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Abstract

In this work, a first-order correction of the capacitor models studied in the Physical
Review B article [JGFS19] is proposed. The latter is a pioneer work in the incorporation
of quantum effects to capacitance. In particular, it focuses on the contribution of the
electrodes to the total capacitance. Although the analysis performed there is useful, the
calculations are based on free electron models and are not yet susceptible to be
incorporated into the construction of new devices. In this work, we try to extend the
results of [JGFS19] to a more realistic system, which incorporates the atomic nature of
matter. We propose a model in which the electrodes are simulated by 2D square,
monoatomic lattices of Na. Using this model, we compute its capacitance and the most
relevant contributions to it. Additionally, the similarity between our results and those
obtained using free electron models is discussed, focusing on the theoretical description
of the electron compressibility of the plates proposed in [JGFS19].

Key words: parallel-plate capacitor, capacitance, electron compressibility, siesta, tight-
binding model, jellium

Resumen

En este trabajo se plantea una corrección a primer orden de los modelos de
condesador que se estudian en el art́ıculo de Physical Review B [JGFS19]. Este art́ıculo
es pionero en la incorporación de efectos cuánticos a la capacidad de condensadores. En
particular, se centra en la contribución de los electrodos a la capacidad. Aunque el
análisis realizado es útil, los cálculos están basados en modelos de electrones libres y aún
no son susceptibles de incorporarse a la construcción de nuevos dispositivos. En este
trabajo tratamos de extender los resultados de [JGFS19] a un sistema más realista, que
incorpora la naturaleza atómica de la materia. Se propone un modelo en que los
electrodos son simulados por redes cuadradas 2D de Na. Sobre éste, se calculan la
capacidad y sus principales contribuciones. Adicionalmente, se discute la similitud entre
los resultados obtenidos en los modelos de electrones libres y los aqúı recogidos, haciéndo
especial énfasis en la descripción teórica de la compresibilidad electrónica descrita en ??.

Palabras clave: condensador de placas paralelas, capacidad, compresibilidad
electrónica, siesta, modelo de enlace fuerte, jellium





Contents

1 Introduction 1

2 Negative capacitance 5
2.1 Foundations of capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The idea of negative capacitance . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Approaches to the origin of negative capacitance . . . . . . . . . . . . . . . 9

3 Theoretical background 11
3.1 Equations governing the plate contribution to the capacitance . . . . . . . . 11
3.2 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Analytic calculations: 2D free electron gas . . . . . . . . . . . . . . . 16
3.2.2 Numerical calculations: the electron confinement . . . . . . . . . . . 17

4 The capacitance beyond free electron models 19
4.1 The general in-plane contribution . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 2D square, monoatomic Na layer . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 The capacitor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Computational method 23
5.1 The tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 The siesta code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Electron compressibility, dµ/dn . . . . . . . . . . . . . . . . . . . . . 26

5.3.2 The perturbations ∆right
H and ∆xc . . . . . . . . . . . . . . . . . . . . 27

5.3.3 The image charge center zim . . . . . . . . . . . . . . . . . . . . . . . 27

6 Results 28
6.1 Derivation of the DOS within the tight-binding approach . . . . . . . . . . 28
6.2 Derivation of the in-plane contributions . . . . . . . . . . . . . . . . . . . . 30
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Chapter 1

Introduction

There is no doubt that the starring electronic component in the thriving of the electronic
industry has been, since its discovery in the late 40s by Bardeen, Brattain, and Shockley
at the Bell Laboratories, the transistor. Without them, the abysmal increase in the
processing capabilities and miniaturization of modern devices, from smartphones to
high-performance computers, would not have been possible. Surprisingly, despite their
enormous possibilities, its functioning is quite simple to understand: they are switches
that allow the circulation of current depending on the potential difference applied to one
of the terminals. Furthermore, the amount of current that is allowed to cross them
depends on the magnitude of this potential, enabling the modulation of the incident
signal. The power of transistors lies in the fact that, when appropriately interconnected,
they can simulate any logical operation.

It is natural to guess that the more transistors gathered inside a device, the more
complex its response might be, as it can reproduce more logical operations. Therefore,
from 1960 to 2010, new devices have been designed with progressively more transistors,
and even to this date, it is yet one of the milestones of electronic industry (if something
works well, why should we change it?). However, there are some impediments in the
practical implementation of this idea. The first one has to do with the Joule effect and
heat dissipation. Whenever the potential at some of the tiny switches changes, enabling
or restricting the current flux (something that happens hundreds of times every second),
there is a minuscule heat emission of the order of 10−16 J. Ignoring the energy losses
attached to this process, if the density of transistors exceeds a critical value the dissipated
heat can literally melt down the motherboard. As the emitted heat is proportional to the
potential difference across the capacitor (Joule’s law), the optimal performance demands
the minimization of the potentials involved in the operation the transistor. To better
understand how this can be achieved, we must look to another component integrated into
every transistor: the capacitor. The function of the latter is to store an amount of charge
that is proportional to the potential difference to which it is subject, according to a ratio
that receives the name of capacitance. Thus, as large capacitances allow the manipulation
of charge using low potentials, the enhancement of the capacitance is one of the objectives
currently pursued by the microelectronics industry. To envision the different attitudes that
have been adopted for such purpose, let us introduce the expression of the capacitance of
typical parallel-plate capacitors

C =
κA

4πd
. (1.1)

Here κ is the dielectric constant of the interplate medium (κ = 1 for vacuum), and A, d
are respectively the area and separation of the plates. In view of Eq.(1.1), one can think
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of three possible methods to enhance capacitance: increase either κ or A, and reduce d.
The value of κ depends on the nature of the material used as dielectric, and thus the first
path requires either the research on the optimal materials for this purpose or the design
and construction of new ones. The research on this direction, known as the “large-κ”
solution, is currently an opened line of investigation. However, it seems easier to simply
modify geometric properties of the components such as A and d, and as miniaturization
is also sought, the reduction of d happens to be the best choice. Indeed, this has been the
typical solution adopted by producers: decreasing the size of capacitors would both lead
to higher capacitances and leave more space for other components. Unfortunately, this is
where the second problem arises. The rampant increase of the density of components in
microprocessors that occurred since the 1960s led to the formulation of an empirical law
by the engineer Gordon Moore, often known as Moore’s law [Moo98], which states that the
number of transistors per unit of area doubles each year (later on, in 1975, the statement
will be corrected to claim that the number of transistors duplicates every two years).
The predicted exponential growth was supported by the processors developed within the
hardware industry until 2016, when Intel postponed the release of its next generation
of transistor technology and shut down the rule. The main reason why this technological
trend has ground to a halt is that currents transistors, with sizes of the order of 10 nm, are
approaching the quantum limit. This means that, in case of continuing reducing their size,
quantum phenomena will become as relevant that the response of the material shall turn
unpredictable. Namely, the electron currents due to tunnel effect increase exponentially
as the interplate distance d diminishes, and it is no longer possible to keep on reducing
this separation to get enhanced capacitors.

As quantum physics will eventually burst into the construction of microscopic
capacitors, their study from the fundamental research perspective becomes necessary. In
the last decades, several ways to further improve the capacitance of new components
have been sought, some of them taking advantage of the quantum nature of matter. In
order to get introduced to one of them, we recall some concepts from elementary
electrostatics. It is well known that two capacitors connected in series have the same
effect as a single capacitor with a capacitance given by the formula

Ctot =

(
1

C1
+

1

C2

)−1
, (1.2)

where C1 and C2 are the individual capacitances. We shall prove the latter expression in
Chapter 2. However, according to Eq.(1.2) the overall capacitance will drop rather than
increase, and hence this is not a favorable scenario. Nevertheless, we can infer what would
happen in the case that one of the capacitors has a negative capacitance. If this is the case,
Eq.(1.2) dictates that the capacitors connected in series are equivalent to a single one with
a greater capacitance than the individuals. This idea steers to a new line of investigation:
the so called negative capacitance. This modern field aims to design capacitors with
improved properties, without further reduction of their size. Negative capacitance was
firstly observed by Salahuddin and Datta in 2008, at the University of Purdue [SD08],
who measured an amplification in the voltage at capacitors that contained ferroelectric
materials under the presence of an alternating potential. This effect was ascribed to
the rupture of the borders of ferroelectric domains in the sample materials due to the
effect of the crystalline field of the surrounding atoms without a natural polarization,
such as SrTiO3. More recently, in 2016 Pavlo Zubko and his team [ZWH+16] found
remarkable enhancements in the capacitance at superlattices constituted by alternating
layers of ferroelectric atoms and others showing resistance to polarization. Again, this
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discovery backed up the hypothesis of the displacement of ferroelectric domain borders as
a cause of the negative capacitance. In view of the physical plausibility of this phenomena,
the next step is to incorporate it to real capacitors. There are two possibilities: use
materials showing negative capacitance either to the dielectric or to the electrodes. Rather
than focusing on the optimization of dielectrics, which as in the case of the large-κ solution
requires research in the design of new materials, in this work we shall study how negative
capacitance affects the electrodes of the capacitor. To legitimize this choice, we must
take into consideration that the stored charge remains almost entirely within these plates.
Thus, the distribution of electrons is remarkably much more dynamic than in the interplate
medium, and as we shall see, electrons play an important role in the definition of the total
capacitance of a system.

In addition to the experimental support, an adequate theoretical framework is
required to consider negative capacitance a valid physical theory. One of the pioneer
works towards the mathematical foundations of the field was developed in 2009 by Thilo
Kopp and Jochen Mannhart [KM09], who pointed to exchange-correlation interactions as
the main responsibles for the increase of capacitance, and deduced the equation that
connects the total energy of a system with its capacitance. Also, they settled down some
qualitative ideas that are necessary to get a complete understanding of negative
capacitance from a theoretical perspective (we shall review their work in Chapter 2).
Taking advantage of the recent theoretical advances, in 2019 Javier Junquera, Pablo
Garćıa and Massimiliano Stengel [JGFS19] returned to the investigation about the origin
of this effect. Namely, they made use of the Kopp-Mannhart equation to gauge the
relevance of the different contributions of the energy functional to the total capacitance
of a system, that modelled a parallel-plate capacitor. Although they used simple jellium
slabs to obtain an approximation to the real underlying physics, new important effects
that had remained unnoticed until their research were discovered. According to their
calculations these new effects, of electrostatic nature, are the dominant source of the
capacitance enhancements when the confinement of the electrons at the electrodes is low,
and yet relevant in the strong-confinement regime. In view of their results, they
questioned previous beliefs about the causes of negative capacitance, and pushed the
exchange-correlation dominance into the background. Again, we will explain in detail the
ideas of this paragraph in Chapter 2.

Despite the successes of the analysis carried out by J. Junquera, P. Garćıa and M.
Stengel, its accuracy is strongly limited by the simplicity of the model. Indeed, one
should not expect that a uniform background of positive charge, filled with free
electrons, resembles the complex atomic nature of matter. Thus, a long research track is
still required to achieve a complete understanding of the possibilities of negative
capacitance, and how to include it in the design of microscopic capacitors. A possible
next step towards this goal is to replace the unrealistic jellium model by an atomic
lattice, repeating the same calculations in [JGFS19] to check whether its conclusions are
right. There are two aspects to take into consideration before taking this step. First, it is
foreseeable that the behavior of the capacitance in systems composed of atoms might be
completely reliant on the chemical character of its atomic species and the crystalline
structure of the lattice. Secondly, most of the typical materials of interest for solid state
physics exhibit complex structures that are difficult to reproduce. A possible, yet simple,
atomic approach to real systems are 2D crystals. Much of the theory developed within
the context of negative capacitance (again, see [KM09]) is done for 2D electron gases,
and they can resemble adequately the electrodes of a parallel-plate capacitor. Thus, 2D
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systems are a good option to inspect whether the behavior of the negative capacitance
studied in jellium systems show any significant variation with respect to atomic lattices.

This project aims to carry out a first-order correction for the jellium models discussed in
[JGFS19]. We shall simulate a parallel-plate capacitor, where the electrodes are modelled
using 2D-monoatomic layers of Na. Clearly, the latter is yet far from being a plausible
approach to a real system. It is highly improbable for square monolayers to be used with
such a purpose. Besides, very likely this structure for Na will not be stable, and it is not
the best option for constructing electrodes neither. Rather than proposing a definitive
model, this project targets a first inspection of the physics that discrete matter introduces
in the study of negative capacitance. With this in mind, we propose the following two
objectives: test the validity of the results obtained by Junquera, Garćıa, and Stengel; and
continue with the long investigation track that is necessary to learn how to apply negative
capacitance in practice, providing a first result background that can be used in future
investigations. In connection to the second milestone, we aim to obtain results that go
beyond the present project. We have already developed the software to repeat the same
calculations as here using other atomic species and structures, meaning that we are in
conditions to follow up with this research. However, for this project we have decided to
limit to a simple case in which we have paid special attention, as we found more convenient
to fully understand a basic scenario before giving the next step.

The content of this work is connected with many of the modules that are part of the
bachelor degree in Physics arranged by the University of Cantabria. It is directly related to
“ F́ısica Cuántica y Estructura de la Materia III: F́ısica del Estado Sólido ”, as our work has
a deep relationship with free electrons and tight-binding models. Besides, we shall work
with magnitudes such as densities of states, Fermi levels or electron compressibilities,
which again lie on the field of solid state physics. While explaining the foundations of
our model, we shall work with the electronic wavefunction of the electrons contained at
the plates of capacitors. Furthermore, we will compute a perturbation over the Kohn-
Sham Hamiltionian, meaning that we will also use techniques from quantum mechanics,
studied in the module ”Mecánica Cuántica”. Besides, as our goal is the understanding
of capacitors, this work is also connected to basic electrostatics. Namely, we shall recall
the description of the classical equation for the capacitance studied in “Electricidad y
magnetismo”. Finally, this work is strongly reliant on computational calculations. Along
its preparation, it has become necessary the design of multiple programs to carry out
our study, and for the manipulation of the results. All the programs have been written
in the Python language. The developed software resembles the program designed in
the module “Advanced Computation”, and many techniques learned from the subject
have been employed here. In the Appendix, the constructed programs and methods are
summarized.



Chapter 2

Negative capacitance

In this chapter, we review the ideas that led to the study of negative capacitance. We
shall explain, using equations and qualitative ideas, the functioning of a capacitor as well
as the expected behavior of a system showing negative capacitance. We will also derive
some relevant expressions general for all capacitors, that will be particularly useful in our
analysis.

2.1 Foundations of capacitors

A capacitor is an electronic device consisting of two confronted electrodes liable to freely
charge, depending on the potential difference to which they are subject. Even though
capacitors often have different geometries, they all can be understood from the analysis of
the most basic example: the parallel-plate capacitor. In order to understand the shape of
the electrostatic potential VH(z) along one of these capacitors, it is useful to recall the 1D
Poisson equation

d2VH(z)

dz2
= −4π

κ
ρ(z) . (2.1)

Here, κ is the dielectric constant of the interplate medium (κ = 1 for vacuum), and ρ(z)
is the charge density along the z direction. Assuming that the plates have an area A and
are infinitely thin (i.e. we have a classical capacitor), the density ρ can be expressed as

ρ(z) = (Qδ(z − z1)−Qδ(z − z2))/A , (2.2)

where Q/A is the areal density of charge, and z1, z2 are the positions of the plates in a
reference system along the perpendicular direction to the plates. Hence, the integration
of Eq.(2.1) leads to the following expressions for the electrostatic potential VH and its
derivative,

dVH(z)/dz =


0, if z < z1

−4πQ

Aκ
, if z1 ≤ z < z2

0, if z ≥ z2

V (z) =


Vleft if z < z1

Vleft −
4πQ

Aκ
(z − z1), if z1 ≤ z < z2

Vright, if z ≥ z2

,

where we have chosen as the two boundary conditions for our second order differential
equation

dVH
dz

(z = −∞) = 0 ,

VH(z = −∞) = Vleft ,
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and we have defined Vright = Vleft−4πQ(z2−z1)/Aκ. Hence, there is a discontinuity in the
first derivative of the electrostatic potential at the positions of the plates, and whereas the
potential remains constant outside of the plates, it decreases linearly along the interplate
region.

Figure 2.1: Schematic representation of a typical parallel-plate capacitor. Each plate has
the same amount of net charge, with opposite signs. The electrostatic potential remains

constant in the outer region of the plates, and shows a linear drop in the interplate
region with a discontinuity of its first derivative at the plates.

Thus, the overall effect of the capacitor can be understood as a drop of the potential
difference between its electrodes. The potential difference V at the terminals of a capacitor
can be quantified in terms of the stored charge Q as the quotient

C =
Q

V
. (2.3)

The ratio C is defined to be the capacitance of the system.

When two or more capacitors are connected in series, each one acts locally in the same
way as the individual case. Remarkably, the net charge contained at every plate must,
again, have the same magnitude. Indeed, the intermediate wires connecting two capacitors
do not receive any extra charge, and must remain neutral. Thus, the charges “polarize” at
the extremes of the wire, with opposite sign. Figure 2.2 depicts the electrostatic potential
along a system with two capacitors connected in series. For the same reasons as before, the
left and right capacitors produce a drop in the potential equal to V1 and V2, respectively.
Hence, the total potential difference equals the sum of the individual drops, V = V1 + V2.
Using Eq.(2.3), the inverse of the total capacitance of the system can be computed as

1

Ctot
=
V

Q
=
V1 + V2
Q

=
V1
Q

+
V2
Q

=
1

C1
+

1

C2
. (2.4)

Therefore, two capacitors connected in series produce the same effect as a single
capacitor with the total capacitance defined in Eq.(2.4). From the latter expression, it is
straightforward that

Ctot =

(
1

C1
+

1

C2

)−1
=

C1C2

C1 + C2
< min{C1, C2} ,

and the total capacitance is smaller than the individual ones.
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Figure 2.2: Schematic representation of two parallel-plate capacitors connected in series.
Each plate has the same amount of net charge, with opposite signs at each capacitor.

The drop in the potential is greater than in the single capacitor case.

2.2 The idea of negative capacitance

At first sight, it seems that there is no benefit in connecting two or more capacitors in
series rather than using them separately, as we have explained that for industrial purposes
higher capacitances are preferred. Albeit, the situation is different if one of the capacitors
contributes with a negative capacitance. In Figure 2.3, the same scenario as in Figure 2.2
is represented, with the exception that the left capacitor is considered to have a negative
capacitance.

Figure 2.3: Schematic representation of two parallel-plate capacitors connected in series,
when the left one has a negative capacitance (i.e. C1 < 0). The drop in the potential is

lower than in the single capacitor case, due to the effect of the negative capacitor.

In this situation, the left capacitor leads to a rise of the electrostatic potential. Indeed,
according to Eq.(2.3) the sign of the potential must change, and the drop is inverted.
Conversely, the overall variation in the potential is smaller than the individual effect of
the right capacitor, and thus, the total capacitance is enhanced.

In order to design devices capable to work under the effect of very low potential
differences it would be, therefore, incredibly useful to construct capacitors with a
negative capacitance. This seems, a priori, impossible: a system with a negative
capacitance must be necessarily thermodynamically unstable. To better understand the
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previous assertion, it is useful to make use of the following relationship between the
energy and the total capacitance of a system [FSL63]

1

C
=
d2Etot

dQ2
(Q = 0) . (2.5)

The latter equation can be understood as follows: the capacitance of a system coincides
with the second derivative of its total energy with respect to the charge at the plates, when
evaluated for neutral plates. We now proceed to deduce the above formula. The energy
variation of a capacitor due to a differential variation of the charge at one of the plates
can be expressed as

dE = V dQ =
QdQ

C
, (2.6)

where Eq.(2.3) has been used for the second equality. Assuming that the capacitance
remains constant, Eq.(2.6) can be integrated to obtain the total energy of the system

E =
Q2

2

1

C
. (2.7)

Additionally, the total energy functional Etot can be expanded to second order as a function
of Q,

Etot(Q) = Etot(0) +Q
dEtot

dQ
(0) +

Q2

2

d2Etot

dQ2
(0) + . . . (2.8)

When both electrodes remain neutral there is not energy stored at the capacitor, and
Etot(0) = 0. Furthermore, the total energy Etot must be even with respect to the charge,
as taking a charge Q from one electrode to the other is to all effects equivalent as taking
−Q from the second to the first (indeed, both plates are equivalent). Hence, it is
straightforward that dEtot/dQ = 0. Dismissing all the terms of higher order than two,
Eq.(2.8) can thus be written as

Etot(Q) =
Q2

2

d2Etot

dQ2
(0) . (2.9)

The Eqs.(2.7) and (2.9) show a quadratic dependence of the energy with respect to the
charge difference between the plates. Hence, identifying the energies at both equations,
we have Eq.(2.5).

Figure 2.4: A system in a state where the energy shows a negative curvature is in an
unstable equilibrium. It will evolve spontaneously to a lower energy configuration.
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The reason for the instability of a capacitor with a negative capacitance is now clearer:
according to Eq.(2.5), if the capacitance of a system is negative, the curve Etot(Q) is
concave at the charge Q. Thus, the system will evolve spontaneously to a lower energy
configuration (following the minimum energy principle) by either charging or discharging.
It is important to highlight that negative capacitance is just a theoretical construction, as
there is not physical sense for such systems that remain in an unstable equilibrium. We
stress here that, if we connected in series a capacitor with negative capacitance to others
with positive capacitance, as in Figure 2.3, then the equivalent capacitor would have yet a
positive capacitance. Thus, there would be no thermodynamic impediment for the system.

2.3 Approaches to the origin of negative capacitance

Taking a step back, Eq.(2.5) is crucial in our context, as it provides a first way to study the
capacitance of a system at the quantum level. Indeed, every contribution to the energy
can thus be understood as a contribution to capacitance, and will be identified with a
virtual capacitor. This conception, introduced by T. Kopp and J. Mannhart in [KM09],
is the underlying idea of negative capacitance, and it is a key point to understand the
equations that will be introduced in the following chapter. For our purpose, we can split
the total energy functional as

Etot = EH + Ekin + Exc + Eext , (2.10)

according respectively to the Hartree energy (EH), kinetic Ekin and exchange-correlation
(Exc) energies of the electrons, and the energy variation produced by any other external
contribution (Eext). Figure 2.5 depicts a decomposition of a capacitor into four virtual
parallel-plate capacitors connected in series, each of them according to one of terms in Eq.
(2.10).

Figure 2.5: A capacitor can be decomposed into several “virtual” capacitors connected in
series, each of them corresponding to one of the contributions to the total energy. The

color indicates the sign the expected contributions to the total capacitance according to
the expectations of T. Kopp and J. Mannhart: negative (blue) or positive (red).

As Figure 2.5 shows, Kopp and Mannhart pointed to the exchange and correlation
energies as the origin of negative capacitance. For this conclusion they studied 2D systems
of electrons checking that this was observed, and during years negative capacitance was
ascribed to exchange-correlation effects in every system. However, a recent article form
J. Junquera, P. Garćıa-Fernández and M. Stengel [JGFS19] have shed light over other
effects of electrostatic nature that had remained concealed. Indeed, they found out that,
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once the electrons are not restricted to a 2D plate, there is a displacement of the effective
center of charge at the electrode. Consequently, the plate turns out to be equivalent to an
“image” charge plane and the effective separation between the plates changes, leading to
a variation of the total capacitance of the system. Thus, as the new effect has to do with
the confinement of electrons, this makes one doubt about whether is it valid to extrapolate
results calculated for a 2D confinement. The authors also realized that the electrostatic
repulsion between the electrons entails a reduction in the exchange interactions, as well as
a modification of the Hartree potential observed by both electrodes. For their conclusions,
the authors of [JGFS19] focused their study on the contribution of the electrodes to the
total capacitance of a simulated parallel-plate capacitor. To such purpose, they modelled
these plates differently to get a broader physical view of the response of this system, but
at all of them the positive charge was distributed as a uniform background, that receives
the name of jellium.

An important simplification attached to jellium-like systems is that the electrons
contained at the plates must be free. Even though the electrons in many real systems
(for instance, alkali or noble metals) are well approximated by free electrons, it
foreseeable that some may localize at certain regions of a crystalline electrode. In
consequence, it would be interesting to check whether the free electrons assumption is
adequate for systems where the jellium background is dismissed, as it will give an idea of
the applicability of all the results included in [JGFS19].



Chapter 3

Theoretical background

This chapter collects all the theory that backs up our calculations and analysis. We will
employ the equations deduced in [KM09] and [JGFS19], as they are constitute relevant part
of the mathematical foundations that support the field of negative capacitance. Regarding
that the analysis developed by Junquera, Garćıa and Stengel relied on the assumption of
free electrons, in the present chapter we shall limit to free electron models.

3.1 Equations governing the plate contribution to the
capacitance

In this section we introduce the equations that we will use in our calculations. The goal
of this work is to define a procedure to compute the plate contribution to the
capacitance of quantum capacitors, and to explicitly calculate the capacitance for a
system that incorporates the atomic nature of matter. Hence, we are interested in
formulas to describe all the different contributions to the total capacitance. The first
equation that was introduced in this work, Eq.(1.1), was the classical expression of the
capacitance for parallel-plate capacitors. In our analysis, it would be convenient to define
the areal capacitance density C = C/A (as already mentioned, A denotes the area of the
plates). From Eq.(2.3), it is straightforward that the classical equation for the inverse of
the capacitance density is

C−1geo =
4πd

κ
, (3.1)

where the subindex “geo” indicates that this is a geometrical value (it depends
exclusively on the interplate distance d). However, the last equation is nothing but a
classical description, that disregards all the quantum effects we are interested in. There
are two assumptions, inherent to classical electrodes, that are inadmissible to achieve an
accurate description of the capacitance at the quantum level. The first one is the infinite
density of states of the classical plates. This means that there are neither population
restriction nor band structures. In a classical plate, all the electrons have the same
energy. Secondly, the electrons inside a classical plate do not exhibit any spatial
dispersion. Rather, they are constrained to a 2D region, and distribute homogeneously
over the electrode. As we shall see shortly, these are relevant hindrances to achieve the
description of capacitance we are looking for.

From now on, we will let n denote the electron number density at one of the plates
of a capacitor, that is, n = N/A where N is the total number of electrons contained
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within an electrode of area A. Besides, in all the following we will use atomic units
(~ = e = a0 = me = c = 1).

A generalization for Eq.(3.1), that encompasses the quantum nature of matter, was
firstly deduced in [JGFS19] from the Eq.(2.5) we deduced in Chapter 2. This equation is
valid for systems where one of the electrodes is assumed to be classical. This might be,
at first sight, an important restriction. However, the study of these kind of systems turns
out to be equivalent to the study of real capacitors. Indeed, if a quantum electrode faces a
classical one, the physics that it observes are the same as for a second quantum plate (we
shall go over this idea again in the introduction of our capacitor model in Section 4.3).
Hence, from now on we consider a parallel-plate capacitor where one of the electrode has
a quantum nature and the second is classical. Without more interrumption, the equation
deduced in [JGFS19] is

C−1 =
4πzim
κ

+
dµ

dn
. (3.2)

Here, dµ/dn is the electron compressibility of the quantum electrode, and zim is the image
charge separation between the electrodes. In the next pages, we shall explain in detail the
meaning of each of these two terms.

First, we study the electron compressibility. For such purpose, we adopt the perspective
of a 2D free electron gas, and consider a parallel-plate capacitor containing free electrons
at each electrode. Although we aim to replace the free electron assumption for a more
realistic physical model, the deductions here developed are valid for any other system (in
Chapter 3 we shall explain how to generalize these formulas to more complex systems). If
we choose the z direction to be orthogonal to the plates, we can assume that the electronic
wavefunctions are the product of a wave plane along the plate direction, and an envelope
function along the z axis

ψ~k‖
(~r) = ψ(z) · ei~k‖·~r . (3.3)

Thus, part of the the energy contribution to the system arises from a simple 2D free
electron gas. Figure 3.1 represents a semi-filled energy band of a 2D free electron gas,
together with its corresponding density of states (DOS).

Figure 3.1: Schematic representation of a free-electron energy band, together with the
corresponding density of states. The band follows a parabolic dispersion relationship:
E‖(~k‖) = |~k‖|2/2m‖. The density of states for a 2D free electron gas, g2DFE, is a step

function. The Fermi level of the system can be determined as a ground energy, E0, and
the energy of the last populated state of the band.
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The dispersion relation of the bands at a 2D free electron gas, as well as the corresponding
density of states, are given by the following expressions

E‖(~k‖) = |~k‖|2/2m‖ , (3.4)

g2DFE(E) = m‖A/π , (3.5)

where the ‖ subindex emphasizes that this energy contribution arises from the free electrons
contained at the quantum electrode. The derivation of the total energy of such a system,
which is entirely kinetic as the electrons are free, is an easy exercise. First, we find the
following relationship between the electron population and the energy of the last occupied
state

N =

∫ µ‖

0
g(ε)dε =

m‖A

π

∫ µ‖

0
dε =

m‖A

π
µ‖,

µ‖ =
πn

m‖
. (3.6)

The Fermi level of the free electron system can be expressed as a function of the electron
density n, determined by the energy of the last populated state we have just deduced, and
a ground energy E0

µ(n) = E0 + µ‖ = E0 +
πn

m‖
. (3.7)

It is possible to derive the electron compressibility of this free electron system using
Eq.(3.7). The electron compressibility is defined as dµ/dn, and in our case, it can be
decomposed as

dµ

dn
=
dE0

dn
+
dµ‖

dn
=
dE0

dn
+

π

m‖
. (3.8)

In view of Eq.(3.8), we find two different contributions to the electron compressibility. The
first one is a constant in-plane contribution, that arises from the energy lift of the last
occupied state, as the electron density n increases and more electrons populate the band.
The second is the variation of the energy eigenvalue E0, which determines the energy of
the ground state of the band, with respect to n. The latter contribution can be computed
as

dE0

dn
=

d

dn
〈ψ0|Ĥ|ψ0〉 , (3.9)

where ψ0 is the ground state wavefunction of the free electrons. We can use the Kohn-Sham
hamiltonian to describe the energy of our system. This Hamiltonian is defined as

Ĥ = T̂z + V̂H + V̂xc + V̂ext , (3.10)

where T̂z is the component of the Kinetic operator in the z direction, and V̂H, V̂xc and
V̂ext are respectively the Hartree, exchange-correlation and external potentials. However,
the only operators that are dependent on the electron density n are the Hartree and the
exchange-correlation potentials, V̂H and Ĥxc respectively. Thus, using perturbation theory,
it is possible to compute the variation of the eigenvalue of Eq.(3.9) as

dE0

dn
= 〈ψ0|

dV̂H
dn

+
dV̂xc
dn
|ψ0〉 = 〈ψ0|

dV̂H
dn
|ψ0〉+ 〈ψ0|

dV̂xc
dn
|ψ0〉 . (3.11)

In other words, it is possible to compute the variation of the energy eigenvalue as a
perturbation of the Hamiltonian with respect to the electron density n. With this in
mind, the electron compressibility can be rewritten as
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dµ

dn
=

π

m‖
+ ∆H + ∆xc , (3.12)

where the perturbative terms have been rewritten as

∆H = 〈ψ0|
dV̂H
dn
|ψ0〉 =

1

n

∫
dV̂H
dn
· ρ(z)dz , (3.13)

∆xc = 〈ψ0|
dV̂xc
dn
|ψ0〉 =

1

n

∫
dV̂xc
dn
· ρ(z)dz , (3.14)

and ρ(z) = n|ψ0|2 is the electron density function. We can further compact Eq.(3.12)
including the perturbative terms as a unique one

dµ

dn
=

π

m‖
+ ∆tot . (3.15)

Thus, there are two contributions to the electron compressibility: an in-plane term that
arises from the variation of the energy of the last occupied state of the energy band, µ‖, and
a perturbation of the Hamiltonian along the z axis, with respect to the electron density at
the plates. For technical reasons, the perturbation of the Hartree potential that must be
computed for the application of Eq.(3.2) is d(VH − Vright)/dn (see [JGFS19]), where Vright
is the asymptotic value to which the Hartree potential tends for very large z (recall that
we have seen that the electrostatic potential outside of the plates of classical parallel-plate
capacitors is constant). Hence, rather than computing ∆H, we shall calculate

∆right
H = 〈ψ0|

d(V̂H − Vright)
dn

|ψ0〉 =
1

n

∫
d(V̂H − Vright)

dn
· ρ(z)dz . (3.16)

Albeit, the equations explained here are yet valid for gaining the understanding of the
underlying physics of the decomposition proposed in Eq.(3.15).

Now, we focus on the second contribution to the inverse capacitance density of Eq.(3.2).
Recalling the electron density function ρ(z) already defined, it is possible to compute the
average charge center z̄ along the z axis as

z̄ =
1

n

∫
dz zρ(z) . (3.17)

However, it is immediate to realize that ρ(z) will vary as the electron density n changes (it
must hold

∫
ρ(z)dz = n). Besides, it is reasonable to expect that the spatial distribution of

the electrons must be distorted due to the attraction of the front plate, and as the overall
system must remain neutral, this attraction will be stronger as the electron density at one
of the plates increases, due to the charge difference between the plates. This distortion
can be expressed in terms of the electron density function ρ(z). Namely, we can define the
image charge center as

zim =
d(nz̄)

dn
. (3.18)

The previous magnitude accounts for the variation of the average charge center with respect
to the electron number density n. The reason why it is called the image charge center is
that it is the “instantaneous” (at fixed n) center of charge of the electrode.

Ignoring the dµ/dn contribution, Eq.(3.18) coincides with the classical expression of the
capacitance for classical parallalel-plate capacitors, shown in Eq.(3.1), by just identifying
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d = zim. At fixed n, zim represents the distance for which the action of one electrode
is equivalent to that of a classical plate with the same net charge and located at zim. In
consequence, we can think on the capacitance of our system as that of a classical capacitor,
where the separation between the plates is mobile. This opens, a priori, a new path for
enhancing the capacitance. If the confinement of the electrons at the plates is not very
strong, the displacement of the electronic cloud due to the potential difference will be
notable. Hence, there will be a spontaneous reduction of the effective separation between
the plates, which will lead, as discussed in the Introduction, to a enhancement of the
capacitance. To envision this new phenomena, we include Figure 3.2, which illustrates
the reduction of the effective interplate distance as a consquence of the image charge
displacement.

Figure 3.2: Displacement of the effective image charge center zim of one electrode. The
upper image represents the low n case, where the attraction of the front plate is not

sufficiently large to distort the electron cloud, and this remains symmetrical around the
plate. The lower image depicts a situation where n is sufficiently large for breaking the

symmetry of the electron cloud, leading to a displacement of image charge center zim. As
the image shows, the displacement leads to a reduction of the effective interplate

distance, and hence to an enhance of the capacitance.

The Eq.(3.2) is the generalization of Eq.(3.1) that we were looking for, as it encompasses
the quantum nature of the electrodes. The new equation can be thought as the sum of
a classical analogue contribution and a new purely quantum term: it is the sum of the
capacitance of a classical parallel-plate capacitor with a “mobile” plate separation, and
the electron compressibility.

We started this section explaining two shortcomings of the classical view against the
quantum one: the infinitude of the density of states g and the neglecting of the spatial
dispersion of the electrons. After having explained the contribution of the electron
compressibility and the image charge center to capacitance, it is easier to understand
why these two are important limitations. We finish this section explaining that Eq.(3.1)
can be derived from (3.2).
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Let us consider a classical plate. As in the previous paragraphs, we study first the
dµ/dn contribution. The fact that in a classical electrode the DOS is infinite implies that,
whenever a new electron is added to the plate, there are yet infinitely more states with
the same energy available for the next one. Hence, the energy of the last occupied state
is independent from the electron density n, and it must be dµ/dn = 0. Following up
with the image charge contribution, again the electrons are constraint to a 2D region, and
the spreading along the z axis is not permitted. Thus z̄ = d remains constant, and from
Eq.(3.18) it follows that zim = d. Finally, the expression of Eq.(3.1) is obtained.

3.2 Previous results

In order to compare our own calculations with previous results, in this section we review
the conclusions of the pioneer work in [JGFS19], that studied the electrode contribution
to the capacitance of a system. We first include the analytic expression for the inverse
capacitance of a 2D free electrons gas. Later on, we discuss the analysis carried out in
[JGFS19] for the different studied models.

3.2.1 Analytic calculations: 2D free electron gas

It is helpful, for the understanding of the results that we will expose in Chapter 6, to
introduce the theoretical value of the inverse capacitance density when the plates are
assumed to contain a 2D free electron gas. However, although this example is useful as a
first contact with the inverse capacitance curve that we shall encounter, it is not a good
model to compare our results with. The reason is that, in our results, the variation of the
effective interplate distance as a consequence of the image charge center zim displacement
will be a crucial contribution to the system capacitance. The analytic equation that we
include in the next paragraph is only valid for a 2D free electron gas, where the effective
separation between the plates has a unique value d, independent of n. Thus, there is
not possible charge center displacement, and one of the most relevant contributions is
dismissed.

Regarding the expression of the exchange energy in the 2D limit, using a first order
approximation of Eqs.(3.14),(3.16) to compute ∆right

H and ∆xc, and dismissing the effect of
correlation (which is small in comparison with the other contributions), it can be derived
(see [JGFS19], page 8) the following expression for the inverse capacitance density

C−1 =
4πd

κ
+

(
π

m‖
− 1

κ

√
2

π
n−1/2

)
. (3.19)

This equation provides a qualitative correct description of the growth of C−1, at least for
the low n regime. As for this 2D electron gas zim = d, we can identify 4πd/κ with the
image charge term and dµ/dn with the quantity in brackets. The diverging term ∝ n−1/2
is due to the exchange interaction (indeed, here ∆H = 0 as the Hartree potential cannot
change because the electrons are static, and neglecting the correlation it is possible to

identify ∆xc = − 1
κ

√
2
πn
−1/2). A graphical representation of the electron compressibility

dµ/dn, for a 2D free electron gas, is shown in Figure 3.3.

An equation similar to Eq.(3.19) can be generalized for the case of electrodes modelled
by infinite and finite square wells, if the exchange interactions are modified using a form
factor. However, we shall focus on numerical calculations over finite square well models,
presented in the following section.
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Figure 3.3: Electron compressibility of a 2D free electron gas, using Eq.(3.19) (solid line)
and consindering, in addition, the correlation contribution (dashed line). The contour of
this curve coincides qualitatively with the inverse capacitance density C−1 of all the free

electron models that we shall analyze. Besides, we expect the same behavior in our
calculations, at least for the low n regime.

3.2.2 Numerical calculations: the electron confinement

In the present section, we care about electron gases that have a finite thickness along the
z direction. Namely, we shall focus on three different modellings for the electrodes: a
traditional quantum well without inner positive charge, a traditional quantum well with
an inner jellium background, and a jellium background without any confining potential.
The study of these models is interesting for two reasons: first, as the electrons are no
longer constrained to a 2D region, the displacement of the image charge center zim is
allowed; secondly, they include the effect of the electron confinement. The confinement
will play an essential role in the final capacitance, as the distortion of the electron cloud
will modify the evolution of C−1 for large values of n, when the attraction between the
electrons and the charged front plate is strong enough. Therefore, the inverse capacitance
density shall depict a different behavior than the 2D case. Unfortunately, there is not an
analytic equation neither for C−1 nor dµ/dn in these examples. Hence, the calculations
mainly consist on the numerical resolution of Eq.(3.2).

In the left plot of Figure 3.4 the value of C−1 against the electron density n (red, solid
line), together with dµ/dn (red, dashed line), are drawn for the case of the bare, square
quantum well. The plot depicts a decline of C−1 for sufficiently large electron densities,
when compared with the 2D electron gas. This effect is produced by the reduction of the
effective interplate distance, as zim approaches the quantum electrode.

Evidently, the contribution of the image charge center is intimately dependant on
the strength of the confinement. This is very well reflected in the comparison of the
bare quantum well and the one filled with a uniform jellium background. Even though
the presence of the well is an important limitation for the free displacement of zim, the
presence of the jellium at the latter adds an extra attraction that hinders the displacement
of the image charge center. In order to envision the effect of confinement, in the right plot
of Figure 3.4 we gather together the C−1 curves for the three models introduced at the
begining of this section, and in Figure 3.5 we show the explicit variation of the image
charge center. The inverse capacitance of the traditional well (red, solid line), illustrates a
notable decline for large values of n, whereas the capacitance density of the well enclosing
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Figure 3.4: Left side: Inverse capacitance density of a parallel-plate capacitor (red, solid
line) where the plates are modelled as finite, square wells. The data has been scaled to

the geometrical value of C−1 (i.e. the classical capacitance Cgeo = κ/(4πd)), and negative
values for C are permitted. The contribution of the electron compressibility is also

plotted (red, dashed line). The orange curve represents the electron compressibility for
the case where the electronic wavefunction is not allowed to distort, but we won’t focus

on this special case. Right side: Comparison of C−1 (as solid lines), and dµ/dn (as
dashed lines) at the finite square well with the jellium background (black) and without it

(red). For large densities, the inverse capacitance at the jellium + square well mode is
remarkably over the bare well case. The dashed blue-orange curve is, again, related to

immobile wavefunctions, and we do not care about it.

the jellium positive charge shows a much more discrete reduction (the curve is almost
constant) at the same n region. This coincides with coincides with what is observed in
Figure 3.5, as the image charge center displaces remarkably more rapidly in the case of
the bare well.

Figure 3.5: Variation of the effective
charge center z∗im = zim − d with respect

to n, where d is the geometrical
separation between the plates. The black
lines correspond to the square well filled
with a jellium, and the red lines to the

well. As the confinement in the former is
larger, the variation of zim is more

discrete.

Finally, if the confining square well is removed, leaving exclusively the jellium slab, the
contribution of the image charge center becomes even more relevant. In the latter, the
jellium is not able to hold the electrons at the surrounding of the quantum plate, leading
to dramatic variations of zim and consequent enhancements of the total capacitance (the
new inverse capacitance is ∼ 4 times lower than the square well cases).



Chapter 4

The capacitance beyond free
electron models

Up to this point, we have exclusively cared about the study of the capacitance from the
perspective of free electron models. Within this approximation, in Chapter 3 we have
deduced an equation for the capacitance (Eq.(3.2)) that encompasses all the quantum
phenomena we aim to include in order to get an accurate description of the electrode
contribution to the capacitance of general capacitors. In the present chapter, try to
generalize the analysis of 3 to a more global scope. Besides, we start our discussion of
the atomic model that we shall employ in our calculations, as a correction for the free
electron models already studied in [JGFS19]. Namely, we will model our electrodes as 2D
square, monoatomic layers of Na. Even though this model is yet far from resembling the
complex structures of real crystals used for the construction of electrodes, it is a good
first step towards the industrialization of negative capacitance in device construction, as
it incorporates the atomic nature of matter. To conclude the chapter, we introduce the
specific model on which we perform our calculations.

4.1 The general in-plane contribution

In Figure 4.1, we define the objective of this work as a continuation of previous studies over
free electron models. Once the plates are endowed with an atomic structure, the shape of
the energy bands can vary enormously, always depending on the crystalline structure of the
electrodes. Recalling the construction of Eqs.(3.5)-(3.8) of Chapter 3, we found that the
variation of the energy of the last occupied state of the band with respect to the electron
density, relative to the ground state of the band, dµ‖/dn, was one of the contributions to
the electron compressibility. Namely, as the DOS for a 2D free electron gas is constant,
we found that the corresponding contribution was also constant. Nevertheless, this is a
very particular case, and in general the DOS is not constant. In particular, this is not the
case of the 2D square crystals that we shall study.

The typical band structure for a 2D square lattice of s-like atomic orbital corresponds
to the one displayed in Figure 4.1(c). As it is known from elementary solid state physics,
as the atoms of a lattice approximate to each other the energy band “softens” at the limit
of the Brillouin zone, leading to the the well-known cosine shapes. This fact transforms the
associated density of states, as it entails the formation of a peak as shown in Figure 4.1(d).
This is whatsoever contemplated in the theoretical equation for the compressibility that
we deduced in Eq.(3.12). However, the equation for the capacitance can be generalized by
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Figure 4.1: Comparison of the current state of investigation on the electrode contribution
to the capacitance of quantum capacitors and the objective of this work. The upper

images a) and b) illustrate, respectively, the energy bands and density of states of the
free electron models that have already been studied in [JGFS19], and discussed in

Chapter 3. In contrast, the images c) and d) depict the typical energy band and density
of states formed for a 2D square lattice, that has not been studied until this work. As

the lowest energy states of the atomic band can be well approximated by a parabola, at
the beginning of the band population we expect the same behavior as in the free electron

case. However, the rupture of the parabolic shape leads to new situations, as the
divergence of the density of states. We want to shed light on how these phenomena affect

the capacitance of a system.

just giving a step back. If the π/m‖ term is replaced by the variation of the energy of the
last populated state of the band, µ‖, a general equation for the capacitance can be written
as

dµ

dn
=
dµ‖

dn
+ ∆tot . (4.1)

The dµ‖/dn term is the in-plane contribution to the electron compressibility. All the
other equations are completely valid for systems different to free electrons. Indeed, the
perturbative contribution ∆tot depends on the Hamiltonian, which is common to any
system, and the image charge contribution is a classical analogue, again independent from
the electron nature of the bonding formed at the electrodes.

In the nutshell, all the equations deduced in Chapter 3 are valid for general systems with
the exception of the in-plane contribution. Therefore, the calculation of dµ‖/dn becomes
necessary to achieve an accurate description of the electron compressibility, and thus, for
the capacitance. Nevertheless, the term µ‖ is intimately related to the density of states of
the system. To tackle this issue, we shall compute the DOS from two different perspectives:
first-principle calculations and the tight-binding model. The siesta software that we shall
employ for all the calculations in this work provides the density of states of any simulated
system. On the other hand, it is reasonable that the bonding formed in a 2D square,
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monoatomic lattice resembles a tight-binding. We will compute the corresponding density
of states within these two approaches, and derive the electron compressibility associated
to each one. Obviously, we expect better results from the first-principle calculations of
siesta, but it is also interesting to check the accuracy of the tight-binding in our system.

4.2 2D square, monoatomic Na layer

Since we are interested in comparing our results with those discussed in Chapter 3, coming
from a model of free electrons, it is sensible to start choosing an alkali species for our square
lattice. The reason for this choice is that the wave functions of the valence electrons coming
from the s-shell spreads over many atomic distances, forming an electron-sea that can be
very well approximated from the free-electron picture. Besides, an advantage of the 2D
square, monoatomic lattice is that the density of states is very similar to that of a 2D
free electron gas, g2DFE , at the borders of the band (i.e. when the band is almost empty or
almost complete). Indeed, in these regions the DOS is locally planar, and we expect the
same behavior as in the free electron case.

The tight-binding model that we shall study in the next section will exclusively consider
the combination of s orbitals (we shall model the energy band using Eq.(5.3)). The case
of Na is especially adequate for the comparison, as the assumption that the first band is
composed entirely by the combination of s orbitals is reasonable. Nevertheless, this is not
completely true, as in the real case there is always a small contribution of higher orbitals
such as p or even d. We shall compare the bands that are formed for different lattice
parameters in our lattice.

Another important point is to guarantee that we carry out our study using only a single
band (the multiband case is remarkably more complex, and all the equations introduced at
the begining of Chapter 2 are developed within the single-band assumption, see [JGFS19]).
Again, it is possible to modify the software specifications (siesta) to impose the formation
of a unique band.

4.3 The capacitor model

Up to this point, we start explaining the framework of our analysis. All the calculations
are made on the parallel-plate capacitor model introduced in Figure 4.2.

As we have anticipated in Section 3.1, we shall assume that one of the electrodes is
“classical”. The reason why this assumption is valid is the fact that, in real capacitors, the
electrodes are equivalent. Thus, for the study of the plate contribution to the capacitance
of our model, we can limit our analysis to one of the electrodes. Besides, for most of our
calculations we are interested in the cases where one of the plates has a deficit of electrons
with respect to the other. This means that one of the electrodes is almost electronically
bare. Hence, as the nuclear charges remain static (for the reasonable charge differences
that we are interested in), no displacement of the effective center of charge is expected,
and the classical assumption is completely valid.

Regarding the quantum plate, it is modelled as a 2D square, monoatomic lattice of
Na atoms. In contrast to the classical plate, where all the charge is constrained to a 2D
region (and hence the charge density at z = 0 is described by a δ(z)), the spreading of
the electron wavefunction (and consequently the electron density function ρ(z)) along the
z axis is allowed. This fact is extremely important, as theoretical framework developed in
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Chapter 3 lies partially on the “motion” of the electronic cloud contained at the quantum
plate.

Figure 4.2: Left image: Scheme of the capacitor model. The classical electrode is located
at z = 0 and the quantum plate at z = d. Although the latter is a 2D atomic layer, the
spreading of the electron wavefunction (an thus the electron density function) in the z
direction is allowed. The charge density is drawn as a red line, and the electrostatic

potential as a green line (at z = 0 a δ function is pointing down because we have chosen
inverted signs for the charge). For z ≤ 0, V (z) = Vleft (there is a discontinuity in the
derivative the potential at z = 0 due to the classical plate), and for large z > d the

potential tends asymptotically to a constant value Vright. Right image: orthogonal vision
of the quantum plate, modelled as a 2D square monoatomic lattice.

For more simplicity in our description, the electronic charge is assumed to be positive.
Thereby, the electrostatic energy and potential will numerically coincide, as the electron
number density and the electronic charge density.
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Computational method

In this chapter, we are devoted to explaining the strategy followed for our calculations. We
begin recalling the foundations of the tight-binding model that we shall use in our analysis,
and in particular, we explain the chosen procedure for the computing of the density of
states within this approximation, gTB. Later on, we explain how to compute each of the
magnitudes that will be required for the calculation of the electron compressibility and the
image charge contribution to capacitance. Finally, we shall briefly review some elementary
aspects of the siesta code that we shall use for our first-principle calculations, as well as
other basics of the local density approximation theory.

5.1 The tight-binding model

The idea of the tight-binding model is to make linear combinations of individual atomic
orbitals (LCAO), ϕµ, and to take advantage of the periodicity of the lattice, as every
admissible wavefunction of the system must satisfy Bloch’s theorem. An approximate
wavefunction for a single electron in a crystal is

ψ
m,~k

(~r) =
∑
µ

cµ,m(~k)

 1√
N

∑
~Rn

ei
~k·~Rnϕµ(~r − ~Rn)

 , (5.1)

where N is the number of sites in the crystal, ~k is the electron wavevector, ϕµ are atomic

orbitals and ~Rn are the centers of each ϕµ orbital (i.e. the core positions).

Although these wavefunctions are calculated as just an approximation, they can
provide a good description of the electronic orbitals if the system is simple. Namely, they
can be used to model a 2D monoatomic, square lattice. The accuracy of the
tight-binding approach depends on the nature of the orbitals involved, as well as number
of neighbors that each atom is considered to interact with. However, if the set of
considered orbitals and neighbors is very large, the complexity of the calculation
increases significantly. The description is enormously simplified if all the orbitals are
chosen to be identical (for instance, s orbitals) and the first-neighbors assumption is
adequate (i.e. the overlapping of the wavefunctions of distant atoms is neglected).

As we have already explained, the in-plane contribution requires the calculation of the
density of states. Thus, we proceed to deduce the expression of the density of states for
a 2D electron gas in the tight-binding context. The density of states associated to a 2D
energy band can be calculated using the relation



24 Chapter 5. Computational method

g(E) =

∫
BZ

d~k

(2π)2
δ
(
E − EB(~k)

)
, (5.2)

where the subindex BZ indicated that the integral is extended to all the Brillouin zone. If
the tight-binding approximation is limited to s orbitals with the interaction of exclusively
the first neighbors (we shall check whether this assumption is reasonable in our case at
Chapter 6), the energy of the first band of a square, monoatomic lattice is given by the
expression (represented in Figure 5.1)

EB(kx, ky) = α+ 2γ(cos(kxa) + cos(kya)) , (5.3)

where α is the overlap integral and γ is the interatomic hopping integral. According to
the properties of Dirac deltas, the following equality holds

δ
(
E − EB(~k)

)
=

∑
EB( ~k0)=E

1

|∇EB(~k)|
δ( ~k0 − ~k) . (5.4)

Figure 5.1: First energy band of a square,
monoatomic lattice due to the combination
of s orbitals (using first neighbors only).

For the representation, α = 0 and γ = 0.5
have been chosen. The lower axis

represent the normalized wavevectors
(kx/a, ky/a independently, the function is

symmetric), and the z axis the energy.

Using the previous equality, it is possible to
rewrite Eq.(5.2) as

gTB(E) =
1

(2π)2

∫
l=E−1

B (E))

dl

|∇EB(l)|
,

(5.5)
where l = E−1B (E) is the set of points
contained in the Brillouin zone with exactly
the energy E. Hence, the density of states
at the energy E, g(E), can be computed as
the line integral over all the wavevectors at
the Brillouin zone with the same energy E.
After having computed the density of states,
we can make use of the fundamental theorem
of calculus to compute the variation in the
electron compressibility associated to the in-
plane energy of the electrons. Indeed, we
have

n(µ‖) =

∫ µ‖

−∞
g(E)dE = G(µ)−G(−∞) ,

(5.6)
whereG is a primitive function of g. Deriving
with respect to µ‖,

dn

dµ‖
(µ‖) = g(µ‖) ,

dµ‖

dn
(n) =

1

g(µ‖)
, (5.7)

where we have used the inverse function theorem for the right equality.

5.2 The siesta code

All the first-principles calculations have been carried out using the software siesta
[SAG+02], a package especially designed for electronic structure calculations in solids
and molecules. The software allowed to simulate the system introduced in Figure 4.2,
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enabling the choice of the atomic species for the quantum plate, the crystalline lattice
and motif, the atomic separations and the interplate distance. With these ingredients,
the software (and its analysis package macroave) allowed the computation all the
magnitudes mentioned above.

siesta solves the Schrödinger equation for the electrons in our system from first-
principles, i.e. without any parameter taken from experiment. First-principles calculations
are free from parameters, but they are not free from approximations. In particular:

1. The pseudopotential approximation to treat the interaction of the core-electrons and
the nuclei on the valence electrons.

2. The local density approximation (LDA) within the density functional theory to deal
with the difficult electron-electron interactions.

3. The use of a strictly localized basis set of numerical atomic orbitals to expand the
eigenvalues of the Hamiltonian. Here, we have considered one s-orbital to deal with
the 3s-shell of the Na atoms. But in order to reproduce the eventual deformation
of the charge density as a response to the electric field generated by the classical
electrode, we also included a shell of polarization p-orbitals. These orbitals are higher
enough in energy to avoid the crossing of the majority p-band with the s-band.

4. The use of a regular finite grid in real space to compute the integrals between atomic
orbitals.

5. The use of a regular finite grid in reciprocal space to sample the electrons in the first
Brillouin zone.

5.3 Numerical procedure

For the calculations in this work, we have developed a specialized software. Its functioning
can be summarized in the following steps:

1. INPUT: A set of equispaced lattice parameters {ai}Na
i=0 = {a0 + iδa}Na

i=0 and electron
densities {nj}Nn

j=0 = {n0 + jδn}Nn
j=0. Every simulation will be determined by exactly

a pair (ai, nj) of these magnitudes.

2. The program starts writing the text file were the output data will be allocated.

3. A double loop is started, running over all (ai, nj) pairs, 0 ≤ i ≤ Na and 0 ≤ j ≤ Nn.
For each pair, the code modifies the input file of siesta, which outputs the Fermi
level of the quantum plate µright(ai, nj), as well as the files containing the raw data
of the Hartree potential VH(~r), the electron density function ρ(~r) and the exchange-
correlation potential Vxc(~r) for the pair (ai, nj) at every point in space ~r.

4. Using the siesta extension macroave, the files containing the unprocessed
information of VH(~r) are macroscopically averaged in order to obtain
nanosmoothed values of the potential that depends only on the cartesian
coordinate z, VH(z). The values of z form an equispaced set of points
{z0 + kδz}Nz

k=0, that maps all the simulated cell. Only at this step (not at 5 or 6),
the value Vright = VH(z0 + 0.9Nz · δz) is taken.

5. Step 4 for Vxc(z).
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6. Step 4 for ρ(z).

7. Using the functions calculated at steps 4, 5, 6, we compute dρ/dn(z), dVxc/dn(z) and

d(VH − Vright)/dn(z). After these, we compute dµ/dn, zim, ∆right
H and ∆xc for the

pair (ai, nj).

8. Using Eq.(3.2) we compute the numerical value of C−1, and compare it with the
same value computed using the theoretical equation (4.1).

9. OUTPUT: A text file containing dµ/dn, zim, z∗im = zim−d, C−1, C∗−1 = C−1−4πd/κ,

∆tot = ∆right
H + ∆xc, for every value (ai, nj).

Next, we explain in detail the calculation of all the relevant magnitudes listed before.
These are: dµ/dn, dρ/dn, dVxc/dn, d(VH − Vright)/dn, zim, ∆right

H , ∆xc and C−1.

5.3.1 Electron compressibility, dµ/dn

Recalling that µ = µright − Vright, where µright is the Fermi level of the right electrode, it
is possible to compute it from the Fermi level and the Hartree potential. One of the key
points of our software is the numerical calculation of dµ/dn. For a fixed lattice parameter
a, the code generates the complete list µ(nj) = µ(n0+jδn) = µ‖(n0+jδn)−Vright(n0+jδn).
It is possible to compute dµ/dn applying finite differences,

dµ

dn
(nj) ∼

µ(nj + δn)− µ(nj − δn)

2δn
=
µ(nj+1)− µ(nj−1)

2δn
. (5.8)

Obviously, the accuracy of the numerical derivative is directly related to the length of δn
(and the smaller δn does not always imply an improvement of the calculation, as it can
amplify errors). This method (centered finite diferences) is repeated for all the numerical
derivatives that are computed along this work.

On the other hand, in order to understand the origin of the electron compressibility,
we are interested in comparing the numerical values of the compressibility, computed
using Eq.(5.8), with those generated by Eq.(4.1). For such a purpose, the calculation

of ∆tot = ∆right
H + ∆xc becomes necessary, as well as the energy of the last populated

state relative to the ground state of the band µ‖. Recalling Figure 3.1, the perturbative
term describes the variation of the eigenvalue of the Hamiltonian (i.e. the ground state
of the band) with respect to n, and the in-plane contribution dµ‖/dn describes variation
of the energy of the last occupied energy state of the band relative to that eigenvalue,
again with respect to n. To compute the in-plane contribution, we must first calculate
the density of states g of our band. We shall compute this density of states within two
different perspectives: the first-principle calculated DOS that siesta outputs, gC, and the
DOS computed within our tight-binding approach, gTB. In the following, we maintain the
notation gC and gTB to allude to each of the densities of states.

For the calculation of gTB we make use of Eq.(5.5). The first step is the calculation
of the equienergetic curves of the dispersion relation given by (5.3). Secondly, the line
integral over each of these curves must be solved. A (local) parametrization for these
equienergetic curves is given by

l(u) ≡ E−1B (u) = (u, cos−1((E − α)/2γ − cosu)) , u ∈ (−ε, ε) (5.9)

for sufficiently small ε > 0. The gradient of EB is

∇EB(kx, ky) = (−2γa sin(kxa),−2γa sin(kya)) .
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As the function |∇EB(kx, ky)| has the same symmetry of a square (recall Figure 5.1), we
can use the parametric representation of Eq.(5.9) to compute

gTB(E) = 4

∫
1√

1− (e− cosu)2 + sin2u

√
1− sin2 u

(1− (e− cosu)2)
du , (5.10)

where we have compactly written e = (E − α)/2γ and the integral is extended to one
fourth of the equienergetic curve.

5.3.2 The perturbations ∆right
H and ∆xc

As we have just explained, the terms ∆right
H and ∆xc are required to compute the theoretical

electron compressibility, according to Eq.(4.1). Taking advantage of the sets {VH(zk)}Nz
k=0

and {Vxc(zk)}Nz
k=0 computed by macroave (the set {zk}Nz

k=0 is a sampling of 216 = 65536
points), the followed strategy is to compute the functions dVxc/dn, d(VH − Vright)/dn as

d(VH − Vright)
dn

(z, nj) ∼
(VH − Vright)(z, nj + δn)− (VH − Vright)(z, nj − δn)

2δn
, (5.11)

dVxc
dn

(z, nj) ∼
Vxc(z, nj + δn)− Vxc(z, nj − δn)

2δn
=
Vxc(z, nj+1)− Vxc(z, nj−1)

2δn
. (5.12)

Using the sampling {ρ(zk)}Nz
k=0 and the trapezoid rule for integration, ∆tot can be computed

from Eqs.(3.14) and (3.16).

5.3.3 The image charge center zim

For the calculation of zim, the computation of the derivative of the charge density ρ(z)
function with respect to n is required, and the same exact strategy as in Eqs.(5.11) and
(5.12) is followed

dρ

dn
(z, nj) ∼

ρ(z, nj + δn)− ρ(z, nj − δn)

2δn
=
ρ(z, nj+1)− ρ(z, nj−1)

2δn
. (5.13)

It turns out that Eq.(3.18) is equivalent to

zim(n) =

∫
dz z

ρtot
dn

(z, n) , (5.14)

and again, applying the trapezoid rule, we can integrate along the z direction using the
sampling of the interval and the trapezoid rule. To conclude, from dµ/dn and zim, the
derivation of the inverse charge density C−1 is straightforward.
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Results

In this chapter we include all our calculations, with comments and comparisons. Even
though our main goal is the calculation of the inverse capacitance density C−1 of the system
described in Figure 4.2, we are specially devoted to testing whether the decomposition of
the electron compressibility given by Eq.(4.1) is further valid to the extent of our model.
In addition to this, we are interested in the comparison of our results with those calculated
using free electron models and jellium slabs, discussed in Section 3.2.

We begin this chapter introducing our calculation of the density of states within the
tight-binding approximation, gTB. After this, we follow up checking that, in view of the
first-principle calculations of the electronic bands and density of states formed at the
quantum plate, the electronic structure is likely to be approximated by a tight-binding.
Later on, we present our calculations of in-plane contributions using both the gC and
gTB densities of states. We finish developing a detailed analysis of our calculations of
the electron compressibility, charge image center and inverse capacitance. To achieve a
broader vision of the underlying physics of our model, we repeat all this process for the
lattice parameters of a = 4.5Å and a = 6.8Å, analyzing whether the same conclusions are
extracted.

In all the calculations, we consider κ = 1. Besides, we limit our analysis to the study
of the first energy band. As we have already explained, the studied band is exclusively
formed by the combination of s orbitals. Each of these orbitals cannot host more than 2
electrons. Hence, we are only interested in those densities for which there are 2 electrons
per atom at most. Thus, in all the chapter, we will sweep all the electron densities going
from nmin = 0 to nmax = 2/a2, where a is the lattice parameter of our 2D square, crystal.

6.1 Derivation of the DOS within the tight-binding
approach

As we have already pointed out, in our tight binding approximation we consider exclusively
the combination of s orbitals, and we restrict to first-neighbor interactions. With this
assumptions, we can ensure that the energy of the band can be described by Eq.(5.3). In
Figure 6.1, some equienergetic curves of this band contained, inside the Brillouin zone, are
shown. According to Eq.(5.5), the number of available states for the energy E, gTB(E), is
calculated as a line integral along the corresponding equienergetic curve.
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Figure 6.2: Left side: Brillouin zone the 2D square, lattice that composes the quantum
plate. Some equienergetic curves for the band of Eq.(5.3) have been drawn. The

corresponding (EB − α)/2γ values are:
−1.8 (magenta), −0.7 (gold), 0.01 (red), 0.2 (blue), 0.7 (green), 1.3 (black), 1.999 (cyan).
Right side: Numerical calculation of the density of states, gTB, for a 2D square lattice in

the tight-binding approximation. The parameters α = 0, γ = 0.5 have been chosen.

The computed density of states, gTB, is shown in Figure 6.2. The most remarkable
aspect of the curve is the presence of a pronounced peak at those states corresponding to
the half-full band. This contrasts with the constant shape of the 2D free electrons case,
g2DFE , given by Eq.(3.5). To better understand the divergence in the new contour, it is
helpful to take a look to Figure 6.1. With α = 0, the shape of curves becomes less soft
as the energy approaches 0, leading to a square contour (if the surface of Figure 5.1 is
intersected with the EB = 0 plane, a square is obtained). Hence, the value |∆EB| is very
close to zero at almost every point of the curve, and according to Eq.(5.5) the value of
gTB is expected to diverge.

Although for the calculation of gTB shown in Figure 6.2 we have chosen the parameters
α = 0 and γ = 0.5, for the coming calculations of gTB we do not need to find the precise
coefficients α, γ that provide the most accurate description of the real density of states.
Rather, we just adapt the width and height of the contour shown in Figure 6.2, to fit well
the computational density of states, gC, calculated using siesta.

In view of the new contour depicted by Figure 6.2, we can expect a different dependence
than in the free electron case between the energy of the last occupied state relative to the
ground state of the band, µ‖, and the electron density n. In consequence, a different in-
plane contribution is expected. To visualize the new scenario, in Figure 6.3 we compare
the filling rate at gFE (i.e. the DOS in the free electron case) and gTB. Namely, the new
dµ‖/dn will no longer be constant, as we expect a slowing down of µ‖ at those densities
corresponding to the half-full band, where the divergence is observed. Indeed, around the
peak there are “infinitely many” states, and even though a new electron is added to the
system there are yet other states available at very similar energies.
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Figure 6.3: Comparison of the energies of the last occupied state, µ‖, with repect to n,
for the free electrons (red shape, µfree) and tight-binding (blue shape, µTB)

approximations. The electron density n is represented as the colored regions. Whereas
the variation rate of µfree with respect to n is linear (in Section Eq.3.1 we proved that
dµfree/dn = π/m‖), µTB is slowed down for those densities approaching the divergence.

6.2 Derivation of the in-plane contributions

In order to analyze our computational results, we shall first check whether the electronic
structure at the 2D square quantum plate can be understood from a tight-binding
perspective. In this case, it would be possible to test whether the electron
compressibility dµ/dn of our quantum plate can be accurately computed using Eq.(4.1).
Next, we justify that the tight-binding approximation is reasonable in our model.

In Figure 6.4, the first energy band of the 2D Na monolayer, computed using first-
principle calculations (siesta), is shown. For the representation, we have chosen a lattice
parameter of a = 6.8Å. The plot depicts the exact shape that is expected for a tight-
binding, meaning that this is certainly a good approximation for the real bonding of our
system.

To gauge the similitude between the real electron bonding and the tight-binding
approximation, we compare the density of states computed using first-principle
calculations (again, siesta) and the corresponding calculations of gTB, computed as
explained in the previous section. In Figure 6.5, we represent the computational DOS gC
together with gTB, for the lattice parameters of a = 4.5Å, a = 6.8Å and a = 7.5Å.

Among the three plots collected in Figure 6.5, only the one at a = 6.8Å has the same
even parity as the gTB. Despite the soft shape of the gC, the gTB can quantitatively
approximate the gC reasonably well, with the exception of the borders and obviously the
divergence. On the other hand, the shape of the gC is qualitatively closer to the gTB at
a = 4.5Å, as the pronounced drop of the number of states at the borders coincides with
the tight-binding case. Nevertheless, even though the divergence is also better reflected
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Figure 6.4: First energy band at the 2D square quantum plate, with a = 6.8Å. The
shape coincides the expected for a tight-binding, and thus the electron orbitals can be

approximated within this approach.

Figure 6.5: Comparison of the density of states at the quantum plate using first principle
calculations (using the siesta code, blue line) and the tight-binding approach (red line).

From left to right, the images correspond to a lattice parameter of: 4.5Å, 6.8Å, 7.5Å.

at a = 4.5Å (singular shape), gC is no longer neither centered nor symmetrical.
Furthermore, there are more states at lower energies, and fewer than the predicted
within the tight-binding model for the greatest energies. The explanation is that, as the
atoms of the lattice get closer, the overlapping of the orbitals increases. Hence, the
tight-binding description with only nearest-neighbors interactions becomes insufficient.
At a = 4.5Å the contribution of more distant atoms is not negligible, and breaks down
the symmetry observed in our tight-binding model, where only the s orbitals are
considered to set the energy band up. However, the gTB is again a reasonable
approximation for gC, as it encompasses all the qualitative peculiarities of its contour.
Regarding the a = 7.5Å graphic, there is not similarity neither qualitatively nor
qualitatively between the gC and the gTB. At such a large distance, the overlapping
between the atomic orbitals is negligible, and the gC curve corresponds to the density of
states of a 2D crystal with almost individual atomic orbitals. Indeed, the energy domain
of this DOS is remarkably narrower than in the other two cases (almost all the states
have energies between −2.36 eV and −2.24 eV).

Dismissing the a = 7.5Å case for not resembling the lattice bonding adequately, we
compute the in-plane contributions for the a = 4.5Å and a = 6.8Å cases. For such purpose,
we use two different inputs: the computational DOS (computed by siesta) gC, and the



32 Chapter 6. Results

tight-binding DOS gTB. In Figures 6.6-6.7 we include the curves of the energies of the last
populated state with respect to the band ground state, µ‖, and its derivative with respect

to n, computed using first-principle calculations, for the a = 4.5Å and a = 6.8Å cases
respectively. Together with these graphics, at the right column of each figure, we include
the same magnitudes calculated from the tight-binding perspective.

Figure 6.6: Left column: the upper graphic corresponds to the variation of µ‖ as a
function of the electron density n, calculated from the computational density of states
gC. The lower plot depicts the first derivative of the upper curve with respect to the

electron density, which coincides with the in-plane contribution. Right column: the same
magnitudes, in the same order, computed from the tight-binding density of states gTB-

The calculations correspond to a lattice parameter of a = 4.5Å.

6.3 Calculations for a = 4.5Å

Up to this point we present our main results, starting with those for a = 4.5Å. In this
section, as well as in Section 6.4, the results are introduced in the following order: the
electron compressibility dµ/dn, the image charge center zim, and the inverse capacitance
density C−1.

In Figure 6.8, the curve of the electron compressibility, computed with using Eq.(5.8),
is shown as a green curve. From now on, we shall refer to this as (dµ/dn)num to emphasize
that these values have been computed directly from the numerical differentiation of the
Fermi levels µ that siesta outputs.

At first sight, in the low density regime the shape of the electron compressibility curve
has the same qualitative form as all the examples studied in Section 3.2, corresponding to
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Figure 6.7: This figure represents exactly the same magnitudes as Figure 6.6, using the
same structure, for a lattice parameter of a = 6.8Å.

calculations of free electron models over finite wells and jellium slabs. Analogously to these
free electron models, the evolution of the compressibility at the low n regime is determined
by the variation of the exchange interactions along the z axis, i.e. ∆xc. In particular, the
behavior resembles that of the 2D free electron gas studied in the Section 3.2.1, for which
we explained that ∆xc ∝ n1/2. In addition to this fact, the compressibility turns out to
be negative for all the electron densities for which only the first energy band is populated.
This is positive from the device manufacturing point of view, as it guarantees that the
contribution of dµ/dn is to enhance the capacitance of the system. Hence, although
physically implausible, the 2D monoatomic layer of Na might be an adequate structure
for the construction of capacitor electrodes.

A remarkable difference with respect to the free electron models is the appearance of
a pronounced drop at nD ∼ 0.016 Bohr2). This is a deviation from the models studied to
this date, and does not have any precedents. As the only difference between our analysis
and that carried out for free electron models is the in-plane contribution, this must be the
cause of the anomaly.

We now focus on the other curves represented together with (dµ/dn)num in Figure 6.8.
The perturbation of the Hamiltonian along the z axis, computed as explained in Section
5.3.3 from Eqs.(5.11) and (5.11), is represented as a black line. In view of Figure 6.8, the
perturbative term coincides with (dµ/dn)num qualitatively, and almost quantitatively in
the low density limit. Besides, we can asses that the perturbative term is not the cause
of the anomaly observed in the contour of (dµ/dn)num, as at the densities where the drop
occurs the shape of ∆tot is uniform.

Recalling Eq.(4.1), the electron compressibility can be decomposed theoretically as
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Figure 6.8: Electron compressibility of the quantum plate as a function of n, computed
at a = 4.5Å. The magnitudes represented are (dµ/dn)num (green), (dµ/dn)C (red) and
(dµ/dn)TB (blue), and the perturbation of the Hamiltonian ∆tot (black). At the low n
regime the contour of the curves is qualitatively the same as in the free electron case,
showing a dramatic decline for low electron densities n. In this region, the contour of
(dµ/dn)C and (dµ/dn)TB is dominated by the perturbative term. Albeit, this is no

longer true for larger densities, as drop of the compressibility is observed at
nD = 0.016 Bohr2. The matching between (dµ/dn)num and (dµ/dn)C is excellent. On the

other hand, although (dµ/dn)TB depicts the same qualitative behavior as (dµ/dn)num,
the values are slightly different and the drop is predicted at lower densities.

the sum of the perturbation ∆tot and the in-plane contribution dµ‖/dn. This equation
provides an accurate quantitative description of the electron compressibility for the free
electron models studied in [JGFS19]. We are interested in testing whether is it yet valid
to the extent of the 2D square monoatomic layer of Na that we are working with. From
the observation of Figure 6.8, and as explained in the previous paragraph, we already
know that the major contribution to the compressibility arises from the perturbation with
respect to n of the Hamiltonian along the z axis. Nevertheless, we would like to find
out whether the difference between the (dµ/dn)num (green) and the ∆tot (black) curves
coincides with the in-plane contribution of the density of states. For such purpose, we
shall compute the in-plane contribution in two different ways: using the computational
density of states gC obtained from the first-principle calculations of siesta, and using the
tight-binding density of states gTB, deduced as explained in Section 6.1. The in-plane
contributions for these two approaches have already been computed in Figure 6.6.

The red and blue curves represented in Figure 4.1 correspond to the theoretical electron
compressibilities computed, respectively, using the computational and the tight-binding in-
plane contributions in Eq.(4.1). According to the notation for (dµ/dn)num, we refer to each
of the new compressibilities as (dµ/dn)C (computed using the siesta density of states,
gC), and (dµ/dn)TB, (computed using the tight-binding density of states, gTB).
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Figure 6.9: Enlarged vision of Figure 4.1 around the anomaly of the compressibility.

It stands out the excellent agreement between the values of (dµ/dn)num and (dµ/dn)C.
Indeed, both curves are practically indistinguishable for almost all the range of densities
studied. Nevertheless, the theoretical prediction of (dµ/dn)C provides values that are
slightly above our numerical calculations for densities greater than n = 0.029 Bohr−2.
Regarding the (dµ/dn)TB curve, it provides a good qualitative description of the electron
compressibility, but the numerical difference with respect to (dµ/dn)num is larger. Namely,
the (dµ/dn)TB curve predicts that the drop in the compressibility is slightly displaced with
respect to the (dµ/dn)num case.

In view of the results, we can asses that the anomaly in the contour of the density of
states is caused by the in-plane contribution. Indeed, we have justified that it cannot be
due to the perturbation ∆tot, and there are only two contributions to the compressibility
according to Eq.(4.1). In addition to this fact, in the neighborhood of the drop the
compressibility depicts the same shape as the in-plane contributions gathered in Figure
6.6. The origin of the rupture with the uniform shape of the compressibility characteristic
from the free electron models, is the appearance of a peak in the density of states. As
we can observe in Figure 6.6, the variation of µ‖ with respect to n is not linear as in the
free electron case. When the electrons start the band filling (i.e. at n ∼ 0), the variation
of µ‖ is locally linear and the behavior is the same as in the free electron case. Hence,
the local in-plane contribution dµ‖/dn is approximately constant. However, this trend is
stopped as the electrons approach the states that constitute the peak of the DOS. Thus,
the variation of µ‖ is progressively slowed down until the peak is achieved. Later on, as
more electrons fill the band, the opposite trend is observed and µ‖ accelerates until the
completion of the band. Therefore, the presence of the peak at the density of states is the
cause for the appearance of the drop in the electron compressibility.

According to the explanation of the previous paragraph, it is immediate to
understand why the drop of (dµ/dn)TB is displaced with respect to the other
compressibilities. Recalling Figure 6.5, the position of the peak at gC and gTB is
different. Hence, the predicted drops must also occur at different densities.
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Figure 6.10: Image charge center zim as a function of the electron density n, computed
for a lattice parameter of a = 4.5Å. The position of the quantum plate z = d is drawn as
a horizontal, dashed line. Remarkably, for the lowest values of n the image charge center
moves away from the classical electrode. Albeit, zim progressively approaches the front

plate as n increases, in an approximately linear way.

To better gauge the accuracy of the theoretical description of the electron
compressibility given by Eq.(4.1), in Figure 6.9 we show an expanded vision of the same
curves plotted in Figure 6.8 in the neighborhood of the drop. The image illustrates that
the matching between (dµ/dn)num and (dµ/dn)C is not perfect in the closeness of the
drop, as both curves predict a slightly different position for this one. Albeit, the
difference between the predicted density is lower than δn = 0.001, and the agreement is
yet very good. As we have already pointed out, the electron density for which the drop is
predicted by (dµ/dn)TB is not precise.

We now proceed to analyze the variation of the image charge center, zim, with respect
to n. In Figure 6.10, zim is plotted as a function of the electron density. To better envision
the effect of electron confinement, and to compare the displacement of zim with respect
to the position of the quantum plate in the z axis, we draw an horizontal dashed line
representing the quantum plate location, z = d.

As we expected from the analysis of the free electron models, the image charge center
approaches the classical electrode as n increases. Indeed,the electrons feel the attraction of
the extra charge that accumulates on the front plate. The observed contour is qualitatively
the same as the one shown in Figure 3.5, corresponding to the square quantum wells
containing a free electron gas. However, our curve depicts a rupture of the linearity for
the lowest and greatest densities.

Regarding the impact of the zim contribution on the capacitance, as zim < d for all
the densities greater than n = 0.008 Bohr−2, the contribution to the inverse capacitance
density will be an approximately linear decrease. However, for densities below
n = 0.008 Bohr−2, the effective interplate distance is larger than in the classical case.
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Thus, the total capacitance is hence affected negatively. In spite of this fact, the
divergence caused by the electron compressibility at n = 0 vastly overcompensates the
image charge effect, and the overall capacitance is yet enhanced.

A possible explanation for the distancing observed at the low n regime is the fact that,
at these small densities, in the quantum electrode there is yet an excess of protons over
the number of electrons. Thus, as the overall capacitor must remain neutral, the classical
electrode must conversely host an excess of electrons. According to this, the few electrons
at the quantum plate feel the repulsion of those at the front plate and hence accumulate
further, leading to an enlargement of the virtual interplate distance.

After having analyzed the electron compressibility and the image charge center
contribution, we can asses that the quantum capacitance of our system is larger than its
classical analogue. Indeed, we have seen the contribution of zim is better than its
classical analogue for sufficiently large n, and in the low density limit the electron
compressibility, which is always negative, diverges towards negative values. In Figure
6.11, the inverse capacitance density C−1, computed as the sum of the electron
compressibility (dµ/dn)num and the image charge center contribution 4πzim ,according to
Eq.(3.2), is represented as a function of n.

Figure 6.11: Inverse capacitance density C−1 (a.u.) of the capacitor model presented in
4.2, for a lattice parameter of a = 4.5Å, computed as the sum of the electron

compressibility (dµ/dn)num and 4πzim, according to Eq.(3.2).

Although the dominant contribution is the “classical” term 4πzim, which leads to the
observed positive values, the contour of the curve is determined by the electron
compressibility. As in the case of the electron compressibility, the curve coincides
qualitatively with the inverse capacitance densities gathered in Figure 3.4, corresponding
to the free electron gasses enclosed within square quantum wells. However, the presence
of the drop at nD ∼ 0.016 Bohr−1 is not reflected in free electron models, as it is caused
by the non-constant in-plane contribution.
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6.4 Calculations for a = 6.8Å

In the present section, we include our results for a = 6.8Å. We follow the exact structure
and notation as in Section 6.3. In Figure 6.12, the curve of the electron compressibility
computed from Eq.(5.8), (dµ/dn)num is shown in green.

Figure 6.12: Electron compressibility of the quantum plate as a function of n, computed
at a = 6.8Å. The magnitudes represented are (dµ/dn)num (green), (dµ/dn)C (red) and
(dµ/dn)TB (blue), and the perturbation of the Hamiltonian ∆tot (black). In contrast to
the a = 4.5Å case, the contour of all the curves is homogeneous and no drop is observed.

Besides, the perturbative term ∆tot practically coincides with the theoretical
compressibilities (dµ/dn)C and (dµ/dn)TB, and there is not an accurate agreement

between the Eq.(4.1) and our numerical calculations of (dµ/dn)num.

A qualitatively relevant discrepancy with respect to the contour of the compressibility
computed at a = 4.5Å (Figure 6.8) is observed, as the drop detailed in the previous section
is no longer present. Indeed, the new contour of (dµ/dn)num resembles much more to the
compressibilities of the free electrons represented as dashed lines in Figure 3.4. As from the
study of the a = 4.5Å we found that the drop was produced by the in-plane contribution,
we might infer that the in-plane contribution is negligble at a = 6.8Å.

Regarding the perturbative term ∆tot, represented in black, it again differs from the
a = 4.5Å case. Even though its shape is qualitatively the same as that corresponding to
free electrorn models and the one obtained at a = 4.5Å, it overcomes the (dµ/dn)num curve
for densities below n = 0.0018 Bohr−2. This phenomena makes impossible the agreement
between the theoretical compressibility, computed from Eq.(4.1), and the numerical value
of (dµ/dn)num. The reason is that, for both the theoretical and numerical magnitudes to
coincide, it would be necessary that the in-plane contribution dµ‖/dn returned negative
values. This would imply the fact that, as more electrons populate the band, the energy of
the last occupied state relative to the ground state of the band should decrease, something
absurd. Hence we cannot guarantee that the decomposition of Eq.(4.1) is yet valid for the
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case of a = 6.8Å.

To complete our study of the electron compressibility, we focus on the theoretical
calculations of (dµ/dn)C (represented in red) and (dµ/dn)TB (in blue), computed using
Eq.(4.1). In this case, in-plane contributions collected in Figure 6.7 are used. Remarkably,
the in-plane contributions are to all effects negligible with respect to the perturbation
∆tot, and the curves corresponding to ∆tot, (dµ/dn)C and (dµ/dn)TB virtually coincide.
Namely, the (dµ/dn)C and (dµ/dn)TB curves are entirely covered by ∆tot, and cannot be
distinguished in Figure 6.12. In particular, as we expected from the observations made in
the previous paragraph, there is not agreement between (dµ/dn)num and Eq.(4.1).

We continue with the zim results. Figure 6.13 depicts the variation of the image charge
center zim as a function of n. The evolution of zim does not exhibit any relevant discrepancy
with that one computed for a = 4.5Å in Figure 6.10. Again, the image charge center
approaches the front plate as the electron density of the quantum plate (an hence, the
attraction of the classical electrode) increases. In consequence, the effect is to reduce the
inverse capacitance density of the system, or equivalently, to enhance the total capacitance
of the system. The unique interesting comment to do is the fact that the approach of zim
to the classical plate is softened for the largest values of the capacitance. This effect is
due to the electron confinement at the quantum plate: the resistance of electrons to leave
the plate. This exact behavior is observed in the zim curves of Figure 3.5, as the electron
confinement is well represented by the finite, square wells. The reason why this is not
observed for the a = 4.5Å case is that, for the latter, the electrostatic attraction between
the plates is sensibly larger (the Coulomb potential decays ∝ r−2).

Figure 6.13: Variation of the image charge plane position zim with respect to n, at
a = 6.8Å. To better envision the displacement of the electron cloud, the position of the

geometric center of the quantum plate has been drawn as a red dashed line.

To conclude this Chapter, in Figure 6.14 we present the inverse capacitance density
C−1 of our capacitor model, for a = 6.8Å. Surprisingly, the curve is qualitatively closer
to the inverse capacitance of the free electron gases contained within finite, square wells
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(presented in Figure 3.4) than to the equivalent curve for computed for a = 4.5Å. Indeed,
no drop or anomaly in the (dµ/dn)num curve was observed, and the electron confinement
at a = 6.8Å is similar to that attached to the finite wells. The variation in the scale of
the inverse capacitance with respect to Figure 6.11 is due to the plate separation. In our
simulations, the separation between the the plates was chosen to be proportional to the
lattice parameter. Hence, the obtained capacitances for a = 4.5Å must necessarily be
larger than those calculated for a = 6.8Å.

Figure 6.14: Inverse capacitance density C−1 (a.u.) of the capacitor model presented in
4.2, for a lattice parameter of a = 6.8Å, computed as the sum of the electron

compressibility (dµ/dn)num and 4πzim, according to Eq.(3.2). The contour of the curve
resembles the calculations for free electron gases contained in finite, square quantum

wells shown in Figure 3.4, and no drop is observed as in the a = 4.5Å case.
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Discussion

One of the most remarkable issues derived from our results is the fact that, even though
the Eq.(4.1) provided an accurate description of the capacitance at a = 4.5Å, it does
not work well at a = 6.8Å. Indeed, the in-plane contributions computed for this lattice
parameter is negligible in comparison to the perturbation ∆tot, and insufficient to account
for the separation of the curves. To understand this phenomenon, it is convenient to take
a step back to the justification of the tight-binding approximation. As we have explained
in Chapter 4, the energy dispersion relationship of Eq.(5.3) only takes into account the
interaction of s orbitals with exclusively the first neighbors. Recalling Section 5.2, we
used s orbitals in our base of localized atomic orbitals, meaning that the first of the last
two assumptions is well reflected in our calculations. Albeit, in order to guarantee that
there were not overlapping between the orbitals of more distant neighbors, we chose a
relatively large lattice parameter of a = 6.8Å for our calculations. The shape of the
bands, shown in Figure 6.4, as well as density of states of Figure 6.5 guaranteed that,
indeed, the electrons inside the quantum plate can be well approximated using from the
tight-binding perspective. Despite this fact, the separation of a = 6.8Å is large enough
to constrain all the states in a very small interval of energies. Namely, in view of Figure
6.5, at a = 6.8Å all the states of the band have energies between −2.5 and −2.1 eV. This
range of energies is very narrow, and in particular, it implies that the variation of the
energy of the last occupied state with respect to n, dµ‖/dn, cannot be large. Hence, the

insufficiency of Eq.(4.1) for describing the electron compressibility at a = 6.8Å must be
a consequence of low energy dispersion of the electronic states that constitute the band.
The orbital overlapping at a = 6.8Å is so small that electron states do not have to broaden
their energies very much, leading to quasi-atomic energies.

The results included in Section 6.3 have demonstrated that the decomposition of the
electron compressibility provided by Eq.(4.1) is completely valid in our model, at
a = 4.5Å. This equation, firstly deduced and employed in [JGFS19] for the study of
free-electron-like electrodes, has resulted to be valid to the extent of plates modelleded as
2D square, monoatomic lattices of Na. Indeed, we have computed the electron
compressibility following completely different procedures. For the calculation of
(dµ/dn)num, we have used Eq.(5.8) and the Fermi levels returned by siesta. Conversely,
for (dµ/dn)C we have computed the perturbation ∆tot as explained in Section 5.3.3, from
the map of the Hartree and exchange-correlation potentials along the z direction, VH(z)
and Vxc(z) respectively. In addition to this, we had to derive the in-plane contribution
dµ‖/dn for the computational density of states gC that siesta outputs. Even though
these two procedures are completely independent, they have produced very similar
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results. The fine discrepancies observed in the enlarged vision of Figure 6.9 can be
understood within the numerical uncertainty introduced by the methods employed for
the calculations. In particular, a possible cause for the small discrepancies might be the
numerical differentiation. This method is strongly reliant on the number of points of the
n sampling, especially at those regions where rapid variations of curve occur. The major
discrepancies are observed at the closest densities to the drop observed in Figure 6.8,
where the derivative of the compressibility is momentarily zero. Thus, this might entail a
small error in either the calculation of the in-plane contribution or the numerical
derivation of the Fermi level. Besides, only 50 points in the n sampling were used to
draw this curve, and very likely a larger sample would provide a better agreement
between the curves.

Regarding the calculation of the in-plane contribution, we have carried out a
simplification that, although in view of the results shown in Figure 6.8 does not have a
great impact, we point out here. The curves shown in Figures 6.6 and 6.7, corresponding
to the in-plane contributions computed from the computational and the tight-binding
density of states respectively, have been calculated for the neutral system, i.e. for an
electron density at the quantum electrode of nHF = 1/a2 (where the band is half-filled).
This entails the assumption that the contour of the density of states does not vary as the
electron density n increases. Unfortunately, this is not necessarily true. Even though our
calculations of (dµ/dn)C have turned out to provide an accurate description of
(dµ/dn)num, another possible cause for the remaining separation between the theoretical
and numerical electron compressibility might also be this simplification. In future works,
we aim to include this insufficiency as part of our code, to achieve a complete matching
between the theoretical and numerical compressibility curves.

For the first time, in this work the curves of the inverse capacitance densities C−1 have
been calculated for electrodes that include the atomic nature of matter. As mentioned in
the Introduction, the motivation for this work was double. Firstly, we wanted to check
whether the conclusions derived from the free electron models studied in [JGFS19] were
yet valid for a simple atomic model such as the 2D square, monoatomic layer. However,
and more importantly than the first milestone, this work pursued the disclosure of new
agents contributing to capacitance, introduced by the discretization of matter. For this
reason, one of the successes of this work is the observation of the drop in the C−1 curve,
introduced by the variation in the contour of the density of states. The presence of the
drop is beneficial, as it leads to a capacitance enhance. More specifically, the in-plane
term pushes dµ/dn towards negative values, even for densities outside the low n regime
where the divergence occurs (this is, for instance, the case of a = 4.5Å). In vision of
our results, we can conjecture a new possible path for further enhancing the capacitance,
based on the in-plane contribution. According to Eq.(5.7), the qualitative shape of the
in-plane contribution dµ‖/dn coincides with that of the inverse density of states, 1/g. As
in our case the DOS showed a peak, a drop was observed in the compressibility. Therefore,
the in-plane contribution can be directly modelled from the density of states. If we are
interested in the construction of capacitors with a large capacitance improvement at a
certain density n, we shall look for structures where the energy of the last occupied state,
µ‖(n), lies in a region of the band with many available states, i.e. where g is large. Besides
we can guarantee that, to the extent where Eq.(4.1) is yet valid, the in-plane contribution
will only be constant if g is also constant, i.e. if the system is a 2D free electron gas. In
order to study the possibilities and the accuracy of the assertions of this paragraph, more
investigation is required in other structures than 2D square lattices.
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This work is a good first step towards further research in the effect that atomic
electrodes exert on the total capacitance of a system. Indeed, the software here
developed can be used to repeat exactly the same calculations for systems with other
structures. For instance, the structure of the quantum plate of Figure 4.3 can be replaced
by a 2D graphene-like monolayer, a monoatomic cubic layer, or a multiatomic 2D layer.
Nevertheless, the understanding of these systems from a theoretical point of view can be
notably more complex, and revisiting the theory that backs up our calculations shall
become necessary. The reason for choosing the Na-monolayer is that it is the simplest
atomic model. We have succeeded in the verification that the decomposition of dµ/dn of
Eq.(4.1) is valid to the extent of our model, but more research is required in order to test
its validity for some of the other structures mentioned in this paragraph.
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Conclusions

Based on the free electron models studied in [JGFS19], we have designed a parallel-plate
capacitor that enables to study the contribution of an electode, modelled as a 2D square
monoatomic layer of Na, to the total capacitance of the system. For our calculations,
we have taken advantage of the theoretical construction of [JGFS19]. Albeit, we had to
generalize the contribution of the in-plane density of states to the case of a plane of atoms
in a square lattice with one s-orbital per site.

We have computed the electrode contributions to the inverse capacitance of our
system at the quantum level: the electron compressibility and the image charge
geometrical capacitance. The electron compressibility has been calculated in three
different ways. Firstly, it has been derived numerically from first-principle calculations
on the Fermi level of the quantum plate of our capacitor model. Secondly, we have
computed the sum of the perturbative terms due to the variation of the Hartree and
exchange-correlation potentials along the z direction, as well as the in-plane contribution
coming from the population of the density of states. For such purpose, we have
computed the density of states within two different approaches, a first-principle
calculation based on the software siesta and the tight-binding model. Regarding the
image charge contribution, we have tracked the variation of the image charge center as n
changes. Our results have been reproduced for the lattice parameters of a = 4.5Å and
a = 6.8Å of the square lattice.

For the case of a = 4.5Å, the numerical results of the compressibility have turned out
to be in complete agreement with those computed from Eq.(4.1), using the first-principle
density of states. This implies that theoretical decomposition deduced in [JGFS19] for
simple free electron and jellium models is yet valid to the extent of our 2D lattice. The
computed electron compressibility and the image charge contributions have demonstrated
that the behavior of the capacitance in our model is to all effects equivalent to that of
a free electron system in the low electron density regime. Nevertheless, the deformation
of the density of states attached to our lattice has led to the formation of a drop in
the inverse capacitance curve. This phenomenon, with no precedent within free electron
models, results on a further enhance of the capacitance. Regarding our calculations on the
tight binding model, even though the results do not accurately coincide with the numerical
results, the qualitative shape of the electron compressibility is well described.
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The same conclusions are not shared at the a = 6.8Å case, as the theoretical and
numerical electron compressibilities do not match well. The reason is that the formed
energy band is very narrow, and the dispersion of the energy levels is quasi-atomic. At
a = 6.8Å, the agreement with free electron models confined in square wells is remarkable,
and no drop is observed in the contour of the inverse capacitance.

In view of the results, we can ensure that most of the conclusions derived from free
electron models are valid to the extent of square monoatomic layers. However, new effects
must be taken into account when dealing with atomic electrodes, as the shape of the
density of states is directly related to the in-plane contribution. Nevertheless, as in our
a = 4.5Å case, the variations with respect to the free electron models can be positive in
the sense that they can lead to enhances of the capacitance. A long track of research
is yet required to ensure whether or not the theoretical decomposition of the in-plane
contribution used in this work is yet valid for more complex strucutres. The present work
is a good starting point for further investigation, and we have developed the software for
the analysis of more complex structures, that we shall study in the near future.
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Appendix: the Python code

For the obtaining of the results collected in Chapter 6, a large number of calculations were
required. In particular, the interplay between siesta and our own code has been a key
point for the computation of all the relevant magnitudes exposed in Chapter 5. Because
of the importance of the code in this work, and as we target to further employ and debug
it for more complex calculation, we devote this appendix to a global of our software. We
split our programs in 3 groups: the master program, the calculations on the density of
states, and the graphical representation of the magnitudes of interest.

Name of the program Description

electron density.py This is the main program for this work. As input, it
receives parameters specified by the user to carry out the
simulation. These parameters are: the folder where the
siesta files necessary for the simulation are allocated and
where the user desires to store the results file, the atomic
number of the chosen species, the first and last lattice
parameters for which the code has to run, the number of
steps in the lattice parameter map, the lowest and greatest
charge differences between the classical and the quantum
plates, and the number of steps for the charge difference
map (which is equivalent to a map over the electron
density n). Internally, the code calls to siesta (and to its
extension macroave) to output the Coulomb potential
VH, exchange-correlation potential Vxc, total Fermi level µ,
density of states gC, and electron density function ρ for
each (ai, nj) pair. The code stores all the outputs and saves
the magnitude of interest in a text file, which in addition
contains the numerical calculations independent from
siesta explained in Chapter 5. Finally, the code outputs a
text file containing tables of all the magnitudes of interest.

Table 9.1: Description of the master program of this work. This program has multiple
methods. However, most of them very technical and do not provide any additional

information to the description above.
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Name Description

DOS calculations.py This is a collection of methods for the calculation of the
density of states within the tight-binding approximation,
and for the derivation of the in-plane contributions.

Method Description

par plot Computes and represents the equienergetic curves
contained in the Brillouin zone, according to the band
description of Eq.(5.3).

int interes Solves numerically the integral over one fourth of the
equienergetic curve.

integral definitiva Computes the final density of states within the
tight-binding approach for a given energy E.

normaliza DOS Generates the density of states computed within the
tight-binding approximation normalized for a certain
electron density n, with the borders at the energies given
as input.

dmudn comp Reads the siesta output file of the density of states, and
computes the corresponding variation of the energy of the
last occupied state with respect to the electron density n.
(i.e. this program computes the in-plane contribution using
gC)

dmudn tb Receiving the density of states computed within the
tight-binding approximation as input, calculates the
variation of the energy of the last occupied with respect to
the electron density n.(i.e. this program computes the
in-plane contribution using gTB)

Table 9.2: Description of the methods of the density of states group.
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Name Description

graficas.py This is a collection of methods for the reading of the data of
interest from the output text file of electron density.py and
its graphical representation

Methods Description

lectura inv C Reads the columns of the output text file that corresponds
to the electron density n and the inverse capacitance
density C−1.

plot inv C Represents graphically the data read by lectura inv C .

lectura dmudn Reads the columns of the output text file that corresponds
to the electron density n and the numerical calculation of
the electron compressibility dµ/dn. Besides, it reads the
variations of the last occupied state of the band dµ‖/dn
stored in a different text file.

plot dmudn Represents graphically the data read by lectura dmudn .

lectura delta Reads the columns of the output text file that corresponds
to the electron density n and the perturbation of the
Hamiltonian ∆tot.

plotdelta Represents graphically the data read by lectura delta .

lectura zim Reads the columns of the output text file that corresponds
to the electron density n and the image charge center zim.

plot zim Represents graphically the data read by lectura zim .

lectura bands Reads the siesta output file that stores the energy of the
bands as a function of the wavevector.

plot bands Represents graphically the data read by lectura bands .

lectura DOS Reads the siesta output file that stores the computational
DOS, as well as the text file that contains the DOS computed
within the TB approach.

plot DOS Represents graphically the data read by lectura DOS .

comparative dmudn Represents in a single graphic the numerical and the
theoretical values of the electron compressibility dµ/dn.

test masa efectiva Using the siesta output file that stores the band
information, it realizes a parabolic fit at the ground state
of the band, and returns the effective mass.

Table 9.3: Description of the methods in the graphical representation group.
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