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Abstract

In the present work, we shall study the topological phase transition that takes place in the one

dimensional s−p model. This transition will be studied in two ways. In the first way, the topological

transition takes place in a sudden way. The interactions between the orbitals will depend on a

parameter that, when varied continuously, closes the gap and allows the topological transition to

take place. The system goes from an atomic-like bonding to a covalent bonding. In the second

way, the topological transition is made in a smooth way. The parameter in which the Hamiltonian

depends never closes the gap directly. The center of the Wannier functions shift continuously, even

shifting a full lattice constant. Finally, we studied the “‘bulk-boundary” correspondence, which

allows to explain why the second way performs a topological transition if the gap is never directly

closed.

Key words: tight-binding model, topological phase transition, topological insulator, Wannier

functions.

Resumen

En este trabajo, se estudiará la transición de fase topológica que tiene lugar en el modelo s − p
unidimensional. Esta transición será estudiada empleando dos métodos. En el primer método,

la transición topológica tine lugar de una manera repentina. Las interacciones entre los orbitales

dependerán de un parámetro que, al ser variado de una forma continua, cierra el gap y permite que

la transición topológica tenga lugar. El sistema pasa de un enlace tipo atómico a un enlace covalente.

En el segundo método, la transición topológica tiene lugar de una manera más suave. El parámetro

del que depende el Hamiltoniano del sistema nunca cierra el gap directamente. El centro de las

funciones de Wannier se desplaza de una forma continuada, hasta desplazarse una constante de

red. Por último, se estudió la correspondencia “bulk-boundary”, que permite explicar por qué en el

segundo método una transición topológica tiene lugar si el gap nunca se cierra directamente.

Palabras clave: modelo de enlace fuerte, transición de fase topológica, aislante topológico, funciones

de Wannier.
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1. Introduction

The combination of the scientific fields of Condensed Matter Physics and Topology is a topic that is

generating enormous interest nowadays. Since 2016, when the Nobel Prize was awarded to the British

scientists Thouless, Duncan Haldane and Kosterlitz “for theoretical discoveries of topological phase

transitions and topological phases of matter”, this topic has become more and more popular.

Topology is the branch of mathematics that describes the properties that remain intact when an

object is stretched, twisted, bent or, summarizing, deformed. However, not every kind of deformation

is valid. The object must not be torn apart or glued together to maintain these properties, which

means that no holes can be created or destroyed.

There is a well-known joke that says that a topologist is someone who can not tell the difference

between a doughnut and a coffee mug. This joke just makes reference to the fact that these two

objects are topologically equivalent, as they both have the same number of holes. One can transform

one object into the other, and the other way around, only by continuously deforming them as

seen in Fig. 1. Similarly, a beach ball and the computer in which I am writing this work are also

topologically equivalent, as none of them have any holes.

Figure 1: Continuous deformation of a coffee mug into a doughnut.

In the present work, we are going to study the simplest electronic structure model for a system

that can vary from an atomic-like to a covalent bonding, taking place a topological phase transition.

This model has one atom per unit cell and two orbitals, which are an even-symmetry s orbital and

an odd-symmetry p orbital.

As it will be seen from their band structures, both states are insulators, as a gap separates their

lower and upper bands. Qualitatively, only by looking at their band structures, no one would be

able to tell the difference between them. However, these two states are topologically different.

Two topological insulators are said to belong to the same topological class if their Hamiltonians can

be continuously connected in such way that the gap never closes at any point along the connecting

path. And why is the closing of the gap associated with a topological transition? This is due to the

fact that at the points of the Brillouin zone where the gap closes, the eigenstates become degenerate.

The states from the upper and the lower bands can exchange eigenvectors in these points, changing

then the way the set of eigenvectors connect in the Brillouin zone.

Similarly to the topology of surfaces, where a “violent event” that creates or destroys a hole in a

surface changes its classification, in this particular example the “violent event” that changes the

classification of the topological insulator is the closing of the gap.
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In our example, when continuously varying the Hamiltonian of the system, the gap will close in

a particular point. This is the point where the exchange of eigenvectors happens, and the system

becomes metallic due to the degeneracy of the eigenstates at the closing points.

This topological phase transition can be observed in where the Wannier functions, which give

the position of the center of the bands, are centered. In the initial situation, there is an atomic

bonding, as the Wannier functions are centered in the positions of the atoms. Immediately after the

topological transition happens, right after the gap closes and the system becomes metallic, there is

a covalent bonding. In this state, the Wannier functions are not centered anymore in the atoms.

Instead, they are centered in the bonding between them.

This work is closely related with three subjects that I coursed in this degree. The first one is F́ısica

Cuántica y Estructura de la Materia III: F́ısica del Estado Sólido. In this subject, I studied the

basic physical concepts in which this work is based, such as the tight-binding model. In addition to

this, two other subjects were specially useful in this work. These subjects are Métodos Numéricos

and Advanced Computation. These two subjects played a key role in the development of the code

used in this work, which can be found in the CD and was written in MATLAB. Métodos Numéricos

was extremely helpful in the learning of the programming language in which the code was written,

while Advanced Computation helped me to understand how to relate a physics problem with the

coding of a program to solve it.

2. Method: Tight-Binding model

The tight-binding model is a theory developed by the Swiss physicist Felix Bloch in 1928. This

model is an approach to the calculation of the electronic band structure that introduces a number of

approximations, but none of them are so severe that they modify the physical forces that determine

structural and dynamical properties.

The first assumption that is made in the tight-binding model is that next to each lattice point, the

crystal hamiltonian can be approximated by the hamiltonian of a single atom located at that lattice

point. In addition, it is also assumed that the bound states of the atomic Hamiltonian are well

localized. This means that if φµ(~r − ~RI) is the wavefunction for an electron in a bound state in the

lattice position ~RI with energy Eµ (being µ a coefficient that can run over every atomic orbital of a

given atom), then

Ĥat(~r − ~RI)φµ(~r − ~RI) = Eµφµ(~r − ~RI), (1)

where Ĥat is the hamiltonian for a free atom in the lattice position ~RI. The set of functions φµ(~r),

each associated with an atom in the unit cell at the position ~RI, will form a basis of localized

functions.

The problem is now to solve the time-independent Schrödinger equation for a single electron,

described below in Eq. (2). It is also assumed that the potential in which the electron is found

is a periodic potential. This means that V (~r) = V (~r + ~T ), where ~T is the translation vector that

reproduces the periodicity of the lattice.
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Ĥψ(~r) =

[
− h̄2

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r). (2)

Due to the periodicity of the potential, the eigenfunctions of the hamiltonian must comply with the

Bloch theorem, which affirms that these solutions can be expressed as the product of a plane wave

times a function with the periodicity of the lattice

ψn~k = ei
~k·~run~k(~r), (3)

where un~k(~r + ~T ) = un~k(~r). These solutions are characterized by two quantum numbers: n, which

is discrete and provides the band index, and ~k, which is a continuum wave vector.

Since the eigenfunctions of the Hamiltonian must comply with the Bloch theorem, a good starting

point is to construct from the localized atomic orbitals φµ(~r − ~RI) a delocalized basis for each
~k-point already compliant with this theorem,

φµ~k(~r) =
∑
~T

ei
~k·(~T+~RI)φµ(~r − ~RI), (4)

and then, as a good approximation, assume that the eigenfunctions can be expressed as a linear

combination of these Bloch-like atomic orbitals

ψn~k(~r) ≈ Φn~k(~r) =
∑
µ

cµn(~k)φµ~k(~r). (5)

With this approximation, the problem has now become into how to compute the coefficients of the

expansion cµn(~k) and the discrete set of eigenvalues En(~k). In order to do this, this expansion is

introduced in the Schrödinger equation [Eq. (2)], and it arrives to

∑
µ

cµn(~k)Ĥφµ~k(~r) = En(~k)
∑
µ

cµn(~k)φµ~k(~r). (6)

If this expression is now multiplied at the left by φ∗
ν~k

(~r) and is integrated all over the space, we

obtain

∑
µ

cµn(~k)

∫
φ∗
ν~k

(~r)Ĥφµ~k(~r)d~r = En(~k)
∑
µ

cµn(~k)

∫
φ∗
ν~k

(~r)φµ~k(~r)d~r. (7)

This expression can then be rewritten as

∑
µ

cµn(~k)Hνµ(~k) = En(~k)
∑
µ

cµn(~k)Sνµ(~k), (8)
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where

Hνµ(~k) =

∫
φ∗
ν~k

(~r)Ĥφµ~k(~r)d~r, (9a)

Sνµ(~k) =

∫
φ∗
ν~k

(~r)φµ~k(~r)d~r, (9b)

are known, respectively, as the Hamiltonian and Overlap matrices. If Eq. (8) is reordered by

transposing all the terms to the left-hand side, the so-called secular equation is obtained

∑
µ

[
Hνµ(~k)− En(~k)Sνµ(~k)

]
cµn(~k) = 0. (10)

The secular equation can be expressed in a matricial notation, which is

(
H(~k)

)(
cn(~k)

)
= En(~k)

(
S(~k)

)(
cn(~k)

)
, (11)

where the dimensions of the Hamiltonian and the Overlap matrices are N ×N , and the dimensions

of the coefficients matrix are N × 1 (a column vector), being N the number of atomic orbitals in the

unit cell.

Both the Hamiltonian and the Overlap matrices in Eq. (11) are in the reciprocal space. However,

their matrix elements can be computed from the sums of the Hamiltonian and the Overlap matrices

in real space modulated by a phase by using the expressions

Hνµ(~k) = 〈φν(~k)|Ĥ|φµ(~k)〉 =
∑
~T

ei
~k·~THνµ(~T ), (12)

and

Sνµ(~k) = 〈φν(~k)|φµ(~k)〉 =
∑
~T

ei
~k·~TSνµ(~T ), (13)

where

Hνµ(~T ) =

∫
φ∗ν(~r)Ĥφµ(~r − ~T )d~r, (14a)

Sνµ(~T ) =

∫
φ∗ν(~r)φµ(~r − ~T )d~r, (14b)

Standard numerical packages can easily be used to solve the generalized eigenvalue problem given in

Eq. (11), which amounts to diagonalizing the Hamiltonian H(~k), thereby giving the tight-binding

solution for the energy eigenvalues and eigenvectors. This tight-binding solution produces only

N bands, representing an approximation to the N bands of the crystal that are built from the

tight-binding orbitals. [1]

Different philosophies may be applied during the implementation of these ideas. On the one hand we

can find accurate methods, known as ab-initio linear combination of atomic orbitals, where the matrix



3. OUR MODEL: THE TWO-STATE S − P MODEL IN ONE DIMENSION 5

elements of the Hamiltonian and Overlap matrix that appear in Eqs. (14a)-(14b) are computed

explicitly, usually at the level of the Density Functional Theory (DFT). That is the case of the

siesta code [2]. On the other hand, there are less accurate models, known as empirical tight-binding

approaches, where: (i) we focus only on those atomic orbitals required to describe the valence and,

might be, the lowest occupied states of the system of interest; and (ii) where the Hamiltonian and

Overlap matrices between them appearing in Eqs. (14a)-(14b) are parametrized in a model-building

sense. Typically, the Hamiltonian matrix elements are truncated to first-neighbours, and the Overlap

matrix is taken as diagonal (i. e. we assume no overlap between the localized atomic orbitals in the

basis), in the so-called “orthogonal tight binding”). Since in the empirical tight-binding method the

atomic orbitals are never explicitly constructed, the corresponding eigenstates of the Hamiltonian

ψn~k(~r) are never explicitly constructed; the vector of coefficients cµn(~k) in Eq. (10) plays the role of

the eigenstate instead [1]. In this work, we shall follow this second strategy.

3. Our model: The two-state s− p model in one dimension

The model that is going to be studied is the two state s− p in one dimension. Within this model,

we shall assume:

• A monoatomic infinite periodic linear chain of identical atoms.

• One atom per unit cell. The size of the unit cell will be denoted by a.

• Two basis function (of atomic-like shape) per atom. The first orbital will have a spherical even

s-symmetry, while the second will display the odd symmetry characteristic of the p-orbitals.

A schematic representation of the atoms and the basis functions is shown in Fig. 2.

Figure 2: Schematic representation of the two-state s− p model and the interactions between its orbitals,

where a is the length of the unit cell.

Regarding the parameters that will be included in the model, we shall consider:

1. On-site interactions of one s- (εs) or p-orbital (εp) with itself.
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2. First-neighbour interactions between two s orbitals (Vss), between two p orbitals (Vpp) or

between an s and a p orbital in neighbour atoms (Vsp).

3. Orthogonal orbitals: if the basis set of atomic orbitals is sufficiently localized, then they have

only significant values around the atom where it is centered. To a first approximation, we

can retain only the overlap of one orbital with itself, and neglect all the rest of the overlap

integrals. The overlap matrix will be diagonal and, if the orbitals are normalized, the diagonal

element will be the unity.

4. The orthogonality condition implies that, in a given site, the s orbital does not interact with

the p orbital.

The topological transitions that we shall consider in this work will be defined by the way the

eigenvectors of the Hamiltonian will change as a function of the wave vector k, that will be taken as

a parameter that can be varied continuously in the first Brillouin zone. Therefore, we have to find

the matrix elements of the Hamiltonian operator H(k). Within our model, the dimensions of all the

Hamiltonian and Overlap matrices in k-space will be (2× 2). To define each matrix element, we

shall make use of Eqs. (12)-(13).

The element in the position (1,1) will be the interaction between two s orbitals, Hss. As only on-site

and nearest neighbours interactions are going to be taken into account, then the only allowed values

for the translation vector ~T are ~T = 0 and ~T = ±~a. Summing over these translation vectors, the

matrix element is

Hss(k) = Hss(~T = 0) + eikaHss(~a) + e−ikaHss(−~a), (15)

where Hss(~T = 0) is the on-site interaction, so its value is εs and Hss(±~a) are the nearest neighbour

interactions between two s orbitals, whose value is denoted as Vss. Introducing these terms, and

making use of the relationship cosx = eix+e−ix

2 , then the matrix element reduces to

Hss(k) = εs + 2Vss cos ka. (16)

The same procedure can be used for the interaction between two p orbitals [position (2,2) of the

Hamiltonian matrix in k-space], that can be written as

Hpp(k) = εp + 2Vpp cos ka. (17)

Now the off-diagonal terms, that account for the interactions between an s and a p orbital are going

to be computed. For these matrix elements, only the interactions at ~T = ±~a are needed to be taken

into account, since there is no on-site interaction between these two orbitals. The matrix element

(1,2) is then

Hsp(k) = eikaHsp(~a) + e−ikaHsp(−~a). (18)

Since the p orbital has a positive and a negative lobule, when the s orbital interacts with the p

orbital in ~T = ~a, it is interacting with its negative part, so the interaction will have a negative sign.

Using the equation sinx = eix−e−ix

2i , considering that |Hsp(±~a)| = Vsp and taking into account the

polarization of the p orbital, the matrix element is given by

Hsp(k) = eika(−Vsp) + e−ikaVsp = −2iVsp sin ka. (19)
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The procedure is identical for the interaction between a p and an s orbital, but this time the negative

sign due to the polarization of the p orbital appears in ~T = −~a. For this reason, the matrix element

for the interaction between a p and an s orbital is

Hps(k) = eika(Vsp) + e−ika(−Vsp) = 2iVsp sin ka. (20)

Since all the elements are known, the Hamiltonian can be expressed in a matricial notation as

H(k) =

(
εs + 2Vss cos ka −2iVsp sin ka

2iVsp sin ka εp + 2Vpp cos ka

)
. (21)

Due to the polarization of the p orbital, it can be observed that when a p orbital interacts with its

nearest neighbour, the interaction is always between a positive and a negative part of the orbitals.

For this reason, Vpp will have to be negative. If the Vpp were taken as positive, then this polarization

should be taken into account by changing the sign of the nearest neighbour interaction, and the

(2,2) matrix element would be εp − 2Vpp cos ka.

All the (2× 2) matrices can be written as a linear combination, with complex coefficients, of the

three Pauli matrices, τi, and the identity matrix τ0. This is due to the fact that any matrix (2× 2)

has only four entries, so a basis of four independent (2× 2) matrices should be enough to expand

them. Therefore,

H(k) =

3∑
i=1

hi(k)τi + h0(k)τ0, (22)

where

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
, and τ0 =

(
1 0

0 1

)
. (23)

The coefficient for the identity matrix is

h0 =
εs + εp

2
+ (Vss + Vpp) cos(ka). (24)

For many purposes it can be ignored because it represents a shift in the energy that is the same for

the two bands (this coefficient multiplies the diagonal unity matrix). It cannot affect the difference

between the two eigenvalues or the eigenfunctions of the different bands: both of them would move

upwards or downwards by the same amount and this term cannot be responsible for the closing of

gap, or the exchange of character of the bands.

For the other three coefficients required to expand the Hamiltonian matrix of Eq. (21) in the basis

of Pauli matrices, h1, h2 and h3, they can be expressed as a vector

~h(~k) = (u,w sin(ka),∆ + d cos(ka)) , (25)

as represented in Fig. 3, where the analytical expressions for the different terms appearing in Eq. (25)

are given by
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Figure 3: The three dimensional space defined by the coefficients (h1, h2, h3) of the Pauli matrices are

expressed as vector ~h. The curve depicts the hamiltonian ~h(k) whose eigenvalues are ±|~h|, where |~h| is the

distance to the origin. The gap vanishes if the curve passes through the origin where ~h(k) = 0. Reproduced

with permission from Ref. [3].

∆ =
εs − εp

2
,

d = Vss − Vpp,
w = 2Vsp,

u = 0. (26)

In order to obtain the eigenvalues, the Hamiltonian matrix has to be diagonalized.

As this Hamiltonian is a 2× 2 matrix, it can be written as a combination of the Pauli matrices as

shown in Eq. (22). In order to perform this diagonalization, the term that goes with the identity

matrix (τ0) is passed to the left-hand side, having now H(k)−h0τ0 = h1τ1 +h2τ2 +h3τ3. Subtracting

the coefficient h0 in the diagonal of the hamiltonian, the matrix in the left-hand side is now

H(k)− h0τ0 =

(
εs−εp

2 + (Vss − Vpp) cos ka −2iVsp sin ka

2iVsp sin ka
εp−εs

2 + (Vpp − Vss) cos ka

)
. (27)

After this, both sides of the equation are squared. The right-hand side can be operated using the

property that provides the value of the multiplication of any two of the Pauli matrices, excluding

the identity matrix, that is

τiτj = δij1+ iεijkτk. (28)
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From this relation, it can be obtained that the product between the matrices is 0 if the matrices are

different, and the identity matrix 1 if the matrices multiplied are the same matrix, meaning that

the matrix is squared.

Using this property, the right-hand side of the equation is already diagonal, being (h2
1 + h2

2 + h3
3)1.

In the left-hand side, the matrix still has to be squared. As the terms in the diagonal are identical

with opposite sign, when obtaining the terms in the antidiagonal they cancel out each other. This

means that squaring the matrix H(k)− h0τ0 makes this matrix diagonal. As the matrix is diagonal,

the terms in the diagonal are the eigenvalues of this matrix. Because of this, the eigenvalues of

the Hamiltonian can be easily obtained by knowing the relation between these eigenvalues and the

eigenvalues of the Hamiltonian, that is

(
(ε1 − h0)2 0

0 (ε2 − h0)2

)
= (h2

1 + h2
2 + h2

3)

(
1 0

0 1

)
. (29)

This means that given a set of parameters, and a value of the k-point, the eigenvalues will be given by

h0 ± |h(k)| and there is always an energy gap unless all three (h1, h2, h3) are zero. In this particular

point, both eigenvalues have the same value, h0, and the gap closes. As explained before, the

coefficient from the identity matrix h0 only represents a shift in the energy of the eigenvalues.

It is interesting to note that the coefficient of the first Pauli matrix, h1 = u, vanishes in our model.

It is due to the fact that: (i) there is no interaction on the same atom between the s and the p

orbital; and (ii) the ”s− p” model has an inversion symmetry, i.e., for any atom in the chain, an

identical atom exists diametrically opposite to it and at an equal distance from it.

4. Solving the s-p model

4.1. Case when u = 0

In this section, we shall solve a particular example of the s − p model described in Sec. 3. This

corresponds to the exercise 3.19 proposed in David Vanderbilt’s book, “Berry phases in electronic

structure theory” [1].

For this example, the values given to the interactions between orbitals are Vss = −1.40 t, Vpp = 3.24 t,

Vsp = 1.84 t and ∆E = εs − εp = −8.0. Energy units in this example are arbitrary, but for the sake

of completeness, and as suggested in the tables at the back of Harrison [4], we shall consider them

in eV. As it can be seen, the first three values will depend on a parameter t, that can be varied

in a continuous way (here it will take values ranging from 0.5 to 1.2). Therefore, k and t can be

viewed as coordinates of a two dimensional space, an important fact to discuss the Berry phases

(Sec. A.1).

We show in Fig. 4(a),(c) and (e) the band structure of the model along the first-Brillouin zone for

three significant values of the parameter t: (i) the initial value t = 0.5; (ii) the final value t = 1.2; (iii)

a critical value of t (that in this example equals t = 0.862) where something special happens: right

at this value the gap closes. At first sight, the qualitative shape of the bands for the two extreme

cases [Fig. 4(a)-(e)] looks like pretty much the same. There is a finite gap separating the two bands,
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and the curvature of both of them follows the same pattern. However, as we shall describe shortly,

they describe different topological states.

To ellucidate their difference, in addition to the band structure, the evolution of h2 against h3 for

these three values of t is shown in Fig. 4(b),(d) and (f). The explicit expression for h2 and h3 for

this particular example can be derived from Eq. (25) and Eq. (26). Substituting the values of the

coefficients w, ∆ and d, then the coefficients of the expansions of the Hamiltonian in term of the

Pauli matrices, h2 and h3, are

h2 = 2Vsp sin ka,

h3 =
εs − εp

2
+ (Vss − Vpp) cos ka. (30)

Now, the values of the interactions between the orbitals are introduced, and the expressions for h2

and h3 are

h2 = 3.68 t sin ka, (31)

h3 = −4.0− 4.64 t cos ka. (32)

From these expressions, it can be observed that both h2 and h3 are scalar functions of t and k. This

means that for each value of t, we can still give values to k in the first Brillouin zone, from −π/a
to π/a. For this reason, we can perform a closed loop in h2 and h3, which is different for every

different t.
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Figure 4: Bands structures (left column), and h2 − h3 coefficients of the Pauli matrices (right column) for

three different values of t: t = 0.5 [panels (a)-(b)], t = 0.862 [panels (c)-(d)], and t = 1.2 [panels (e)-(f)].

Remember that with our symmetric model, h1 = 0 in every case. The filled dot in the right panels represent

the point where h1 = h2 = h3 = 0.

In our s− p model with a center of inversion [u = 0 in Eq. (25)], ~h is restricted to the h1 = 0 plane

and the variation of ~h(k) for k varying from −π/a to +π/a is shown as ovals in the h2 − h3 plane

(right column in Fig. 4). As it can be seen in Fig. 4, the larger the value of t, the larger the area

enclosed by the oval. For the smaller value of the parameter t [t = 0.5; Fig. 4(b)], ~h(k) does not

wind around the origin. For the largest value of the parameter t [t = 1.2; Fig. 4(f)], ~h(k) does

wind around the origin [the point (0, 0) is enclosed in the oval]. Since t is changed continuously

between these two cases, there is a critical value of t for which the oval touches the origin and the

gap vanishes. Looking at Eqs. (31)-(32), this implies two simultaneous conditions on k and t: (i)

k = ±π/a [so the sine in Eq. (31) vanishes], and (ii) t = 4.0/4.64, so h3 cancels in Eq. (32) for the

previous value of k. This is the point where the bands touch in the Brillouin zone, so they can

exchange eigenvectors, i.e., a qualitative change in the electronic structure as represented in Fig. 5.

There, we plot on top of the band structure the character of the different bands represented as

ellipses whose size is proportional to the module of the corresponding complex coefficient in the

tight-binding expansion, as given in Eq. (5).



4. SOLVING THE S-P MODEL 12

Figure 5: Character of the bands shown in Fig. 4. The circles represent the character of the band, blue for

the s-like character and red for the p-like character. The size of the ellipses is proportional to the module of

the corresponding complex coefficient of an eigenfunction in the tight-binding expansion, as given in Eq. (5).

These characters of the band are shown for the three values of t selected before: (a) t = 0.5, (b) t = 0.862,

and (c) t = 1.2.

As explained before, although there is not a big qualitative difference in the shape of the bands for

the initial and the final values of t, however, there is a difference in the character of the bands for

this set of values. The difference is more readily apparent in Fig. 6 where we plot the tight-binding

coefficients of the two bands (lower band in blue, upper band in red) for the extreme values of t in

our example.

Since we are going to compute the Berry phase, as will be described in Appendix A.1, we need the

periodic part of the wave functions to be a smooth function of k everywhere in the loop, represented

here by letting k range from −π/a to +π/a. That implies a particular choice of the gauge. Once

this is chosen in our example, the coefficient of the s orbital is always real, while the coefficient of

the p orbital is purely imaginary. The wave function is normalized, so the sum of the squares of the

coefficients for any given k is equal to 1.
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For t = 0.5 the lower band is mostly s-like in character [Fig. 6(a)] while the upper band is majoritary

p-type [Fig. 6(b)]. It is important to note how a gauge for the wave functions can be chosen in

such a way that they are smooth functions in k, and continuous at the boundaries of the Brillouin

zone.

For t = 0.862, where the gap closes, there is a change in the character of the bands. In the points

where the gap closes, ±π/a, the eigenstates become degenerate. For this reason, the two bands

can exchange eigenvectors in these points. As seen in Fig. 5 (b), in the first band there is also an

s-like character near these key points where the gap closes, while in the second band there is a p-like

character close to −π/a and +π/a.

For t = 1.2 the two band change the character in a continuous way: the lower band (respectively the

upper band) is of p-type (respectively s-type) at −π/a, but it changes gradually when the excursion

is undertaken along the Brillouin zone. At Γ the band has only s-type (respectively p-type) character

and it recovers the p- (respectively s)-character at +π/a.

Since we will be interested in computing the center of the bands (the Zak phases [5], as described

in the Appendix A.1), an important subtlety arises. For the Berry phase to be well defined, we

need two conditions [1]: (i) that the periodic part of the wave function |un,k〉, has to be a smooth

function of k, something already shown in Fig. 6; and (ii) we have also to ensure smoothness across

the artificial boundary point when k crosses from +π/a to −π/a. That is, we must insist that

ψj,k=−π/a(x) = ψj,k=+π/a(x). (33)

That is, the Bloch functions at the two ends of the interval [−π/a,+π/a] must be equal not just

up to a phase. Due to the Bloch theorem [Eq. (3)], this condition translates into the fact that the

periodic part of the wave functions are not equal at −π/a and +π/a,

uj,k=+π/a(x) = e−2πix/auj,k=−π/a(x). (34)

In other words, |un,k=+π/a〉 and |un,k=−π/a〉 differ more than a global phase, since the phase factor

depend on the position x.

In our tight-binding approximation, as we discussed in Sec. 2, the basis set of atomic orbitals

is not explicitly constructed and we do not have access to the position dependence of the wave

functions: only the coefficients of the tight-binding expansions are known at the points where the

basis functions are centered. Since in our particular example, only with one atomic orbital per site,

those atomic orbitals are assumed to be centered at positions ±na, then the exponential in Eq. (34)

is equal to one. Therefore, in our particular problem, we must impose that the coefficients of the

wave functions at −π/a and π/a are equal.
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Figure 6: Coefficients of the tight-binding expansion for the lower band [panel (a) for t = 0.5, and panel

(c) for t = 1.2], and for the upper band [panel (b) for t = 0.5, and panel (d) for t = 1.2]. The coefficient for

the real part of the s-orbital is plotted in blue, and the coefficient for the imaginary part of the p-orbital is

plotted in red.

As shown in Fig. 6 this is immediately full-filled for t = 0.5, a particular value before the topological

phase transitions. We have checked that this condition also complies for any t < 0.862, point where

the ellipse in Fig. 4 touches the origin, the gap closes and the topological phase transition takes place.

However, as can be observed in Fig. 6(c)-(d) for t = 1.2, beyond the phase transition the continuity

of the wave function at the Brillouin zone borders imposes a discontinuity in the tight-binding

coefficients that must be used to compute the Berry phases. Instead of taking the coefficients at

+π/a marked with an empty circle, we should restore to the values at −π/a, marked with a filled

circle.

This discontinuity translates into a change in the phase of the Berry phase of the band j, computed

in the discrete formula as

φj = −= ln
[
〈uj,k0 |uj,k1〉〈uj,k1 |uj,k2〉 . . . 〈uj,kN−1

|e−2πix/a|uj,k0〉
]
, (35)

In our tight-binding problem, every bracket in Eq. (35) is computed as

〈uj,ki |uj,ki+1〉 = c∗j,s(ki)cj,s(ki+1) + c∗j,p(ki)cj,p(ki+1). (36)

If there is no discontinuity in the coefficients, all the products yield positive real numbers and

therefore the final phase is zero. That is also the case if the discontinuity is present, with the
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exception of the last bracket, that becomes a negative real number. As a consequence, all the

product in the square bracket of Eq. (35) is a real negative number and the phase jumps to π.

Another intuitive way of seeing this change in character in the bands is by plotting a schematic

diagram of the interactions of the bands, in order to observe how the gap changes for different values

of t. If there is still a gap of a substantial width, it can be considered that there is no exchange of

information between the bands, meaning that there is not an important change in the character of

the band. On the other hand, if the sum of these interactions is enough to overcome the width of

the gap, then a change in the character of the bands would be expected.

Figure 7: Schematic diagram of the interaction between the bands for (a) t = 0.5 and (b) t = 1.0.

In Fig. 7(a), which corresponds to t = 0.5, the values for each interaction have been obtained by

introducing this value in their respective equation. The initial gap between the bands is 8.0, and

it gets smaller when each interaction is applied. In the first place, each band has the interactions

between neighbour orbitals of the same type (Vss and Vpp) that bring the bands closer together.

In addition to this interactions, as the orbitals interact with each other, both bands have another

contribution that is Vsp, equal for both bands. In this case, the sum of these interactions is not

enough to close the gap. For this reason, there is almost no exchange in the character of the bands,

as the bands can not share any information due to the width of the gap.

In Fig. 7(b), and for the sake of simplicity, the value of t studied is 1.0. For this specific t, the

topological transition has already taken place, so we would expect some change in the character of

the bands. Performing the same procedure followed for t = 0.5 with the corresponding values for

this t, it can be seen that the sum of the interactions overcome the width of the gap. However, this

difference of energy is still not big enough to make the whole band have both orbital characters. Only

the most energetic k points, which are the ones close to ±π/a, would have a significant contribution

from the orbital corresponding to the other band.

Since the center of the band is given by
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xj = φj/2π, (37)

we immediately deduce how the topological phase transition has translated the center of the band

from the atomic position (atomic picture) to the center of the bonding (covalent picture), as shown in

Fig. 8. This change in character was already pointed out by Shockley in his milestone work [6].
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Figure 8: Position of the centers of the Wannier functions as a function of the parameter t. The centers of

the two bands shown in Fig. 4 coincide. When the center of the Wannier function is 0.5 that means that is

half-way between two consecutive atoms, i.e. it is a covalent-type bonding.

4.2. Case when u 6= 0

Given the choice of the parameters in Sec. 4.1, the coefficient of the first Pauli matrix in Eq. (25)

always vanish. Then, for any value of t, when k is varied continuously in the first Brillouin zone, the

parameters h2 and h3 describe an oval that might or might not wind around the origin, the special

point where the gap closes, the bands exchange character, and the topological phase transitions

takes place (see the left panel in Fig. 9).

We might wonder if other possibilities to get this topological phase transition are possible, in

particular, without the requirement of a vanishing of the gap. This alternative has been proposed by

Richard Martin in his book ”Electronic Structure: Basic Theory and Practical Methods” [3].

Martin proposed to lift the constraint h1 = u = 0 for the coefficient of the first Pauli matrix, in such



4. SOLVING THE S-P MODEL 17

a way that the space is expanded and we are allowed to move also in a third dimension instead of

being restricted to the h2 − h3 plane (see the right panel in Fig. 9).

Figure 9: Schematic diagram for the possible excursions of the parameters that define the Hamiltonian in

terms of the Pauli matrices [Eq. (22)]. In the left panel, h1 is forced to be zero, as in Sec. 4.1. In the right

panel, this constrained is lifted, as explained in Sec. 4.2. Reprinted with permission from Ref. [3].

If the Hamiltonian changes in a cycle in such a way that the components h1 and h3 vary together

to form a closed loop, then the two ovals (marked in dark at the right panel of Fig. 9) should be

considered at some point while the Hamiltonian returns to itself. One of them winds around the

origin. The other one does not. A topological phase transition takes place but, in contrast with

Sec. 4.1 the gap is never zero.

In the s − p model in order to have a displacement above or below the h1 plane, the parameter

u in the expansion of the Hamiltonian in terms of Pauli matrices has to be different from zero.

This corresponds to a real term in the off-diagonal matrix elements, and this can only occur if the

center of inversion is broken. Then, the system is polarized either on one direction or the opposite

depending on the sign of u. Here, the cycle will be directly defined in terms of the coefficients of the

Pauli matrices as

~h(k, λ) =
[
D sinλ, ω sin k,∆ +D cosλ+ d cos k

]
, (38)

where D,ω, d and ∆ are four constants. In this work, these four constants will be set to 1. As

the coefficient h0 for the identity matrix does not change neither the shape of the bands nor their

character, in this model it will be set to zero. For this reason, there will be no shift in their energy,

so the gap between the bands will be centered in 0. The parameter λ, that enters h1 under a sine

and h3 under a cosine, parametrizes the loop in the h1 − h3 plane, and can vary in a continuous

way between 0 and 2π. For λ = 0, we are in the situation depicted by the left dark oval in the right

panel of Fig. 9, that does not wind around the origin. For λ = π, we are in the situation represented

by the right dark oval in the right panel of Fig. 9, that does wind around the origin. But, in contrast

with Sec. 4.1, there is no value of λ for which the oval touches the origin. As it can be noticed, λ

and k have comparable roles, as they appear in h1 and h2 inside a sine, and they both appear in h3

inside a cosine. However, there is an important difference between them, and it is the factor i in the
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matrix τ2 that does not appear in τ1. An important difference with respect discussed in Sec. 4.1 is

that the coefficients of the s and p basis functions are not in general purely real or purely imaginary,

but they develop an intrinsic complex value.

Since the system is polarized, it is possible to shift the center of the Wannier functions continuously

from 0 to either + 1
2 or − 1

2 . Even, it is also possible to continue varying until the shift is by a full

lattice constant, as shown in Fig. 10.
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Figure 10: Center of the Wannier functions as a function of the λ parameter used to define the Hamiltonian

in Eq. (38). Black (respectively red) solid line corresponds to the center of the first (respectively second)

band.

5. Bulk-boundary correspondence

Topology is a global property of the electronic structure of the bulk. It is a property of the states as

a function of k in an infinite periodic crystal with no surface. That is what we have analyzed up to

now, where the electronic states of an infinite chain (no border) has been analyzed.

However, since the seventies, the role of the so-called “bulk-boundary” correspondence has been

recognized. The principle of the “bulk-boundary” correspondence guarantees that there will be

surface states in the gap in the non-trivial topological phases [7].

Let us assume a Hamiltonian that slowly interpolates between two insulating states with different

topologies. That is the case, for instance, presented in Sec. 4.2 with λ = 0 and λ = π. At some
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point the energy gap has to vanish because otherwise it is impossible for the topological invariant to

change. In the previous example, the center of the bands gradually changes between the atomic

limit (center of the bands on the atoms) for λ = 0 to the covalent limit (center of the bands at

midpoint between the atoms) for λ = π. Jackiw and Rebbi mapped the problem to an interface,

and postulated that there might be surface states bound to the interface region, and these states

form bands that propagate along the interface. For some particular value of the parameter λ, the

surface states touch each other, closing the gap. In our former model, as can be seen in Fig. 11, this

happens for λ = π.

In Fig. 11 we assume that our chain is finite, with only 19 atoms. The Hamiltonian parameters

remain the same as in Sec. 4.2, for the different values of λ. Indeed, the on-site and hopping

parameters can be reconstructed from the coefficient of the Pauli matrices as

εss = ∆ +D cosλ,

εpp = −∆−D cosλ,

Vss =
d

2
,

Vpp = −d
2
,

Vsp =
ω

2
,

V ′sp = D sinλ. (39)

In this model the parameter h1 is not restricted to 0. Because of this, when varying this coefficient,

an on-site interaction between the s and the p orbital appears, which is V ′sp.

Then, since we cannot apply the Bloch theorem for our finite system, a square Hamiltonian of size

(2× 19, 2× 19) is written considering the interaction between a given orbital and their neighbours.

A particular example of the Hamiltonian for a slightly smaller chain of only for 4 atomic sites (in

order to fit in one page) is written below



εss V ′sp Vss −Vsp 0 0 0 0

V ′sp εpp Vsp −Vpp 0 0 0 0

Vss Vsp εss V ′sp Vss −Vsp 0 0

−Vsp −Vpp V ′sp εpp Vsp −Vpp 0 0

0 0 Vss Vsp εss V ′sp Vss −Vsp
0 0 −Vsp −Vpp V ′sp εpp Vsp −Vpp
0 0 0 0 Vss Vsp εss V ′sp
0 0 0 0 −Vsp −Vpp V ′sp εpp


. (40)

The Hamiltonian is diagonalized for different values of λ, and the eigenvalues are plotted in

Fig. 11.
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Figure 11: States of a finite chain of 19 atoms for a closed loop in the parameter λ.

In Fig. 12 we plot the square of the coefficients of the wave functions for the states that close the

gap at λ = π. Clearly, they are peaked at the two surfaces and the weight decreases in the interior

atoms, indicating that we are dealing with surface states.

Figure 12: Square of the coefficients of the s and p orbitals in the chain for the two states that cross at

the center of the gap at λ = π.
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6. Conclusions

In this work, we have solved the one dimensional s− p model, which has one atom and an s and a p

orbital per unit cell, and we have studied the topological phase transitions that take place in this

model in two different ways.

In the first way, we solved the exercise 3.19 proposed in David Vanderbilt’s book “Berry phases in

electronic structure theory” [1]. In this particular example, the interactions between the orbitals will

depend on a parameter that will be varied continuously in order to study the topological transition.

When varying the interaction values, which directly varies the Hamiltonian, there is a critical value

for which the gap closes. This is the specific point in which the topological transition occurs. In this

point, the center of the bands are translated from being centered in the position of the atoms to

being centered in the bonding between them. This is a quantum transition, as there is a well-defined

jump between the two situations.

The second way studied in this work to get this topological phase transitions follows the method

proposed in Richard Martin’s book “Electronic Structure: Basic Theory and Practical Methods” [3].

As every 2 × 2 matrix can be described by the Pauli matrices, in this method the parameter

introduced does not directly vary the interactions between the orbitals, but instead it varies the

coefficients from the Pauli matrices that describe the Hamiltonian. The main difference between

these two methods is that in this one the gap is never closed. Here, the topological phase takes

place in a soft way. The center of the Wannier functions is shifted continuously, rather than in a

sudden way as in the first method.

Finally, we studied what is known as “bulk-boundary” correspondence. In this last model, the

Hamiltonian slowly interpolates between two insulating states with different topologies, found in

λ = 0 and λ = π. If the gap did not close, it would be impossible for the topological invariant to

change. It was found that this problem can be mapped to an interface, and that there are surface

states bound to the interface region which form bands that propagate along the interface. We found

that for the particular value of λ = π, these surface states touch each other, closing the gap and

performing the topological phase transition.

A. Appendix

A.1. Berry phase, Zak phase and the centers of the bands

Let’s define Ĥ as a Hamiltonian which depends on a set of parameters ~λ. Some examples of

parameters on which the Hamiltonian may depend are the atomic coordinates of the atoms, a ~k

point, or the direction of a magnetic field. In our case the parameters will be: (i) the parameters

t (in Sec. 4.1), or λ (in Sec. 4.2) that controls the interatomic tight-binding terms; and (ii) the k

point in the first-Brillouin zone.

For any values of the parameters, the natural basis of the Hamiltonian is assumed to be discrete, so

for any possible value of these parameters, the Hamiltonian can be diagonalized as
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Ĥ(~λ) |un(~λ)〉 = En(~λ) |un(~λ)〉 . (41)

With this diagonalization, all the eigenvalues and eigenvectors of the Hamiltonian are known for any

possible value of ~λ. It is important to notice the fact that this equation does not imply any relation

between the phases of the eigenstates |un(~λ)〉 at different ~λ, so an arbitrary phase can be chosen for

each point.

Let’s now assume that the system is prepared so that at t = 0 it is in one of the eigenstates n

|ψn(t = 0)〉 = |un(~λ(t = 0))〉 . (42)

Now, the eigenstate takes an excursion between times t = 0 and t. This excursion can be seen as a

trajectory in the ~λ space phase, as shown in Figure (13). It is also assumed that the levels do not

cross along the ~λ path, so the n = 1 level will always remain the first level and so on.

Figure 13: Schematic representation of a trajectory in the ~λ space, dependent on two parameters λ1 and

λ2.

At time t, the system is at the point of the trajectory ~λ(t). In this moment, the state of the system

at time t can be described from the natural basis for the corresponding ~λ(t). Adiabatically, a system

as this one which was prepared in one of the eigenstates, will evolve with the Hamiltonian as

|ψn(t)〉 = exp

[
− i
h̄

∫ t

0

En(~λ(t′))dt′
]

exp(iφn(t)) |un(~λ)〉 . (43)

In the right-hand side of the equation, the following two phases are found:

• The first phase, exp
[
− i
h̄

∫ t
0
En(~λ(t′))dt′

]
, is the usual dynamical phase

• The second phase, exp(iφn(t)), is an extra phase factor that may include, for example, whether

there is a phase dependent on the trajectory chosen between the initial and the final state, or

the differences in phases chosen at the time of computing the natural basis
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This extra phase φ can be computed by introducing this state in the time dependent Schrödinger

equation, ih̄d|ψn〉
dt = Ĥ |ψn〉.

In the first place, the derivative at the left-hand side is taken

En(~λ(t)) exp

[∫ t

0

En(~λ(t′))

]
exp(iφn(t)) |un(~λ(t))〉

+ih̄

[∫ t

0

En(~λ(t′))

]
i
dφn
dt

exp(iφn(t)) |un(~λ(t))〉

+ih̄

[∫ t

0

En(~λ(t′))

]
exp(iφn(t))

d |un(~λ(t))〉)
d~λ

d~λ

dt
.

(44)

Now, the right-hand side is computed

Ĥ |ψn(~λ(t))〉 = En(~λ(t)) |ψn(~λ(t))〉 = En(~λ(t)) exp

[∫ t

0

En(~λ(t′))dt′
]

exp(iφn(t)) |un(~λ(t))〉 . (45)

This term cancels out with the first term of the left-hand side, so operating the equation

−h̄ exp

[∫ t

0

En(~λ(t′))dt′
]
dφn
dt

exp(iφn(t)) |un(~λ(t))〉+ih̄ exp

[∫ t

0

En(~λ(t′))dt′
]

exp(iφn(t))
d |un(~λ(t))〉

d~λ

d~λ

dt
= 0.

(46)

The common terms in both addends can be taken away and the equation reorganized as

i
dφn
dt
|un(~λ(t))〉 = −d |un(~λ(t))〉

d~λ

d~λ

dt
. (47)

Now, both sides are multiplied by the bra 〈un(~λ(t))|

dφn
dt

= i
d~λ

dt
〈un(~λ(t))| d

d~λ
|un(~λ(t))〉 = ~An(~λ)

d~λ

dt
, (48)

where ~An(~λ) = i 〈un(~λ(t))| d
d~λ
|un(~λ(t))〉 is known as the Berry connection. Now, the change in the

geometrical phase can be integrated between an initial and a final time

φn(tf ) =

∫ tf

ti

~An(~λ)
d~λ

dt
dt

φn(Γ) =

∫ ~λf

~λi

~An(~λ)d~λ.

(49)

This quantity depends only on the path taken between the initial and final points, so it is a geometric

phase. As the Berry connection is real, this geometric phase is also real. The eigenstates are
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only defined up to a phase. This means that if |un(~λ)〉 is an eigenstate of the Hamiltonian, then

exp−iβn(~λ) |un(~λ)〉 is also a valid eigenstate. βn(~λ) is assumed to be real and smooth in ~λ, meaning

that there is no level crossing.

When there is a change in the gauge, the Berry connection changes as

~̃
An = ~An +

dβn

d~λ
, (50)

and the corresponding phase changes as

φ̃n = φn + βn(~λf )− βn(~λi). (51)

Because of this, a gauge can always be chosen where the geometric phase of the path disappears,

and only the dynamical phase remains. However, let’s now consider a closed path. The circuit is

parametrized by a scalar λ, which takes values between 0 and 1. As both λ = 0 and λ = 1 label

the same state, it is required that in both gauges |un(λ = 1)〉 = |un(λ = 0)〉 and |ũn(λ = 1)〉 =

|ũn(λ = 0)〉. According to Eq. ((51)), this implies that

βn(λ = 1) = βn(λ = 0) + 2πl, (52)

where l is the “winding number” of the gauge transformation. Then, the geometrical phase φ̃n
changes by

φ̃n = φn + 2πl. (53)

The Berry phase is defined as

φn(Γ) =

∮
~An(~λ)d~λ. (54)

For closed paths, the geometrical phase expiφn is gauge invariant, so it can not be removed by

performing a gauge transformation. In addition to this, being a gauge invariant means that the

Berry phase is potentially a physical observable.

Let’s now focus on the two state s-p model in one dimension explained before. The hamiltonian

must depend in at least two λ parameters, due to the fact that if it only depended in one parameter,

a closed loop could not be performed, as it would come and go by the same path following a straight

line.

The first λ parameter will be ~k, which is the position in the reciprocal space. As stated before, because

of the periodicity of the potential, the Bloch theorem can be applied, meaning that |ψn,~k+~G〉 = |ψn,~k〉.
The vector in k will be removed from now on, as there is only one dimension. Since veck and ~k + ~G

are just two labels for the same state, this implies that only a zone in the reciprocal space with the

length of the unit cell is sufficient to describe all the states one and only once. This zone is known

as the Brillouin zone. The length is 2π/a, being a the length of the unit cell, and it goes from −π/a
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to π/a. The Brillouin zone will be key to find the Berry phase for this model, as its periodicity

allows to perform a closed loop in the space of ~λ.

The path along which the Berry phase will be calculated can be discretized in N steps, as shown

in Figure (14). For each point of the path, the ~λ parameters are different, so the wavefunctions

are different in every step. As it is a closed loop, |uN 〉 must be equal to the initial wavefunction

|u0〉.

Figure 14: Schematic illustration of a closed loop in the ~λ space, with a discrete set of steps along the

path.

At any two adjacent points of these discrete steps, the relative phases of the wavefunctions at those

points can be expressed as

∆φj,j+1 = = ln [〈uj |uj+1〉], (55)

using the relation that provides the phase α of z = |z|eiα, α = = ln z. With this discretization, the

Berry phase can be obtained as

φ = −= ln [〈u0|u1〉 〈u1|u2〉 〈u2|...|uN−1〉 〈uN−1|u0〉]. (56)

Finally, it can be proved that in one-dimensional systems with isolated bands, as the ones we are

dealing with in this work, the centers of the Wannier functions can be identified with the Berry

phases computed as in Eq. (56) as

xn =
φn
2π
a, (57)

an idea already introduced by Zak [5]. This is used in Sec. 4.1 and 4.2 to compute the centers of

the bands.
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