this work outlines the importance of previous mathematical 

modeling of transport phenomena as valuable foundations for further computer aided 

process engineering. 
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Nomenclature 

A membrane effective area [m2] 

D diffusion coefficient [m
2
 s

-1
] 

F molar flowrate [mol s-1] 

H Henry’s solubility constant [mol bar-1 m-3] 

h set of model algebraic equations 

J molar transmembrane flux [mol m-2 s-1] 

ELM equilibrium constant [m3 mol-1]

E�� fixed carrier effective permeability [mol bar
-1

 m
-1

 s
-1

]

E< heterogeneous equilibrium constant [bar-1]

L fiber length [m] 

P permeability [mol bar-1 m-1 s-1] 

p  pressure [bar] 

R  universal gas constant [8.314 J mol
-1

 K
-1

] 

r investment rate [%] 

S  gas solubility in the membrane [mol bar-1 m-3] 

T  investment period [y] 

t set of model constraints 

U’ lower limit of the decision variables 
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U” upper limit of the decision variables 

x molar fraction [-] 

BCD ionic liquid mass fraction [-]

z hollow fiber axial dimension [m] 

Greek letter 

α fitting parameter

δ active layer thickness [m]

Superscript / subscript 

0  feed side 

C3H6  propylene 

C3H8  propane 

comp organometallic complex 

FC fixed-site carrier 

IL ionic liquid 

L permeate side 

m  membrane 

MC  mobile carrier 

r  reaction 

SD  solution-diffusion 
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Abstract

In this work, a comprehensive analysis of PVDF-HFP/BMImBF4/AgBF4 facilitated 

transport membranes for olefin/paraffin separation is presented. Previous works of our 

research group have reported high flux and propylene selectivity under dry conditions 

and using synthetic gas mixtures, highlighting the promising potential of these 

membranes for industrial applications. This work advances in the understanding of the 

phenomena involved in membrane performance and moves one step forward in the 

knowledge of the industrial viability of this membrane system. First, the internal 

interactions between the silver cations and the polymer backbone, the silver salt 

dissociation and the silver degradation have been studied using FTIR, Raman and XPS 

spectroscopic techniques. Secondly, the experimental membrane performance during 110 

days and working at changing relative humidity conditions in the feed gas has been 

assessed. Thermogravimetric techniques helped determining the water uptake capability 

of the facilitated transport membrane. Thirdly, real gas mixtures from a fluid catalytic 

cracking unit were provided by the industry and used in permeation experiments to check 

the membrane behavior under industrial-like conditions. The results provide experimental 

evidence for the previously theorized facilitated transport mechanisms and reveal a major 

influence of feed gas humidity on membrane performance. On the other hand, the 

industrial gas mixture produces no deviation from synthetic feed conditions due to trace 

contaminants. Finally, the carrier deactivation in long-term permeation has been 

quantified through a mathematical expression. 

Keywords

Propylene, membrane, facilitated transport, humidity, real gas mixture, silver 

degradation.
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1. Introduction

The separation of propane/propylene mixtures is one of the most costly processes in the 

petrochemical industry, caused by the similar physicochemical properties of both species, 

which requires the use of energy intensive cryogenic or high pressure distillation [1]. 

Among the most promising alternatives to traditional distillation, membrane technology 

offers a compact, modular and simple operation, allowing for process intensification [2]. 

In the last years, facilitated transport membranes have demonstrated exceptional 

separation performance in terms of permeability and selectivity [3]. These membranes 

make use of transition metal cations, typically silver, that can selectively and reversibly 

react with the olefin according to the Dewar-Chatt-Duncanson model [4,5]. This principle 

has been implemented in different configurations in recent times. The most basic 

approach consists in filling the pores of a polymeric support with a liquid solution of the 

carrier salt. However, this supported liquid membranes (SLM) lack from stability due to 

solvent evaporation and dragging [6–9]. Although the use of novel ionic liquids has 

overcome the solvent evaporation problems, the expelling out of solvent from the pores 

due to the transmembrane pressure is still a major drawback [10–13]. Proper mechanical 

stability and separation performance can be achieved combining the properties of dense 

membranes with facilitated transport through the synthesis of polymer/salt systems. In 

these systems, the silver salt is dissolved along with the polymer and the membrane is 

then fabricated through solvent casting [14], which results in a dense facilitated transport 

membrane usually described as a polymer electrolyte [15–17]. The internal structure and 

olefin/paraffin separation performance of these systems have been studied rather 

extensively in oxygen-containing polar polymers such as poly(2-oxazoline) POZ, 

poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) [18–20]. Additionally, 

several studies have assessed the potential of these electrolytes for energy applications 
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using fluoropolymers and lithium salt blends [21,22]. However, deeper knowledge on 

fluoropolymer-silver salt interactions is required in order to fully understand its gas 

separation potential.

In this regard, recent works of our research group have demonstrated the promising 

performance of fluoropolymer/silver salt membranes containing imidazolium based ionic 

liquids [23–25]. The presence of the ionic liquid, a non-volatile additive, serves two 

purposes: it helps stabilizing the silver cations, partially mitigating the carrier deactivation 

issues [5,26,27], and it acts as a fluid medium that enables mobile carrier transport. In 

these works, 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) ionic liquid is 

used for its affinity to olefinic compounds and for having the same anion as the silver salt, 

which reduces the system complexity [28]. Poly(vinylidene fluoride-co-

hexafluoropropylene) PVDF-HFP is selected for its high thermal, chemical and 

mechanical stability. In addition, it contains fluorine atoms that are likely to form weak 

interactions with the Ag+ cations according to the Pearson’s Hard-Soft–Acid-Base 

(HSAB) theory [29], which gives rise to fixed site carrier transport. AgBF4 is used as 

carrier precursor because the lattice energy of BF4
- anion is low enough to allow the 

olefin-silver complexation [30]. However, the internal interactions caused by the 

complexity of this membrane system and its responses to changes in the feed humidity 

conditions are still unclear. Furthermore, few studies assess the performance of silver-

containing membranes in the long-term, and what is more important, there is a lack of 

information regarding permeation of real gas mixtures provided by the industry, which is 

especially critical given the instability issues caused by silver reduction.

In this work, the internal structure of the PVDF-HFP/BMImBF4/AgBF4 membrane is 

assessed implementing various spectroscopic techniques. Moreover, the long-term 

membrane stability is studied performing a 110 days-long permeation experiment, and 
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the influence of the feed relative humidity on the membrane performance is explored and 

quantified by modifying the feed humidification conditions. Finally, the behavior of these 

membranes under real conditions is studied permeating a FCC refinery gas mixture 

provided by the industry.
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2. Experimental

2.1 Chemicals

Propylene and propane were supplied by Praxair with a purity of 99.5%. Poly(vinylidene 

fluoride-co-hexafluoropropylene) (PVDF-HFP) was purchased from Sigma Aldrich. 1-

Butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) with a minimum purity of 99% 

and halide content of less than 500 ppm was supplied by Iolitec. Silver tetrafluoroborate 

(AgBF4) with a minimum purity of 99% was supplied by Apollo Scientific Ltd. 

Tetrahydrofuran (THF) purchased from Panreac was used as solvent for membrane 

synthesis. The industrial propane/propylene gas mixture was kindly provided by Petronor 

S.A. All chemicals were used as received without further purification.

2.2 Membrane synthesis

The facilitated transport membranes studied in this work have been synthesized using the 

solvent casting method described in previous works [24,25]. The resulting membrane 

thickness is roughly 100 μm. The real thickness of each specific membrane has been 

measured with a Mitutoyo Digimatic MDC-25SX (accuracy ± 0.001 mm) digital 

micrometer and used for calculation purposes. The membrane composition of the studied 

membranes consist of 0.8g of PVDF-HFP, 0.2g of BMImBF4 and 0.6g of AgBF4. In the 

polymer/salt membranes the ionic liquid addition has been omitted. 

2.3 Gas permeation experiments

A continuous-flow permeation technique has been used for the permeation experiments. 

A detailed description of this technique and the experimental apparatus can be found in 

previous works [23]. Briefly, mass flow controllers are used to generate a feed mixture 

that is further introduced in the upper chamber of a permeation cell where the membrane 

is located. Nitrogen is used as sweeping gas in the lower chamber and the permeate and 
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retentate streams are then analyzed using gas chromatography to determine the 

transmembrane flux of each species. However, for humidified feed testing the 

experimental apparatus has been modified with the set-up depicted in Figure 1, which 

allows generating any desired relative humidity in the feed stream by controlling the ratio 

of dry to humidified feed.

GAS A

GAS B

To 
permeation 

cell

Mass flow controllers

Gas bubbler

Figure 1. Set-up for relative humidity control.

The permeation experiments where conducted at the experimental conditions shown in 

Table 1.

Table 1. Experimental conditions

Experimental condition Value
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T (K) 298

Permeation area (cm2) 53

N2 flow (mL min-1) 20-40

C3H6 flow (mL min-1) 20

C3H8 flow (mL min-1) 20

C3H8 /C3H6 feed gas ratio 50:50

Feed side pressure (bar) 1.2

Permeate side pressure (bar) 1

2.4 Membrane characterization techniques

Different characterization techniques were implemented to assess the internal structure, 

water uptake capability and carrier degradation of the facilitated transport membranes. 

TGA analysis were performed using a TG-DTA 60H Shimadzu thermobalance and 

Fourier transform infrared (FTIR) spectra were recorded using a Perkin Elmer Spectrum 

Two spectrometer. Additionally, Raman spectroscopy was carried out using a Horiba 

T64000 triple spectrometer equipped with a confocal microscope and a Jobin Yvon 

Symphony CCD detector cooled with liquid nitrogen. A 488 nm beam from a Kr-Ar ion 

laser was focused through a 100x objective, using 2 mW laser power in all measurements. 

The spectral curves were fitted using Lorentzian functions. Finally, XPS spectra were 

acquired using an SPECS (Berlin, Germany) X-ray photoelectron spectrometer. The 

samples were analyzed using an Mg anode operated at 225 W (E=1253.6 eV, 13 kV, 17.5 

mA). The carbon (C 1s) line at 284.8 eV was used as the reference in our determinations 

of the binding energies of the silver. A scanning interval of 0.1 eV was used for the final 

spectrum acquisition.
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3. Results

3.1 Thermogravimetric analysis

The thermal analysis has been performed to assess the potential water uptake of the 

studied membranes. Figure 2 displays the thermogravimetric curves of PVDF-HFP, 

PVDF-HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes.

Figure 2. TGA curves of the studied membranes.

 The membrane samples were vacuum dried at 30 mbar and 298 K for 24 hours after 

casting to completely remove the remaining solvent. Prior to testing the samples were 

exposed to ambient moisture (~80% RH at room temperature) for 24 hours. In this 

manner, any water loss appearing at the beginning of the temperature ramp can be 

attributed to water evaporation. According to Figure 2, the pure polymer membrane 

exhibits no weight loss until it reaches its degradation temperature around 680 K, which 

reveals no water uptake. This is in good agreement with the hydrophobic nature of the 
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fluoropolymer [31]. However, Figure 2 shows prominent mass losses of the silver-

containing membranes in the 300-436 K temperature range. Thus, it can be concluded 

that the addition of the AgBF4 salt to the membrane composition dramatically changes 

the nature of the facilitated transport membranes due to its high hygroscopicity, which 

results in water uptakes of around 25 wt% when exposed to moist conditions.

3.2 Fourier transform infrared spectroscopy (FTIR)

The interaction between the Ag+ cations and the fluorine atoms of the polymer chains can 

be studied through infrared spectroscopy analyzing the polymer CF2 symmetrical 

stretching mode and comparing that of the pure polymer with the silver-containing 

membranes, see Figure 3. 

Figure 3. FTIR spectra of the studied membranes.

The CF2 peak of the pure polymer appears in the 1178 cm-1 band. After incorporation of 

the silver salt, the stretching band shifted to 1174 and 1172 cm-1 in the PVDF-HFP/AgBF4 
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and PVDF-HFP/BMImBF4/AgBF4 respectively. This shift to lower wavelength indicates 

a weakening of the C-F bond caused by the interaction of silver cations with the fluorine 

atoms of the fluoropolymer, which is the basis of the fixed site carrier transport 

mechanism. This phenomenon has been previously studied by Chang and Kang (2016) 

using FTIR on PVDF-HFP/HBF4 polymer electrolytes [32]. 

3.3 RAMAN spectroscopy

Better insight on the AgBF4 dissociation behavior can be achieved using Raman 

spectroscopy to analyze the regions of the BF4
- stretching bands in the pure AgBF4, and 

the silver-containing membranes. Figure 4 shows the BF4
- stretching band region of 

PVDF-HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes. The symmetric 

stretching mode of BF4
- has been previously reported at 774 cm-1 in the pure AgBF4 [33]. 

However, the spectrum in Figure 4a shows a wavenumber shift to 767 cm-1 when the 

silver is added to the polymer. According to previous studies, this wavenumber 

corresponds to free ions [20,34], which means that this change in the Raman spectra is 

due to well-dissociated Ag+ cations interacting with the PVDF-HFP backbone. 

Furthermore, this wavenumber shift from 774 to 767 cm-1 is still observable after addition 

of the ionic liquid BMImBF4, Figure 4b. As the BF4
- stretching band also appears at 774 

cm-1 in the pure ionic liquid [34], this shift suggests that the ionic liquid is also interacting

with the Ag+ cations and, to a certain extent, with the polymer backbone, as reported by 

Fallanza et al. [23].    
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Figure 4. Raman spectra of A) PVDF-HFP /AgBF4 and B) PVDF-

HFP/BMImBF4/AgBF4 membrane.
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3.4 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy has been used to expand the knowledge on membrane

structure and degradation. The Ag 3d regions of the XPS spectra can confirm the 

interactions between the silver cations and the polymer fluorine atoms. Figure 5 shows 

the XPS spectra of a PVDF-HFP/BMImBF4/AgBF4 composite membrane after a long 

term permeation experiment (110 days). Table 2 summarizes the two silver species 

observable after signal deconvolution. The Ag 3d5/2 band of pure AgBF4 has been 

previously reported at 369.2 eV. However, in the composite membrane, the binding 

energy has shifted to 368.47 eV. This reduction in the photoelectron binding energy is 

caused by the coordination between the silver atoms and the polymer backbone as 

demonstrated by Kim et al (2012), who found the same phenomenon for several 

AgBF4/polymer blends [35]. Additionally, a second silver species (Ag 3d5/2=368.26 Ag 

3d3/2=374.25) is associated with the presence of metallic silver [36], presumably due to 

the silver reduction caused by the long term permeation test. 

Table 2. XPS regions of PVDF-HFP/BMImBF4/AgBF4 membrane after permeation test.

Region Position

Ag 3d 5/2 368.47
Species A

Ag 3d 3/2 374.54

Ag 3d 5/2 368.26
Species B

Ag 3d 3/2 374.25
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Figure 5. XPS spectra of the PVDF-HFP/BMImBF4/AgBF4 membrane after permeation 

test.

3.5 Long-term permeation under humid conditions

Figure 6 shows a 110 days long-term permeation test on a PVDF-HFP/BMImBF4/AgBF4 

facilitated transport composite membrane. The feed gas consisted of an equimolar 

propane/propylene mixture at 1.2 bar total pressure. The main goal of this experiment is 

to determine the separation behavior of a composite membrane over an extended period 

of time, assessing both the feed gas relative humidity effect and the possible loss of 

performance due to carrier deactivation. Figure 6 is divided into five sections (I-V) 

accounting for the relative humidity conditions and following the sequence of the 

experimental runs. A characteristic feature of this facilitated transport membranes under 

dry conditions is a sharp decrease of the permeation flux in the first operating hours 
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ostensibly caused by the rapid loss of water and residual solvent by evaporation, Figure 

7 (section II). At the beginning of the test (section I) the humidity was kept at saturation 

and no flux decay was observed during the first 5 days, which confirms that the 

characteristic curve observed under dry gas conditions is due to solvent and water 

moisture evaporation. From day 5 to day 27 some instability in membrane performance 

occurred due to controlled changes in the temperature and pressure conditions within the 

experiments. In Figure 6 this is more evident for the propane flux due to the semi-

logarithmic scale.

Figure 6. Long term permeation experiment of PVDF-HFP/BMImBF4/AgBF4 composite 

membrane at 298 K and 1.2 bar feed pressure (C3H8/C3H6 50:50) under different 

relative humidity conditions.

After 27 days, during section II, the feed was changed to dry gases, which resulted in a 

major propane and propylene transmembrane flux decrease as water evaporation occurred 

within the membrane. A detailed depiction of the drying curve is shown in Figure 7. 
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Figure 7. Propylene transmembrane flux decrease in section II.

When the humidified gas mixture was fed again into the system (section III), the flux 

increase of both gaseous species was almost immediate, reaching the flux values attained 

prior to drying. This abrupt increase, noted with red arrows in Figure 6, reveals the 

exceptional capability of these membranes to absorb water from the environment. During 

sections III, IV and V a feed gas relative humidity of 100, 50 and 25% was used, 

respectively. These variations in the humidity conditions resulted in moderate changes in 

the propylene transmembrane flux while the propane flux remained almost constant at its 

highest level. 

However, it should be noted that, apart from the humidity influence, the propylene 

transmembrane flux undergoes a continuous slight decrease, evidenced by a constant 

slope in Figure 6. On the contrary, the propane flux does not suffer such decrease, which 

suggests that this phenomenon is caused by carrier deactivation. Furthermore, it was 
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possible to quantify the deactivation rate by fitting the data for each section (I-V), to an 

exponential curve, which yielded the following expression: 

(1)𝐽𝐶3𝐻6(𝑡) = 𝐽𝐶3𝐻6(𝑡0)·𝑒 ‒ 5.5𝑥10 ‒ 3·𝑡

where  is the initial propylene transmembrane flux at a given temperature, 𝐽𝐶3𝐻6(𝑡0)

pressure and relative humidity conditions and the time t is introduced in days. This 

expression allows for membrane lifetime calculation if a minimum required performance 

is established.

This carrier deactivation prevents from fitting a mathematical expression for the 

propylene flux dependency on relative humidity because each experimental section has 

been obtained at different times and, consequently, the propylene flux is not only affected 

by the relative humidity but also by the elapsed time from the start of the experiment. 

However, using Equation 1, it was possible to project the propylene flux values to a 

common initial point. Finally, combining a mathematical expression for the drying curve 

(Figure 7) with the propylene flux at each relative humidity, it was possible to obtain a 

fitting curve for the propylene transmembrane flux as a function of the relative humidity 

(Eq. 2), Figure 8.

  (2)𝐽𝐶3𝐻6(𝑅𝐻) = 5.82𝑥10 ‒ 5𝑅𝐻0.49

Figure 8 evidences a sharp increase in the propylene flux with the relative humidity for 

RH<10% and a smooth increase after that value (dash line in Figure 8); this finding 

supports the fact that even with a low relative humidity in the gaseous feed stream it is 

possible to almost saturate the membrane with water. A similar trend has been reported 

by Catalano et al. (2012) for oxygen and nitrogen in PFSI membranes [37]. 
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Figure 8. Experimental data and mathematical regression for the dependency of the 

propylene transmembrane flux on the relative humidity.

Finally, Table 3 displays the permeability and selectivity values of the facilitated transport 

membrane for each relative humidity condition. The humidification of the feed gases 

produces major changes in the membrane performance, reducing the selectivity and 

increasing the permeability of both the olefin and the paraffin. This is a characteristic 

effect of water vapor-induced swelling [38,39]. The enlargement of the polymer free 

volume caused by the water uptake increases the diffusivity of the gaseous species and 

the propylene-silver complex, which leads to notable permeability values but at the 

expense of membrane selectivity.

Table 3. Average permeability and selectivity values of the PVDF-HFP/BMImBF4/AgBF4 

membrane for each relative humidity during the long-term permeation test.
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RH 
(%) P C3H8 (Barrer)a P C3H6 (Barrer) a α C3H6/C3H8  (-)

0 1.2 172 144
25 97.3 1032 11
50 107.6 1666 16
100 106.5 2555 24

 a 1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1.

Although membrane swelling is usually responsible for lowering the polymeric 

membranes selectivity below the industrially required values, in this case, the selectivity 

remains high enough to consider humid operation as a useful tool to tailor the 

permeability-selectivity trade-off. Thus, wet gas could be implemented as a controlling 

agent when productivity is preferred over product purity. In this way, multistage 

membrane processes performing a refining separation after a bulk concentration could 

modulate the purity-productivity trade-off in each stage by controlling the feed gas 

relative humidity [40].

3.6 Industrial gas mixture permeation test

Figure 9 shows the facilitated transport membrane performance when the feed consists of 

a real propane/propylene mixture compared with a synthetic gas mixture. The industrial 

gas mixture is the product stream of a fluid catalytic cracking unit and its composition is 

displayed in Table 4. It mostly consists of a propane/propylene mixture (25:75) 

containing minor quantities of light paraffins and olefins. 

Table 4. Industrial gas mixture composition.

Component Concentration (mol% )

Methane 0.0034

Ethane 0.1503

Ethylene 0.0099
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Propane 24.8837

Propylene 74.7208

Isobutane 0.1872

N-butane 0.0016

Trans-butene 0.0214

Iso-butene 0.0218

Hydrogen sulfide < 0.2 ppm

Acetylene < 0.2 ppm

Hydrogen < 0.2 ppm

Figure 9. Synthetic and industrial gas mixture permeation experiments on a PVDF-

HFP/BMImBF4/AgBF4 membrane under dry conditions at 298 K and 1.2 bar total feed 

pressure.

Given that both feeds differ in composition, permeability, which is normalized by the 

partial pressure gradient, has been plotted instead of the transmembrane flux. Both 
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permeation experiments have been performed under dry conditions to simulate refinery 

conditions, hence, both suffer the characteristic permeability decrease due to solvent and 

water evaporation in the first hours of operation. Since the propylene transmembrane flux 

is similar in both cases, Figure 9 evidences that the membrane performance is not affected 

by known contaminant trace components potentially present in industrial streams (i.e. 

acetylene, hydrogen sulfide and hydrogen [41]) during the experiment extent. 

These results confirm that the prominent separation performance of the studied 

membranes is not restricted to laboratory conditions with synthetic gas mixtures and 

demonstrate the suitability of these composite facilitated transport membranes to treat 

real feed streams. 
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4. Conclusions

The spectroscopic characterization of PVDF-HFP/BMImBF4/AgBF4 membranes used in 

the separation of propane/propylene mixtures confirm the existence of weak interactions 

between the Ag+ cations and the fluorine atoms of the polymeric backbone, which along 

with the addition of ionic liquids result in a hybrid fixed site/mobile carrier transport 

mechanism yielding high olefin permeability and selectivity. The long-term permeation 

experiment carried out under changing feed gas humidity conditions revealed a slight 

permeability decrease due to silver degradation, which is mainly associated to silver 

reduction, supported by XPS spectra of the used membrane; this loss of membrane 

activity was observed to be independent of the experimental conditions. Although this 

degradation is slow enough to allow moderate membrane lifetimes, remediation methods 

can be further studied to achieve even larger operating periods. On the other hand, the 

humidification of the feed gas can severely alter the membrane performance, increasing 

the permeability of the permeant species and decreasing the membrane selectivity due to 

water vapor-induced swelling. In this regard, thermogravimetric analysis revealed up to 

25 wt% membrane water uptake. Since the membrane showed moderate selectivity even 

at saturation, wet gas could be implemented as a controlling agent when productivity is 

preferred over product purity. Finally, permeation under real gas conditions revealed no 

additional degradation caused by minor contaminants that could potentially affect silver 

stability.  
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A.3 GAMS program used for hybrid process optimization 
 
$offlisting 
$OFFUPPER 
$OFFSYMXREF 
$OFFSYMLIST 
$Title    Optimization of a Hybrid Membrane-Distillation process 
$Stitle   Propene-Propane Distillation at 20 bar 
 
 
******************************************************************************** 
*                               COMMON 
******************************************************************************** 
 
Parameter membcost     membrane unitary cost ($ m-2)                   /200/ 
          memblife     membrane lifetime (yr)                          /2/ 
          SF           column service factor                           /0.904/ 
          daysop       day of operation per year (day)                 /365/ 
          coolprice    price of cooling water ($ mol-1)                /5.7e-7/ 
          coolTin      cooling water inlet temperature (K)             /300/ 
          coolTout     cooling water outlet temperature (K)            /319/ 
          Cpw          cooling water heat capacity  (J mol-1 K-1)      /75.3/ 
          steamcost    steamcost ($ mol-1)                             /3.23e-4/ 
          AHvap        AHvap of saturated steam @150psi (J mol-1)      /35870/ 
          kWhcost      energy costs ($ kWh-1)                          /0.077/ 
          compyield    compressors efficiency                          /0.72/ 
          comp1stages  number of stages of compressor 1                /3/ 
          comp2stages  number of stages of compressor 1                /1/ 
          comp1CR      compressor 1 compress. ratio                    /2.72658/ 
          comp2CR      compressor 2 compress. ratio                    /1.12611/ 
; 
 
 
******************************************************************************** 
*                            MEMBRANE MODULE 
******************************************************************************** 
 
 
Sets     a        number of finite elements                /1*20/ 
         b        number of internal collocation points    /1*3/ 
* List number of compounds: 
         j        components                               /propene,propane/; 
 
Alias   (b,c) 
        (j,jb); 
 
Scalar  nfe       number of finite elements                  [-]       /20/ 
* Problem definition: 
 
        ftp       feed total pressure                      [bar]       /18/ 
        ptp       permeate total pressure                  [bar]       /1/ 
        temp      feed temperature                           [K]       /325/ 
 
* Define membrane parameters: 
 
        delta     fiber wall thicknes                        [m]       /1e-6/ 
        conv      Barrer conv. to SI [kmol m bar-1 h-1 Barrer-1]    /1.206e-10/; 
 
 
 
* Introduce initial values for feed flowrates: 
Parameter ffinit(j) value  [kmol h-1]                   /propene  180 
                                                         propane  180/; 
* Introduce initial values for permeate flowrates: 
Parameter fpinit(j) value  [kmol h-1]                   /propene  0 
                                                         propane  0/; 
 
 
Table   lag(b,b)    Lagrange basis collocation matrix 
         1       2       3 
      1  1       0       0 
      2  0       1       0 
      3  0       0       1; 
 
 
Table  ldot(b,b)  Lagrange basis first derivs collocation matrix 
                1                  2                  3 
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      1  -5.999997202501304  -3.464098384864128  3.464098384864127 
      2  6.464099408820847   2.999996178544585   -6.464099408820847 
      3  -0.464102206319543  0.464102206319543   3.000001023956719; 
 
 
Parameter lfinal(b) value   /1  1 
                             2  -1.732051615138131 
                             3  1.732051615138131/; 
 
 
Parameter fffinal(j,a)      final molar retentate flowrate 
          fpfinal(j,a)      final molar permeate flowrate 
          h(a); 
 
h(a) = 1/nfe; 
 
Variables ff(j,a,b)         retentate molar flowrate 
          fp(j,a,b)         permeate molar flowrate 
          ffdot(j,a,b)      ff first order derivative 
          fpdot(j,a,b)      fp first order derivative 
          ll(a,b)           fiber lenght 
          area              membrane area [*10^-3 m2] 
          theta             dimensionless area [-] 
          gammap            permeate over feed pressure [-] 
; 
 
 
******************************************************************************** 
*                            DISTILLATION COLUMN 
******************************************************************************** 
$ontext 
          ----------------------------------------------------------------------- 
 
                                Section 1 
                                Basic Data 
                                ___________ 
 
 
        Basic Thermodynamic Data have been taken from 
        R.C. Reid, J.M. Prausnitz and B.E. Poling : 
        " The Properties of gases and liquids " 
        4th Edition, McGraw-Hill (1987) 
$offtext 
 
 
 
$ontext 
 
        Units:  Pressure : in bars i.e. 0.1 Mpa 
                Temperature : in kelvins 
                Heat capacity : kJ/kmol K 
 
        Abbreviations :  mm   Molar mass 
                         Tb   Normal boiling point 
                         Tc   Critical temperature 
                         Pc   Critical Pressure 
                     Omega    Acentric factor 
                   Liq-den    Density of liquid at Tden 
 
$offtext 
 
Table  PRCON (J,*)    Basic Physical Properties 
                mm        Tb      Tc        Pc       Omega    Liq-den  Tden 
  Propene    42.081     225.4   364.9      46.0      0.142    0.867    293 
  Propane    44.097     231.0   369.8      42.4      0.152    0.885    289 
 
 
 
Table  VPCON(J,*)    Constants in the wagner equation for vap.pressure 
            A            B             C             D         TMIN 
 Propene   -6.64231    1.21857      -1.81005       -2.48212     309 
 Propane   -6.68770    1.24880      -1.97450       -2.05390     288 
 
 
 
Table  CPCON(J,*)  Constants for the isobaric heat capacity equation 
              A           B             C           D 
 Propene    3.188e1     3.237e-2      3.898e-4   -4.999e-7 
 Propane    3.199e1     4.266e-2      4.998e-4   -6.563e-7 
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Parameter dhv(j)   Heat of vapourization (kj kmol-1) --- assumed to be constant 
             / Propene  18700 
               Propane  18800  /   ; 
 
*dhv from Stephenson and Malanowski, 1987. 
 
$Ontext 
                                Section 2 
                                _________ 
        In this section, we derive  approximate representations 
        for heat capacities and enthalpies for the pure components. 
$Offtext 
 
Scalars       Treb    Guess temp. for reboiler 
              Tbot    Guess temp. for bottom-most tray 
              Ttop    Guess temp. for top-most tray 
              Tcon    Guess temp. for condenser  ; 
              treb = 330; tbot = 328; ttop = 324; tcon = 322; 
 
Scalar       rg  Universal gas constant  /8.314/ ; 
Parameters   cpvu(j),cpvl(j), cplu(j), cpll(j), dcpl(j),dcpv(j)  ; 
 
              cpvu(j) = treb*(cpcon(j,'b') + treb*( cpcon(j,'c') 
                         +treb *cpcon(j,'d'))) + cpcon(j,'a')    ; 
              cpvl(j) = tcon*(cpcon(j,'b') + tcon*( cpcon(j,'c') 
                         +tcon *cpcon(j,'d'))) + cpcon(j,'a')    ; 
              cplu(j) = cpvu(j) + rg *( 1.45 
                        + 0.45 * (1 - treb/prcon(j,'tc'))**(-1) 
                        + 0.25 * prcon(j,'omega') * (17.11 
                        + 25.2 *( ( 1 - treb/prcon(j,'tc'))**(1.0/3)) * 
                          (treb/prcon(j,'tc'))**(-1) + 1.742 * 
                          (1 - treb/prcon(j,'tc'))**(-1) ) )  ; 
 
               cpll(j) = cpvl(j) + rg *( 1.45 
                        + 0.45 * (1 - tcon/prcon(j,'tc'))**(-1) 
                        + 0.25 * prcon(j,'omega') * (17.11 
                        + 25.2 * (( 1 - tcon/prcon(j,'tc'))**(1.0/3)) * 
                          (tcon/prcon(j,'tc'))**(-1) + 1.742 * 
                          (1 - tcon/prcon(j,'tc'))**(-1) ) )  ; 
 
             dcpl(j) = (cplu(j)-cpll(j))/(treb - tcon) ; 
             dcpv(j) = (cpvu(j)-cpvl(j))/(treb - tcon) ; 
 
     display  cpvu ; 
     display  cpvl ; 
     display  cplu ; 
     display  cpll ; 
     display  dcpl ; 
     display  dcpv ; 
$ontext 
 
        Final expressions for enthalpy 
        Note: Liquid enthalpy will be computed as 
        cpll(j) (t -tcon) + 0.5 * dcpl(j) *(t-tcon)**2 
        = hl0(j) + hla(j)*t + hlb(j)* t**2 
 
        Note: Vapour enthalpy will be computed as 
        hl0(j) + hla(j)*prcon(j,'tb') + hlb(j) * (prcon(j,'tb')**2) 
        + dhv(j) 
        + cpvl(j)*(t -prcon(j,'tb')) + 0.5 * dcpv(j)*(t-prcon(j,'tb'))**2 
        = hv0(j) + hva(j) *t + hvb(j) * t**2 
 
$offtext 
 
Parameters  hl0(j) ,hla(j), hlb(j)    See description above; 
            hl0(j) = tcon *( -cpll(j) + tcon *dcpl(j)/2); 
            hla(j) = cpll(j) - dcpl(j)*tcon; 
            hlb(j) = dcpl(j)/2; 
 
     display  hl0 ; 
     display  hla ; 
     display  hlb ; 
 
Parameters  hv0(j),hva(j),hvb(j)    See description above; 
 
            hv0(j) = hl0(j) + hla(j)*prcon(j,'tb') + hlb(j)*(prcon(j,'tb')**2) 
                +dhv(j) 
                - cpvl(j)*prcon(j,'tb') + 0.5 *dcpv(j)*(prcon(j,'tb')**2) ; 
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            hva(j) = cpvl(j) - dcpv(j)*prcon(j,'tb') ; 
            hvb(j) = dcpv(j)/2 ; 
 
     display  hv0 ; 
     display  hva ; 
     display  hvb ; 
 
$ontext 
 
                                Section 3 
                                _________ 
        In this section we derive simplified expression for the vapour 
        pressure. 
        The preferred form is : 
        ln( pvap(j)) =  a(j) - b(j)/T  ;  (T  in kelvins)  ; 
 
$offtext 
 
Parameters   vpl(j),vpu(j), av(j), bv(j), xtreb(j), xtcon(j) ; 
             xtreb(j) =  1 - treb/prcon(j,'tc'); 
             xtcon(j) =  1 - tcon/prcon(j,'tc'); 
             vpu(j)   = log(prcon(j,'pc')) + prcon(j,'tc')/treb * 
                       (vpcon(j,'a')*xtreb(j) + vpcon(j,'b')*xtreb(j)**1.5 
                      +vpcon(j,'c')*xtreb(j)**3 +vpcon(j,'d')*xtreb(j)**6); 
             vpl(j)   = log(prcon(j,'pc')) + prcon(j,'tc')/tcon * 
                       (vpcon(j,'a')*xtcon(j) + vpcon(j,'b')*xtcon(j)**1.5 
                      +vpcon(j,'c')*xtcon(j)**3 +vpcon(j,'d')*xtcon(j)**6); 
 
            bv(j) = (vpu(j) -vpl(j))/(1/tcon - 1/treb) ; 
            av(j) = (vpu(j)*treb - vpl(j)*tcon)/(treb-tcon) ; 
 
  display  vpu , vpl ; 
  display  av , bv ; 
$ontext 
 
                        Section 4 
                        _________ 
                Thermal condition of the feed stream 
$offtext 
 
 Scalars 
            tf  temperature of the feed (in kelvins) 
            pf  pressure of the feed stream 
            vf  vapour fraction in feed(before expansion) 
            preb  Pressure in the reboiler 
            pbot  Pressure in the bottom-most tray 
            ptop  Pressure in the top-most tray 
            pcon  Pressure in the condenser   ; 
 
            preb = 20.41 ; pbot = 20.27; ptop = 19.05; pcon = 19.05; 
            tf = 323 ;  pf = 20.27 ; 
 
Parameters 
 
           vpf(j)  vapour pressures at feed temperatures ; 
 
 
Positive Variables 
 
              fdp           Total no. of moles of feed permeate 
              fdr           Total no. of moles of feed retentate 
              xfp(j)        molefractions in feed-stream permeate 
              xfr(j)        molefractions in feed-stream retentate 
              Shfp          Specific Enthalpy of feed permeate 
              Shfr          Specific Enthalpy of feed retentate 
              rebKW         reboiler total duty 
              condKW        condenser total duty 
              membdev       membrane devaluation 
              comp1costyr   permeate recompression total cost 
              comp2costyr   retentate recompression total cost 
              comp1eleckw   permeate recompression duty 
              comp2eleckw   retentate recompression duty 
              rebcostyr     reboiler total cost 
              condcostyr    condenser total cost 
              alpha(j)      selectivity  [-] 
              perma         permeability 
; 
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              vpf(j) = exp ( av(j) - bv(j)/tf) ; 
 
 
$ontext 
                                Section 5 
                                _________ 
                        Modelling Equations 
 
        Note: The enthalpy functions are treated as variables 
              in order to eliminate unnecessary differentiations 
              in Minos 
 
                       Description of the column 
 
        Note: The stages are numbered bottom upwards (as in the 
        floors of a building). Reboiler is stage(tray) no. 1 and the 
        condenser is the last tray. 
 
$offtext 
Scalar  fst  location of feed stage /2/; 
 
 sets    i           stages    /1*135/ 
         reb(i)      reboiler 
         con(i)      condenser 
         col(i)      stages in the col 
         top(i)      top-most stage 
         abovef(i)   stages above the feed stage 
         belowf(i)   feed stage and those below it ; 
 
         reb(i) = yes$(ord(i) eq 1) ; 
         con(i) = yes$(ord(i) eq card(i)) ; 
         col(i) = yes - (reb(i)+con(i)) ; 
 
         alias (i,ii,iloop); 
         abovef(i) = yes $(ord(i) gt fst) ; 
         belowf(i) = yes $ (ord(i) le fst ) ; 
 
        display belowf ; 
$ontext 
-------------------------------------------------------------------------------- 
   === Adjust pressures in the column according to the total number of the trays 
     *************************************************************************** 
     *  the presures in condenser and the top-most tray are fixed as the same as 
     *  specified by original problem. but that in the bottom-most and reboiler 
     *  are adjusted by substract the summation of pressures in dried trays from 
     *  the original specified values. 
     *************************************************************************** 
-------------------------------------------------------------------------------- 
$offtext 
 
Parameter    p(i)    pressure prevailing in tray i ; 
 
             p(i)$reb(i) = preb ; 
             p(i)$con(i)= pcon ; 
             p(i)$col(i)  = 
             pbot - ((pbot-ptop)/(card(i)-1-2)) * (ord(i)-2)  ; 
 
             display p ; 
 
parameter     pdiff   pressure drop of one tray; 
              pdiff = 0; 
 
Positive variables 
 
              pbotm   actual pressure in bottom-most tray 
              prebler actual pressure in reboiler; 
 
Equations 
          defpbotm 
          defprebler; 
 
parameter keq1(i,j); 
 
*----------------------------------------------------------------------------------- 
 Scalars hllo,hlhi,hvlo,hvhi  limits on enthalpies  ; 
   hllo = hl0('propene')+ tcon *(hla('propene') + tcon* hlb('propene')) ; 
   hlhi = hl0('propane')+ treb *(hla('propane') + treb* hlb('propane')) ; 
   hvlo = hv0('propene')+ tcon *(hva('propene') + tcon* hvb('propene')) ; 
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   hvhi = hv0('propane')+ treb *(hva('propane') + treb* hvb('propane')) ; 
 
 
Scalar sigma  feed and reflux deviation parameter; 
       sigma = 0.5; 
 
Scalars 
        counter  loop counter 
              /1/ 
 
        purolef purity of propene 
              /0.995/ 
        purpara purity of propane 
              /0.95/; 
 
 
Positive variables 
              slack1(i) 
              slack2(i) 
              dd(i) 
 
              x(i,j)   mole-fraction of j-th component in i-th tray. 
              y(i,j)   mole-fraction of j-th component in i-th tray 
 
$ontext 
*          ------------------------------------------------------------------- 
                    This part is for Continuous Variable Optimization 
$offtext 
 
              nfp       feed permeate tray location 
              ffp(i)    fraction of feed distributed to each tray 
              nfr       feed retentate tray location 
              ffr(i)    fraction of feed retentate distributed to each tray 
              r         reflux ratio 
              Nt        reflux tray location 
              g(i)      fraction of Reflux distributed to each tray 
              rl(i)     fraction of reflux distribution to each tray 
              totalrd   total reflux 
              rd        portion of total reflux manipulated 
              refcom(j) composition of reflux 
              refhl     enthalpy of reflux 
              rdf       fraction of reflux manipulated 
*          ------------------------------------------------------------------- 
              l(i)     molar flow rate of liquid leaving tray i .(i<n) 
              v(i)     molar flow rate of vapour leaving tray i . 
              t(i)     temperature of tray i 
              ap1      top product rate 
              ap2      bottom product rate; 
 
Variables hl(i),hv(i),objective 
 
             A10(i,j) 
             A20(i,j) 
             A30(i,j) 
             A11(i,j) 
             A21(i,j) 
             A31(i,j) 
             K0(i,j) 
             K1(i,j) 
             Keq(i,j) 
 
 ; 
Scalar  smooth; 
        SMOOTH = 100; 
 
Positive variables 
        GAMMA(I); 
Equations 
 
            IFF(j) 
            IFP(j) 
            ILL 
            FECOLff(j,a,b) 
            FECOLfp(j,a,b) 
            FECOLll(a,b) 
            CONff(j,a) 
            CONfp(j,a) 
            CONll(a) 
            ODEff(j,a,b) 
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            ODEfp(j,a,b) 
            GROUP_AREA 
            DIM_PRESSURE 
 
             errk(i)          Phase equilibrium error function 
             tmb(i)           total material balance for trays in the column 
             tmb1(i)          total material balance for reboiler 
             tmbn(i)          total material balance for condenser 
             defln(i)         definition of l(n) 
             defap1(i)        definition of ap1 
             cmb(i,j)         component material balance(1<i<n) 
             cmb1(i,j)        component material balance(i=1) 
             cmbn(i,j)        component material balance(i=n) 
             phe(i,j)         phase equilibrium relation 
             defhl(i)         definition of hl(i) 
             defhv(i)         definition of hv(i) 
             eb(i)            enthalpy balance 
             ddB(i) 
             objpf            penalty objective function 
             objs             smoothing objective function 
             const1           propene purity constrain 
             const2           propane purity constrain 
             fluxconect       feed permeate flux conection 
             compconect       feed permeate composition conection 
             fluxconect2      feed retentate flux conection 
             compconect2(j)   feed retentate composition conection 
             shfpdef          feed permeate enthalpy definition 
             shfrdef          feed retentate enthalpy definition 
             distprod         distillate production 
             defrebKW         definition of reboiler total duty 
             defcondKW        definition of condenser total duty 
             defmembdev       definition of membrane devaluation 
             defcomp1costyr   definition of permeate compressor total cost 
             defcomp2costyr   definition of retentate compressor total cost 
             defcomp1eleckw   definition of permeate compressor duty 
             defcomp2eleckw   definition of retentate compressor duty 
             defrebcostyr     definition of reboiler total cost 
             defcondcostyr    definition of condenser total cost 
             selectivityfixed fixes alpha propene equal to 1 
             tradeoff         permability-selectivity trade-off 
 
             defA10(i,j) 
             defA20(i,j) 
             defA30(i,j) 
             defA11(i,j) 
             defA21(i,j) 
             defA31(i,j) 
             defK0(i,j) 
             defK1(i,j) 
             defKeq(i,j) 
 
 
             const2           propane purity constrain 
; 
 
 EQUATIONS 
             SMTHL(i)      SMOOTHING EQUATION FOR L VALUES 
             SMTHL_r(i)    SMOOTHING EQUATION FOR L VALUES 
             SMTHL_pf      PENALTY EQUATION FOR L VALUES 
             SMTHV(i)      SMOOTHING EQUATION FOR V VALUES 
             SMTHV_r(i)    SMOOTHING EQUATION FOR V VALUES 
             SMTHV_pf      PENALTY EQUATION FOR V VALUES 
*        ------------------------------------------------------------ 
 
             feedeqn(i)    feed permeate distribution 
             feedeqn2(i)   feed retentate distribution 
 
             refluxeqn     reflux distribution 
             deftotrd      define total reflux 
             defrd         define portion of total reflux manipulated 
             defrefcom(j)  define composition in reflux 
; 
 
*****************************MEMBRANE EQUATIONS********************************* 
 
* SELECTIVITY-PERMEABILITY TRADE-OFF 
 
selectivityfixed..   alpha('propene')=e=1; 
tradeoff..           alpha('propane')=l=97.507*(perma**(-0.362)); 
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* LAGRANGE BASIS COLLOCATION 
 
FECOLff(j,a,b)$(ord(b) gt 1).. h(a)*ffdot(j,a,b) =e= 
sum(c,ldot(c,b)*ff(j,a,c)); 
 
FECOLfp(j,a,b)$(ord(b) gt 1).. h(a)*fpdot(j,a,b) =e= 
sum(c,ldot(c,b)*fp(j,a,c)); 
 
FECOLll(a,b)$(ord(b) gt 1)..   h(a) =e= sum(c,ldot(c,b)*ll(a,c)); 
 
*CONTINUITY ECUATIONS 
 
CONff(j,a)$(ord(a) gt 1)..     ff(j,a,'1') =e= 
sum(b, ff(j,a-1,b)*lfinal(b)); 
 
CONfp(j,a)$(ord(a) gt 1)..     fp(j,a,'1') =e= 
sum(b, fp(j,a-1,b)*lfinal(b)); 
 
CONll(a)$(ord(a) gt 1)..       ll(a,'1') =e= sum(b, ll(a-1,b)*lfinal(b)); 
 
*ORDINARY DIFFERENTIAL EQUATIONS 
 
ODEff(j,a,b)$(ord(b) gt 1).. ffdot(j,a,b)=e=-theta/alpha(j)* 
(ff(j,a,b)/(sum(jb,ff(jb,a,b)))- 
fp(j,a,b)/(sum(jb,fp(jb,a,b)))*gammap); 
 
ODEfp(j,a,b)$(ord(b) gt 1).. fpdot(j,a,b)=e=theta/alpha(j)* 
(ff(j,a,b)/(sum(jb,ff(jb,a,b)))- 
fp(j,a,b)/(sum(jb,fp(jb,a,b)))*gammap); 
 
*ALGEBRAIC EQUATIONS 
 
GROUP_AREA..      theta=e=(area*1e3)*(perma*conv)*ftp/delta; 
DIM_PRESSURE..    gammap=e=ptp/ftp; 
 
*INITIAL CONDITIONS 
 
IFF(j)..    ff(j,'1','1')=e=ffinit(j); 
IFP(j)..    fp(j,'1','1')=e=fpinit(j); 
ILL..       ll('1','1')=e=0; 
******************************************************************************** 
 
 
***************************MEMBRANE-COLUMN CONECTIONS*************************** 
 
fluxconect..     fdp =e=sum(j,sum(b,lfinal(b)*fp(j,'20',b))); 
 
fluxconect2..    fdr =e=sum(j,sum(b,lfinal(b)*ff(j,'20',b))); 
 
compconect(j)..  sum(b,lfinal(b)*fp(j,'20',b))=e=xfp(j)* 
(sum(b,lfinal(b)*sum(jb,fp(jb,'20',b)))); 
 
compconect2(j)..  sum(b,lfinal(b)*ff(j,'20',b))=e=xfr(j)* 
(sum(b,lfinal(b)*sum(jb,ff(jb,'20',b)))); 
******************************************************************************** 
 
 
 
*****************************COLUMN EQUATIONS*********************************** 
 
*FEED ENTHALPY 
 
shfpdef..     shfp =e= sum(j,xfp(j)*(hl0(j)+tf*(hla(j)+tf*hlb(j)))); 
shfrdef..     shfr =e= sum(j,xfr(j)*(hl0(j)+tf*(hla(j)+tf*hlb(j)))); 
*------------------------------------------------------------------------------- 
 
feedeqn(i)$col(i).. ffp(i) =E= exp(-sqr((ord(i)-nfp)/sigma))/ 
              sum(ii$col(ii),exp(-sqr((ord(ii)-nfp)/sigma))); 
 
feedeqn2(i)$col(i).. ffr(i) =E= exp(-sqr((ord(i)-nfr)/sigma))/ 
              sum(ii$col(ii),exp(-sqr((ord(ii)-nfr)/sigma))); 
 
refluxeqn(i)$col(i)..g(i) =E= exp(-sqr((ord(i)-nt)/sigma))/ 
              sum(ii$col(ii),exp(-sqr((ord(ii)-nt)/sigma))); 
 
* add a intermediate variable to reduce nonlinearity 
 
deftotrd..totalrd - r*ap1 =e= 0; 
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defrd..(rd - rdf*totalrd) =e= 0; 
 
* we have to cheat Gmas to get specific values on condenser 
 
defrefcom(j)..refcom(j) =e= sum(ii$(ord(ii) eq card(ii)), x(ii,j)); 
 
 
defpbotm..pbotm =e= pbot - pdiff*(card(i)-nt); 
 
defprebler..prebler =e= preb - pdiff*(card(i) - nt); 
 
*------------------------------------------------------------------------------- 
 
errk(i)..    sum(j,y(i,j)) - sum(j,x(i,j))   =e= 0; 
 
 
tmb1(i)$reb(i)..               l(i)+v(i)- l(i+1) =e= 0; 
 
*------------------------------------------------------------------------------- 
 
tmb(i)$col(i).. 
         l(i) + v(i) - l(i+1) - v(i-1) - ffp(i)*fdp-ffr(i)*fdr - g(i)*rd =e= 0; 
 
tmbn(i)$con(i)..            ( rd + ap1) -  v(i-1) =e= 0; 
 
*------------------------------------------------------------------------------- 
 
defln(i)$con(i)..     l(i) - (totalrd - rd) =e= 0; 
defap1(i)$reb(i)..     l(i) - ap2 =e= 0; 
 
*------------------------------------------------------------------------------- 
 
cmb(i,j)$col(i).. 
       l(i)*x(i,j) + v(i) *y(i,j) - l(i+1)*x(i+1,j) -v(i-1)*y(i-1,j) 
              - ffp(i)*xfp(j)*fdp - ffr(i)*xfr(j)*fdr - g(i)*rd*refcom(j) =e= 0; 
*------------------------------------------------------------------------------- 
cmb1(i,j)$reb(i).. 
       (l(i)*x(i,j) +v(i)*y(i,j)- l(i+1)*x(i+1,j)) =e= 0; 
 
*------------------------------------------------------------------------------- 
 
cmbn(i,j)$con(i).. 
        (rd + ap1)*x(i,j) -  v(i-1)*y(i-1,j) =e= 0; 
 
*------------------------------------------------------------------------------- 
 
defhl(i).. hl(i)-sum(j,x(i,j)*(hl0(j)+t(i)*(hla(j)+t(i)*hlb(j))))/hvhi =e= 0; 
 
defhv(i).. hv(i)-sum(j,y(i,j)*(hv0(j)+t(i)*(hva(j)+t(i)*hvb(j))))/hvhi =e= 0; 
 
 
eb(i)$col(i).. 
  l(i)*hl(i) +v(i)*hv(i) - l(i+1)*hl(i+1) - v(i-1)*hv(i-1) 
   -  ffp(i)*fdp* shfp/hvhi -  ffr(i)*fdr* shfr/hvhi - g(i)*rd*hl('135') =e=  0; 
 
 
defA10(i,j)..  A10(i,j)=e=2.18630+(-8.80971)*t(i)/PRCON (J,'TC')+ 
  10.96486*power(t(i)/PRCON (J,'TC'),2)+(-3.87905)*power(t(i)/PRCON (J,'TC'),3); 
 
defA20(i,j)..  A20(i,j)=e=0.30602+(-0.64992)*t(i)/PRCON (J,'TC')+ 
   (-0.72423)*power(t(i)/PRCON (J,'TC'),2)+1.64710*power(t(i)/PRCON (J,'TC'),3); 
 
defA30(i,j)..  A30(i,j)=e=(-0.02683)+(-0.28575)*t(i)/PRCON (J,'TC')+ 
   1.09824*power(t(i)/PRCON (J,'TC'),2)+(-0.90820)*power(t(i)/PRCON (J,'TC'),3); 
 
defA11(i,j)..  A11(i,j)=e=(-3.44761)+14.55943*t(i)/PRCON (J,'TC')+ 
 (-21.31054)*power(t(i)/PRCON (J,'TC'),2)+11.13279*power(t(i)/PRCON (J,'TC'),3); 
 
defA21(i,j)..  A21(i,j)=e=(-6.40659)+28.27873*t(i)/PRCON (J,'TC')+ 
 (-39.95181)*power(t(i)/PRCON (J,'TC'),2)+17.62137*power(t(i)/PRCON (J,'TC'),3); 
 
defA31(i,j)..  A31(i,j)=e=0.58201+(-1.28555)*t(i)/PRCON (J,'TC')+ 
   0.87828*power(t(i)/PRCON (J,'TC'),2)+(-0.80885)*power(t(i)/PRCON (J,'TC'),3); 
 
defK0(i,j)..   K0(i,j)=e=A10(i,j)+A20(i,j)/(p(i)/PRCON (J,'PC'))+ 
   A30(i,j)*(p(i)/PRCON (J,'PC')); 
 
defK1(i,j)..   K1(i,j)=e=A11(i,j)+A21(i,j)/(p(i)/PRCON (J,'PC'))+ 
   A31(i,j)*(p(i)/PRCON (J,'PC')); 
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defKeq(i,j)..  Keq(i,j)=e=K0(i,j)+(PRCON(j,'omega')-0.193)*K1(i,j); 
 
 
 
phe(i,j)..  y(i,j)=e= GAMMA(I)*x(i,j)*Keq(i,j)  ; 
 
DdB(I)..   1 - GAMMA(I) =E= SLACK1(i) - SLACK2(i); 
 
variable btb_smthl, btb_smthv; 
 
SMTHL_pf..  btb_smthl =e= sum(ii,SLACK1(ii)*L(ii)) ; 
SMTHV_pf..  btb_smthv =e= sum(ii,SLACK2(ii)*V(ii)) ; 
 
SMTHL(I)..  SLACK1(I)+L(I) =E= SQRT(SQR(L(I)-SLACK1(I))+SQR(1/SMOOTH)); 
SMTHV(I)..  SLACK2(I)+V(I) =E= SQRT(SQR(V(I)-SLACK2(I))+SQR(1/SMOOTH)); 
 
SMTHL_r(I)..  SLACK1(I)*L(I) =l= (1/SMOOTH); 
SMTHV_r(I)..  SLACK2(I)*V(I) =l= (1/SMOOTH); 
 
 
defcomp1eleckw..       fdp*comp1stages*(1.15/0.15)*8.314472*temp* 
         ((pf/ptp)**(0.15/(1.15*comp1stages))-1)/3600/compyield-comp1eleckw=e=0; 
 
defcomp2eleckw..       fdr*comp2stages*(1.15/0.15)*8.314472*temp* 
         ((pf/ftp)**(0.15/(1.15*comp2stages))-1)/3600/compyield-comp2eleckw=e=0; 
 
defcomp1costyr..         comp1eleckw*365*sf*24*kWhcost-comp1costyr=e=0; 
defcomp2costyr..         comp2eleckw*365*sf*24*kWhcost-comp2costyr=e=0; 
 
defrebKW..          v('1')*sum(j,x('1',j)*dhv(j))-3600*rebKW=e=0; 
defcondKW..         (totalrd+ap1)*sum(j,refcom(j)*dhv(j))-3600*condKW=e=0; 
defmembdev..        membdev-area*1e3*membcost/memblife=e=0; 
 
defrebcostyr.. rebcostyr-rebKW*1000/AHvap*3600*24*sf*daysop*steamcost=e=0; 
 
defcondcostyr.. condcostyr-condKW*1000/(cpw*(coolTout-coolTin))* 
                         3600*24*sf*daysop*coolprice=e=0; 
 
objpf..       objective =e= comp1costyr + comp2costyr + rebcostyr + 
                  condcostyr + membdev + 1e3*(btb_smthl+btb_smthv); 
 
objs..        objective =e= comp1costyr + comp2costyr + rebcostyr + 
                  condcostyr + membdev; 
 
******************************************************************************** 
 
 
********************************MODEL CONSTRAINS******************************** 
 
const1..     refcom('propene')=g=purolef; 
 
const2..     x('1','propane')=g=purpara; 
******************************************************************************** 
 
 
$ontext 
******************************************************************************** 
                Initialization of membrane variables 
******************************************************************************** 
$offtext 
 
alpha.lo(j)=1; 
alpha.l('propane')=20; 
perma.lo=1e-5; 
perma.up=1e6; 
perma.l=100; 
 
ff.lo(j,a,b)=0;    ff.up(j,a,b)=ffinit(j); 
fp.lo(j,a,b)=0;    fp.up(j,a,b)=ffinit(j); 
ff.l(j,a,b)=ffinit(j); 
fp.l(j,a,b)=ffinit(j); 
ffdot.l(j,a,b)=1; 
fpdot.l(j,a,b)=1; 
ll.l(a,b)=1; 
area.lo=1e-3; area.l=1; 
 
 
$ontext 
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******************************************************************************** 
                Initialization of distillation variables 
******************************************************************************** 
$offtext 
   ap2.l = 180; 
   ap1.l= 180; 
*------------------------------- 
   xfp.lo(j)=0; 
   xfp.up(j)=1; 
   xfp.l(j)=0.5; 
 
   xfr.lo(j)=0; 
   xfr.up(j)=1; 
   xfr.l(j)=0.5; 
 
   fdp.lo=0; 
   fdp.up=sum(j,ffinit(j)); 
   fdp.l=80; 
 
   fdr.lo=0; 
   fdr.up=sum(j,ffinit(j)); 
   fdr.l=20; 
 
   nfr.lo = 2; 
   nfr.up = 50; 
   nfr.l = 2; 
 
   nfp.lo = nfr.lo+1; 
   nfp.up = card(i)-2; 
   nfp.l = 54; 
 
   nt.lo = nfp.lo+1; 
   nt.up = card(i)-1; 
   nt.fx =134; 
 
   g.up(i) = 1; 
   g.lo(i) = 0; 
   g.l('134')=0.5; 
 
   r.lo = 1; 
   r.up = 20; 
   r.l = 10; 
 
   ffp.l('80') = 0.8; 
   ffr.l('2') = 0.8; 
   totalrd.l = r.l*ap1.l; 
   totalrd.up = r.up*ap1.l; 
   totalrd.lo = r.lo*ap1.l; 
 
   rdf.fx = 1.0; 
   rd.up = rdf.lo*totalrd.up; 
   rd.lo = rdf.up*totalrd.lo; 
   rd.l = rdf.l*totalrd.l; 
   l.l(i)$con(i) = totalrd.l - rd.l; 
   l.lo(i)$con(i)=0; 
   l.up(i)$con(i)= totalrd.up - rd.lo; 
 
*----------------------------- 
   dd.lo(i) = 0.0; 
   aP1.UP = 360; 
   aP2.UP = 360; 
   v.l(i) = ((r.l + 1) * ap1.l ); 
   dd.l(i) = 0.0; 
 
   l.l(i)$reb(i) = ap2.l ; 
   l.l(i)$(belowf(i)-reb(i)) = ap1.l * r.l + fdp.l+fdr.l ; 
   l.l(i)$abovef(i) = ap1.l * r.l ; 
 
   t.l(i)$reb(i) = treb ; 
   t.l(i)$con(i) = tcon ; 
   t.l(i)$col(i) = tbot + (ttop -tbot) *(ord(i)-2)/(card(i)-1-2) ; 
   t.up(i) = treb+20 ;    t.lo(i) = tcon - 20 ; 
   x.l(i,'propene') =0.9 - 0.5 * (ord(i)- card(i))/(1-card(i)); 
   x.l(i,'propane') = 1 - x.l(i,'propene') ; 
   y.l(i,'propene') = 0.999 - 0.8*(ord(i) -card(i))/(1-card(i)) ; 
   y.l(i,'propane') = 1 - y.l(i,'propene') ; 
   x.up(i,j)  = 1.0 ;  y.up(i,j) = 1.0 ; 
   hl.l(i)=sum(j,x.l(i,j)*(hl0(j)+t.l(i)*(hla(j)+t.l(i)*hlb(j))))/hvhi; 
   hv.l(i)=sum(j,y.l(i,j)*(hv0(j)+t.l(i)*(hva(j)+t.l(i)*hvb(j))))/hvhi ; 
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   hl.lo(i) = - 100 ; 
   hv.lo(i) = ( 1 - 0.2*sign(hvlo))*hvlo/hvhi ; 
   hl.up(i) = ( 1 + 0.2*sign(hlhi))* hlhi/hvhi ; 
   hv.up(i)= ( 1 + 0.2*sign(hvhi)); 
 
 
   slack1.l(i) = 0.01; 
   slack2.l(i) = 0.01; 
   dd.l(i) = 0; 
 
 
 
comp1eleckw.l=fdp.l*comp1stages*(1.15/0.4)*8.314472*temp* 
                         ((pf/ptp)**(0.15/(1.15*comp1stages))-1)/3600/compyield; 
 
comp2eleckw.l=fdr.l*comp2stages*(1.15/0.4)*8.314472*temp* 
                         ((pf/ftp)**(0.15/(1.15*comp2stages))-1)/3600/compyield; 
 
comp1costyr.l=comp1eleckw.l*365*sf*24*kWhcost; 
comp2costyr.l=comp2eleckw.l*365*sf*24*kWhcost; 
 
 
rebKW.l=3e6/3600; 
condKW.l=2e6/3600; 
membdev.l=-area.l*1e3*membcost/memblife; 
 
 
rebcostyr.l=rebKW.l*1000/AHvap*3600*24*sf*daysop*steamcost; 
condcostyr.l=condKW.l*1000/(cpw*(coolTout-coolTin))*3600*24*sf*daysop*coolprice; 
 
A10.l(i,j)=2.18630+(-8.80971)*t.l(i)/PRCON (J,'TC')+ 
         10.96486*power(t.l(i)/PRCON (J,'TC'),2)+(-3.87905)* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
A20.l(i,j)=0.30602+(-0.64992)*t.l(i)/PRCON (J,'TC')+ 
         (-0.72423)*power(t.l(i)/PRCON (J,'TC'),2)+1.64710* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
A30.l(i,j)=(-0.02683)+(-0.28575)*t.l(i)/PRCON (J,'TC')+ 
         1.09824*power(t.l(i)/PRCON (J,'TC'),2)+(-0.90820)* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
A11.l(i,j)=(-3.44761)+14.55943*t.l(i)/PRCON (J,'TC')+ 
         (-21.31054)*power(t.l(i)/PRCON (J,'TC'),2)+11.13279* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
A21.l(i,j)=(-6.40659)+28.27873*t.l(i)/PRCON (J,'TC')+ 
         (-39.95181)*power(t.l(i)/PRCON (J,'TC'),2)+17.62137* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
A31.l(i,j)=0.58201+(-1.28555)*t.l(i)/PRCON (J,'TC')+ 
         0.87828*power(t.l(i)/PRCON (J,'TC'),2)+(-0.80885)* 
                         power(t.l(i)/PRCON (J,'TC'),3); 
 
K0.l(i,j)=A10.l(i,j)+A20.l(i,j)/(p(i)/PRCON (J,'PC'))+ 
                         A30.l(i,j)*(p(i)/PRCON (J,'PC')); 
 
K1.l(i,j)=A11.l(i,j)+A21.l(i,j)/(p(i)/PRCON (J,'PC'))+ 
                         A31.l(i,j)*(p(i)/PRCON (J,'PC')); 
 
Keq.l(i,j)=K0.l(i,j)+(PRCON(j,'omega')-0.193)*K1.l(i,j); 
 
 
 
 
Model ncp /IFF,IFP,ILL,FECOLff,FECOLfp,FECOLll,CONff,CONfp,CONll,ODEff,ODEfp, 
GROUP_AREA,DIM_PRESSURE,fluxconect,fluxconect2,compconect,compconect2,shfpdef, 
shfrdef,defpbotm, defprebler, errk, tmb, tmb1, tmbn, defln, defap1, 
feedeqn,feedeqn2, refluxeqn, deftotrd, defrd, defrefcom, cmb, cmb1, cmbn, phe, 
defhl, defhv, eb, ddB, objs, SMTHL, SMTHV,const1,defrebKW,defcondKW,defmembdev, 
defcomp1costyr,defcomp2costyr,defcomp1eleckw,defcomp2eleckw,defrebcostyr, 
defcondcostyr,const2,defA10,defA20,defA30,defA11,defA21,defA31,defK0,defK1, 
defKeq,tradeoff,selectivityfixed/; 
 
 
Model reg /IFF,IFP,ILL,FECOLff,FECOLfp,FECOLll,CONff,CONfp,CONll,ODEff,ODEfp, 
GROUP_AREA,DIM_PRESSURE,fluxconect,fluxconect2,compconect,compconect2,shfpdef, 
shfrdef,defpbotm, defprebler, errk, tmb, tmb1, tmbn, defln, defap1, 
feedeqn,feedeqn2, refluxeqn, deftotrd, defrd, defrefcom, cmb, cmb1, cmbn, phe, 
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defhl, defhv, eb, ddB, objs, SMTHL, SMTHV,const1,defrebKW,defcondKW,defmembdev, 
defcomp1costyr,defcomp2costyr,defcomp1eleckw,defcomp2eleckw,defrebcostyr, 
defcondcostyr,const2,defA10,defA20,defA30,defA11,defA21,defA31,defK0,defK1, 
defKeq,tradeoff,selectivityfixed/; 
 
Model penalty /IFF,IFP,ILL,FECOLff,FECOLfp,FECOLll,CONff,CONfp,CONll,ODEff, 
ODEfp,GROUP_AREA,DIM_PRESSURE,fluxconect,fluxconect2,compconect,compconect2, 
shfpdef,shfrdef,defpbotm, defprebler, errk, tmb, tmb1, tmbn, defln, 
defap1, feedeqn,feedeqn2, refluxeqn, deftotrd, defrd, defrefcom, cmb, cmb1, 
cmbn, phe, defhl, defhv, eb, ddB, objpf, SMTHL_pf, SMTHV_pf,const1,defrebKW, 
defcondKW,defmembdev,defcomp1costyr,defcomp2costyr,defcomp1eleckw, 
defcomp2eleckw,defrebcostyr,defcondcostyr,const2,defA10,defA20,defA30, 
defA11,defA21,defA31,defK0,defK1,tradeoff,selectivityfixed,defKeq/; 
 
 penalty.optfile = 1; 
 reg.optfile=1; 
 option nlp =conopt; 
 option decimals = 8; 
* option iterlim = 6000; 
 
 
 option  r:8; 
 
 
 parameter toluintop; 
 
 
 
 
 smooth = 1.e6; 
 solve reg using nlp  minimizing  objective ; 
 
 smooth = 1.e12; 
 solve reg using nlp  minimizing  objective ; 
 
 solve penalty using nlp  minimizing  objective ; 
 solve penalty using nlp  minimizing  objective ; 
 
 penalty.optfile = 1; 
 reg.optfile=1; 
 option nlp =oqnlp; 
 option decimals = 8; 
*   option iterlim = 3000; 
 option reslim = 3000 ; 
 
 solve penalty using nlp  minimizing  objective ; 
 
 
fffinal(j,a)=sum(b,lfinal(b)*ff.l(j,a,b)); 
fpfinal(j,a)=sum(b,lfinal(b)*fp.l(j,a,b)); 
 
 
Display area.l; 
Display fffinal,fpfinal; 
Display ll.l,ff.l,fp.l; 
 
keq1(i,j)=y.l(i,j)/x.l(i,j); 
display keq1, x.l,y.l; 
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A.4 GAMS program used for multistage process optimization (two-
and-one-half-stages) 

 
$Title: Optimization of a gas separation process with HF-membrane modules 
 
$OFFUPPER 
$OFFSYMXREF OFFSYMLIST 
 
* option sysout = off; 
* OPTION SOLPRINT = OFF; 
 
* This file implements the optimization of a gas separation process 
* using hollow fiber membrane modules. 
* Objetive function is minimum net present value cost. 
* Decision variables are membrane areas, permeate pressure and carrier loading. 
* Constraints are C3H6 and C3H8 product purities. 
 
Sets    i        number of finite elements             /1*100/ 
        j        number of internal collocation points /1*3/ 
* List number of compounds and membrane modules: 
        comp     number of compounds                   /a,b/ 
        m        number of membrane modules            /M1,M2,M3/; 
 
Alias (j,k) 
      (comp,compb); 
 
Scalar  nfe       number of finite elements                  [-]     /100/ 
        pi        number pi                                  [-]     /3.141592/ 
* Problem definition: 
        gradeA    minimum purity of A                        [-]     /0.995/ 
        gradeB    minimum purity of B                        [-]     /0.95/ 
 
        ftp       feed total pressure                      [bar]     /18/ 
        temp      pre-compressor feed temperature            [K]     /325/ 
* Define membrane parameters: 
        permb     permeability of B                     [Barrer]     /20/ 
        delta     fiber wall thickness                       [m]     /20e-6/ 
        conv      Barrer conversion [kmol m-1 bar-1 h-1 Barrer-1]    /1.206e-10/ 
* Define cost parameters: 
        ecost     energy cost                          [$ kWh-1]     /0.15/ 
        MFc       compressor module factor                   [-]     /3.11/ 
        CEPCI     chem. eng. plant cost index 2016                   /541.7/ 
        eta       isentropic compressor efficiency           [-]     /0.7/ 
        CR        compression ratio                                  /2.62071/ 
        OF        annual operating factor                [h y-1]     /8000/ 
        r         interest rate                              [%]     /10/ 
        T         plant lifetime                             [y]     /15/ 
* Membrane model constants 
        EaFC      fixed carrier activation energy      [J mol-1]     /14800/ 
        pack      modules packing density                    [-]     /0.6/ 
        Rfib      hollow fiber external radius               [m]     /165e-6/ 
        Rfibin    hollow fiber internal radius               [m]     /90e-6/ 
        keq0      reaction constant at 278K           [m3 mol-1]     /0.337/ 
        AHr       reaction activation energy          [kJ mol-1]     /-11/ 
        He0       Henrys law constant            [mol bar-1 m-3]     /4.28e-3/ 
        AHsol     Henrys law activation energy        [kJ mol-1]     /-24.1/ 
        Dcomp0    Complex diffusivity at 293K           [m2 s-1]     /3.22e-11/ 
        EaD       Diffusivity activation energy       [kJ mol-1]     /7.13/ 
        XIL       Ionic liquid fraction                      [-]     /0.2/ 
        alpha     Fitting parameter               [m2 mol-1 s-1]     /1.35e-11/ 
        gasR      ideal gas constant               [J K-1 mol-1]     /8.314472/ 
        kp        Heterogeneous reaction constant        [bar-1]     /0.12/ 
        Polyload  polymer load per m3 of membrae         [g m-3]     /1.11e6/ 
        ILload    IL load per m3 of membrane             [g m-3]     /2.76e5/ 
        Polycost  polymer cost                           [$ g-1]     /0.7/ 
        Ilcost    IL cost                                [$ g-1]     /0.8/ 
        Agcost    AgBF4cost                              [$ g-1]     /13/; 
 
 
* Set initial values for feed flowrates into M1: 
Parameter ffinit(comp) value  [kmol h-1]         /a  180 
                                                  b  180/; 
 
* Set initial values for permeate flowrates into M1: 
Parameter fpinit(comp) value  [kmol h-1]         /a  1e-6 
                                                  b  1e-6/; 
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Table   l(j,j)    Lagrange basis collocation matrix 
         1       2       3 
      1  1       0       0 
      2  0       1       0 
      3  0       0       1; 
 
 
Table  ldot(j,j)  Lagrange basis first derivs collocation matrix 
                1                  2                  3 
      1  -5.999997202501304  -3.464098384864128  3.464098384864127 
      2  6.464099408820847   2.999996178544585   -6.464099408820847 
      3  -0.464102206319543  0.464102206319543   3.000001023956719; 
 
 
Parameter lfinal(j) value   /1  1 
                             2  -1.732051615138131 
                             3  1.732051615138131/; 
 
 
Parameter 
          FeedFlow(m)         Module total feed flowrate 
          FeedComp(m)         Module feed composition 
          RetentateFlow(m)    final molar retentate flowrate 
          RetentateComp(m)    Retentate composition 
          PermeateFlow(m)     final molar permeate flowrate 
          PermeateComp(m)     permeate composition 
          fppfinal(m,comp,i)  final partial pressure retentate 
          pppfinal(m,comp,i)  final partial pressure permeate 
          H2purity            final H2 purity 
          H2recovery          final H2 recovery 
          compression         total compression work [kW] 
          h(i); 
 
h(i) = 1/nfe; 
 
Variables ff(m,comp,i,j)      retentate molar flowrate 
          fp(m,comp,i,j)      permeate molar flowrate 
          ffdot(m,comp,i,j)   ff first order derivative 
          fpdot(m,comp,i,j)   fp first order derivative 
          ja(i,m)             propylene transmembrane flux 
          jb(i,m)             propylene transmembrane flux 
          ll(i,j)             fiber lenght dimension 
          Lfib(m)             module fiber length [m] 
          Nfib(m)             module fibers 
          gamma               permeate over feed pressure [-] 
          phi 
          NPVcost             net present value cost [M$] 
          CAPEX               capital expenses [M$] 
          OPEX                operating expenses [M$ y-1] 
          H2prod              H2 production [MNm3 y-1] 
          compression1        1st stage compressors duty [kW] 
          compression2        2nd stage compressors duty [kW] 
          NSt                 compression stages 
          keq                 reaction constant [m3 mol-1] 
          He                  Henrys law constant [mol bar-1 m-3] 
          Dcomp               Complex diffusivity  [m2 s-1] 
          Ag(m)               silver load          [mol m-3] 
          m2cost(m)           membrane cost        [$ m-2] 
          area(m)             module total area    [m2] 
          vlumen(m,i,j)       linear velocity lumen side [m s-1] 
          vshell(m,i,j)       linear velocity shell side [m s-1] 
          modcin(m)           module shell diameter [m] 
          ptp(m)              permeate total pressure [bar]; 
 
Equations   fobj            criterion definition 
            compenerg2 
            costs 
            capcosts 
            opcosts 
            IFP(m,comp) 
            ILL 
            FECOLff(m,comp,i,j) 
            FECOLfp(m,comp,i,j) 
            FECOLll(i,j) 
            CONff(m,comp,i) 
            CONfp(m,comp,i) 
            CONll(i) 
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            ODEffA(m,i,j) 
            ODEfpA(m,i,j) 
            ODEffB(m,i,j) 
            ODEfpB(m,i,j) 
            CON12Feed(comp) 
            CON31Feed(comp) 
            CON23Feed(comp) 
            PURITYA 
            PURITYB 
            Henry 
            VantHoff 
            Arrhenius 
            MembCost 
            areadef 
            vlumendef (m,i,j) 
            vshelldef (m,i,j) 
            modcindef(m) 
            equalpressure(m); 
 
*------------------------------------------------------------------------------- 
*OBJECTIVE FUNCTION 
*------------------------------------------------------------------------------- 
 
fobj..       phi=e=NPVcost; 
 
costs..      NPVcost=e=CAPEX+OPEX*(1-(1+r/100)**(-T))/(r/100); 
 
capcosts..   CAPEX=e=sum(m,m2cost(m)*2*pi*Rfib*Nfib(m)*Lfib(m))/10**6+ 
             23000*((compression2/Nst/74.57)**0.77)* 
             Nst*MFc*(CEPCI/115)/10**6; 
 
opcosts..    OPEX=e=compression2*OF*ecost/10**6+ 
             0.01*sum(m,m2cost(m)*2*pi*Rfib*Nfib(m)*Lfib(m))/10**6; 
 
compenerg2.. 
compression2=e=(sum(j,lfinal(j)*sum(compb,fp('M1',compb,'100',j)))+sum(j,lfinal(j)*sum(com
pb,fp('M3',compb,'100',j)))) 
             *NSt*(1.15/0.15)*(8.314e-2*temp)*(((ftp/ptp('M1'))**(0.15/1.15/NSt))-1)/ 
             eta/36; 
 
MembCost(m)..   m2cost(m)-delta*(Polyload*Polycost+ILload*ILcost+Ag(m)*194.67*Agcost)=e=0; 
 
areadef(m).. area(m)-2*pi*Rfib*Nfib(m)*Lfib(m)=e=0; 
 
 
*------------------------------------------------------------------------------- 
* HF-MEMBRANE MODULE EQUATIONS 
*------------------------------------------------------------------------------- 
 
Henry..       He-He0*exp(-AHsol*1000/gasR/temp)=e=0; 
VantHoff..    Keq-Keq0*exp(-AHr*1000/gasR*(1/temp-1/278))=e=0; 
Arrhenius..   Dcomp-Dcomp0*exp(-EaD*1000/gasR*(1/temp-1/293))=e=0; 
 
 
*LAGRANGE BASIS COLLOCATION 
FECOLff(m,comp,i,j)$(ord(j) gt 1).. h(i)*ffdot(m,comp,i,j) =e= 
sum(k,ldot(k,j)*ff(m,comp,i,k)); 
 
FECOLfp(m,comp,i,j)$(ord(j) gt 1).. h(i)*fpdot(m,comp,i,j) =e= 
sum(k,ldot(k,j)*fp(m,comp,i,k)); 
 
FECOLll(i,j)$(ord(j) gt 1)..        h(i) =e= sum(k,ldot(k,j)*ll(i,k)); 
 
*CONTINUITY ECUATIONS 
CONff(m,comp,i)$(ord(i) gt 1)..     ff(m,comp,i,'1') =e= 
sum(j, ff(m,comp,i-1,j)*lfinal(j)); 
 
CONfp(m,comp,i)$(ord(i) gt 1)..     fp(m,comp,i,'1') =e= 
sum(j, fp(m,comp,i-1,j)*lfinal(j)); 
 
CONll(i)$(ord(i) gt 1)..            ll(i,'1') =e= sum(j, ll(i-1,j)*lfinal(j)); 
 
*ORDINARY DIFFERENTIAL EQUATIONS 
ODEffA(m,i,j)$(ord(j) gt 1).. ffdot(m,'a',i,j)=e=-2*pi*Lfib(m)*Nfib(m)*Rfib/delta* 
(ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp-
fp(m,'a',i,j)/(sum(compb,fp(m,compb,i,j)))*ptp(m))* 
((keq*Ag(m)*He*Dcomp*XIL/(1+keq*ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp*He))+ 
(alpha*exp(EaFC/gasR*(1/293-
1/temp))*(Ag(m)/(1+kp*ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp))*(1-XIL)))*3.6; 
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ODEffB(m,i,j)$(ord(j) gt 1).. ffdot(m,'b',i,j)=e=-2*pi*Lfib(m)*Nfib(m)*Rfib/delta* 
Permb*conv*(ff(m,'b',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp-
fp(m,'b',i,j)/(sum(compb,fp(m,compb,i,j)))*ptp(m)); 
 
ODEfpA(m,i,j)$(ord(j) gt 1).. fpdot(m,'a',i,j)=e=2*pi*Lfib(m)*Nfib(m)*Rfib/delta* 
(ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp-
fp(m,'a',i,j)/(sum(compb,fp(m,compb,i,j)))*ptp(m))* 
((keq*Ag(m)*He*Dcomp*XIL/(1+keq*ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp*He))+ 
(alpha*exp(EaFC/gasR*(1/293-
1/temp))*(Ag(m)/(1+kp*ff(m,'a',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp))*(1-XIL)))*3.6; 
 
ODEfpB(m,i,j)$(ord(j) gt 1).. fpdot(m,'b',i,j)=e=2*pi*Lfib(m)*Nfib(m)*Rfib/delta* 
Permb*conv*(ff(m,'b',i,j)/(sum(compb,ff(m,compb,i,j)))*ftp-
fp(m,'b',i,j)/(sum(compb,fp(m,compb,i,j)))*ptp(m)); 
 
*------------------------------------------------------------------------------- 
*FLUID DYNAMICS 
*------------------------------------------------------------------------------- 
 
modcindef(m)..     modcin(m)-2*rfib*(nfib(m)/pack)**0.5=e=0; 
 
vlumendef(m,i,j).. vlumen(m,i,j)-(sum(comp,fp(m,comp,i,j))*gasR*(1e-
2)*temp/ptp(m))/Nfib(m)/(pi*rfibin**2)/3600=e=0; 
 
vshelldef(m,i,j).. vshell(m,i,j)-(sum(comp,ff(m,comp,i,j))*gasR*(1e-
2)*temp/ftp)/(pi*(modcin(m)/2)**2-nfib(m)*pi*rfib**2)/3600=e=0; 
 
 
*------------------------------------------------------------------------------- 
*CONNECTIONS BETWEEN MEMBRANE MODULES 
*------------------------------------------------------------------------------- 
CON12Feed(comp).. ff('M2',comp,'1','1')- 
                      fp('M1',comp,'100','3')-fp('M3',comp,'100','3')=e=0; 
 
CON31Feed(comp).. ff('M1',comp,'1','1')- 
                      ff('M3',comp,'100','3')-ffinit(comp)=e=0; 
 
CON23Feed(comp).. ff('M3',comp,'1','1')- 
                      ff('M2',comp,'100','3')=e=0; 
 
*------------------------------------------------------------------------------- 
* PROCESS CONSTRAINTS 
*------------------------------------------------------------------------------- 
 
PURITYA..            fp('M2','a','100','3')=g=gradeA* 
                      sum(compb,fp('M2',compb,'100','3')); 
 
PURITYB..            ff('M1','b','100','3')=g=gradeB* 
                      sum(compb,ff('M1',compb,'100','3')); 
 
Equalpressure(m)..   ptp('M1')-ptp('M3')=e=0; 
 
 
*------------------------------------------------------------------------------- 
*INITIAL CONDITIONS 
*------------------------------------------------------------------------------- 
IFP(m,comp).. fp(m,comp,'1','1')=e=fpinit(comp); 
ILL..         ll('1','1')=e=0; 
 
 
 
Model Membrane_module /all/; 
 
 
*------------------------------------------------------------------------------- 
*VARIABLE LIMITS AND INITIAL GUESSES 
*------------------------------------------------------------------------------- 
 
ff.lo(m,comp,i,j)=0; 
fp.lo(m,comp,i,j)=1e-6; 
ff.l(m,comp,i,j)=ffinit(comp); 
fp.l(m,comp,i,j)=1; 
ffdot.l(m,comp,i,j)=1; 
fpdot.l(m,comp,i,j)=1; 
Lfib.lo(m)=0.1; 
Lfib.up(m)=4; 
Lfib.l(m)=1; 
Nfib.lo(m)=1e3; 
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Nfib.up(m)=5e6; 
Nfib.l(m)=1e5; 
He.l=61.1; 
Keq.l=0.337; 
Dcomp.l=4e-11; 
NSt.fx = 3; 
Ag.lo(m)=0; 
Ag.up(m)=6000; 
ptp.lo(m)=1; 
ptp.up(m)=15; 
 
 
*Option nlp=conopt; 
Membrane_module.optfile=1; 
Option iterlim=3000; 
Option reslim=3000; 
Option nlp=oqnlp; 
option decimals = 8; 
 
 
Solve Membrane_module minimizing phi using nlp; 
 
RetentateFlow(m)=sum(comp,ff.l(m,comp,'100','3')); 
RetentateComp(m)=ff.l(m,'a','100','3')/sum(comp,ff.l(m,comp,'100','3')); 
 
PermeateFlow(m)=sum(comp,fp.l(m,comp,'100','3')); 
PermeateComp(m)=fp.l(m,'a','100','3')/sum(comp,fp.l(m,comp,'100','3')); 
 
FeedFlow(m)=sum(comp,ff.l(m,comp,'1','1')); 
FeedComp(m)=ff.l(m,'a','1','1')/sum(comp,ff.l(m,comp,'1','1')); 
 
jb.l(i,m)=Permb*conv*(ff.l(m,'b',i,'3')/(sum(compb,ff.l(m,compb,i,'3')))*ftp 
-fp.l(m,'b',i,'3')/(sum(compb,fp.l(m,compb,i,'3')))*ptp.l(m))/delta*1000/3600; 
 
ja.l(i,m)=(ff.l(m,'a',i,'3')/(sum(compb,ff.l(m,compb,i,'3')))*ftp- 
fp.l(m,'a',i,'3')/(sum(compb,fp.l(m,compb,i,'3')))*ptp.l(m))* 
((keq.l*Ag.l(m)*He.l*Dcomp.l*XIL/(1+keq.l*ff.l(m,'a',i,'3')/ 
(sum(compb,ff.l(m,compb,i,'3')))*ftp*He.l))+(alpha*(Ag.l(m)/ 
(1+kp*ff.l(m,'a',i,'3')/(sum(compb,ff.l(m,compb,i,'3')))*ftp))*(1-XIL)))/delta; 
 
 
Display FeedFlow,FeedComp,RetentateFlow,RetentateComp,PermeateFlow,PermeateComp; 
Display ll.l,ff.l,fp.l; 
Display 'Ja in mol/m2/s',ja.l; 
Display 'Jb in mol/m2/s',jb.l; 
 
 
$ontext 
 
$offtext 
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