
UNIVERSIDAD DE CANTABRIA

Programa de
Doctorado en Ciencia y Tecnología

Tesis Doctoral

Democratización de la Minería de Datos
Lenguajes Específicos de Dominio para la

PhD Thesis

Data Mining Democratisation
Domain-Specific Languages for

Realizada por
Alfonso de la Vega Ruiz

Dirigida por
Pablo Sánchez Barreiro

Escuela de Doctorado de la Universidad de Cantabria
Santander 2019





A PhD involves failing to do things correctly a lot of times.

My mind tried to sabotage this thesis in several occasions.
Fortunately, I think it also failed at that.

Como dijo una vez una persona más inteligente que yo,

¡RAKUYAKI!





Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the outcome
of work done in collaboration with others, except as specified in the text, co-authorships
in related published articles, and acknowledgements. Some parts of this dissertation
appear in peer-reviewed conferences and journals, and in preprint databases. Check
the List of Publications on page xxv for details.

Alfonso de la Vega Ruiz
Santander 2019





Agradecimientos

Han sido casi cinco años, y alguno se me ha hecho más largo que otro, pero bueno,
finalmente aquí estamos. La verdad es que en algunas ocasiones, siendo sincero, servidor
no daba un duro porque llegara este día. Lo que tengo claro es que, sin personas
alrededor apoyándome en esos momentos difíciles, no me encontraría en esta mañana
escribiendo estos agradecimientos.

Empiezo por Pablo, mi director durante la tesis. Acudí a el proveniente de unos
temas de trabajo completamente diferentes a aquellos que finalmente tratamos en
esta tesis, y aceptó dirigirme con poco más contacto que haberme dado clase en una
asignatura. Tengo que reconocerle que ha sabido manejar a una persona que llegaba
con poca tolerancia a la frustración, muy tozuda en cuanto a pensamientos y posturas, y
poco acostumbrada a las críticas, aunque éstas fueran constructivas. Creo que, durante
esta tesis, hemos conseguido alcanzar un equilibrio en nuestras posturas, que nos ha
permitido ser productivos y conseguir la mayor parte de las metas propuestas. Muchas
gracias Pablo, y espero que podamos seguir trabajando juntos en el futuro.

Quiero dedicarle también unas palabras a Marta, profesora compañera del departa-
mento. Aunque sobre el papel diga que su labor ha sido ser mi tutora administrativa
durante el doctorado, ha superado con creces las obligaciones relativas a esa figura, con
avisos de diferentes eventos y congresos, con interesarse por el avance de mi trabajo,
o con su consejo cuando he tenido preguntas acerca de cualquier cosa. En definitiva,
gracias Marta por toda la ayuda proporcionada.

I would also like to thank Prof. Dimitris Kolovos for accepting me for a research
stay. As it was the case with my thesis supervisor, he accepted me to come to York
with nothing more than a couple of my initial papers. Although my stay there was too
short, it helped me a lot to face the remaining years of my PhD with improved attitude
and knowledge. Thanks Dimitris, I hope we can continue collaborating in the future.

Considero tan importante el apoyo de un grupo en cuanto a labores de docencia e
investigación, como el valor humano que este grupo transmite, ya sea por su disposición
a ayudarte ante diferentes problemas, como por la posibilidad de comentar los resultados
de las últimas elecciones (y en esta tesis, ha habido muchas), las criptos, o cualquier



viii

otra discusión filosófico-tecnológica que tocara. Creo que el grupo de Ingeniería del
Software y Tiempo Real cumple ambos criterios y con muy buena nota. Quiero dar las
gracias a todos los miembros del grupo por permitirme iniciarme en el mundo de la
universidad, por apoyarme en los diferentes trámites que he tenido que realizar durante
la tesis, o por simplemente charlar conmigo cuando necesitaba desconectar de algún
tema en concreto.

Esta tesis me ha permitido conocer y entablar amistad con muchas personas en mi
misma o en una situación similar dentro de la universidad. Por el grupo se encuentra
Alejandro, con quien he podido comentar muchas cosas acerca de nuevos cacharros
tecnológicos y de si se nota un montón o no las ventajas que se supone que ofrecen. Meto
por aquí también a Rafa, de reciente incorporación a la facultad, pero ya uno más de
nosotros. Igual un día termina comprándose la tele esa. Mención especial merecen mis
compañeros de comedor y cafés: David, Andrea, Ujué, y David (también conocido como
el gallego, mote a ratos compartido con Óscar, pero con cariño/por colisión de nombres).
Termino con Diego, mi compañero de despacho y fatigas, que pertenecía al club del
tupper pero luego dejó de molar. Gracias por esas conversaciones psicológico-festivas,
que también han contribuido a que esta tesis termine correctamente.

Quiero dar las gracias también a los que han sido mis amigos prácticamente toda la
vida, y que espero sigan siéndolo por muchos años. A Manuel, Alberto, Pablo, Marta,
Javi, Alejandra, Silvia, Paula, Valeria, Pantor & Ley, y a los que seguro me olvido.

No podía faltar en estos agradecimientos una mención a mi familia. Muchas horas
he dedicado a la tesis dejando de lado a la gente que más me importa, y uno de mis
objetivos actuales es recuperar ese tiempo y evitar que vuelva a suceder. A Marcos y a
Sara, por estar siempre ahí cuando lo he necesitado, y por supuesto sin pedir nada a
cambio; y a Adela, que con lo trisca que es su tío (y lo que te queda maja), espero que
no me acabe cogiendo tirria. Finalmente, a mis padres, Alfonso y Maria Rosa, que
pese a la impotencia que sentían a veces al verme desanimado en estos años, nunca
dejaron de ayudarme con todo lo que pudieron para que siguiera adelante. No creo que
sea capaz de devolveros todo lo que habéis hecho por mí, pero lo intentaré lo mejor
que pueda.

Termino estos agradecimientos con la auténtica responsable de que esta tesis haya
llegado a buen puerto. Una de las únicas personas capaces de aguantarme a mí
y a mis neuras durante todos estos años, principalmente a base de collejas cuanto
mi mente se encasquillaba con algo. Calculo que me sería imposible encontrar a
alguien igual en esta y otras tantas vidas. Muchas gracias Yael, ahora te toca a ti
(manosescribiendoenelaire.gif).



Abstract
Currently, computer systems gather large amounts of data that, when properly analysed,
can be of great help for different purposes. For instance, data mining techniques can
be used to discover insights previously hidden in data.

Nevertheless, the correct usage of these techniques requires sound knowledge in
very specialised concepts, such as analysis algorithms, advanced statistics, or data
management. People willing to analyse data often lack this knowledge, which hampers
data mining democratisation.

In this thesis, we explored whether Model-Driven Engineering (MDE) and Domain-
Specific Languages (DSLs) technologies can be of help to the data mining democrati-
sation field. These technologies have demonstrated their effectiveness to provide
domain-adapted solutions, which are easy to use and feel familiar to experts in an
application domain. Therefore, the use of these technologies could contribute positively
to the goal of enlarging the spectrum of people that can apply data mining techniques.

We started our work by reviewing the state of the art of this field, which allowed us
to identify any shortcomings of the existing approaches. Some of these shortcomings
where: (1) those analysis solutions that are completely domain-independent may
exhibit accuracy problems, as they do not take into account the specificities of the
domain to configure the analysis processes; and (2) the task of easing the selection and
preparation of the data that are to be used in an analysis has been scarcely addressed
in the literature.

From our findings in this review, we devised several approaches to provide non-expert
users with different DSLs for data mining democratisation. Namely, we developed
FLANDM, i.e., a model-driven framework for the rapid generation of DSLs for data
mining adapted to the specificities of each concrete context. DSLs generated with this
framework provide non-experts with a query-based syntax to invoke analysis processes.
Queries are formulated by combining high-level commands with terminology from the
domain, hiding any technical details of the executed processes to the end user.

Additionally, this framework uses two DSLs, Lavoisier and Pinset, which are in
charge of making data conform to the requirements imposed by the executed data
mining algorithms. Lavoisier offers an easy-to-use syntax to non-experts for selecting the
information to analyse from a domain model, which acts as a high-level representation
of the available data. Complementary, Pinset provides advanced users with powerful
syntax constructs to perform more advanced data computations, which require a
lower-level control of the data transformation process.



x

We also describe how we validated our approaches, e.g., by generating DSLs for
several domains. Moreover, we performed a set of empirical experiments to state
whether the DSLs generated with FLANDM might be actually used by people without
knowledge on data mining techniques. The results of these experiments show that,
after receiving a minimum training, most non-expert users could employ the generated
DSLs to invoke data mining processes over data from their domain.



Resumen
En la actualidad, los sistemas informáticos recogen grandes cantidades de datos que, si
se analizan adecuadamente, pueden resultar de gran ayuda para diferentes fines. Por
ejemplo, las técnicas de minería de datos se pueden utilizar para descubrir patrones en
datos en principio no detectables a simple vista.

Sin embargo, el uso correcto de estas técnicas requiere del conocimiento de ciertos
conceptos muy especializados, como algoritmos de análisis, estadísticas avanzadas o
gestión y tratamiento de datos. Gran parte de las personas que disponen de datos
que les gustaría analizar a menudo carecen de este conocimiento, lo que dificulta la
democratización de la minería de datos.

En esta tesis analizamos si la Ingeniería Dirigida por Modelos (MDE) y los Lenguajes
Específicos de Dominio (DSLs) pueden resultar de ayuda para conseguir una efectiva
democratización de la minería de datos. Estas tecnologías han demostrado su eficacia
para proporcionar soluciones adaptadas a cada contexto, fáciles de usar y que resultan
familiares para los expertos en un dominio de aplicación. Por lo tanto, el uso de
estas tecnologías podría contribuir positivamente al objetivo de ampliar el número de
personas que pueden aplicar técnicas de minería de datos.

Nuestro trabajo comenzó con una revisión sistemática del estado del arte en este
campo, lo que nos permitió identificar cualquier aspecto a mejorar en los enfoques
existentes. Algunos de estos aspectos fueron: (1) aquellas soluciones para facilitar
el análisis que son completamente independientes del dominio de aplicación pueden
presentar problemas de precisión en sus resultados, ya que no tienen en cuenta las
especificidades del dominio para configurar los procesos de análisis; y (2) la tarea de
facilitar la selección y preparación de los datos que se van a utilizar en un análisis
apenas se ha abordado en la literatura.

A partir de los resultados de esta revisión, nuestro trabajo consistió en el diseño de
distintas contribuciones para para proporcionar a los usuarios no expertos diferentes
DSLs para la democratización de la minería de datos. Una de estas contribuciones
es FLANDM: un entorno de desarrollo basado en modelos para la rápida generación
de DSLs que permiten realizar análisis de datos adaptados a las especificidades de
cada contexto concreto. Los DSLs generados con este framework proporcionan a los
no expertos una sintaxis basada en consultas para invocar procesos de análisis. Estas
consultas se formulan combinando comandos de alto nivel con terminología del dominio,
ocultando al usuario final cualquier detalle técnico de los procesos ejecutados.

Adicionalmente, este framework utiliza dos DSLs, Lavoisier y Pinset, que se
encargan del proceso de transformar y preparar conjuntos de datos a analizar para que



xii

cumplan con los requisitos impuestos por los algoritmos de minería de datos ejecutados.
Lavoisier ofrece una sintaxis usable por no expertos para seleccionar la información
a analizar a partir de un modelo de dominio, que actúa como una representación de
alto nivel de los datos disponibles. De forma complementaria, Pinset proporciona a
usuarios avanzados con conocimientos en programación una serie de construcciones
sintácticas potentes para realizar cálculos de datos más complejos, que requieren un
control más detallado del proceso de transformación de datos.

Durante nuestra investigación realizamos diferentes evaluaciones para valorar nues-
tras contribuciones, por ejemplo, mediante la generación de DSLs para varios dominios.
Además, llevamos a cabo una serie de experimentos empíricos para determinar si los
DSLs generados con FLANDM podrían ser realmente utilizables por personas sin
conocimientos sobre técnicas de minería de datos. Los resultados de estos experimentos
muestran que, tras recibir una formación mínima, la mayoría de estos usuarios fueron
capaces de emplear el DSL proporcionado para invocar procesos de minería de datos
sobre los datos de su dominio.



Contents

List of Figures xix

List of Tables xxiii

List of Publications xxv

Acronyms xxvii

1 Preliminaries and Objectives 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivating Analysis Examples . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 E-learning Platforms . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Business Recommendation Systems . . . . . . . . . . . . . . . . 5
1.2.3 Artefacts from Software Projects . . . . . . . . . . . . . . . . . 6
1.2.4 Test Results from Clinical Patients . . . . . . . . . . . . . . . . 6

1.3 Data Mining Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 General Democratisation Challenges . . . . . . . . . . . . . . . . . . . 9

1.4.1 Preparation of Data . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Algorithm Configuration . . . . . . . . . . . . . . . . . . . . . . 11
1.4.4 Accidental Complexity of Data Mining Tools . . . . . . . . . . . 11

1.5 DSLs for Data Mining Democratisation . . . . . . . . . . . . . . . . . . 12
1.6 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Domain-Specific Languages Engineering . . . . . . . . . . . . . 17
1.6.3 Metamodel-Based DSLs . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



xiv Contents

2 Literature Review 29
2.1 Review method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Step 1: Research Questions . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Step 2: Types of Primary Studies . . . . . . . . . . . . . . . . . 32
2.1.3 Step 3: Search Resources . . . . . . . . . . . . . . . . . . . . . . 33
2.1.4 Step 4: Search Strategy and Selection Criteria . . . . . . . . . . 34
2.1.5 Step 5: Snowballing . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.6 Step 6: Evaluation Procedure . . . . . . . . . . . . . . . . . . . 40

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Classification of Selected Studies . . . . . . . . . . . . . . . . . 41
2.2.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 RQ0. What approaches tackle the problem of data mining

democratisation? . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 RQ1. When using the approaches identified in the previous

question, what actions do decision makers need to carry out to
analyse a dataset? . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.3 RQ2. What technical knowledge is required to carry out the
actions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.4 RQ3. Can non-expert users make use of data mining tools and
techniques by themselves? . . . . . . . . . . . . . . . . . . . . . 55

2.3.5 RQ4. What trade-offs need to be considered for achieving data
mining democratisation? . . . . . . . . . . . . . . . . . . . . . . 56

2.3.6 RQ5. What should be improved in current state-of-the-art so
that decision makers can properly analyse datasets by themselves? 56

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 FLANDM: A Framework to Develop DSLs for Data Mining 59
3.1 Experience from an Educational DSL . . . . . . . . . . . . . . . . . . . 60
3.2 Overview of FLANDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Queries Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Domain Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.3 Query Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5 Auto-Completion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Queries Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents xv

3.4.1 Data Procedure Metamodel . . . . . . . . . . . . . . . . . . . . 71
3.4.2 Query to Data Procedure Transformation . . . . . . . . . . . . . 73
3.4.3 Data Procedure to Code Transformation . . . . . . . . . . . . . 73

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.2 Reduction of Development Costs . . . . . . . . . . . . . . . . . 78
3.5.3 Reduction of Maintenance Costs . . . . . . . . . . . . . . . . . . 88

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Lavoisier: High-Level Selection and Preparation of Data 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Case Study and Problem Statement . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Running Example: The Yelp Dataset Challenges . . . . . . . . . 95
4.2.2 Data Mining Processes Extended . . . . . . . . . . . . . . . . . 96
4.2.3 The Data Reformatting Problem . . . . . . . . . . . . . . . . . 98

4.3 State-of-the-Art Data Flattening Strategies . . . . . . . . . . . . . . . . 100
4.3.1 SQL Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.2 Data Warehouse Operations . . . . . . . . . . . . . . . . . . . . 102
4.3.3 Data Management Frameworks and Libraries . . . . . . . . . . . 103
4.3.4 Automatic Feature Extraction . . . . . . . . . . . . . . . . . . . 104

4.4 Flattenning Operator Description . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 Basic Transformation Operations . . . . . . . . . . . . . . . . . 108
4.4.3 Trivial Case: Single Class, Single-Value Attributes . . . . . . . . 113
4.4.4 Single-Bounded Reference . . . . . . . . . . . . . . . . . . . . . 114
4.4.5 Unbounded Reference . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.6 Multi-Valued Attributes . . . . . . . . . . . . . . . . . . . . . . 117
4.4.7 Multiple Reductions . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.8 Multi-Level Reductions . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.9 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Lavoisier: Dataset Extraction Language . . . . . . . . . . . . . . . . . . 125
4.5.1 Properties Selection . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.2 Inheritance Management . . . . . . . . . . . . . . . . . . . . . . 127
4.5.3 Instances Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.4 Derived Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xvi Contents

4.6.1 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6.2 Conciseness and Conceptual Comparison Method . . . . . . . . 133
4.6.3 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.6.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Pinset: Advanced Extraction of Datasets from Models 143
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Motivation: Support for Advanced Calculations . . . . . . . . . . . . . 144

5.2.1 Running Example: Github-MDE (Ghmde) . . . . . . . . . . . . 145
5.2.2 Limitations of Lavoisier . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Solution Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.1 Syntax Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.2 Properties Accessors . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.3 Row Filtering Options . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.4 Multiple Columns Definition: Grid . . . . . . . . . . . . . . . . 153
5.3.5 Nested Column Definitions . . . . . . . . . . . . . . . . . . . . . 156
5.3.6 Typeless Dataset Rules . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.7 Column Post-Processing . . . . . . . . . . . . . . . . . . . . . . 159

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.4.1 Epsilon Platform Usage . . . . . . . . . . . . . . . . . . . . . . 160
5.4.2 Structure of Pinset . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.3 Execution Process of a Pinset Script . . . . . . . . . . . . . . . 162

5.5 MDE that Helps Data Mining Help MDE . . . . . . . . . . . . . . . . . 163
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.6.1 Overcoming of Lavoisier’s Limitations . . . . . . . . . . . . . . . 165
5.6.2 Metrics Extraction with Pinset . . . . . . . . . . . . . . . . . . 167
5.6.3 Metrics Extraction with ETL . . . . . . . . . . . . . . . . . . . 169
5.6.4 Pinset vs. ETL Comparison . . . . . . . . . . . . . . . . . . . . 172

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 Evaluation 177
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2 Comparison with State of the Art Approaches . . . . . . . . . . . . . . 179
6.3 Fulfilment of General Usability Heuristics . . . . . . . . . . . . . . . . . 182
6.4 Empirical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



Contents xvii

6.4.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.4.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.4.4 Participants Selection . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4.5 DMDL Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.4.6 Pre-Test: Assessment of Skills . . . . . . . . . . . . . . . . . . . 192
6.4.7 Test: Execution of Data Mining Tasks . . . . . . . . . . . . . . 193
6.4.8 Post-Test: Satisfaction Questionnaire . . . . . . . . . . . . . . . 193
6.4.9 DMDL Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.5.1 Pre-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.5.2 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.5.3 Post: Participants’ Opinion . . . . . . . . . . . . . . . . . . . . 202
6.5.4 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7 Summary and Future Work 209
7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

References 215

Appendix A Comments on Ad-Hoc Applications 231

Appendix B Class Diagrams Dataset Extractions: Pinset vs. ETL 235
B.1 Basic Class Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
B.2 Features Accesors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
B.3 Extended Accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
B.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.5 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.6 Nested From . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.7 Typeless Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
B.8 All Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Appendix C Experiments Manual (Spanish) 249

Appendix D Experiments Test Questions (Spanish) 253





List of Figures

1.1 Stages that conform a data mining process. . . . . . . . . . . . . . . . . 7
1.2 State machine of a parking gate. . . . . . . . . . . . . . . . . . . . . . . 15
1.3 An MDE process to translate a state machine into Java code. . . . . . 16
1.4 The State pattern applied to the state machine of Figure 1.2. . . . . . . 17
1.5 Components of a textual DSL developed following a metamodeling

approach and translational semantics. . . . . . . . . . . . . . . . . . . . 19
1.6 The Meta-Object Facility (MOF) architecture levels. . . . . . . . . . . 20
1.7 Metamodel to represent state machines. . . . . . . . . . . . . . . . . . . 21
1.8 Two concrete syntaxes for state machines: graphical (left) and tex-

tual(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.9 Simple grammar that allows defining state machines textually. . . . . . 23

2.1 Process for the development of the review protocol. . . . . . . . . . . . 30
2.2 Data mining process example specified with an Orange workflow. . . . 43

3.1 Examples of queries written with the educational DMDL. . . . . . . . . 60
3.2 Inputs and outputs of FLANDM’s DMDL generation process. . . . . . 62
3.3 Entities Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Overview of FLANDM syntax and editor components. . . . . . . . . . 65
3.5 Excerpt of the abstract syntax provided by FLANDM. . . . . . . . . . 66
3.6 Check function which validates the name of an entity. . . . . . . . . . . 68
3.7 Base grammar offered by FLANDM for the DMDLs. . . . . . . . . . . 68
3.8 Assistant function that suggests attributes of an entity. . . . . . . . . . 70
3.9 Two-step query transformation process: a model-to-model (M2M) trans-

formation is followed by a model-to-text (M2T) code generation phase. 71
3.10 Data procedure metamodel. . . . . . . . . . . . . . . . . . . . . . . . . 72



xx List of Figures

3.11 Left: M2M transformation rule of a query in a J48Rules data procedure
model; right: resulting J48Rules model of the M2M transformation over
the example query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.12 Left: resulting code of the M2T generation applied over the example
procedure model; right: an example of the rules obtained when running
the generated code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Queries of the business reviews (Q1) and visa approval (Q2, Q3) DMDLs. 77
3.14 Relative Integration cost (b) per development step of each implemented

case study, plus its weighted average value (Avg b). The dashed line
at value 1 specifies the critical point above which reutilisation is not
cost-effective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.15 Development cost C of the implemented case studies, along with the
average value (Avg). Dashed line at value 1 marks the cost of creating
each case study from scratch. . . . . . . . . . . . . . . . . . . . . . . . 85

3.16 Relation between DMDL cost C and proportion of reuse R, for b = 8.2%. 86
3.17 DMDL architecture without (a) and with (b) FLANDM. . . . . . . . . 89

4.1 Conceptual Model for the Yelp Dataset Challenge. . . . . . . . . . . . . 95
4.2 With footnote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Two tabular arrangements of businesses’ data. . . . . . . . . . . . . . . 98
4.4 (a) Business ratings model excerpt; (b) graph with some instances of (a). 99
4.5 (a) Business and Features entities represented as relational database

tables; (b) Result of a join operation between Business and Business-
Feature tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 A data bundle FinancialResults to be pivoted. Left, the class of the
bundle; right: class instances represented in a table . . . . . . . . . . . 109

4.7 Resulting data bundle of applying pivot to the one of Figure 4.6. . . . . 111
4.8 Left: Main class (Review) to be transformed; right: The resulting table. 114
4.9 One-bounded association. . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.10 Reduction of an unbounded reference. . . . . . . . . . . . . . . . . . . . 115
4.11 Special unbounded reduction where no value attributes are present (the

category name is used as pivoting attribute). . . . . . . . . . . . . . . . 117
4.12 Businesses with their categories represented as a multivalued attribute. 117
4.13 Multiple references reduction. . . . . . . . . . . . . . . . . . . . . . . . 118
4.14 A two-step reduction of multilevel references. . . . . . . . . . . . . . . . 119
4.15 Inheritance Reduction - General Case . . . . . . . . . . . . . . . . . . . 123



List of Figures xxi

4.16 Left: Business and its reference to the Feature inheritance; right: type
division of the features reference performed in the special subclass
reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.17 Conceptual model of the VideoGames case study. . . . . . . . . . . . . 134
4.18 Script size in characters of the extractions for each approach (a: single

table; b: unary reference; c: unbounded reference; d: inheritance; e:
combination). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1 The Github-MDE (Ghmde) model. . . . . . . . . . . . . . . . . . . . . 145
5.2 Epsilon architecture: languages (top) and technologies (bottom). . . . . 160
5.3 Abstract syntax of Pinset. . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4 Fragment of the UML Class Diagram metamodel. . . . . . . . . . . . . 167
5.5 Dataset Metamodel used as output in the M2M transformations. . . . . 169

6.1 Pre questionnaire answers of tools usage. . . . . . . . . . . . . . . . . . 198
6.2 Aggregated results of the test. . . . . . . . . . . . . . . . . . . . . . . . 199
6.3 Results of the test for the different groups. . . . . . . . . . . . . . . . . 200
6.4 Likert-scale responses of the post-questionnaire. . . . . . . . . . . . . . 201





List of Tables

2.1 Research questions to be answered by this systematic review. . . . . . . 31
2.2 Candidate scientific databases, with their search results. . . . . . . . . 34
2.3 Conferences and workshops used as resources in the manual search. . . 34
2.4 Exclusion criteria for data analysis tools. . . . . . . . . . . . . . . . . . 35
2.5 Search string used in the scientific databases. . . . . . . . . . . . . . . . 36
2.6 Exclusion criteria for articles in scientific databases. . . . . . . . . . . . 37
2.7 Questions to assess stage assistance during a data mining process. . . . 40
2.8 Evaluation questions for the quality attributes analysis. . . . . . . . . . 41
2.9 Categories of the approaches that address data mining democratisation. 42
2.10 Coverage of the data mining process stages offered by each category. . . 48
2.11 Assistance offered by each category during the analysis process. . . . . 49
2.12 Results of the quality attributes by category. . . . . . . . . . . . . . . . 51

3.1 Description of the analysis commands offered by FLANDM. . . . . . . 66
3.2 Parameters of the simple cost productivity model. . . . . . . . . . . . . 78
3.3 Stages of a DMDL development using FLANDM with their estimated

weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Lines of code (LOC) parameters used for the definition of b. . . . . . . 81
3.5 Values of the b parameter for each step, weighted averages of b for each

DMDL (bSavg) and final relative cost (C). Last row shows the average
values of the four DMDLs. . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Change scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Lavoisier support for dataset creation tasks. . . . . . . . . . . . . . . . 132
4.2 Dataset extraction scenarios performed in the comparison. . . . . . . . 136

5.1 Dataset storing usage of technologies in a repository. . . . . . . . . . . 153
5.2 Object-Oriented (OO) and Chidamber and Kemerer (CK) [33] class

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



xxiv List of Tables

5.3 Metrics extraction scenarios for the comparison. . . . . . . . . . . . . . 173
5.4 Size in characters/bytes of Pinset and ETL scripts. . . . . . . . . . . . 174

6.1 Coverage of the data mining process, including DMDLs. . . . . . . . . 179
6.2 Quality attributes by category, including DMDLs. . . . . . . . . . . . . 180
6.3 Usability heuristics defined by Molich and Nielsen [117]. . . . . . . . . . 182
6.4 Summary of the performed empirical experiments. . . . . . . . . . . . . 186
6.5 Available commands in the improved educational DMDL. . . . . . . . . 190
6.6 Statements of the Pre questionnaire. . . . . . . . . . . . . . . . . . . . 192
6.7 Translated test questions corresponding to data mining tasks. . . . . . 194
6.8 Post questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.1 Characteristics of encountered ad-hoc applications for non-experts. . . . 233



List of Publications

The work of this thesis has been peer-reviewed in several conferences and journals. A
list of publications in inverse chronological order containing the contributions of this
thesis can be found below.

• (To be published) de la Vega, and Sánchez, P. (2019). Model-Driven Technologies
for Data Mining Democratisation. STAF 2019 Junior Researchers Community
Event, CEUR Workshop Proceedings.

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2019). How Far
are we from Data Mining Democratisation? A Systematic Review. arXiv e-prints
1903.08431 (2019), https://arxiv.org/abs/1903.08431

• de la Vega, A., Sánchez, P., and Kolovos, D. (2018). Pinset: A DSL for Extracting
Datasets from Models for Data Mining-Based Quality Analysis. 2018 11th
International Conference on the Quality of Information and Communications
Technology (QUATIC), 83–91. https://doi.org/10.1109/quatic.2018.00021

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2018). FLANDM: a
development framework of domain-specific languages for data mining democrati-
sation. Computer Languages, Systems and Structures, 54, 316–336. https:
//doi.org/10.1016/j.cl.2018.07.002

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2017). On
the Automated Transformation of Domain Models into Tabular Datasets. ER
FORUM, CEUR Workshop Proceedings, 1979. Retrieved from http://ceur-ws.
org/Vol-1979/paper-07.pdf

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2017). A Model-
Driven Ecosystem for the Definition of Data Mining Domain-Specific Languages.
In Model and Data Engineering (Vol. 9893, pp. 27–41). https://doi.org/10.1007/
978-3-319-66854-3_3

https://arxiv.org/abs/1903.08431
https://doi.org/10.1109/quatic.2018.00021
https://doi.org/10.1016/j.cl.2018.07.002
https://doi.org/10.1016/j.cl.2018.07.002
http://ceur-ws.org/Vol-1979/paper-07.pdf
http://ceur-ws.org/Vol-1979/paper-07.pdf
https://doi.org/10.1007/978-3-319-66854-3_3
https://doi.org/10.1007/978-3-319-66854-3_3


xxvi List of Tables

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2016). Desarrollo
Eficiente de Lenguajes Específicos de Dominio para la Ejecución de Procesos
de Minería de Datos. Jornadas de Ingeniería Del Software y Bases de Datos
(JISBD). http://hdl.handle.net/11705/JISBD/2016/019

• de la Vega, A., García-Saiz, D., Zorrilla, M., and Sánchez, P. (2015). Towards a
DSL for Educational Data Mining. In Languages, Applications and Technologies
(pp. 79–90). https://doi.org/10.1007/978-3-319-27653-3_8

http://hdl.handle.net/11705/JISBD/2016/019
https://doi.org/10.1007/978-3-319-27653-3_8


Acronyms

ANTLR ANother Tool for Language Recognition
ATL Atlas Transformation Language
CSV Comma-Separated Values
DMDL Data Mining Democratisation Language
DSL Domain-Specific Language
EBNF Extended Backus-Naur Format
EDM Educational Data Mining
EGL Epsilon Generation Language
EMF Eclipse Modeling Framework
ETL Epsilon Transformation Language
FLANDM Framework to develop LANguages for Data Mining
GPL General Purpose Language
KPI Key Performance Indicator
LOC Lines of Code
M2M Model-to-Model
M2T Model-to-Text
MDE Model-Driven Engineering
MOF Meta-Object Facility
OCL Object Constraint Language
OMG Object Management Group
SSBI Self-Service Business Intelligence
UML Unified Modeling Language





Chapter 1

Preliminaries and Objectives

1.1 Introduction
We live in a time where huge amounts of data are gathered and stored by computer
systems. The analysis of these data can be very beneficial for the success of an
organisation or project (Caro-Gutiérrez et al. [31], Li et al. [105], Márquez-Vera et al.
[120]). For instance, there are companies that base their business model in exploiting
information-rich data. We comment here on three of these companies: Uber, Netflix
and Yelp.

Uber1 connects, through a software system, particular drivers offering transport
services with people who need to move around cities. The information that this system
gathers has been used to identify travel habits in the cities where it operates. This
information has been found of great value for the purposes of improving the existing
public transport services. Several city councils have acknowledged this by purchasing
access to this information (Dungca [51]).

Netflix2 offers media contents through an online service. Part of this content is
produced by Netflix itself. To help determine what media content should be produced,
data scientists at Netflix study the activity habits of their clients, which allows creating
those kinds of shows that seem to have potential to be successful (Sweney [154]).

Yelp3 offers a business review service, where owners can advertise their businesses,
and customers can give their opinion about them. Yelp makes use of the data it stores
to connect owners and potential customers, e.g., by recommending new businesses to
users based on the previous activity of these users.

1https://www.uber.com/
2https://www.netflix.com/
3https://www.yelp.com/

https://www.uber.com/
https://www.netflix.com/
https://www.yelp.com/


2 Preliminaries and Objectives

In summary, nowadays data are gathered about almost any aspect of our lives,
and the analysis of these data can help take better decisions and improve systems
and organisations. This analysis is often performed through the use of data mining
techniques (Han et al. [71], Witten et al. [167]), which allow discovering useful insights
not previously visible in the original data.

Nevertheless, to employ these techniques for analysing data, proficiency is required
in different skills, e.g., analysis algorithms, advanced statistics and data transformation
processes. Unfortunately, decision makers willing to analyse a data bundle, e.g., city
planners or film producers, often lack these skills. As such, they have to rely on experts,
i.e., data scientists, to perform this analysis. Since data scientists are a scarce resource
(Donati and Woolston [50]), relying on them implies a considerable cost and extra
delays.

To alleviate this issue, the Data Mining Democratisation field (Cao [30], de la Vega
et al. [45]) aims to make data mining techniques more usable by people without an
advanced knowledge in them. Existing works in this field try to help achieve this goal
through different approaches. For instance, some works try to automate certain tasks
of a data mining process, while others focus on the development of easy-to-use solutions
that allow invoking analysis processes using high-level interfaces or constructs, which
hide low-level details of the executed processes to the end users.

With relation to the latter, Model-Driven Engineering (MDE) (Brambilla et al.
[24]) and Domain-Specific Languages (DSLs) (Kleppe [94], Völter et al. [163]) have
demonstrated to be effective methods to provide domain-adapted solutions that are
easy to use and feel familiar to experts in an application domain. Examples of
successful applications of MDE techniques can be found in different domains, such as
the automotive (Chen et al. [32], Zolotas et al. [175]), aerospace engineering (Trase and
Fink [158]), embedded software development (Voelter et al. [162]), data communications
(Baker et al. [11]), or web engineering (Martínez et al. [113]). The reader interested in
the adoption of MDE at the industrial level can refer to wider surveys, like the ones
provided by Hutchinson et al. [77] and Ameller and et al. [6].

In this thesis, we explored whether the benefits of MDE technologies can contribute
to the democratisation of data mining. Precisely, we worked on the definition of
domain-specific languages for aiding non-expert users to analyse data. These languages
provide high-level constructs that hide technical details of a data mining process, so
that the languages can be employed by people without experience in data mining
techniques.



1.1 Introduction 3

We started our work by performing a literature review of the data mining democrati-
sation field. As a result of this study, we concluded that those approaches that are
generic, i.e., they are completely domain-independent, might exhibit accuracy problems,
because they do not take into account the particularities of each domain to configure
data mining algorithms or to preprocess input data. We also found some interesting
approaches that try to alleviate this shortcoming by providing an initially generic
analysis framework that can be adapted to each concrete domain to avoid the problems
manifested by domain-independent approaches.

In this context, we considered that the DSL engineering paradigm might help
provide this required domain adaptations. To perform a more in-depth exploration
of this idea, we devised a data mining DSL for the analysis of data coming from the
educational domain. Our goal was that this language could be directly used by teachers.
With the assistance of this language, teachers would be able to invoke data mining
processes using high-level syntax constructs, as well as vocabulary from their domain.
These constructs would be then translated through MDE-based technologies into an
analysis process, which is executed in the background. The end user is completely
agnostic of any low-level details of the executed process, as she only receives the results
of such a process.

The development of this first DSL for data mining revealed that this kind of DSLs
might be too expensive to develop from scratch in most cases. To mitigate this cost,
we designed FLANDM (Framework to develop LANguages for Data Mining), an MDE
framework that can be used to generate DSLs for data mining. Our evaluation of the
cost-reduction capabilities of this framework showed that the cost of generating these
DSLs gets reduced by about 50%.

To evaluate the effectiveness of the generated languages, we performed empirical
studies with an analysis language for the educational domain. In these experiments,
teachers without experience in data mining techniques executed analysis processes over
data from university courses. The results of these experiments showed that, after a
minimum training, most teachers were able to execute different data mining processes
over the provided data.

Other important issue identified during our literature review is that the selection
and preparation of the data to be used in an analysis is a process scarcely addressed
in the literature. To alleviate this shortcoming, we developed two languages, called
Lavoisier and Pinset. Each language was designed to allow the mentioned data selection
and preparation steps with a different kind of end user in mind. Lavoisier can be used
by people without any data management skills, as it offers an easy-to-use syntax to



4 Preliminaries and Objectives

perform data selection over a high-level representation of the available data. On the
other hand, Pinset is more oriented for people with programming skills that can take
advantage of these to have a more fine-grained control of the data preparation process,
e.g., by performing some advanced operations that are not supported in Lavoisier.

The rest of this chapter is structured as follows: Section 1.2 describes some analysis
case studies that we used in this thesis work. In Section 1.3, we give an overview on
the parts of a data mining process. Section 1.4 enumerates some of the challenges that
need to be confronted when trying to democratise data mining. Section 1.5 describes
our motivation to develop DSLs for democratising data mining. Section 1.6 gives a
background on MDE technologies and DSLs engineering, which might be skipped by
a reader with experience in these fields. In Section 1.7, we enumerate the resulting
contributions of this thesis. Finally, Section 1.8 describes the content of the remaining
chapters of this document.

1.2 Motivating Analysis Examples
This section presents some of the case studies that motivated the development of
this thesis. We use these case studies to illustrate our contributions throughout this
dissertation.

1.2.1 E-learning Platforms

Nowadays there are a lot of courses that are offered through, or use, online web-based
systems, which are known as e-learning platforms. BlackBoard [139] or Moodle [138]
are two examples of these platforms. From the webpage of a course, students can watch
video lectures, access learning material, submit assignments, ask questions in a forum
or perform tests, among other tasks. Depending on the nature of the course, it can be
completely online, or the activities in the e-learning platform can be complemented
with in-person classroom lessons. The platforms that host the courses log data of the
students activity, such as the use of the learning material, how do students navigate
the site, which students visit and participate in the forum, and so on.

Educational Data Mining (EDM) (Romero and Ventura [140]) is a field that aims
to take advantage of the data gathered by e-learning platforms. Romero and Ventura
define this field as “an emerging discipline, concerned with developing methods for
exploring the unique types of data that come from educational settings, and using those
methods to better understand students, and the settings which they learn in.” [140].



1.2 Motivating Analysis Examples 5

The discovered information could be useful for teachers and instructors to improve the
performance of their teaching processes.

For instance, at the beginning of a course, a teacher could ask: “What are the
different types of students in my class?”. This information can be computed by using
clustering techniques [71] over the students’ demographic data, e.g., age, rural or
metropolitan origin; or success in previous courses. Using this information, the teacher
might adapt the course before it starts to fine-tune it according to their students’
particularities.

When the course finishes, teachers are usually interested in the students that have
not passed. Therefore, they would like to refine the previous question and ask: “What
are the types of students that have not passed?”. As before, this information can be
computed using clustering techniques on the students’ demographic data, but now it is
also possible to include the activity data gathered by the e-learning platform. These
data allow obtaining different indicators, such as the number of online sessions in the
course webpage, the average duration of these sessions, the number of messages written
in the course forum, or the use of the learning materials provided in the webpage.

Moreover, teachers are obviously interested in asking “What are the reasons why
some of my students failed?”. This question might be partially answered by applying
classification techniques [71] on the students’ data, by analysing the student activity
logs to find out these reasons.

1.2.2 Business Recommendation Systems

Yelp is an American company that provides an online business review service. In this
service, owners can describe and advertise their businesses and customers can write
their opinions about these businesses.

For each registered business, Yelp provides information about its location, the
different features it offers, like the availability of Wi-Fi or a smoking area, and the
categories that best describe it, e.g., Cafes, Restaurant, Italian, Gluten-Free, and so on.
Users can make reviews of these businesses, rate them and introduce a text describing
their experience. Additionally, users can write tips, which are small pieces of advice
about a business, such as do not miss its salmon! Yelp also provides some social
network capabilities, so users can have friends or fans, and they can receive votes in
their reviews in case other users found these reviews funny, useful or cool.

These data could be used to study different questions business owners may have.
For instance, an analysis could be performed to identify the main qualities of those
business that are successful, e.g., a good location, opening times, availability of WiFi



6 Preliminaries and Objectives

and/or smoking areas, notices of food restrictions, or the importance of having private
parking. Another analysis could involve studying the text reviews given by clients to
detect pleased or angry comments (sentiment analysis).

1.2.3 Artefacts from Software Projects

Data mining techniques are being employed to improve different aspects of software
quality assurance processes (Babur et al. [9], Beller et al. [19], D’Ambros et al. [40],
Di Rocco et al. [48], F. Palomba et al. [56], M. Ochodek et al. [109], Malhotra [111]).
Among other issues, these techniques have been used to: (1) predict the existence of
software bugs [111]; (2) detect patterns or smells that might affect software quality [56];
or (3) obtain intelligent metrics that provide better insights for quality analysis [109],
among others. These techniques are applied to different kinds of software artefacts,
e.g., source code [40], test reports [19], or software models [9, 48].

In general, the objective of these approaches is to develop prediction models, which
can help in the automatic detection of complex or hidden issues that might affect the
quality of a software product. These prediction models are constructed by different
algorithms, which use information extracted from existing software repositories and
historical records of previous software projects.

As an example, D’Ambros et al. [40] gathered and made publicly available metrics
and historical data about five open source software systems. They used these data to
train fault-detection predictors for software products.

1.2.4 Test Results from Clinical Patients

Data mining is used extensively in the medical field (Chittaro et al. [34], Kamsu-Foguem
et al. [86], Klenk et al. [92], Smith and et al. [150]). For instance, Smith and et al. [150]
analysed information gathered from a group of patients that were tested for diabetes.
For each patient, along with the result of the test (positive or negative), data regarding
different indicators, such as blood pressure, age, or diabetes occurrence in ancestors
were collected. These data could be used, among other reasons, to find causes for the
diabetes disease. Other possible analyses could involve the classification of patients in
groups according to some features, or the ranking of the most relevant indicators when
determining if a patient has or does not have diabetes.



1.3 Data Mining Processes 7

Original
Sources

Data Collection Preprocessing

Raw
Data

Interpretation

Knowledge,
Answers

Data Mining

Discovered
Patterns

Tabulated &
Prepared Data

Refinement

Fig. 1.1 Stages that conform a data mining process.

1.3 Data Mining Processes
Data mining processes are performed to seek for answers to business questions using
any available bundle of data (Witten et al. [167]). Every analysis must start with
a thorough comprehension about the business domain and the concrete questions
to answer. For instance, a business question in the context of software development
projects as described in Section 1.2.3 could be: What common characteristics are shared
between the classes of my object-oriented projects that contain bugs? Additionally,
existing data sources and the meaning of these data in the concrete domain must be
identified. A negligence in detecting important factors might incur extra expenses, in
the form of bad decisions taken or lost time and effort.

Using data mining techniques is not a monolithic process, but rather a chain of
different stages (U. Fayyad et al. [159], Wirth [166]). Figure 1.1 shows a diagram of
these stages, which can be summarized as follows:

Data Collection The information to analyse has to be collected from its original
sources. In some cases, it may be interesting to include heterogeneous sources of
information, such as databases, activity log systems, or real-time data streams.
Moreover, we might need to retrieve data of different types, from structured data
to text documents or even media files. As a result, the collection techniques
might vary drastically depending on the input types, ranging from simple SQL
queries to invoking advanced operations for extracting data from a web service
API.

Preprocessing The obtained raw data are, in most cases, unusable for an analysis
(Han et al. [71, see Chapter 3]). These data might contain incomplete or incon-
sistent information, which must be cleaned and integrated into an appropriate
format before being used. For instance, some missing values in data might need
to be filled in certain cases; or it could be necessary to normalise numerical data
into a [0, 1] interval.



8 Preliminaries and Objectives

In addition, it might happen that not every piece of initially collected data is
relevant for an analysis. Therefore, an exploration and selection step is required
to only work with the interesting data fragments for every kind of analysis.

Data Mining This is the stage where the analysis itself takes place. Different tech-
niques might be applied depending on the final goal. For example, if we wanted
to group data items according to their similarity, a clustering algorithm may
be executed. If the objective is to predict future outcomes of a variable, a
classification or regression technique might be more adequate. Apart from using
the appropriate analysis technique, we have to select one algorithm from the
multiple alternatives available for each technique. For instance, for classification
purposes, we might use decision trees, rule-based algorithms, neural networks,
k-nearest neighbours, or Bayesian systems, among others. Moreover, not only
it is important to select an adequate algorithm to employ: most data mining
algorithms require the configuration of several parameters that might considerably
affect its performance.

As an example, the C4.5 algorithm (Quinlan [135]) builds a decision tree for
the classification of instances from a dataset. This algorithm offers different
configurable parameters, such as the minimum number of instances in a leaf,
deciding whether to only use binary splits when creating branches, or applying a
post-processing pruning to the resulting tree. These parameters determine the
depth and width of the resulting tree, and can help improve (or, if badly set,
deteriorate) the accuracy of the classification results (Lin and Chen [106]).

Interpretation Once the analysis algorithms are executed, the returned results must
be evaluated for soundness and quality. For instance, the accuracy of prediction
models is usually evaluated with techniques such as hold-out or cross-validation
(Han et al. [71, see Chapter 8.5]). These techniques can be used to determine
whether prediction algorithms work properly with the input data.

The results of an analysis are usually represented with some kind of visualisation
to ease their interpretation. For example, the characteristics of each group
identified by a clustering algorithm might be represented using a radar chart,
also known as Kiviat diagrams. However, if these visualisations are poor, they
may make the results difficult to understand. Thus, it is important to pay
some attention to any generated visualisations or reports, in order to maximize
comprehensibility.



1.4 General Democratisation Challenges 9

Refinement Frequently, new issues arise when performing the steps of an analysis.
For instance, mistakes or wrong assumptions made during the process might be
found, e.g., students taking several days to complete a 30-minutes test. Also,
any new insights discovered from the results of an algorithm might drive decision
makers into new questions, e.g., a teacher finds out that those students coming
from urban cities have better grades, and wants to refine her analysis to study
this phenomenon. This is why data mining is usually defined as a cyclic and
iteratively-refined process (Wirth [166]), because sometimes it is required to
come back to a previous stage to fine-tune some settings before continuing with
successive tasks.

A lot of data mining products exist without being noticed by final users, as these
products operate passively and are included in people day-to-day utilities, such as
recommendation systems of e-commerce applications. On the other hand, there are
scenarios where users are willing to perform the mining processes actively. Continuing
with the online commerce example, a product manager may be interested in knowing
the sales trend for the following term; or the profile of those clients that purchased a
concrete item.

Unfortunately, most users who want to proactively analyse data lack the required
knowledge to perform the data mining process described above. Thus, some authors
have identified a gap between data mining techniques and the people who want to employ
them (Cao [29], Schlesinger and Rahman [146]). In the last years, several researchers
have tried to democratise data mining techniques by filling this gap (e.g. Cao [30], Reif
et al. [137], Zorrilla and García-Saiz [176], among others). Next section presents some
of the challenges that must be overcome to achieve data mining democratisation.

1.4 General Democratisation Challenges
Each stage of a data mining process described in the previous section requires proficiency
in some technical issues that might represent a challenge for average decision makers,
these are, experts in their respective domains but that have no expertise in data
mining techniques. In this section, we enumerate these challenges, and identify what
approaches could be developed with the objective of tackling them.



10 Preliminaries and Objectives

1.4.1 Preparation of Data

The vast amount of data types and storage systems make the collection and processing
of data one of the hardest and more time-consuming operations of an analysis process
(Crone et al. [38], Munson [119]). The preparation of data involves a series of subtasks,
which we comment below. These subtasks are not necessarily performed in the same
order we describe them.

1. Data Extraction. This task requires different skills depending on the data
source. For instance, the SQL language is the de facto option to extract data from
a relational database. Although the syntax of SQL tries to resemble expressions
from natural languages (e.g. “SELECT name FROM employees WITH salary >
25000”), queries generated with this language can get complex very fast, due to
the complexity of some of its constructs (aggregation queries, window functions,
management of dates, among others). In addition, more complex techniques such
as web scraping or data warehouse manipulation might be required to extract
interesting data for an analysis.

2. Data Cleaning. Once extracted, data have to be cleaned to detect any errors
in the source data, noise in the form of outliers, or to treat missing values. For
instance, when working with data about people, we may find that an age field
includes as values zero years, a thousand, or even a negative number. Because of
the different errors that might need to be fixed, this process is mostly manual,
and requires the use of low-level tools and data management libraries such as
Pandas (McKinney [114]).

3. Data Integration. For data coming from different sources, an integration phase
must also be performed, which can be a tedious process. For instance, the
multiple services of an e-commerce platform might store the same products with
similar but slightly different names, which might provoke inconsistencies when
merging data.

4. Data Formatting. Lastly, it has to be determined which subset of the cleaned
data will be used to answer each business question. Once selected, this subset has
to be formatted according to the peculiarities of the algorithm to be executed.
For example, most clustering algorithms only work with numerical data, so any
categorical fields such as sex or marital status have to be removed or translated
to an appropriate numerical representation.



1.4 General Democratisation Challenges 11

As it can be seen, these subtasks demand some specialised skills that average
decision makers often lack. So, it would be desirable to create high-level tools or
languages for the assistance of non-expert people during this stage of the process.

1.4.2 Algorithm Selection

There are a plethora of data mining algorithms available, each one with their strengths
and weaknesses (Wolpert [171]). As an example, to group data in different clusters, one
could use a centroids-based solution such as k-means (MacQueen [110]); a hierharchical
clustering algorithm (Müllner [121]); or a probabilistic algorithm such as Expectation
Maximization (EM) (Dempster et al. [46]), among others.

As before, average decision makers are expected to have the knowledge required to
select one of these algorithms. So, a solution to assist non-experts when choosing a
suitable algorithm for an analysis could help improve the situation of this issue. Even
more, if this selection could be automated, non-experts would have to worry about one
less thing.

1.4.3 Algorithm Configuration

Each algorithm has its own peculiarities, and custom parameters that must be set
before performing an analysis. As an example, in the previous section we enumerated
some parameters of the C4.5 decision tree classifier (Quinlan [135]). These parameters
affect how the tree is generated, and thus its prediction performance (Lin and Chen
[106]). A knowledge of the effect of each one of these parameters is required for the
proper usage of the algorithm.

Again, decision makers might lack these technical skills. One option to alleviate
this issue could be the definition of a tool to automatically configure these parameters
for a given problem, or the existence of auto-configurable, parameter-less algorithms
(Zorrilla et al. [177]).

1.4.4 Accidental Complexity of Data Mining Tools

In software, Accidental Complexity refers to the difficulties that are caused by a software
system, which are not inherent to the concrete task that the system is helping end
users accomplish.

With this concept in mind, data mining tools and algorithms have been designed by
data scientists, for data scientists. These data scientists are technical-savvy in aspects



12 Preliminaries and Objectives

such as programming or managing data. So, a large part of existing analysis tools
are only available as software libraries, such as the Python Pandas library for data
processing [114]; or as fully-fledged programming languages for data analysis, such as
R [157]. The skills required to employ these tools are usually too advanced for the
average decision maker. Even so, data scientists are often only proficient in a subset of
the plethora of analysis tools that are available, and the inclusion of a new one into
their toolset is not an immediate process. The definition of user-friendly interfaces or
wizards to assist non-experts could alleviate the entry barrier caused by the accidental
complexity of some of these tools.

1.5 DSLs for Data Mining Democratisation
The previous section showed that people willing to analyse data must face a lot of
technical details related to data mining techniques. These details can quickly become
an unconquerable challenge. A possible solution to avoid this complexity could be to
hide these technical details behind a high-level interface, so decision makers would
deal only with issues belonging to their domain of expertise. This solution could allow
non-expert users to employ data mining techniques without having to know about the
low-level details of the analysis processes taking place.

Pursuing a similar objective, Model-Driven Engineering technologies have been
employed for increasing the level of abstraction at which software systems are developed,
enabling most domain experts without programming skills to participate in this process
(Chen et al. [32], Trase and Fink [158], Voelter et al. [162], Zolotas et al. [175]). These
technologies provide end users with domain-adapted solutions, which include concepts
and vocabulary of the context where they are deployed. This adaptation makes these
solutions feel familiar and easier to use for the experts of a domain. As an example,
Capella4 is a model-based software engineering tool that allows designing the system,
software and hardware architecture of an engineering project or application.

Domain-Specific Languages (DSLs) are one of these model-driven technologies
(Kleppe [94], Völter et al. [163]). These languages offer a reduced syntax, as compared
to General-Purpose Languages (GPLs) such as Java or C++. On the other hand, this
syntax has the advantage of being tailored for performing a specific task or set of tasks
in a concrete domain. For instance, the SQL language mentioned in previous sections
is a DSL focused in the extraction and management of data contained in relational
databases.

4https://www.polarsys.org/capella/

https://www.polarsys.org/capella/


1.6 Background 13

Syntax tailoring provides the following benefits:

1. DSLs are very concise, in the sense that their syntax constructs offer a great
expressivity with a reduced set of information being typed out.

2. As the DSLs are concise and expressive, users can define ideas and objectives
faster than with conventional GPLs.

3. The syntax of these DSLs is adapted to the domain where they are used, e.g.,
SQL’s syntax is prepared to deal with tables, columns, foreign keys, and so on.
So, the terminology and vocabulary appearing in a DSL is already known by
decision makers, as it contains terms that they use daily.

The enumerated benefits seek making DSLs easy to use for domain experts. These
benefits motivated us to investigate the following research hypothesis:

Model-driven technologies and domain-specific languages could
contribute to an effective data mining democratisation.

As a result of studying this hypothesis, we devised different MDE and DSL-based
contributions for data mining democratisation. Before we delve in the description of
these contributions, a background of Model-Driven and Language Engineering concepts
is presented in the next section.

1.6 Background
The contributions of this thesis exploit the benefits offered by model-driven and DSL
technologies. To make this dissertation self-contained, we provide some background on
the fundamental concepts of these technologies. The experienced reader might skip
this section.

First, we describe the general concepts behind the MDE and the DSL engineering
field, and then we describe how domain-specific languages can be defined following a
model-driven approach, which is the one we applied during this work.

1.6.1 Model-Driven Engineering

A model can be defined as a representation of one or several elements from a concrete
domain, and at a level of abstraction of interest. Fields such as physics, biology,
economy, or most engineering disciplines employ models extensively, e.g., to simulate



14 Preliminaries and Objectives

experiments before their (probably expensive) execution in a laboratory; or to check the
design blueprints of a car or a building, with the objective of assessing their integrity
and avoiding as many later problems as possible.

According to Stachowiak [151], a model needs to have three features:

• Mapping Feature: A model is based on an original, which might not yet exist.

• Reduction Feature: A model only represents a (relevant) selection of the
properties of an original.

• Pragmatic feature: A model needs to be usable in place of an original with
respect to some purpose.

Models can be involved in software engineering processes at different levels of
implication. For instance, engineers might draw informal models on a whiteboard to
discuss a concrete aspect of a system. If these models were considered more important
for the project, they could be cleaned up and organised with many others to serve
as documentation of the developed system. Nevertheless, these models would be a
separate representation of the system codebase, and as such they might end up outdated
if future changes are introduced only in the source code of the system. The need to
maintain these models in parallel to the code hinders their usage along the life-cycle of
a software project.

To improve this situation, Model-Driven Engineering (MDE) (Brambilla et al. [24])
aims to promote models as first-class citizens of the software engineering process.
Following this approach, models are not only used for descriptive and communicative
purposes, but they are also used to automatically generate other models, specific parts
of a software system or, in some cases, even the whole software system. Some benefits
of this approach include:

1. The automation of repetitive tasks that are prone to errors (Kleppe et al. [95]).

2. The ability to work at a higher level of abstraction, avoiding concrete technology
details until necessary (Kleppe et al. [95], Selic [148]).

3. The opportunity of verifying the correctness of huge systems more easily, just
like it happens in other disciplines such as physics, biology or civil engineering
(Doldi [49]).

In software development processes following a model-driven approach, several types
of models can be used to represent the same system at different levels of abstraction.



1.6 Background 15

Idle

closeGate

Access

printTicket

Error

notifyGuard

OpenedGate

openGate

ticketButton

timeout

manualFix

ticketGathered

timeout

carPasses

Fig. 1.2 State machine of a parking gate.

Lowering the abstraction level implies moving to a more fine-grained and detailed
model, and vice versa.

For instance, lets consider a state machine defined to represent the simplified
behaviour of a parking gate entrance system. A graphical model of such a state
machine can be found in Figure 1.2. Rectangles with rounded corners represent the
states of the gate system, these are, Idle, Access, OpenedGate, and Error. These states
are interconnected with arrows that represent the events firing transitions from an
origin state to a target one. The statements appearing below the name of each state
are the commands that would be executed when entering the state. For instance, when
entering the OpenedGate state, the openGate command is invoked.

The behaviour of this gate system would be as follows. The system stays Idle
until a client pushes the ticket button, triggering the corresponding event. This event
provokes the system to reach the Access state, where a ticket that the client has to
gather is printed. Once gathered, the system transitions to the OpenedGate state,
which opens the gate, and waits for the car to enter the parking. When the system
detects that the car has passed, it returns to the initial Idle state, which closes the gate.
If any problems are detected in some of the states (e.g. a client takes too much time
to pick up a ticket, or to cross the open gate), a timeout event is triggered to notify
the parking guard of the existence of some kind of Error. This guard is responsible
then of manually fixing this problem.

From the described state machine model, we could be interested in obtaining
executable code expressed in a programming language, such as Java. This code could
be used to program the gate system of a real parking. It is possible to obtain this code



16 Preliminaries and Objectives

    State Machine Model

    UML Class Diagram

    Generated Java Code

Idle

closeGate

Access

printTicket

Error

notifyGuard

OpenedGate

openGate

ticketButton

timeout

manualFix

ticketGathered

timeout

carPasses

GateState

ticketButton()
ticketGathered()
timeout()
carPasses()
manualFix()

ParkingGate

ticketButton()
ticketGathered()
timeout()
carPasses()
manualFix()

Idle

Error

OpenedGate

Access

current [1..1]

Model-to-Model (M2M) Transformation

Model-to-Text (M2T) transformation

Fig. 1.3 An MDE process to translate a state machine into Java code.

by applying different model transformations over the input model. Figure 1.3 shows a
two-step transformation process that could be performed to generate the desired code.

In the first transformation of Figure 1.3, a UML class diagram representing the
main components of the parking gate state machine is obtained from the state machine
model of Figure 1.2. In the transformation, the State pattern (Gamma et al. [63]) was
applied, and the resulting diagram can be found in Figure 1.4. When following this
pattern, a class, which in this case is ParkingGate, stores the current state of the gate.
This state is defined by the GateState class. When any of the possible events arrive,
i.e., when one of the methods of the ParkingGate class is called, this class delegates
the call to the current GateState, which would be one of the four possible subclasses.
Therefore, the logic of the finally invoked method depends on the currently referenced
state by the ParkingGate object.

Using model transformation techniques, it is possible to define an operation that
receives as input a state machine model such as the one of Figure 1.2, and automatically
returns a UML class diagram containing the application of the State pattern to the
input state machine, such as the diagram of Figure 1.4. As the output of this process
is another model, this operation is known as a Model-to-Model (M2M) transformation.

From the diagram of Figure 1.4, we can generate Java code that implements the
classes contained in the diagram. In this case, we are performing a code generation
operation from a model, also known as a Model-to-Text (M2T) transformation. In this



1.6 Background 17

GateState

ticketButton()
ticketGathered()
timeout()
carPasses()
manualFix()

ParkingGate

ticketButton()
ticketGathered()
timeout()
carPasses()
manualFix()

Idle

Error

OpenedGate

Access

current [1..1]

Fig. 1.4 The State pattern applied to the state machine of Figure 1.2.

example, the generated code contains the class definitions and function prototypes for
all the methods that each state must implement. This code can be later completed with
the final logic of the functions for each state, so this is a semi-automatic transformation.
However, when sufficient detail is present in the model, fully-automated code generation
operations can also be performed (Monperrus et al. [118])

To make the previous chain of model transformations feasible, models need to be
processable by computers. In MDE, models are specified according to a set of rules,
which are contained in a metamodel. Those models that comply with the rules of a
metamodel are said to conform to that metamodel.

The issue of defining metamodels to specify a set of rules that models must conform
to is similar to the definition of a grammar that programs belonging to a concrete
language must follow. Because of this similarity, metamodeling is a popular technique
used to define DSLs in the language engineering area ([61, 94, 129]). Next sections
describe this area from the metamodeling perspective, which is the one we applied
when developing our DSLs.

1.6.2 Domain-Specific Languages Engineering

Usually, several languages are used in combination during the development of a
software system. These languages can be organised in two groups, according to their
final objective and capabilities.

General-purpose languages (GPLs) can be used to perform a broad variety of
operations. The syntax of these languages is not oriented to any particular objective. For
instance, Java is a GPL that can participate in the development of very heterogeneous
systems, such as web servers or desktop/mobile applications.

On the other hand, Domain-Specific Languages (DSLs) are defined to support
concrete tasks. The syntax of these languages is tailored to perform these concrete
tasks in a specific domain of application. This specificity can provide several benefits.



18 Preliminaries and Objectives

First, focusing on one domain makes the syntax of DSLs smaller and less verbose than
the one of GPLs, as no other tasks have to be supported. In addition, DSLs can offer
higher-level syntax constructs, based on concepts and vocabulary from the application
domain, that are not reasonable for inclusion in general purpose languages. Lastly, the
existence of such constructs brings these languages closer to the jargon of experts in the
domain, which makes DSLs a good option for understandability and communication
purposes.

There are examples of DSLs in many software-related areas, such as database
management (SQL), web development (HTML, CSS) or project building (Maven,
Gradle). Moreover, it is also possible to find DSLs in other, non-software domains, such
as finance (Christiansen et al. [35]), medicine (Hripcsak [76]), architectural engineering5,
or biology6.

The capability of DSLs to be adapted to the terminology of a domain has popularised
the idea of providing domain experts with DSLs to perform daily tasks. In some cases,
these domain experts do not even need to have a programming background. This
idea is currently being explored in-depth by the GEMOC (Globalisation of Modeling
Languages) initiative (Combemale et al. [36]), which has created DSLs for heterogeneous
domains such as railroad planing (Vara Larsen and Goknil [161]), farm management or
wind power plants monitoring.

With the emergence of MDE, the DSL community also started to adopt a metamodel-
based approach to define their languages as a complement to traditional approaches
(Fowler [61], Kleppe [94]). Next section describes the process of creating a metamodel-
based DSL.

1.6.3 Metamodel-Based DSLs

Two general steps are required to define a new language:

1. Determine what expressions are syntactically correct in that language, this is,
specify a syntax definition.

2. Provide a meaning for such expressions, i.e., define the semantics of the language.

There are different ways to achieve these requirements, depending on the type of
DSL defined. During this thesis, we defined DSLs following a metamodeling approach,
i.e., models and metamodels are used to formalise some elements of the languages. We

5https://technical.buildingsmart.org/
6http://sbml.org/

https://technical.buildingsmart.org/
http://sbml.org/


1.6 Background 19

Fig. 1.5 Components of a textual DSL developed following a metamodeling approach
and translational semantics.

focused on textual DSLs, so programs are written with these languages according to
a grammar. In addition, meaning was given to these programs through translational
semantics (Kleppe [94]).

The components that conform a language specification with these characteristics
appear in Figure 1.5. To illustrate these components, in the following we define a DSL
to specify state machines, such as the one shown in Figure 1.7.

Abstract Syntax

The abstract syntax defines the inherent structure of a language. It plays a pivotal role
over the different representations, also known as concrete syntaxes, that a language
might have.

The abstract syntax of an MDE-based language is provided through a metamodel.
A metamodel specifies the set of rules that models conforming to such metamodel must
comply with. These rules define the syntactic structure of a family of models expressed
in a concrete modeling notation. Therefore, it could also be said that a metamodel
defines the abstract syntax of a family of models or, from another point of view, a
modeling language (Figure 1.5, relationship 1).

These models and metamodels have to be processable by computers in order to,
for instance, take part in automatic model transformations. To allow this processing,
the Object Management Group (OMG) defined the Meta-Object Facility (MOF) [125],
which is a standard created to define a metamodeling architecture. This architecture
is known as the 4-layer architecture, and it is depicted in Figure 1.6.

Elements of each layer conform to some other element from the layer immediately
above. For instance, the M0 layer is occupied by those elements or concepts from the



20 Preliminaries and Objectives

M
O

F 
A

rc
hi

te
ct

ur
e 

Le
ve

ls

M
3

M
2

M
1

M
0

MOF

State Machine Metamodel

Parking State Machine

Real World

M
O

F 
A

rc
hi

te
ct

ur
e 

Le
ve

ls

M
3

M
2

M
1

M
0

MOF

State Machine Metamodel

Parking State Machine

Real World

Class

Attribute

State

 name: String
Command

Reference

OpenedGate OpenGate

attrs

actions

refs

instanceOf

Fig. 1.6 The Meta-Object Facility (MOF) architecture levels.

real world that are being represented by models of the M1 layer. Similarly, these M1
models conform to some metamodel from the M2 layer. The MOF architecture offers a
metametamodel with the same name, which occupies the M3 layer. A metametamodel
is a special kind of metamodel used specifically for the definition of other metamodels.
For instance, the diagrams that conform the Unified Modeling Language (UML) [126]
are defined in MOF. Metametamodels conform to themselves, this is, they are defined
according to their own syntax. This self-definition allows model management tools to
offer a homogeneous treatment of models and their metamodels with independence
from their level of abstraction.

Among the available MDE technologies, the Eclipse Modeling Framework (EMF)
(Steinberg et al. [152]) is considered the de-facto implementation of the MOF archi-
tecture. EMF offers the Ecore metametamodel, which allows defining metamodels in
a class diagram notation that offers a subset of the features defined by MOF. EMF
also offers facilities to create and persist models; a reflective API to programmatically
manipulate models; code generators to obtain Java implementations from the classes
in an Ecore model; and editors for creating and customising model instances.



1.6 Background 21

State

name : String
 

Command

name : String

Transition

 

Event

name : String

StateMachine

 

actions [0..*]

source [1..1]
outgoing [0..*]

target [1..1]
incoming [0..*] trigger [1..1]

start [1..1]commands [0..*] states [1..*] transitions [0..*] events [0..*]

Fig. 1.7 Metamodel to represent state machines.

Figure 1.7 shows an example metamodel expressed in Ecore that allows representing
state machines (adapted from Fowler [61]), such as the one introduced in the example
of Figure 1.2. According to this metamodel, a StateMachine is composed of different
states, one of which is the starting one. Each state has a name, and performs a series
of actions or commands. Changes between states are managed through transitions,
which have a source and target associated states. Each transition is triggered by a
concrete event.

The structural restrictions that a metamodel can enforce may not be enough to
guarantee all desired constraints in a concrete context. For instance, in a state machine
with a deterministic behaviour, it is not permitted to have two outgoing transitions from
the same state that are triggered by the same event. To be able to include these more
complex restrictions, constraint languages such as OCL [124] or EVL (Kolovos et al.
[100]) can be used to complement the constraints already imposed by a metamodel.

In summary, the metamodel of Figure 1.7 could be considered as the abstract syntax
of our language to specify state machines. Next section describes how we can represent
and compose state machine models conforming to this abstract syntax.

Concrete Syntax

If we wanted to specify models conforming to the metamodel of Figure 1.7, we would
need some sort of textual or graphical representation to author them. Any artefact
specified in this representation would be parsed into a model conforming to the target
metamodel. These representations are known as concrete syntaxes. Concrete syntaxes
can be understood as the different renderings or viewpoints of the abstract syntax of a
language (Figure 1.5, relationship 2).

Several concrete syntaxes for the same language can coexist. Continuing with the
state machine example, Figure 1.8 shows two different concrete syntaxes for the same
abstract syntax of Figure 1.7. The example state machine represents the same control



22 Preliminaries and Objectives

state Idle
  actions {closeGate}
  ticketButton => Access
end

state Access
  actions {printTicket}
  ticketGathered => OpenedGate
  timeout => Error
end

state OpenedGate
  actions {openGate}
  carPasses => Idle
  timeout => Error
end

state Error
  actions {notifyGuard}
  manualFix => Idle
end

Idle

closeGate

Access

printTicket

Error

notifyGuard

OpenedGate

openGate

ticketButton

timeout

manualFix

ticketGathered

timeout

carPasses

Fig. 1.8 Two concrete syntaxes for state machines: graphical (left) and textual(right).

system of a parking gate that was presented in the previous section. On the left, the
graphical concrete syntax that we introduced in Figure 1.2 is shown again, while the
concrete syntax displayed on the right is textual. We describe these syntaxes in the
following.

As described before, nodes of the graphical syntax represent states, which specify
their name and any commands that are performed when entering the state. For
instance, the Idle state has a closeGate command, that invokes any subroutines to
perform that action. Arrows in the diagram represent transitions from one state to
another. The event triggering the transition is expressed with a label attached to the
arrow. So, from Idle, we can advance to the Access state when the ticketButton event
is detected, this is, when a client pushes the button at the entrance of the parking to
obtain a ticket.

For the textual syntax, the definition of a state starts with the state keyword, and
ends with an end. Commands are expressed by the action keyword followed by the
command names surrounded by braces. Lastly, transitions are expressed by indicating
the event name, and the target state name, e.g., the statement “ticketButton =>
Access” inside the Idle state defines a transition from Idle to Access triggered by the
ticketButton event.

In this thesis, we have focused on textual DSLs. Programs written with this kind
of DSLs must comply with the rules specified by some sort of grammar (Figure 1.5,
relationship 3). A grammar can be defined by using a notation such as the Extended



1.6 Background 23

⟨statemachine⟩ ::= ⟨state⟩+
⟨state⟩ ::= ‘state’ name=⟨STRING⟩

(‘actions’ ‘{’ ⟨command⟩+ ‘}’)?
⟨transition⟩*
‘end’

⟨command⟩ ::= ⟨STRING⟩
⟨transition⟩ ::= ⟨event⟩ ‘=>’ ⟨stateName⟩
⟨event⟩ ::= ⟨STRING⟩
⟨STRING⟩ ::= [a-zA-Z0-9]+

Fig. 1.9 Simple grammar that allows defining state machines textually.

Backus Naur Form (EBNF) (Backus [10], Ingerman [79]). Figure 1.9 shows an EBNF
grammar for the textual concrete syntax of Figure 1.8 (right).

Grammars are composed of keywords, type rules and production rules. A keyword is
a reserved word employed in the language expressions. In the grammar of Figure 1.9,
keywords are quoted, e.g., ‘state’, ‘end’ or ‘actions’. Special characters can also be
reserved, such as the braces (‘{’,‘}’) or the arrow symbol (=>).

Type rules, sometimes denoted terminals, are special rules that are used to define
basic types. These rules are usually denoted in upper case, e.g., STRING. Types are
defined by using a notation similar to the one of regular expressions. For example, the
rule <STRING> ::= [a-zA-Z0-9]+ means that a string is formed by combining one or
more characters including lower and upper case letters or digits.

Lastly, production rules formalise the syntactic structure that sentences in the
language must maintain. To do that, these rules combine keywords, terminal rules
and other production rules. Each program written following a grammar always must
start from the first rule. In the example of Figure 1.9, the first rule indicates that
a statemachine is composed by a set of states. Each state rule starts with the state
keyword, followed by a string which is used as identifier. Then, one or more commands
and transitions can be specified. To specify them, the command and transition rules
are called, which are also production rules. The special characters ?, + and * indicate
that the preceding rules or text fragments between parenthesis can appear at most
once, one or more, or zero or more times, respectively. Lastly, the end keyword finishes
the state production rule.

The definition of a concrete syntax also requires to specify a mapping with respect
to the abstract syntax of the language. For textual syntaxes, this mapping is performed
by the creation of a parser, which processes programs written according to the grammar



24 Preliminaries and Objectives

into models conforming to the abstract syntax metamodel (Figure 1.5, relationship 4).
As an example, when parsing a program with the grammar of Figure 1.9, the program
elements corresponding to the first rule of the grammar would be used to generate a
StateMachine object. In the same way, each state rule would be converted into a State
instance, and it would be included in the states reference of the StateMachine. The
following string of the rule would be used as name of the state, and each command
and transition production rule would be mapped into the corresponding Command
and Transition objects, that would be included in the corresponding references of the
State object. The rest of the mappings would be performed in a similar fashion.

Language Semantics

The last step to complete a language definition involves creating its semantics, this is,
giving a meaning to the programs written in that language. There are different ways
for giving semantics to a software language (Kleppe [93]):

• Denotational, i.e., by defining mathematical objects or denotations to represent
the meaning of a program.

• Operational, by describing how a program is interpreted through the sequence
of steps that are performed for executing it.

• Translational, by converting the programs into other ones conforming to another
language, which has well-defined semantics.

• Pragmatic, by providing a tool, often denoted as reference implementation, that
executes any specified program.

From these options, we followed a translational approach: the DSLs we devised
in this thesis allow defining high-level specifications of data mining tasks that are
translated into low-level code, e.g., Java, through a set of model transformations
(Figure 1.5, relationship 5).

Language Workbenches

The components described in the previous section are enough to describe the syntax of
a language and its behavior. However, to fully exploit a new language, infrastructure
support is fundamental, e.g., a parser to process any defined concrete syntaxes; an
editor adapted to the language; autocompletion mechanisms to assist users when
specifying language expressions; or an easy way to validate and execute programs. The



1.7 Thesis Contributions 25

costs of developing a DSL along with such an infrastructure are not negligible. Based
on these infrastructure needs, the decision to define a new DSL is something that needs
to be carefully studied, by weighting the benefits and costs of proceeding with such a
definition (Mernik et al. [116]).

To alleviate these development and maintenance costs, several language workbenches
are available nowadays, which allow defining the syntax and semantics of a DSL, and
then a great part of the infrastructure for the new language is automatically generated.
Two workbench solutions were used in this thesis, namely, ANTLR (ANother Tool for
Language Recognition) (Parr et al. [130]) and Xtext (Eysholdt and Behrens [55]).

Given the EBNF grammar of a language, ANTLR automatically provides a parser
that allows interpreting languages written following this grammar. Xtext is an ANTLR-
based language workbench, and as such allows defining similar, EBNF-like grammars.
However, from the definition of one of these grammars, Xtext is able to automatically
generate an EMF-based abstract syntax metamodel, and an ANTLR parser that trans-
forms programs written with the provided grammar into instance models conforming
to the generated abstract syntax metamodel. If desired, Xtext also allows to manually
specify this abstract syntax metamodel. On top of that, Xtext also generates a set
of Eclipse plugins that include a full-featured editor based on the Eclipse Rich Client
Platform7. This editor includes facilities such as code highlighting, validation and
autocompletion proposals, and mechanisms to ease code generation and execution.
More details of these workbenches will be given when relevant for explaining some
aspect of the developed DSLs.

After finishing this description of the MDE-based technologies we used during our
work, we present the main contributions originated from this thesis.

1.7 Thesis Contributions
Our work in addressing the research hypothesis formulated in Section 1.5 resulted in
the following contributions:

1. We performed a systematic review of the state of the art of the data mining
democratisation field [45]. We followed an objective and well-defined procedure
(Kitchenham and Charters [91], Wohlin [168]), composed of automatic and manual
searches, with the objective of increasing the quality and comprehensiveness of
the review. More than 700 works were considered in this review, including both

7https://wiki.eclipse.org/Rich_Client_Platform

https://wiki.eclipse.org/Rich_Client_Platform


26 Preliminaries and Objectives

articles from academia and tools from the industry. This review allowed us to
study the strengths and weaknesses of the approaches belonging to this field,
and to identify any shortcomings that should be addressed for the purpose of
democratising data mining techniques.

The results of this review showed that those easy-to-use analysis solutions that are
not adapted to the details of the application domain can exhibit some shortcom-
ings, in particular, a lack of accuracy in the results. Automated approaches, i.e.,
solutions that try to automatically determine the best configuration for an analy-
sis without requiring any technical input by the final user, are starting to emerge.
However, at this moment, these solutions do not offer the same performance
as the one a data scientist could achieve. While these automated approaches
improve, working in versatile solutions that provide facilities to incorporate any
adaptations to the application domain seem to be a good alternative.

2. To alleviate some of the shortcomings detected in the systematic review, we
studied the following approach: defining domain-specific languages to invoke
data mining processes from a high-level perspective. These languages would hide
technical details of data mining process over a high-level, query-based syntax, so
that they can be directly employed by non-expert users. Queries generated with
these languages would be transformed into analysis processes by using model
transformations.

We developed a prototype language of these characteristics for the educational
domain, so teachers could use it to analyse data from their courses (de la Vega
et al. [41]). The development of this language revealed some problems of this
approach, e.g. the considerable costs that must be confronted to create a language
of such characteristics. Nevertheless, we also detected some opportunities, such
as the possibility of reusing some components of this language to create analysis
languages for other domains.

3. As a result of this previous experience, we defined FLANDM (Framework to de-
velop LANguages for Data Mining) (de la Vega et al. [43]), which is an MDE-based
framework to create Data Mining Democratisation Languages (DMDLs). This
framework exploits the possibility of reusing different components between this
kind of languages. For instance, all DMDLs share the same initial abstract syntax
metamodel, and the same textual concrete syntax. These generic components
are then complemented with meta-information of the application domain, in the
form of an instance of an Entities Metamodel. This entities model allows end



1.7 Thesis Contributions 27

users to refer to concepts from the terminology of their domain when formulating
analysis queries. Additionally, each component of the framework can be easily
modified to include any details of interest from a new domain, e.g., to refine how
queries are formulated; or to adapt the analysis to the specificities of the domain.

The benefits of FLANDM were evaluated by developing DMDLs for different
domains. The results of this evaluation showed that this framework allows
reducing the development cost of these analysis languages by 50%.

4. To determine whether the resulting DMDLs could be used by domain experts, we
performed empirical experiments with one of the languages generated with the
FLANDM framework. Precisely, university teachers coming from heterogeneous
areas (computer science, mathematics, and education) used one DMDL to invoke
data mining processes over educational data gathered from the e-learning platform
that hosted the courses (see Section 1.2.1). The results show that almost all
teachers answered the questionnaires correctly after a minimum training.

5. Another issue detected in the review was a lack of works assisting in the data
selection and processing steps of an analysis. To mitigate this issue, we de-
veloped Lavoisier [42]: a high-level language that allows selecting data from a
domain model that can be easily understood by domain experts. This language
automatically processes the selected data into a format that can be digested by
conventional data mining tools. For this process, Lavoisier employs a collection
of data transformation patterns taken from traditional object-relational mappers;
and low-level data transformation operations such as joins and pivots.

6. Although the Lavoisier language offers an easy-to-use syntax that should be
accessible for most domain experts, the degree of control offered by this syn-
tax may not be enough for some advanced operations, i.e., we sacrificed some
syntax powerfulness in exchange for better usability. For some users, such as
programmers, the existence of advanced constructs might be desirable. For this
reason we developed another language, Pinset [44], for the purposes of extracting
data from domain models and model-based elements. This language includes
advanced syntax constructs, such as conditional/loop blocks or first order logic
operations, for allowing a more fine-grained control of the extraction process.



28 Preliminaries and Objectives

1.8 Document Structure
Here we describe the structure followed by the remaining chapters of this dissertation.

Chapter 2 presents our systematic review of the state of the art of the data mining
democratisation field (de la Vega et al. [45]).

Chapter 3 presents our FLANDM framework for the development of DSLs for data
mining democratisation (de la Vega et al. [43]).

Chapter 4 describes Lavoisier and its transformation patterns for a high-level
selection and preparation of data for an analysis (de la Vega et al. [42]).

Chapter 5 describes Pinset and its syntax for advanced extraction of datasets from
models (de la Vega et al. [44]).

Chapter 6 describes how we carried out some empirical experiments to assess the
validity and utility of our contributions for the data mining democratisation field. The
results of these experiments are not yet published, and they will be submitted for
revision in the near future.

Lastly, Chapter 7 recapitulates the contributions of this thesis work, and enumerates
possible research lines to stimulate new work in the field of data mining democratisation.



Chapter 2

Literature Review

As starting point of this thesis work, we performed a state-of-the-art review of the
data mining democratisation field. To ensure the quality of this review, we defined and
followed a systematic and objective procedure. This procedure was defined according
to the guidelines proposed by Kitchenham [91], which we complemented with the
snowballing techniques proposed by Wohlin [168, 169], so that comprehensiveness,
objectivity and reproducibility of the review can be assessed.

The concrete goals of this review were the following:

1. To assess whether data mining and knowledge discovery techniques are ready to
be used by general decision makers.

2. To identify strengths and weaknesses of the different approaches that constitute
the current state of the art.

3. To highlight any topics that should be addressed for the purposes of democratising
data mining techniques.

This review complements the existing survey of Serban et al. [149], where the types
of Intelligent Discovery Assistants (IDAs), these are, solutions to assist analysts in
the execution of data mining processes, were described and compared. Our work
presents the following benefits over the contributions of this previous survey: (1) it
updates the available information on the area, by including the latest 7 years of research
(the previous survey was submitted in 2012); (2) we focus on studying the analysis
democratisation issue for users without any experience in data mining, whereas most
described IDAs of the previous survey are for intermediate and experienced analysts;
and (3) our work was performed following and objective and systematic review method,



30 Literature Review

DefineResearch
Questions

Decidewhatkinds of
primarystudies
will bereviewed

Selectresources
thatwill provide
primarystudies

Snowballing
SpecifyReview
Procedure

1 32

4 5 6

Definesearchstrategy
and inclusioncriteria

Fig. 2.1 Process for the development of the review protocol.

where automated searches of scientific databases were included to offer a comprehensive
view of the data mining democratisation area.

For the purposes of this review, we analysed about 700 data analysis tools and aca-
demic articles. This combination of state-of-the-art software and research publications
allows us to present a comprehensive view of what is currently being offered in terms
of data mining democratisation by the industry, and of what might be available in the
upcoming years from the latest works from the academia.

The structure of this chapter is as follows. Section 2.1 describes the review method
that we applied to perform this analysis. Then, Section 2.2 comments on the obtained
results, and in Section 2.3 we use these results to answer our initial research questions.
Finally, in Section 2.4 we conclude this chapter by recapitulating the contributions and
discoveries of our review.

2.1 Review method
This section describes the review protocol we employed to study the current state-of-
the-art of data mining democratisation. To ensure comprehensibility, objectivity and
reproducibility of this work, this protocol was designed according to the guidelines
proposed by Kitchenham [91] and Wohlin [169].

The review process of this protocol is described in Figure 2.1, and it can be
summarised as follows:

1. First of all, the research questions that should be answered after conducting the
review are defined.

2. Then, based on these research questions, the kinds of primary studies, e.g.,
research papers, that will be reviewed are determined.

3. Next, the resources that will be used to find these primary studies, such as digital
libraries, are identified.



2.1 Review method 31

Table 2.1 Research questions to be answered by this systematic review.

Code Question

RQ0 What approaches tackle the problem of data mining democrati-
sation?

RQ1 When using the approaches identified in RQ0, what actions do
decision makers need to carry out to analyse a dataset?

RQ2 What technical knowledge is required to carry out the actions?

RQ3 Can non-expert users make use of data mining tools and tech-
niques by themselves?

RQ4 What trade-offs need to be considered for achieving data mining
democratisation?

RQ5 What should be improved in current state-of-the-art so that
decision makers can properly analyse datasets by themselves?

4. For each selected resource, a search strategy is created. This search strategy must
define an inclusion criteria, which specifies precisely and objectively the reasons
why a primary study should be initially considered for inclusion in the review.
Then, each primary study is individually analysed to check whether it adheres to
the purpose of this review. If it does not, the study is excluded. The reasons
behind these exclusions are specified in an exclusion criteria.

5. Finally, to ensure comprehensiveness of our search, the selected primary studies
are used as input of a snowballing process. This process analyses backward and
forward references of the primary studies, to identify new studies that might had
not been found using our initial search strategy. These new studies are checked
against the defined inclusion and exclusion criteria and, if they fulfil these criteria,
they are added to the list of primary studies to be analysed. Then, the included
studies are used as input for a new iteration of the snowballing process. If, after
an iteration, no suitable primary studies are found, the process stops.

6. Finally, a precise and unbiased evaluation procedure for assessing each selected
primary study and answering the research questions is defined.

Next subsections provide more details about how each one of the steps of Figure 2.1
was accomplished.



32 Literature Review

2.1.1 Step 1: Research Questions

Table 2.1 shows the research questions that this systematic review aims to answer.
The ultimate objective of this review is to know how far we are from data mining
democratisation (RQ3), and what should be done to reach that goal (RQ5).

To gather evidence for answering these high-level questions, we started by answering
first the more fine-grained questions RQ0-RQ2. RQ0 aims to determine the size and
maturity of the data mining democratisation community. Assuming that there are
approaches that tackle this problem, RQ1 aims to identify the steps that decision makers
need to accomplish to analyse a dataset by themselves. Based on this information,
RQ2 aims to identify the minimum skills that decision makers need to have to perform
an analysis by themselves. The answers to these questions will determine whether
inexperienced decision makers can be expected to properly analyse datasets without
the help of a data scientist, answering RQ3.

To achieve data mining democratisation, some trade-offs between quality attributes
need to be addressed. For instance, data mining algorithms can be made more accessible
to non-experts by preconfiguring some of their parameters. On the other hand, this
fixed pre-configuration might reduce the accuracy of the algorithms for some concrete
analysis (Wolpert [171]). RQ4 explores how each approach deals with these issues.

Finally, using the answers to RQ3 and RQ4, it would be interesting to identify any
limitations in the current state-of-the-art that should be addressed to improve the
situation of this field. Because of this reason, RQ5 have been added to our research
questions.

Next subsection specifies the kind of materials that will be considered as primary
studies to provide an answer to these questions.

2.1.2 Step 2: Types of Primary Studies

To answer the previous questions, two kinds of primary studies were considered: (1)
state-of-the-art-data analysis tools; and (2) research articles on data mining democrati-
sation.

By reviewing state-of-the-art data analysis tools, we expected to get an overview
of what a decision maker can currently do with these off-the-shelf software solutions;
whereas the review of research literature should provide us a vision of what might
analysis tools be able to do in the near future, when existent research results of the
academia are transferred to the industry.



2.1 Review method 33

2.1.3 Step 3: Search Resources

We used different resources depending on the kind of primary studies that we were
looking for. The following describes these resources.

Data Analysis Tools

For finding data analysis tools, typical resources, such as scientific databases, e.g.,
Scopus, were not helpful. This was expected, since tools are rarely reported as scientific
articles and, consequently, they are not contained in these databases.

Therefore, we opted for carrying out a survey among several experts in the area, to
discover how to perform a systematic and comprehensive search of these tools. Almost
all of these experts recommended us to use the KDnuggets1 website. This website
maintains highly comprehensive and up-to-date lists with more than 100 data analysis
tools and libraries. After checking the completeness of these lists, we decided to use
them as the resources for finding the tools that would be reviewed. Precisely, we used
the following lists:

1. The main tools list2, which contains both commercial and free/open-source
software applications for data analysis.

2. A list enumerating software that performs Automated Machine Learning3. So-
lutions of this kind aim at automatically providing data analysis assets, e.g.,
prediction models, without the intervention of an expert.

Research Articles

For the discovery of research articles, and according to the guidelines provided by
Brereton [26], we defined a preliminary list of scientific databases for performing an
automated search. These databases are shown in Table 2.2. Moreover, as recommended
by Webster [164] and Jorgersen [82], manual search methods were used to find research
works published in conferences, workshops or other venues, as some of these venues
might not be indexed by scientific databases. To find these works, a list containing
the main conferences on data mining and knowledge discovery was elaborated with
the collaboration of external and independent researchers of the area. This list was
complemented with some workshops specifically related to the topics of this survey.
Table 2.3 shows the list of selected venues for the manual search of primary studies.

1https://www.kdnuggets.com
2https://www.kdnuggets.com/software/suites.html
3https://www.kdnuggets.com/software/automated-data-science.html

https://www.kdnuggets.com
https://www.kdnuggets.com/software/suites.html
https://www.kdnuggets.com/software/automated-data-science.html


34 Literature Review

Table 2.2 Candidate scientific databases, with their search results.

Database #Search results
ACM Digital Library 238
IEEE Xplore Digital Library 174
INSPEC 192
Science Direct 1357
Scopus 491
Springer Link 5456
Web of Science 190
Wiley Online Library 324

Table 2.3 Conferences and workshops used as resources in the manual search.

Code Name

Conf 01 European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery (ECML/PKDD)

Conf 02 International Conference on Data Mining (ICDM)
Conf 03 Conference on Information and Knowledge Management (CIKM)

Conf 04 Pacific Asia Conference on Knowledge Discovery and Data Mining
(PAKDD)

Conf 05 SIG Conference on Knowledge Discovery and Data Mining (SIGKDD)
Work 01 Languages for Data Mining and Machine Learning (LML)

Summarising, three kinds of resources were used for finding the elements to be
reviewed in this work: (1) the lists from the KDnuggets website; (2) a set of scientific
databases; and (3) a list of conferences and workshops. Next section describes how our
search was carried out using these resources.

2.1.4 Step 4: Search Strategy and Selection Criteria

Next sections describe how each resource was individually processed, according to its
own particularities, to find those studies that were later reviewed.

Data Analysis Tools

Each data analysis tool from the lists provided by KDnuggets was initially considered
as a potential primary study for the review. Thus, the inclusion criteria for these
tools was simply their appearance in the selected lists, which gave us a total of 138



2.1 Review method 35

Table 2.4 Exclusion criteria for data analysis tools.

Code Description
EC1.1 The tool is deprecated.
EC1.2 The tool requires advanced computing skills to be used.
EC1.3 The tool requires some customer-specific development.

candidates to check. This number corresponds with the last time we audited the lists
(June 2018).

The tools were reviewed individually, to discard those that were not helpful for the
purpose of this review. Tools were discarded when they exhibited one or more items of
the exclusion criteria depicted in Table 2.4.

Deprecated tools that are not longer maintained were discarded (EC1.1 ), since
we understood that this deprecation was either because the tool was not useful at all,
or because it had been superseded by a similar tool. Therefore, the analysis of this
posterior, more successful tool should be enough.

In addition, tools that require advanced computing skills were also discarded
(EC1.2 ). For instance, programming libraries for knowledge discovery such as MLC++
(Kohavi et al. [97]) were removed. These tools are designed specifically for developers
and programmers, and not for being used by decision makers, so they are out of the
scope of this review.

Finally, it was detected that some tools from the KDnuggets’ lists were not tools
exactly, but companies that offer some services. As an example, ThinkAnalytics is a
company specialized in recommender systems. If a business user wants to acquire its
product, they must contact this company, which will customize it for them. However,
the product cannot be acquired without the customisations. These customisations
would be similar to the process of hiring a data scientist to analyse a dataset on behalf
of a decision maker, that is what we try to avoid in this review. Therefore, this kind of
tools was also discarded (EC1.3 ).

After this step, 28 tools were finally selected as primary studies for further analysis.

Scientific Databases

According the guidelines provided by Kitchenham [91] and Wohlin [170], a search string
for executing an automated search in the scientific databases was constructed. This
string is depicted in Table 2.5. To avoid bias and ensure comprehensiveness, this search
string was submitted for review and approval to two external data mining experts.



36 Literature Review

Table 2.5 Search string used in the scientific databases.

Major Terms Search Terms
Data Mining (("data mining" OR "knowledge discovery")

AND
Usable by non-experts ("democrati*" OR "non-expert*" OR

"user oriented" OR "user-oriented" OR
"user centered" OR "user-centered"))
OR

Business Intelligence "self-service business intelligence")

The goal of this search string was to retrieve articles where: (1) either the final
users were taken into account when developing a data analysis system; or (2) these
final users were able to tweak some aspects of the data analysis process by themselves.
This search string was iteratively constructed and refined. First, as many related terms
as possible were included to make the search highly comprehensive. However, the
number of returned results was extremely high, and these results included a lot of
work that was not related to the topic of this review. For instance, the inclusion of
terms describing easiness of use, such as “friendly”, “user-friendly” or “usable”, added
a cumbersome number of articles which were outside the scope of this review. So, these
terms were skipped to increase accuracy of the results.

Although we focused on works belonging to the data mining field, data mining
techniques are sometimes employed in the Business Intelligence (BI) (Negash [122])
area. BI technologies are used to gain insights from data stored by a company, usually
by creating reports that help decision makers visualize and understand some indicators
about the performance of a business or process. To achieve this goal, these reports
aggregate data from the available sources and perform some descriptive analytics,
e.g., statistics of the performance indicators. These reports can also offer facilities
to navigate through these data. In some cases, the reports are enhanced with richer
information coming from the application of data mining techniques. Recently, several
researchers and practitioners have started to work in a new area called Self-Service
Business Intelligence (SSBI) (Alpar and Schulz [5], Bani-Hani et al. [12], Imhoff and
White [78]), which aims to provide decision makers with user-friendly tools to create
BI reports by themselves. Based on this recent interest, special terms to gather works
from this area were also included in the search string.

We applied the search string in the selected databases to the title, abstract, and
keywords of scientific articles. For the sake of comprehensiveness, the search was



2.1 Review method 37

Table 2.6 Exclusion criteria for articles in scientific databases.

Code Description
EC2.1 The work is a position paper.
EC2.2 The work does not address any steps of a data mining process.
EC2.3 The work is not oriented to users outside the data mining area.
EC2.4 The work is not designed to be used with arbitrary datasets.

not limited to any particular discipline, as recommended by Kitchenham [91]. For
instance, articles related to the topic of this review might be published in medical
journals. Moreover, the search was limited to those articles that, in addition, satisfied
the following inclusion criteria: we included peer-reviewed articles, written in English,
whose publication date happened up to June 2018.

Table 2.2 shows, besides each considered database, the number of results returned
for our search string. As it can be observed, some databases, such as Science Direct or
Springer Link, returned a very large number of results. Nevertheless, most of these
were not of interest for our review. For instance, the results included topics such as
mutators for genetic programming or latency-based issues of wireless network, which
are not connected to the topic of this review. So, we opted for using a subset of these
candidate databases, which offered a good balance between accuracy of results and
coverage of scientific journals and conference proceedings.

With this premise in mind, Scopus, Web of Science and INSPEC were selected.
Before discarding Science Direct, Wiley Online Library, ACM Digital Library, IEEE
Xplore Digital Library, and Springer Link, it was checked that relevant journals and
conference proceedings indexed by these databases were also indexed by the ones we
selected.

The selected databases returned an initial number of 873 articles. After a cleaning
process, where we removed duplicated articles and most invalid results (e.g., table of
contents of some conferences showed up as result entries), 559 articles were finally
selected as candidate primary studies.

The candidates were individually reviewed to select those that fitted with the
purpose of the review. The selection process can be summarised as follows:

1. First, we read the abstract of each article. Those articles that were considered
clearly out of scope were discarded. When in doubt, articles were included for
further analysis.



38 Literature Review

2. Then, for the remaining articles, we obtained and read the full versions of each
work. Again, those articles that did not fit with the purpose of the review were
eliminated.

3. Finally, articles written by the same authors and featuring the same line of
research were grouped, and the most mature and comprehensive work of each
group was selected.

Table 2.6 specifies the exclusion criteria that was used for discarding research works.
First of all, position papers that just state the need for data mining democratisation
but that do not describe any approach to achieve it, e.g., Lu et al. [107], Vanwinckelen
and Blockeel [160], were left out of the review.

Secondly, we were interested in works about data mining. We did not require the
contributions of the selected works to address the whole data mining process, but
at least they must address one step of this process, such as data preprocessing, or
algorithms selection and execution.

The third criteria for exclusion is determined by the review’s focus: we discarded
those works that showed clear indicators of being oriented for experts, e.g. articles
describing the internals of new analysis algorithms, or presenting utilities that required
the knowledge of advanced data mining concepts for their configuration and usage.

Finally, our preliminary searches detected some articles that described software
applications for the analysis of data from a concrete domain. These applications
were designed to be used for experts in that domain, who had no knowledge in data
mining. Therefore, a special effort was made to hide any low-level analysis details to
these users. Data mining experts were the ones developing these applications. In the
development, these experts addressed exclusively a very specific problem of a concrete
domain, without aiming to make the resulting application reusable for other domains
or datasets. For this reason, we considered that these approaches, which we will refer
to in the following as ad-hoc applications, do not fit at all with the purpose of this
review, and they cannot be properly analysed using the review procedure that we
describe in the next section. Therefore, these approaches were discarded. Nevertheless,
there are some concrete contributions of these works that might help achieve data
mining democratisation. To make this review more comprehensive, and in case the
reader is interested, these contributions are summarised in A.

After the end of the automated search, 15 articles that address the data mining
democratisation issue from a broad and generic perspective were accepted as primary



2.1 Review method 39

studies for this review. In addition, we detected 11 ad-hoc applications that fall under
the description of the previous paragraph.

Conferences and Workshops

Before looking at the proceedings of the conferences and the workshop listed in Table 2.3,
we checked whether these proceedings were already indexed in the Scopus, Web of
Science or INSPEC databases, to avoid doing redundant work. All of them were
already indexed by these databases, but the proceedings of the 2015 edition of ICDM
(Conf 02) and the workshop proceedings. So, we reviewed these venues manually.
Each article was checked against the exclusion criteria contained in Table 2.6. As a
result, one article was selected for full review (Vanwinckelen and Blockeel [160]), but it
was later excluded because it was oriented for computer and statistics-savvy users.

2.1.5 Step 5: Snowballing

To ensure comprehensiveness of our search process, and following the guidelines
proposed by Jalali et al. [80], we used the initially selected 26 primary studies from the
automated search as input of a snowballing process. During this process, articles cited
by and citing the primary studies were analysed. The goal of this process was twofold:

1. To discover any work that should be included in the review, but that had not
been retrieved by the automated search.

2. To find follow-up articles of primary studies reporting a more mature work.

The process was achieved by checking one level of backward and forward references
of the primary sources. Scopus and Google Scholar were used to find the forward
references, i.e., articles citing the primary studies. For each backward or forward
reference, the exclusion criteria of Table 2.6 was applied.

As a result of the first iteration of this process, two new articles (Chittaro et al.
[34], Guyet et al. [67]) were added to the list of ad-hoc applications. In addition, an
article describing another ad-hoc application (Peng et al. [132]) was superseded by a
more recent publication of the same authors [133].

The snowballing process was repeated using the newly found articles as input. As
a result of this second iteration, no new work was identified, which implied the stop of
the snowballing process, and the end of our article search. Finally, a total of 28 articles
was found in our search, of which 15 articles were selected as primary studies for their
review, and 13 articles conformed the list of ad-hoc applications (see A).



40 Literature Review

Table 2.7 Questions to assess stage assistance during a data mining process.

EQ1.1 Is this stage covered by the approach?
EQ1.2 How is the decision maker assisted during this stage?

The selected 15 articles, combined with the 28 tools previously selected from the
KDnuggets lists, add up to 43 primary studies that were analysed in this work. Next
section describes how this analysis was carried out.

2.1.6 Step 6: Evaluation Procedure

A systematic and objective procedure was designed to analyse the selected primary
studies. This procedure consisted on gathering a set of indicators, which were grouped
into two main categories. These categories are described below.

Assistance During the Data Mining Process

The objective of this first set of indicators was to provide an answer for the research
questions RQ1 and RQ2. For each approach, and for each stage of a data mining process
(see Section 1.3), questions of Table 2.7 were answered. Namely, we considered the
Data Collection, Preprocessing, Data Mining and Interpretation stages. Refinement of
results, this is, the possibility of exploring new issues based on results of a previous
data mining process, was also considered as another stage of the data mining process.

Analysis of Trade-Offs

As commented in Section 2.1.1, achieving data mining democratisation implies facing
trade-offs between different quality attributes. So, we analysed how a set of these
attributes are satisfied by each selected primary study. More specifically, we focused on
those quality attributes that typically conflict in the case of data mining democratisation:
adoption cost, accuracy of the solutions, functional completeness (i.e. what types of
data mining techniques are offered by each approach, and what types are not), and
evolution capabilities. These quality attributes, as well as the questions we performed
during the data collection, are described in Table 2.8. The results of this analysis
should provide an answer to the research question RQ4.



2.2 Results 41

Table 2.8 Evaluation questions for the quality attributes analysis.

Quality Attribute Questions
Adoption Cost EQ2.1 Can the approach be deployed in a new domain

without requiring some adaptations?
EQ2.2 Can non-experts carry out any required adaptations

without the help of an expert?
Accuracy EQ2.3 Are the provided results as accurate as possible, i.e.,

can they be similar to what an expert could achieve
manually?

EQ2.4 Can the analysis be tuned to produce more accurate
or precise results?

EQ2.5 Can non-experts perform that tuning by themselves?
Completeness EQ2.6 What analysis techniques are available in the ap-

proach?
Evolvability EQ2.7 How easy it is to extend the approach to cover new

user needs?
EQ2.8 Can new analysis techniques be incorporated into

this approach?

2.2 Results
This section describes the results gathered after reviewing and evaluating the selected
primary studies. For this purpose, we distributed these studies into four categories,
which were then analysed. First, we show a summary of these categories, and give some
explanation on how primary studies were grouped. Then, each category is evaluated
using the procedure described in Section 2.1.6.

2.2.1 Classification of Selected Studies

For the sake of brevity, we do not describe each selected primary study individually.
Instead, these studies were grouped according to their similarities, and then they were
analysed and compared as groups. We identified four different groups or categories,
which are described in the following sections. The correspondence of each primary
study with its category is provided in Table 2.9.



42 Literature Review

Table 2.9 Categories of the approaches that address data mining democratisation.

Category Primary studies

Workflow-based
tools

AdvancedMiner, Alteryx, Angoss Knowledge Studio, BDB
Predictive Workbench, Coheris SPAD, Dataiku, Exeura Ri-
alto, IBM SPSS, KNIME, Orange, Partek, Rapidminer,
Weka.

Self-Service Busi-
ness Intelligence

Schuff et al. [147], Behringer et al. [17], Sulaiman et al. [153],
Schlesinger and Rahman [146], Abelló et al. [1], Microsoft
Power BI, Tableau, IBM Watson Analytics.

Black-Box Com-
ponents

Campos et al. [28], Reif et al. [137], Ankerst et al. [7], Bilalli
et al. [21], Han and Leung [72], Automatic Business Mod-
eler, AutoDiscovery, Auto-Weka, Bicedeep AI, DataRobot,
DMWay, Emcien, ForecastThis DSX, Featuretools, Kogentix,
MLJAR, Xpanse Analytics.

Development
Frameworks

Ben Ayed et al. [20], Espinosa et al. [52], Zorrilla and García-
Saiz [176], Alonso and Mencar [4], Santos et al. [145].

Workflow-Based Tools

This category is composed entirely of state-of-the-art tools that are based on the
following approach: they provide a set of building blocks, where each block performs an
analysis-related task. Users connect these blocks graphically to create what is known
as a workflow, which specifies a data mining process. The idea is that data mining
processes can be specified faster and in a more friendly way by means of dragging
and dropping some of these prebuilt blocks, which are later tuned according to the
particularities of each concrete analysis. To support this tuning, building blocks have
some configurable parameters that can be adjusted.

To illustrate this category, we have selected Orange4 because, in our humble opinion,
it is one of the most usable tools and a well-known representative of this category, and
it is freely available. Figure 2.2 shows an Orange workflow example specifying a data
mining process.

In this workflow, information about clients of a bank is used to predict whether
they will subscribe to a term deposit offer before contacting them via phone call. A
dataset containing historical information about the clients (e.g. age, current balance,
has an mortgage, credit status, whether previous marketing calls were successful) is
loaded with a File block, which in the workflow of the figure has been renamed to
Clients Data. The contents of this dataset can be visualised using a Data Table block.

4http://orange.biolab.si

http://orange.biolab.si


2.2 Results 43

Fig. 2.2 Data mining process example specified with an Orange workflow.

More detailed information about these data can be obtained with the Box Plot block
that, as it could be expected, draws box plots of each column. Based on the loaded
dataset, the Decision Tree learner block trains a prediction model, which can be used
to estimate the answer of a client to the subscription suggestion. To evaluate the
prediction accuracy of this model, the Test & Score block performs a cross-validation
process (see Chapter 5.3 of Witten et al. [167]) with the provided data. The Confusion
Matrix shows the comparison of the obtained predictions against the correct ones in a
compact and friendly way. When satisfied with the performance of the learner, it can
be stored for future usage with the Save Model block.

Each block offers some configurable parameters to tune the analysis process. For
instance, for the Decision Tree block, a maximum depth of the output tree can be
specified in order to avoid creating too large and overfitted decision trees. Similarly, for
the evaluation block, the number of folds used by the cross-validation process might
be changed.

Just from the concepts appearing in the description of the previous example, it
can be perceived than a sound knowledge of the techniques employed by these blocks
might be required to appropriately select, connect and configure them.

Self-Service Business Intelligence

The term Self-Service Business Intelligence (SSBI) (Alpar and Schulz [5], Bani-Hani
et al. [12], Imhoff and White [78]) refers to a research and industry field where decision
makers that use BI services are provided with user-friendly tools to create reports by



44 Literature Review

themselves, making unnecessary the intervention of BI experts. Several companies are
adapting their BI solutions to include self-service components for non-expert users.
Representatives of these solutions, such as Tableau, have been studied and included in
Table 2.9.

Currently, SSBI tools allow decision makers to perform the following process: First,
data is loaded into the tool through the appropriate data source connectors. These
connectors allow extracting data from different sources, such as a relational database
or an Excel sheet. Then, the imported raw data is filtered and processed. Finally, the
information is organized into a report or dashboard where it can be easily visualised
and digested.

Continuing with the example of bank marketing calls, using BI, we could load a
dataset containing the data of the clients with a CSV (Comma-Separated Values) file
connector. Then, we might filter the data to focus only on clients that previously
accepted a term deposit offer. A report using textual explanations combined with
graphs like scatter plots or dice charts might be created to visualise key performance
indicators (KPIs) such as the Cold Calling Success Ratio, i.e., the ratio of successful
calls to potential clients; aggregated marketing results by country or state; or trend
estimations for future seasons. All this process would be performed by non-experts
navigating through menus and wizards in a high-level graphical interface. This process
is hard to synthesize in a single image, so a picture illustrating it such as Figure 2.2 is
not provided for the sake of simplicity.

Researchers are trying to improve the current state-of-the-art of these tools by
improve the way in which end users interact with these systems. For instance, some
authors are working on making the management of the available data easier (Abelló
et al. [1], Schlesinger and Rahman [146], Sulaiman et al. [153]); and on increasing the
variety of analysis that can be performed (Behringer et al. [17], Schuff et al. [147]).

In summary, this group is somehow similar to the Workflow-Based Tools, but it is
more oriented to the creation of dashboards and reports, instead of particular data
mining processes.

Black-Box Components

This category groups research work and tools whose goal is to hide details of data
mining processes, so that they can be carried out by non-expert users. We named
these approaches as black-box components, because (1) they can be applied as are to
new contexts, without any parameter tuning or adjustments (i.e. they offer black-box



2.2 Results 45

functionality); and (2) they offer support of some stages of the analysis, but not for
the process as a whole, so they can participate as components of an analysis.

Most research work in this category focus on facilitating the mining stage (Ankerst
et al. [7], Campos et al. [28], Han and Leung [72], Reif et al. [137]), but there are also
some approaches that deal with the data preprocessing stage (Bilalli et al. [21]).

A clear representative of this category is the work of Campos et al. [28], where a data
mining module extension for the Oracle Database Management System is presented.
This extension offers some procedures that execute prebuilt data mining processes
using as input the data contained in a Oracle relational database table.

For instance, the PROFILE procedure allows obtaining similarities of those records
which share the same value for a specific column. Continuing with the bank marketing
example, the PROFILE(clients_information, call_outcome, results) command might be
executed to analyse the clients_information table, with the objective of checking what
features are shared between those clients who have the same value in the call_outcome
column. The results of this procedure, which are provided in the output variable results,
are two sets of rules. The first set describes those clients who are likely to accept the
term deposit and the second one those ones who are not.

The main contribution of this approach is that the user does not need to know the
details behind these procedures. The user knows neither what specific algorithm is
being used to execute the procedure, nor how the algorithm parameters have been
exactly configured. Nevertheless, data must be retrieved from its sources, cleaned, and
processed to fit into an adequate format, which in this case is a single relational table,
before these procedures can be executed.

Regarding other approaches in this group, Reif et al. [137] offers a building block
which can be used in a RapidMiner workflow to automatize the selection of a classifier.
Ankerst et al. [7] includes computer-based visualization techniques that aid the end
user in the creation of a decision tree. Han and Leung [72] presents a web service to
automatically find frequent sets of items that often appears together. Finally, Bilalli et
al. [21] present a black-box component that, based on the characteristics of a given
dataset, applies a set of preprocessing transformations to prepare the data and improve
the prediction results of the generated models. As with the previous example, the
main contribution of these approaches is that some tasks of a data mining process are
automated and carried out by a computer transparently.

Selected tools belonging to this category also try to automate the mining stage of
the process, focusing almost completely on prediction analysis. Users of these tools
have to provide a dataset with training records, and specify what they want to predict.



46 Literature Review

Then, the tools automatically build a prediction model without the intervention of any
expert. This prediction model can then be used over new records to perform predictions.
Examples of these tools are DataRobot, Kogentix or MLJAR. As an exception, one of
the tools, Featuretools [88], focuses on the preprocessing stage by automating feature
engineering, i.e. the generation and selection of features that will be used to train a
model.

Development Frameworks

This category contains research works that provide methodologies to develop knowledge
discovery systems, with the objective of making these systems usable by non-experts
(Alonso and Mencar [4], Ben Ayed et al. [20], Espinosa et al. [52], Santos et al. [145],
Zorrilla and García-Saiz [176]).

A representative of this category is the work of Zorrilla and García-Saiz [176], who
propose to use a service-oriented methodology to develop data analysis systems. The
first step in this methodology is to know which questions end users want to answer.
Then, the data mining processes that will compute these answers are developed by
data scientists and wrapped as web services. These wrapped processes are designed
to be as automated as possible, preventing the parameters of their algorithms from
needing adjustments due to slight changes in the input data. Finally, user-friendly,
web-based interfaces are developed. These interfaces must allow non-experts to invoke
the analysis services and receive the obtained results, without requiring any technical
knowledge of the wrapped processes.

Using this approach in our marketing example, a preconfigured prediction process
to analyse clients data would be initially developed by experts, and encapsulated in
a web service. Then, a user-friendly web interface to invoke this service would be
developed and deployed. Using this interface, bank employees could determine the
likelihood of a client accepting their marketing offer. Since the wrapped prediction
process is autoconfigurable, it should also work with datasets coming from other banks,
although data in these datasets can exhibit other internal properties, such as a higher
number of outliers.

As for the other approaches of this category, Ben Ayed et al. [20] present a develop-
ment process that combines the Unified Process from Software Engineering (Kruchten
[102]) with the U model for Human-Computer Interaction (Lepreux et al. [104]) to
generate an iterative, user-centred development method, which outputs knowledge
discovery applications that can be used by non-experts. Espinosa et al. [52] propose a
methodology that guide users in the development of data mining applications. This



2.2 Results 47

methodology is based on two main elements: (1) a taxonomy of questions that helps
non-expert users to identify the data mining technique they should use, i.e., clustering
to group data; and (2) a recommender system that returns the best data mining
algorithm for a given technique inside a specific context (e.g. Kmeans or Expectation
Maximization as clustering algorithms).

Santos et al. [145] present a reference architecture to build data mining systems.
This architecture includes: (1) a data warehouse that contains the data to be analysed;
(2) an ontology that models the domain to which these data belongs to; and (3) a set
of metadata that specifies how the ontology connects to the data warehouse and how
to process each data bundle. These metadata are specified with the help of a data
mining expert. Once these elements have been created, end users interact with the
domain ontology to select those data they want to analyse. Based on the metadata,
the system proposes several kinds of analysis, and the end user selects one of them.
Then, using the metadata again, the system automatically instantiates a data mining
process, configures it appropriately and executes it, returning the results to the end
user. Finally, Alonso et al. [4] introduce a development process, based on fuzzy logic,
to create data analysis systems whose results can be easily interpreted by end users,
providing explanations in natural language.

It should be noted that, although the systems generated using these approaches are
initially prepared by data mining experts, once they are ready for use, these experts
are not required any more. It could be argued that these systems are similar to the
ad-hoc applications commented in Section 2.1.4 and A, i.e., applications developed
by experts to solve a specific problem in a particular setting; and, therefore, they
should be discarded according to our exclusion criteria (see Table 2.6). Nevertheless,
oppositely to ad-hoc applications, these approaches are designed to be applicable to
different domains. In addition, the generated applications could also be reused without
further adjustments with different datasets from the same domain, whereas ad-hoc
applications are designed to work with a single and very specific dataset, without reuse
across a domain (or in any other different domain) in mind.

2.2.2 Evaluation Results

Now we comment on the results obtained after executing the evaluation procedure
described in Section 2.1.6 to the selected primary studies. This evaluation procedure
was divided into two stages, being each stage described in its corresponding subsection.



48 Literature Review

Table 2.10 Coverage of the data mining process stages offered by each category.

Category\Stage Action Collect Preprocess Mine Interpret Refine
Workflows ✓ ✓ ✓ ✓ ✓
SSBI ✓ ✓ (✓) ✓ ✓
Black-Box Components ✓ ✓
Development Frameworks ✓ ✓ ✓ ✓ (✓)

Assistance During the Data Mining Process

This first stage of the evaluation procedure (see Section 2.1.6 and Table 2.7) aims
to know what stages of the data mining process are covered by each approach, and
how well each stage is covered. Results of this analysis are summarised in Tables 2.10
and 2.11. Table 2.10 shows the coverage of the stages of a data mining process, whereas
Table 2.11 describes briefly how these stages are covered. In Table 2.10, a stage is
marked if at least one of the approaches of the corresponding category addresses it. A
check mark surrounded with parentheses indicates that limited support for that stage
is present, but it is not as clear as in the other cases. We comment on these results in
the following.

EQ1.1: Covered Data Mining Process Stages Workflow-based tools and SSBI
solutions cover the whole data mining process, since they offer building blocks or
wizards for all the stages. Figure 2.2 provides an example of a workflow where all
data mining stages are covered. Moreover, these blocks and wizards typically contain
configurable parameters, so the process can be tuned and refined.

Black-box components assist either by automatically selecting data mining algo-
rithms, or by providing users with the ability to execute analysis tasks without knowing
their low-level details. In these approaches, only the mining stage is typically covered
at the time of writing this survey. Therefore, the user is still in charge of acquiring and
preparing the data, interpreting the results of the analysis, and adjusting the input
data if some refinements are desired. Exceptions are the work of Bilalli et al. [21] and
Featuretools [88], which try to automate the preprocessing stage.

The development frameworks require the intervention of a data mining expert to
create some initial elements. Nevertheless, once these elements are ready, the user is
assisted for all the data mining stages of the configured processes. However, these
approaches does not offer many ways to refine these processes, e.g., the possibility of
adding or removing elements from the input data to be analysed is not supported.



2.2 Results 49

Table 2.11 Assistance offered by each category during the analysis process.

Category EQ1.2: Decision makers are assisted through ...

Workflows building blocks that allow to graphically configure a complete
analysis workflow.

SSBI a user-friendly interface where high-level menus and wizards
allow performing data-related tasks.

Black-box Com-
ponents tools that perform a concrete mining stage automatically.

Development
Methodologies

rules and frameworks to instantiate systems that can be used
by non-expert users.

As an example, Zorrilla et al. [176] developed, following the service-oriented method-
ology they propose, a high-level system for analysing student performance. Using
this system, teachers can, among other things, try to determine reasons why students
fail, taking into account any available data of these students, e.g. activity in the
e-learning platform, demographic information, or results in partial tests. Nevertheless,
the developed analysis system does not allow teachers to decide which data is used to
analyse the students’ performance, i.e., teachers cannot focus only on activity data
to discover performance patterns related with how students use the platform. If we
wanted to incorporate this analysis, a data scientist would be again required to modify
the tool. Therefore, refinement support is somehow limited in this category.

EQ1.2: How is the decision maker assisted during each stage? We consider
now how each category assists end users for the data mining stages it covers.

Workflow-based applications provide building blocks that allow specifying data
mining processes graphically. Nevertheless, users are still responsible for selecting
the right blocks for each analysis, and from their appropriate configuration and
interconnection. To accomplish these tasks, sound knowledge on data mining concepts
is required. Therefore, it can be concluded that workflow-based applications do not
provide much assistance for the non-expert users we are focusing on this work.

SSBI tools offer some wizards and interfaces to define data analysis tasks. These
tasks are mostly oriented to data reporting and descriptive analysis, although some
tools have incorporated support for new data-related tasks over the last years, such
as the Prediction Workbooks offered by Watson Analytics5. As it happened with the
workflow applications, users are still responsible for executing some low-level tasks, for

5http://bit.ly/predworkbooks

http://bit.ly/predworkbooks


50 Literature Review

which specialised knowledge might be required. For instance, in the general case, users
might need to aggregate or normalize data before they can be used as input for a data
analysis task.

Black-box components provide simple commands and interfaces that hide all low-
level details of certain analysis tasks to the end user. Therefore, these elements can be
perfectly executed by users with no expertise in data mining techniques. Nevertheless,
only the data mining or data preprocessing stages, as already commented, are currently
covered by these approaches.

Lastly, development frameworks do not provide any support for executing data
mining processes without the intervention of an expert. These methodologies provide
some development rules, often associated to a prebuilt infrastructure, to help create
data analysis systems ensuring that the resulting products can be employed by end
users without expertise in data mining tasks. Therefore, a data mining expert is
initially required to follow these rules and to configure appropriately the associated
infrastructure, when it is provided. Then, once the system is ready, end users can select
data, execute different analysis tasks by themselves, and obtain results that can be
easily interpreted. Although this initial intervention of a data mining expert is always
required, some of these approaches (Espinosa et al. [52], Santos et al. [145]) aim to
reduce this intervention as much as possible.

On the other hand, this initial intervention required in the development frameworks’
approaches allows for the obtention of a system with higher accuracy than the achieved,
for instance, when using black-box components, because this system has been adjusted
to the particularities of the specific domain it is being deployed to. This means that,
assuming an extra cost, system accuracy can be increased. This and other trade-offs
are commented in the next section.

Analysis of Trade-Offs

This second stage of the evaluation procedure (see Section 2.1.6 and Table 2.8) aims to
know how each one of the categories deals with the different trade-offs that are inherent
to data mining processes. Table 2.12 summarises the results of this analysis. A dash
(“-”) appears as answer for those questions where an answer to a previous question
invalidates them, e.g., EQ2.1 and EQ2.2.

Workflow-based tools provide building blocks that are designed to work with any
input dataset, so they are can be used in any domain without prior adaptation. However,
as commented in the previous section, these building blocks are not designed to be



2.2 Results 51

Ta
bl

e
2.

12
R

es
ul

ts
of

th
e

qu
al

ity
at

tr
ib

ut
es

by
ca

te
go

ry
.

Q
ua

lit
y

A
tt

rib
ut

e
W

or
kfl

ow
s

SS
BI

B
la

ck
-B

ox
C

om
po

ne
nt

s
D

ev
el

op
m

en
t

Fr
am

ew
or

ks
A

do
pt

io
n

C
os

t
EQ

2.
1.

C
an

it
be

de
pl

oy
ed

w
ith

ou
t

ad
ap

ta
tio

ns
?

Ye
s

Ye
s

Ye
s

N
o

EQ
2.

2.
C

an
no

n-
ex

pe
rt

s
pe

rfo
rm

th
e

ad
ap

ta
tio

ns
?

-
-

-
N

o
A

cc
ur

ac
y

EQ
2.

3.
C

an
th

e
an

al
ys

is
re

ac
h

ex
pe

rt
-le

ve
la

cc
ur

ac
y?

Ye
s

N
o

N
o

Ye
s

EQ
2.

4.
C

an
th

e
ap

pr
oa

ch
be

tu
ne

d
to

im
pr

ov
e

ac
cu

ra
cy

?
Ye

s
Ye

s
N

o
N

o
EQ

2.
5.

C
an

no
n-

ex
pe

rt
s

pe
rfo

rm
th

e
tu

ni
ng

s?
N

o
N

o
-

-
C

om
pl

et
en

es
s

EQ
2.

6.
W

ha
t

an
al

ys
is

te
ch

ni
qu

es
ar

e
av

ai
la

bl
e?

A
ll

D
es

cr
ip

tiv
e

Pr
ed

ic
tiv

e
A

ll
Ev

ol
va

bi
lit

y
EQ

2.
7.

H
ow

ea
sy

it
is

to
ex

te
nd

th
e

ap
pr

oa
ch

?
Ea

sy
M

ed
.

H
ar

d
M

ed
.

EQ
2.

8.
C

an
ne

w
an

al
ys

is
te

ch
ni

qu
es

be
in

cl
ud

ed
?

Ye
s

Ye
s

N
o

Ye
s



52 Literature Review

employed by non-expert users, so a data scientist is always required to design the
workflows that will implement a specific analysis process.

Building blocks come with a default configuration, so that they can be used with a
minimum effort. Nevertheless, this default configuration might not perform well for all
domains (Wolpert [171]), provoking that the results of these defaults might not be as
accurate as possible. Defaults can be modified to increase the accuracy of the results,
but this task requires a deep knowledge of data mining techniques, making necessary
again the help of a data scientist.

Regarding evolution, new business questions might be addressed by means of
creating new workflows, for which a data scientist would be required. Similarly, existing
workflows might be adapted to new requirements by changing the configuration and
interconnection of their building blocks. For instance, if after performing an analysis
over a dataset, we wanted to repeat that analysis but just for a subset of the input
data, this change might be addressed by adding a filter block after the data loading
step. Also, new data mining techniques could be incorporated to these tools using
extension mechanisms that support the addition of new building blocks, which wrap
custom data mining tasks. As before, the intervention of an expert would be required
perform any of these tasks.

SSBI tools are available as generic solutions that, in most cases, can be deployed in
any context as are and used by decision makers without advanced expertise in data
analysis. Using these tools, these decision makers would define the required analysis
process by themselves. Therefore, these tools can be classified as domain-independent
solutions that can be set up with a relative low effort, and without the intervention
of a data scientist. Nevertheless, most SSBI tools, at the time of writing this work,
focus mainly on offering reporting capabilities, including basic descriptive analytics
processes that can be incorporated to these reports.

The accuracy of SSBI tools might be compromised by the powerfulness of the
offered functionality. These tools try to be understandable by a lot of different users
with heterogeneous expertise, so some advanced functionalities might be not present
to favour the simplicity and amenability of the tool. As an example, for a data
preprocessing stage, users of a SSBI tool can only choose between the available list of
cleaning tasks, which may not be as large as the plethora of libraries and specialised
tools than an expert might employ for this purpose. While, to some extent, this issue
might also apply to workflow applications, in our review we have observed that workflow
apps are way more complete in terms of offered functionality than SSBI solutions.



2.2 Results 53

In terms of evolvability, the analysis processes initially designed by decision makers
can also be modified and refined by themselves. In addition, if new data mining
techniques were required to answer new business questions, these techniques might be
incorporated into some of these tools through custom scripts. For instance, if we wanted
to incorporate support for calculating association rules in one of these tools, we should
write a script that implements or invokes the corresponding algorithm. Unfortunately,
this kind of task demands the intervention of data mining experts.

Black-box components are devised to work as are for any input, and with no
prior adaptation work required. However, as commented in the previous section,
these approaches do no cover all stages of a data mining process. For instance, most
approaches focus exclusively on the mining stage, and specifically in offering prediction
analysis tools. This implies that, for instance, end users are in charge of selecting,
cleaning and formatting the data of interest for an analysis into the format accepted
by the employed black-box prediction tool. These tasks will be often too far away from
the capabilities of decision makers. Therefore, although these approaches can be easily
included in new contexts to cover some stages of the analysis process, the intervention
of data scientists might be required in order to perform the remaining stages.

This black-box approaches do not take into account any specificities of the applica-
tion domain during the analysis, which might decrease the accuracy of the obtained
results. This lack of adaptations to each domain might return worse results than
the ones an expert may achieve. In addition, the black-box nature of these tools
might make unfeasible to adapt these applications to a specific domain, even with
expert intervention. For instance, most of the tools provide a way to create prediction
models, but we might not be able to slightly modify how the prediction model is built,
e.g., by deciding which features are more relevant for the prediction. Consequently,
these applications cannot be extended to support new user needs, and new analysis
techniques cannot be easily incorporated.

Development frameworks are designed to be used in any context, so they can be
classified as domain-independent initially. Nevertheless, these approaches often provide
an infrastructure that needs to be modified to fit in with the particularities of a specific
domain. For instance, in Santos et al. [145], some metadata needs to be specified
by a data mining expert to indicate how the different elements of a domain ontology
should be processed. Therefore, these approaches need some previous work before
being deployed in a new context, and this work must be carried out by an expert.

The counterpart of the higher cost of these approaches is that the initial intervention
of experts allows taking into account any relevant details of the application domain,



54 Literature Review

which contributes to increase the degree of accuracy of these solutions to something
very similar to what an expert might achieve. For instance, in the educational example
of Zorrilla and García-Saiz [176], although teachers use wrapped processes that are
not configurable, these processes have been adapted to the educational domain, which
may improve the quality of the results when compared with, for instance, commands
of black-box components.

These tools can also be extended to support new business needs. For instance, in
Santos et al. [145], the domain ontology might be used to select different subsets of data
as we are gaining insights in a domain, and we want to find answers to more precise
questions. Nevertheless, not all these approaches support this kind of refinement, and
the intervention of experts might be required depending on what new user needs we
want to address. Similarly, new data mining techniques can be incorporated to these
methodologies and their associated infrastructure with the help of an expert.

With the previous paragraph we finished the description of the obtained results in
the evaluation. Next section answers the research questions that we formulated as the
objectives of this work.

2.3 Discussion
During the evaluation procedure, we gathered enough evidence to provide answers for
our research questions (see Section 2.1.1). These answers can be found below.

2.3.1 RQ0. What approaches tackle the problem of data min-
ing democratisation?

We identified four different categories of approaches that collaborate in the data mining
democratisation field: workflow applications, Self-Service Business Intelligence solutions,
black-box components and development frameworks. More details of these categories
and the approaches belonging to them can be found in Section 2.2.1. Although there
seems to be an interest in this field, the amount of articles found in the academia is still
small, as not many approaches address this subject yet. On the other hand, important
enterprises, such as IBM or Microsoft, are starting to perform a non-negligible effort
to provide decision makers with user-friendly solutions for performing data exploration
and analysis. This means that data mining democratisation is being considered an
important issue, which will need to be addressed more in-depth in the near future.



2.3 Discussion 55

2.3.2 RQ1. When using the approaches identified in the pre-
vious question, what actions do decision makers need
to carry out to analyse a dataset?

These actions vary highly depending on the kind of approach selected. In workflow-
based applications, users connect and configure pre-built blocks to specify a data mining
process. In SSBI solutions, users navigate through a set of high-level user interfaces
and wizards to configure an analysis process, more based on visualization and reporting
than in data mining. Black-box components do not provide support for all stages of the
analysis process, so the user needs to carry some of them without any assistance. For
instance, user often needs to retrieve, format and clean the data to analyse. For those
stages that are automated, users just need to invoke some commands that hide the
low-levels details of their execution. In development frameworks, an initial minimum
intervention of a data-scientist is required. After that, users can operate the systems
by themselves through interfaces abstracted from low-level details.

2.3.3 RQ2. What technical knowledge is required to carry
out the actions?

Workflow-based applications require a sound knowledge of data mining techniques,
since the offered building blocks are more oriented to data scientists rather than for
non-expert users. On the other hand, SSBI solutions are mostly designed to be used by
non-experts, so no technical knowledge is initially required. Nevertheless, if advanced
analysis are wanted, i.e., going beyond basic reporting, some technical knowledge might
be necessary. Black-box components do not require any technical knowledge for the
stages of the data mining process they address. Development frameworks require an
initial configuration of a certain infrastructure. This initial configuration has to be
carried out by an expert but, once it is completed, the resulting system can be operated
by non-expert users.

2.3.4 RQ3. Can non-expert users make use of data mining
tools and techniques by themselves?

In the light of the answers to previous questions, the answer is no. Workflow-based
applications are not designed to be employed by non-experts. SSBI solutions offer
a limited support for advanced data mining techniques. When these techniques are
addressed, SSBI solutions often face the same problems as workflow-based applications,



56 Literature Review

i.e., they do not provide suitable solutions for non-expert users. Black-box components
can be used by non-experts, but they do not address the whole data mining process.
Finally, development frameworks require the initial intervention of a data scientist,
although they aim to reduce this intervention to the minimum.

2.3.5 RQ4. What trade-offs need to be considered for achiev-
ing data mining democratisation?

Genericity versus accuracy and accuracy versus cost seem to be prominent trade-offs
for the studied approaches. Those approaches that are absolutely domain-independent,
such as the black-box components, do not require the intervention of experts, so they
can be adopted with a relatively low-cost. Nevertheless, since they cannot be optimised
for taking into account the particularities of any domain, their results might be not
as accurate as possible. In some cases, accuracy might be seriously compromised and
the system would not fulfil end-user needs. On the other hand, the need of experts to
include these domain-specific customisations implies an increase in adoption cost.

2.3.6 RQ5. What should be improved in current state-of-
the-art so that decision makers can properly analyse
datasets by themselves?

Black-box components seem to be the more promising attempt to data mining democrati-
sation, since the intervention of experts, for those stages these approaches address, is not
required. Nevertheless, as previously commented, accuracy is sometimes compromised.
Therefore, it would be desirable to find techniques that help to automatically select and
configure the algorithms that best fit in with the particularities of each domain. Some
works, such as Reif et al. [137] or Billali et al. [21], offer some initial results in this
direction. These works belong to the area of metalearning (Brazdil et al. [25]), where
meta-prediction models are built to help select the best algorithms for an analysis.
Other possible solutions are autoconfigurable or parameter-less techniques (Feurer et al.
[58], Zorrilla et al. [177]), which try to tune their parameters automatically to offer
the best possible results. Nevertheless, more research work is needed in this area to
allow black-box components to be completely automated while avoiding any noticeable
accuracy loss, facilitating data mining democratisation.

Metalearning and autoconfigurable algorithms have provided interesting solutions
for some specific problems and areas, such as classification and regression problems, but



2.4 Chapter Summary 57

there is still a lack of generic solutions that can be universally applied. While we wait
for these global solutions, the possibility of tuning, with minimum expert intervention,
an initially generic application, such as development frameworks do, seems to be an
interesting and pragmatic solution to the accuracy versus cost trade-off. Therefore, the
design of generic analysis frameworks that can be instantiated in a concrete domain,
with a minimum expert intervention, should be studied more in-depth.

Most of the analysed work focus on data mining algorithm selection and execution,
e.g. Ankerst et al. [7], Reif et al. [137]. Only two primary studies, belonging to the
black-box components category, dealt with issues on the preprocessing stage (Bilalli
et al. [21], Kanter and Veeramachaneni [88]). This shows a lack of work addressing the
data obtention and preprocessing stages of the data mining process, even when these
stages have been demonstrated critical for the outcome of an analysis (Crone et al.
[38], Munson [119]). Therefore, more research work would be needed in these stages.

2.4 Chapter Summary
This chapter has presented a systematic review that aims to identify how far we are
from an effective democratisation of data mining. To achieve this goal, we followed the
review protocol proposed by Kitchenham and Carters [91], which we complemented
with the snowballing technique as proposed by Jalali and Wohlin [80]. In this review,
we considered as primary studies both research work and state-of-the-art tools. This
combined analysis gave us the complete picture of the field, including what is available
now and what new techniques should be expected to be adopted in the upcoming years.
During the review, 559 research papers and 138 tools were initially considered, from
which we selected 15 articles and 28 tools as primary studies, adding up to 43 (see
Table 2.9).

In terms of quantity, it seems that there is a considerable interest in the industry
in offering solutions for data mining democratisation. With respect to the academia,
although there are some publications in this field, most of them refer to solutions for very
specific problems, and as such they are difficult to generalize. The number of solutions
found that actually try to improve the situation of data mining democratisation from
a general perspective was not that large.

The selected primary studies were grouped in four different categories: (1) Workflow-
based applications; (2) Self-Service Business Intelligence (SSBI) solutions; (3) Black-box
components; and (4) Development frameworks. Each category was then analysed against
a well-defined systematic evaluation protocol.



58 Literature Review

The evaluation concluded that workflow-based applications are not designed to be
employed by non-expert users, whereas SSBI solutions offer limited support for advanced
data mining techniques at the time of writing this review. Black-box components are
perfectly usable by non-experts, but they only address some stages of the data mining
process, and might exhibit accuracy flaws. Development frameworks try to solve this
accuracy problem by means a controlled and reduced intervention of a data mining
expert, who would perform domain-specific customisations for a particular setting.

To sum up, it can be stated that, although there are some promising initial steps, we
are still far from data mining democratisation. During this thesis work, we developed
approaches that try to alleviate the following issues identified during this review:

1. Generic solutions, i.e., those that are completely domain-independent, might
exhibit accuracy problems, since they do not take into account the particularities
of each domain to configure their algorithms or to preprocess input data.

2. The issue of facilitating the data selection and data formatting stages is scarcely
addressed in the literature.

Next chapters describe these approaches.



Chapter 3

FLANDM: A Framework to
Develop DSLs for Data Mining

The availability of user-friendly interfaces is one of the challenges we identified for
the accomplishment of data mining democratisation. One key component of these
interfaces should be a seamless integration with the characteristics of a domain, such
as vocabulary or semantics. This way, the developed systems would feel as familiar as
possible to the end users.

Focusing on this challenge, we explored the idea of providing non-expert users with
DSLs to perform data mining analyses. These languages offer a query-based syntax to
specify a data mining analysis process over domain data. This syntax is abstracted of
any technical details of the executed data mining tasks, so that the queries that end
users have to formulate only contain high-level commands and terminology coming
from the application domain. We denoted these languages as DMDLs, from Data
Mining Democratisation Languages.

Although DMDLs seem to be a good solution for hiding analysis complexity,
determining whether it is worthy to develop a new DMDL for a given domain is
not trivial (Mernik et al. [116]). The definition and maintenance of such a language
involves a considerable effort which, although beneficial, might not be affordable
for some contexts. We experienced this cost issue when developing our first DMDL
prototype, which was devised for teachers to analyse information about their courses.

To alleviate the cost barrier of adopting a DMDL, we present FLANDM (Framework
to develop LANguages for Data Mining). This framework allows defining DMDLs for
concrete domains with reduced development effort. FLANDM offers a base DMDL
infrastructure, which is customized for each deployment. This infrastructure can be



60 FLANDM: A Framework to Develop DSLs for Data Mining

Q1 show_profile of Students;
Q2 show_profile of Students with courseOutcome=fail;
Q3 find_reasons_for courseOutcome=fail of Students;

Fig. 3.1 Examples of queries written with the educational DMDL.

also used to create prototype languages easily, so that the suitability of DMDLs can
be tested in new domains without the need of a hard commitment.

The rest of the chapter is structured as follows. Section 3.1 describes our mentioned
first prototype of a DMDL, from which important insights were gathered and applied
in the design of FLANDM. Section 3.2 gives an overview of FLANDM, presenting its
main components. Sections 3.3 and 3.4 describe the two main parts of the FLANDM
framework, namely, the queries specification and queries execution components. In
Section 3.5, we perform an evaluation of FLANDM to assess its cost reduction in
development and maintenance through the development of several DMDLs. Finally,
Section 3.6 summarizes the contents and contributions of this chapter.

3.1 Experience from an Educational DSL
Our first data mining democratisation language (DMDL) was a prototype applied to
the educational domain. In this domain, teachers want to get insights of their courses
by analysing the information stored in the e-learning platform, such as Moodle (Rice
[138]), that hosts each course. These insights could then be used to, for instance,
improve future course editions.

Two data mining processes were supported by this DMDL. The first one extracted
profiles from a data set allowing, for instance, to separate students into different groups
according to their characteristics. This way, a teacher might analyse what groups of
students typically fail an assignment, and what are the most prominent features of
each group. The second one tried to highlight the causes for a concrete event, such as
a student dropping the course.

Fig. 3.1 shows some examples of queries written in this DMDL. The first query
(Fig. 3.1, Q1) invokes the profile extraction process by using the show_profile

primitive, with the objective of grouping the course students according to the infor-
mation contained in a Students entity. This query might be used to know what
kind of students are enrolled in a course, so that it can be adapted to their particular
characteristics.



3.1 Experience from an Educational DSL 61

The second query profiles the students again, but just a subset of them (Fig. 3.1,
Q2). The with keyword is used to define a filter that limits the analysis to those
students who have failed the course (course_outcome = fail) in this case. The
objective of this query is to find behaviours that led to this negative result.

The third query aims to find causes that explain why a student fails a course (Fig. 3.1,
Q3). For this, the find_reasons_for primitive is used, where (course_outcome
= fail) is specified as the event to be explained.

To execute the queries that can be specified using this language, several prebuilt
data mining processes were created. These processes were coded as Java functions that
relied on algorithms from the Weka (Hall et al. [70]) data mining library, and they
were adequately optimised for the educational domain. Moreover, data sets for each
one of the domain entities that can be analysed using the DMDL were created. In this
case, data were extracted from different sources, such as databases or activity logs of
the e-learning platform. Then, these datasets were formatted in ARFF, the tabular
format used by Weka.

This DMDL was developed following a model-driven approach (Combemale et al.
[37], Kleppe [94], Völter et al. [163]). First, its abstract syntax was specified with an
Ecore metamodel (Steinberg et al. [152]). Then, a concrete textual syntax was defined
using Xtext (Eysholdt and Behrens [55]). The specified queries were transformed into
executable data mining processes by means of code generation templates (Syriani et al.
[155]). The code generation was performed with the Epsilon (Paige et al. [128]) model
management suite. The generated code basically configured and invoked the data
mining processes that were previously created.

Moreover, using the Xtext facilities, some additional features were added to the
language. First, to ensure that the introduced query was correct, a query validator
was developed. For instance, the domain entity name introduced in the query has to
be valid, this is, a mapping between the provided entity name and an available dataset
has to exist. Secondly, an autocomplete feature was created. This feature proposes
existing primitives and domain terms to assist the user while writing a query.

The development of this DMDL revealed an important problem of our approach:
its development might involve a considerable cost. However, we noticed that different
DMDLs could share some commonalities. Therefore, the development cost of a new
DMDL might be reduced by reusing components of previous ones. With this idea in
mind, we analysed how reusable the components of the DMDL for the educational
domain were. We noticed some of these components had problems to be reused because
of the following reasons:



62 FLANDM: A Framework to Develop DSLs for Data Mining

FLANDM

Data Mining Democratisation
Language (DMDL)

</>

Widok

-model: Model

+ustawModel(model: Model)
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokLiść

+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokKompozyt

+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

       1

0..n

Kontroler

-widok: Widok
-model: Model

+ustawModel(model: Model)
+ustawWidok(widok: Widok)
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler1

+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler2

+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

Model

-obserwatorzy: Widok[]

+dodajObserwatora(widok: Widok)
+usuńObserwatora(widok: Widok)
+powiadom()
+operacjaModelu()

KonkretnyModel1

+operacjaModelu()

KonkretnyModel1

+operacjaModelu()

10..n

1 1
posiada

   1

 1
posiada

1

   1

posiada

Kontroler

Widok Model

Business Questions Domain Datasets Metadata

describes

Fig. 3.2 Inputs and outputs of FLANDM’s DMDL generation process.

1. They were dependent on domain-specific elements.

2. They were highly coupled to other components, so they were affected by their
changes.

3. Some of the components were responsible of too many concerns, which made
them hard to modify.

To solve these shortcomings, the original components of the DMDL for the educa-
tional domain were refactored to create a more generic and modular infrastructure for
the development of DMDLs, denoted FLANDM. This infrastructure provides a set of
now generic components that can be easily configured to fit within a specific domain,
reducing development effort, and, therefore, development costs. Next section presents
this infrastructure.

3.2 Overview of FLANDM
Here we give an overview of the elements involved in the creation of a new DMDL when
using FLANDM. Figure 3.2 shows the general inputs and outputs of this framework,
which we describe below.

There are three required inputs: (1) the set of business questions that the syntax
of the resulting language should allow formulating; (2) a collection of datasets, i.e.,
two-dimensional data bundles, obtained from the domain data; and (3) some metadata
about the provided datasets that, as we will see, are formalised as a model instance
conforming to a specific metamodel.



3.3 Queries Specification 63

From these inputs, the framework helps define a new DMDL adapted to the specified
domain. The main benefit of this DMDL is that it can be used directly by domain
experts. For that benefit to be true, the generated language offers the following features:

• An easy-to-use syntax to specify analysis queries. This syntax only contains
high-level commands to indicate the analysis to perform; and vocabulary from
the domain metadata, which allow selecting the data to be used in an analysis.

• An execution system for translating the specified query into a data mining process
that tries to find an answer by studying the selected data. This translation
happens in the background, freeing the user from having to know any low-level
details of the involved data mining techniques.

The following sections describe how FLANDM helps in the definition of these two
features of a DMDL. These descriptions use the diabetes analysis case study presented
in Section 1.2.4 as running example.

3.3 Queries Specification
This section focuses on the development of a syntax and an editor for the specification
of queries. We follow again a metamodeling-based approach (Kleppe [94]), so the first
step involves the definition of an abstract syntax for the DMDL to be created. As
previously commented, the syntax of our DMDLs has elements of two different natures:
(1) commands that determine the analysis tasks to be performed, and (2) terminology
that refers to domain entities, or attributes of these entities, that is used as input for
the analysis task.

In the diabetes case study presented in Section 1.2.4, the entities would correspond
to the patients diabetes data, and their attributes would be the gathered indicators
and the final result of the test.

The first set of elements, i.e. the commands, are domain independent. However,
the second set, regarding domain terms, depends on each domain and, consequently,
needs to be modified each time a new DMDL is developed.

When trying to adapt the structure of the DMDL from the educational domain for
its reuse in the diabetes case study, we noticed that the management of the second set
of elements, this is, the domain terminology, was scattered across several components of
the original DMDL. More specifically, they were present in the validation module that
made sure the query introduced by the user was correct, and in the autocompletion



64 FLANDM: A Framework to Develop DSLs for Data Mining

Attribute
isClass : EBooleanObject = false

DoubleNamedElement
dataSourceName : EString
dslName : EString

Entities Entity

NominalAttributeNumericalAttribute Value

[0..*] entities

[0..*] values

[0..*] attributes

Fig. 3.3 Entities Metamodel

system that assisted the user during query formulation. We also realised that the core
logic of these components would not require modifications when used in a new domain.
The only requirement was to have some sort of access to the accepted terminology
from the domain.

To overcome this problem, the following solution was adopted in FLANDM. The
presence of domain information was limited to a single component, the entities model.
This model conforms to the corresponding entities metamodel, which is depicted in
Fig. 3.3. As it can be seen, a Domain contains a collection of Entity objects. Each
Entity has a name and a list of attributes. These attributes can be of different types,
such as numeric (NumericalAttribute) or categorical (NominalAttribute).
For the categorical attributes, also, the set of discrete values they might take is also
registered.

Named elements in the entities metamodel extend from the DoubleNamedElement
metaclass. A DoubleNamedElement has two linked names: a user-friendly name
for being shown in the language editor (the dslName), and the name that is used
internally and in the data sources (the dataSourceName). This double-named nature
allows an easy modification of concrete terms from the point of view of the editor,
without affecting the internal usage of those terms. For instance, if an entity of the
original diabetes data sources contains an attribute denoted as bmi, it could be given a
more descriptive name for its usage in the editor (e.g. bodyMassIndex) through the
dslName attribute, while avoiding the modification of the original sources (bmi would
be used internally through the dataSourceName attribute).

After creating this metamodel, the original components of the DSL for the educa-
tional domain were refactored to take advantage of it. As a result, the structure of



3.3 Queries Specification 65

Domain Entities
(model)

Abstract Syntax
(metamodel)

Concrete Textual Syntax
(grammar)

Domain Entities
(metamodel)

Validator Content
Assistant

Editor

renders conforms to

allows to write in requires requires
includes

includes

Fig. 3.4 Overview of FLANDM syntax and editor components.

Fig. 3.4 was obtained. It represents the components of FLANDM’s query specification
editor. Each one of these components are described in the following.

3.3.1 Domain Entities

According to the structure presented in the previous section, the first step to develop a
DMDL for a new domain involves the creation of an entities model that specifies which
entities are present in that domain along with the attributes these entities have. Unlike
in the original DMDL, this step does not impact other components of the language, as
the entities information is concentrated in a single model.

To identify and model these domain entities, we would need to perform a domain
analysis. Several methodologies currently exist for this task (e.g. Kang et al. [87], Čeh
et al. [178]). FLANDM does not impose the use of any of these methodologies, therefore,
DSL engineers might use their preferred one. In general, we have opted for using
well-known techniques of Domain-Driven Design (Evans [54]) when creating the entities
model of a new DMDL, since we have previous experience using them.

The defined entities model also determines the datasets that must be made available
for posterior analyses. Precisely, each entity in the model has to be linked to a concrete
dataset. The process of extracting and formatting domain data into these datasets
is outside of the scope of this work, as FLANDM does not offer any support for it.
This process is usually carried out by data engineers, who perform the data extraction
and cleaning through a set of low-level scripts (Witten et al. [167]). However, we
worked in a complementary language, Lavoisier, for providing non-experts with data
selection mechanisms over high-level models of the domain information. This language
is introduced in Chapter 4.



66 FLANDM: A Framework to Develop DSLs for Data Mining

Query

Command

ShowProfile

FindReasonsFor

AttributesRanking
 targetAttribute : Attribute

GetCommonPatterns Operation

BooleanExpressionEntityRef
name : EString

[1..1] event

[1..1] command [1..1] entity

[0..1] filter

Fig. 3.5 Excerpt of the abstract syntax provided by FLANDM.

Table 3.1 Description of the analysis commands offered by FLANDM.

Command Description Attributes

ShowProfile Organises the entity instances
on different groups with similar
characteristics.

-

GetCommonPatterns Looks for frequent patterns
present in the entity instances.

-

AttributesRanking Returns an ordered list of the
most strongly related attributes
to the one selected as target.

target: attribute to rank

FindReasonsFor Finds possible causes of the pres-
ence of the indicated event in the
data.

event: analysed phenomena

3.3.2 Abstract Syntax

Next, the abstract syntax for the DMDL must be defined. To support this step,
FLANDM provides a base abstract syntax that can be customised according to the
needs of each user. Fig. 3.5 shows an excerpt of this base abstract syntax. The Query
metaclass is the root element of this syntax. Each Query has a Command, which
indicates the analysis task to be performed.

FLANDM provides an initial set of commands. Table 3.1 shows a description
of some of these commands. As it can be observed, some commands require extra
arguments to work. For instance, the FindReasonsFor command requires the event to
be explained as an argument.

Therefore, when developing a new DMDL, we only need to select those commands
that correspond to the analysis task that experts of the target domain want to execute.



3.3 Queries Specification 67

It is worth to remember that these commands are domain independent, so they can be
easily reused across domains. If a new analysis task had to be incorporated to fit in
with the needs of a new domain, we would only need to create a new command that
extends from the Command metaclass.

Each query is executed over a domain entity. This entity is captured in the abstract
syntax through an EntityRef. An EntityRef contains a name that points to an
existing domain entity. Moreover, it is possible to focus the analysis on a specific
subset of the entity instances by providing a filter. A filter specifies that only those
instances of an entity that satisfy a boolean expression must be used as input for a
command.

In summary, to define an abstract syntax for a new DMDL, just the following
actions are required:

1. Select those commands that will be used for the analysis tasks.

2. Provide new commands that extend the Command metaclass, if new analysis
tasks are required.

3.3.3 Query Validator

We have seen that by using entity references, we decouple the syntax specification from
the domain entities. However, any text might be provided as an entity name, because
it is a free string field. The same happens in the case of other free fields of the syntax,
such as attribute names or values. Therefore, it can be the case that the user provides
a name that does not correspond to any existing domain term, or that they simply
misspell the name. To check that only valid domain terms have been provided, we
developed an external syntax validator. This validator makes some complementary
checks, in addition to the ones that ensure a query is syntactically correct. For instance,
it checks whether the name of an entity reference actually corresponds to an existing
domain entity. In addition, more fine-grained controls are also carried out, such as
that attributes specified in a filter really belong to the domain entity being analysed;
or, if an operation defined over an attribute makes sense regarding its type. As an
example, the validator would ensure that a greaterThan operator is applied only to
numerical attributes, indicating an error when it is employed with categorical ones.

This validator was implemented by using the facilities of Xtext [55], which is the
software employed in the concrete textual syntax. Xtext offers the possibility to define
check functions in Java or in the Xtend language, which are triggered over different
elements from the grammar. As an example, Fig. 3.6 shows a validation function that



68 FLANDM: A Framework to Develop DSLs for Data Mining

00  @Check
01  def checkEntityName(EntityRef entity) {
02    if (!entitiesProvider.entities.exists[
03          e | e.dslName.equals(entity.name)
04        ]) {
05      error("Entity with name '" + entity.name + 
06          "' does not exist",
07          QueryLanguagePackage::eINSTANCE.entityRef_Name)
08   }
09 }

Fig. 3.6 Check function which validates the name of an entity.

(1)⟨query⟩ ::= ⟨command⟩ ‘of’ ⟨entityRef ⟩
(2)⟨command⟩ ::= ⟨showProfile⟩
(3)| ⟨findReasonsFor⟩
(4)| ⟨attributesRanking⟩
(5)| ⟨getCommonPatterns⟩
(6)⟨entityRef ⟩ ::= ⟨name⟩ (‘with’ ⟨booleanExpression⟩)?
(7)⟨showProfile⟩ ::= ‘show_profile’
(8)⟨findReasonsFor⟩ ::= ‘find_reasons_for’ ⟨operation⟩
(9)⟨attributesRanking⟩ ::= ‘attributes_ranking_for’ ⟨attribute⟩

(10)⟨getCommonPatterns⟩ ::= ‘get_common_patterns’

Fig. 3.7 Base grammar offered by FLANDM for the DMDLs.

checks whether the provided entity reference actually corresponds to a domain entity
defined in the entities model. To do this, the function first looks for the provided
name among the existent entities in the model. This model is accessed through the
entitiesProvider object (Fig. 3.6, lines 02-04). If the name is not found, the
validator raises an error with a proper explanation message (Fig. 3.6, lines 05-07).

This validator has been implemented following a domain-independent approach.
It uses the domain entities model, but changes in this model does not affect to the
validator, as it accesses the model through the entitiesProvider element, which
is also generic.

3.3.4 Concrete Syntax

After defining the abstract syntax, a conforming concrete syntax must be provided. In
FLANDM, a concrete textual syntax is defined through an Xtext grammar (Eysholdt
and Behrens [55]). As with the abstract syntax, a base grammar provided as a base



3.3 Queries Specification 69

for new DMDLs. Fig. 3.7 shows an excerpt of this base concrete syntax in EBNF
(Extended Backus-Naur Form) format.

According to this syntax, a query starts by introducing a command keyword, which
determines the selected Command for the analysis. For instance, the find_reasons_for
keyword indicates the use of the FindReasonsFor command. Any extra required in-
formation for each command is specified next to the keyword, such as the operation
that represents the analysed event of the FindReasonsFor command. Then, the
information about the entity to be analysed is provided. First, its name, which is
a simple string literal, is introduced. Optionally, it is possible to define a filter by
using the with keyword plus a booleanExpression, as commented before (see
Figure 3.1).

Xtext allows the definition of new languages by extending a base one. This feature
is exploited in FLANDM, as new DMDLs extend the grammar of Fig. 3.7 for the
definition of their own concrete syntax when needed. It should be noticed that the
grammar of Fig. 3.7 is, thanks to the use of the entities model, domain-independent
again. Therefore, starting from this grammar, we can define the concrete syntax for a
new DMDL following an incremental approach (Fister et al. [59]). The steps would be
as follows:

• Provide new production rules, like the ones depicted in Fig. 3.7, Lines 7-10,
for the new commands that might have been added to the abstract syntax and
grammar, if any.

• Select those commands that are to be finally included in the new DMDL, by
modifying the grammar rule of lines 2-5.

3.3.5 Auto-Completion

Finally, to make the generated editor more user-friendly, an auto-completion assistant
was created. This assistant provides term proposals to the user when writing a query.
It was again developed using the Xtext facilities.

As in the case of the validator, we refactored this module from its original form, so
that it accesses the domain entities model, but changes in this do not affect its logic,
which makes it domain independent. Therefore, this feature can be reused without
changes in different domains, and so it was for the DMDL for the diabetes data.

As an example, Fig. 3.8 shows the function that suggests attribute names when the
user wants to define a filter over an entity. For that purpose, this function first looks



70 FLANDM: A Framework to Develop DSLs for Data Mining

00 override public void completeAttribute_Name(EObject model,
01       Assignment assignment, ContentAssistContext context,
02       ICompletionProposalAcceptor acceptor) {

03     val entity = entitiesProvider.findEntityByModel(model)
04     if (entity == null) { return }
05     for (attribute : entity.attributes) {
06       acceptor.accept(createCompletionProposal(
07           attribute.dslName, context))
08     }
09 }

Fig. 3.8 Assistant function that suggests attributes of an entity.

for the entity in the model (Fig. 3.8, line 03), and then transverses its attributes list
generating a proposal for each one of them (Fig. 3.8, lines 05-08).

3.4 Queries Execution
The execution of DMDL queries is the step where these queries get a semantic meaning.
From the different ways of formalizing semantics described by Kleppe [94], we make use
of the translational approach, in which programs of the developed DSL are translated
to a language with well-defined semantics, such as C or Java. In our case, DMDL
queries get a meaning by employing them to generate analysis scripts that make use of
a data mining library.

The translation process provided by FLANDM is the result of refactoring the execu-
tion components of the original educational DMDL. As a running example to illustrate
the elements described in this section, we use a query from the DMDL for diabetes data:
find_reasons_for test_result = positive of Diabetes_Results.
This query looks for causes of obtaining a positive result in the test according to the
information captured from the patients.

Each query of the educational DMDL (see section 3.1) was computed by trans-
forming it into a data mining process and executing that process. Specifically, queries
were converted into Java code through code generation templates. These templates
worked in a one-step-does-all monolithic fashion, without a clear separation between
transformation stages. This monolithic structure, although simple and straightforward,
hinders reusability. Precisely, this structure implies that code generation templates are
dependent on the following components: (1) the language syntax, which may vary for
different DMDLs; (2) domain specificities, as the template has to know how to obtain
the data associated to each domain entity; and (3) the employed data mining libraries,
because the code generation targets a concrete analysis solution, e.g. Weka.



3.4 Queries Execution 71

Data
Procedure

(metamodel)

Abstract
Syntax

(metamodel)

Conforms to Conforms to

Query
(model)

Data 
Procedure
(model)

Xtext EGLETL

Generic
Transformations

Domain-Specific
Transformations

Extend

M2M
Generation
Templates

M2T

New Templates

+

Data Mining
Platforms

Uses

Executable
Code

Weka

Fig. 3.9 Two-step query transformation process: a model-to-model (M2M) transforma-
tion is followed by a model-to-text (M2T) code generation phase.

It should be also noticed that the low-level data mining processes that are finally
executed for computing each command might vary depending on the application domain.
For instance, the ShowProfile command might be translated into the execution of
the Xmeans (Pelleg and Moore [131]) clustering algorithm, whereas for other domains,
other algorithms, such as DBSCAN (Ester et al. [53]), might provide more accurate
results. Moreover, it might be the case that a switch in the underlying data mining
platform is desired. For instance, for some algorithms, we might prefer to rely on
RapidMiner instead of Weka.

The original monolithic structure caused that the code generation templates were
affected by all the changes described above. To avoid this problem, when developing
FLANDM, we separated the transformation process into two stages, as depicted in
Fig. 3.9. Instead of directly generating Java code from the introduced query, we
first transform each query into an abstract data mining task. We developed a Data
Procedure metamodel for the specification of this kind of tasks. This metamodel
allows the definition of platform-independent data-mining processes. Then, these
processes are transformed into code that invokes algorithms of one or more data
analysis platforms, such as Weka or RapidMiner. As in the case of the educational
DMDL, this transformation process is completely transparent to the final user, who
only introduces the query and receives the results of computing it.

The data procedure metamodel and the two new transformation steps are described
in the following.

3.4.1 Data Procedure Metamodel

The metamodel diagram is shown in Fig. 3.10. A Procedure defines an abstract data
mining task. All procedures operate over a DataSource, which is the equivalent to



72 FLANDM: A Framework to Develop DSLs for Data Mining

Procedure
name : EString
attributesToRemove : EString

DataSource
name : EString
 filter : BooleanExpression

Clustering

XMeansKMeans
numClusters : EInt

Classification
className : EString

J48Rules
classValue : EString
minClassSupport : EDouble = 0.05

Analytical

FullAttributeCorrelation
maxAttributes : EInt = -1
targetAttributeName : EString

RulePatterns
support : EDouble = 0.05
confidence : EDouble = 0.7

AprioriRules

[1..1] dataSource

Fig. 3.10 Data procedure metamodel.

the Entity metaclass of the languages’ abstract syntax metamodel (Fig. 3.5). This
procedure metaclass is the root of a hierarchy that represents data mining methods.
Intermediate metaclasses group data mining techniques of the same family, such as
classification or clustering, and they contain elements that are shared by all members
of the family. For instance, the Classification metaclass, which represents the
family of all classification methods, has an attribute named className, that identifies
the attribute of an entity that is used to label its instances. The leaves of this hierarchy
represent concrete data mining algorithms. Each leaf can have extra attributes that
correspond to parameters for that algorithm.

For instance, let us consider the J48Rules procedure, which is a classifica-
tion one. It requires the provision of two extra attributes: classValue and
minClassSupport. This procedure constructs a J48 decision tree (Quinlan [135])
over the entity’s class attribute specified by the className field, which is inherited
from the Classification metaclass. Then, the procedure traverses the branches of
this tree and selects those ones that lead to a concrete value of the class, determined
by the classValue attribute. Finally, the selected branches are formatted as if-then
rules and shown to the user. It is possible to filter out those rules that do not represent
a solid enough portion of the instances set. This filtering can be accomplished through
the minClassSupport attribute, which has a default value of 0.05. This value
indicates that a rule has to be applicable to at least 5% of the entity instances in order
to be shown in the results.



3.4 Queries Execution 73

3.4.2 Query to Data Procedure Transformation

The first step in the transformation process is the translation from a query specification
to a platform-independent data procedure. The input of this translation is the model
of the introduced query (Fig. 3.9, left). This model conforms to the abstract syntax
metamodel described in the previous section, and it is generated by Xtext after parsing
the instruction text written by the user in the query editor.

This translation is achieved by means of a model-to-model (M2M) transformation.
The transformation rules are specified with the Epsilon Transformation Language
(ETL) (Kolovos et al. [99]). FLANDM offers a set of generic base rules that transform
each one of the provided commands into a default data procedure. These default
procedures can be modified by extending and/or overriding the base rules, either to
tune some parameters of the default procedures, or to directly select other procedures
that might be better adapted to the particularities of a specific domain.

Fig. 3.11 shows one of these base rules. In this case, according to its guard
(Fig. 3.11, line 04), the rule transforms queries employing the FindReasonsFor

command into invocations to the J48Rules procedure (lines 01-02). This rule extends
a more abstract Query2Procedure rule (line 03), which sets the attributes of the
Procedure parent class, specifically, its DataSource attribute. Finally, the rule
assigns values to the className and classValue parameters of the J48Rules
procedure (lines 05-06). These values are extracted from the event attribute of the
FindReasonsFor command. For this case, the minClassSupport attribute is left
unmodified, so its default value of 0.05 will be used. The resulting data procedure
model is shown in the right of Fig. 3.11.

In summary, FLANDM offers a set of M2M transformation rules for the query to
data procedure translation step. These rules are domain-agnostic, which may induce
a less than adequate accuracy of the results for some specific contexts, such as what
happens with the Oracle Predictive Analytics stored procedures (Campos et al. [28]).
Nevertheless, this is a known issue in the data mining field (Wolpert and Macready
[172]). Therefore, this step of the queries execution was designed with extensibility
and modifiability in mind, as the provided rules can be adapted, with the help of an
expert, to any specificities of the target domain for achieving better results.

3.4.3 Data Procedure to Code Transformation

The last step of the query transformation process involves a model-to-text (M2T) trans-
formation phase, implemented by code generation templates specified with the Epsilon



74 FLANDM: A Framework to Develop DSLs for Data Mining

:DataSource

name = Diabetes_Results

:J48Rules
className = test_result
classValue = positive
minClassSupport = 0.05

dataSource

00 rule FindReasons
01  transform query : query!Query
02  to j48Rules : dataProcedure!J48Rules
03  extends Query2Procedure {

04  guard : query.command.isTypeOf(query!FindReasonsFor)

05  j48Rules.className = 
 query.command.event.attribute.name;

06  j48Rules.classValue = 
      query.command.event.comparison.value.name;
   }

Fig. 3.11 Left: M2M transformation rule of a query in a J48Rules data procedure
model; right: resulting J48Rules model of the M2M transformation over the example
query.

Generation Language (EGL) (Rose et al. [141]). These code generation templates con-
vert each data procedure specification into code for invoking a proper implementation
of the algorithm represented by the procedure, which are typically provided by a data
analysis platform.

As in the case of the M2M transformation, FLANDM offers a set of M2T genera-
tion templates. It should be noticed that these templates just transform a platform-
independent specification of a data procedure into code. Since these platform-independent
specifications are precisely detailed, no new decisions depending on the domain need
to be adopted. Thus, these templates are domain-independent and can be reused with
no changes in different domains.

The Java code obtained when performing the M2T transformation from the data
procedure model depicted in Fig. 3.11, right can be seen in Fig. 3.12, left. The literal
values appearing in the code are obtained from the data procedure model obtained
through the M2M transformation. For the sake of simplicity, the concrete EGL
templates are left out of the example, as they contain some burdensome implementa-
tion details that are unnecessary and detrimental for the general explanation of the
translation. In this piece of code, firstly, the selected dataset is loaded as a Weka’s
Instances object ((Fig. 3.12, lines 01-02). Then, the attribute test_result is
selected as class attribute (from the procedure’s className), and a J48 tree is built
over the instances data (lines 03-05). Classification rules are extracted from this tree
and, from those, the ones which have a positive value in the consequent and a
high-enough class support are selected (lines 06-08). For these selections, the attributes
classValue and minClassSupport of the J48Rules procedure are employed.
Finally, the resulting rules are shown to the user (line 09).



3.5 Evaluation 75

   // data obtention
01 DataSource source = new DataSource(
       "data/diabetesResults.arff");
02 Instances ins = source.getDataSet();
03 ins.setClass(ins.attribute("test_result"));
   // rules generation
04 J48 j48 = new J48();
05 j48.buildClassifier(ins);
06 RuleSet ruleSet = j48.toRules();
07 ruleSet = ruleSet.filterByConsequent("positive");
08 ruleSet = ruleSet.filterByClassSupport(0.05);
   // results visualization
09 RulesVisualizer.show(ruleSet);

IF (body_mass_index > 29.9 AND 
    plasma_glucose_concentration > 157)
THEN result = tested_positive

Support: 11.979%, Confidence: 86.957%

Fig. 3.12 Left: resulting code of the M2T generation applied over the example procedure
model; right: an example of the rules obtained when running the generated code.

In Fig. 3.12, right we can see one of these rules. The rule indicates that if
the plasma_glucose_concentration and body_mass_index indicators of the
patient exceed some limit, there is a high probability that the result of the diabetes
test is positive. For each rule, metrics about its support and confidence are provided.
The support indicates that these excessive indicator values happen in about 12% of the
analysed data instances, of which, in ∼87% of the cases, the test result was positive.
This information could be used by clinicians to preventively perform a diabetes test to
those patients who show the mentioned indicator excesses in regular check-ups.

Concluded the definition of FLANDM’s structure, next section evaluates the benefits
of using FLANDM through several language definitions.

3.5 Evaluation
The main objective of FLANDM is to reduce the development costs of DSLs for data
mining democratisation (DMDLs). This section evaluates how far this objective has
been satisfied. Moreover, it also evaluates a second benefit, which states that the use
of FLANDM also reduces the maintenance costs of these DMDLs. The two issues were
measured separately. First, we analysed how FLANDM helps to reduce development
costs by the definition of four DMDLs with this framework. Next, the contribution
of FLANDM in the reduction of maintenance costs was evaluated by analysing how
these DMDLs were affected by several scenarios, which required to perform some
modifications on the languages. The four DMDLs developed as case studies, the
evaluation process, and its results are described in the following sections.



76 FLANDM: A Framework to Develop DSLs for Data Mining

3.5.1 Case Studies

This section describes the four DMDLs that we created to evaluate our work. We
relied on third-party case studies coming from heterogeneous domains. This should
help to avoid bias and to increase the external validity of our analysis, as well as to
demonstrate that FLANDM is applicable to different domains.

The four DMDLs that were developed during this evaluation process are:

1. A language for the educational domain, which analysed data stored in e-learning
platforms (Section 3.1).

2. A language for the medical domain, which analysed results of diabetes tests
(Section 1.2.4).

3. A language for the business management domain, which analysed business reviews
coming from the Yelp1 platform.

4. A language for the public administration domain, which analysed data about
visa request processes of the American Department of Labour.

The first and second case studies have already been introduced in this chapter (see
Sections 3.1 and 1.2.4, respectively).

The third language was designed to analyse data gathered from the Yelp platform.
Yelp provides a business review service for customers to write their opinions and for
owners to describe and advertise their businesses. Yelp has proposed different data
analysis challenges2 in the last few years. In each challenge, some actual data is made
publicly available, and a contest is organised to discover hidden insights in these data
that might be of interest for Yelp. Available data include information about users,
business reviews, businesses features (e.g. Wi-Fi, vegan food, parking), among others.
The DMDL aims to provide a high-level language to answer some of the questions
proposed in these contests.

The fourth language analyses data released by the American Department of Labour
3 about the processing of work visa requests it receives. There are different foreign
workers programs, which vary in aspects such as the duration (permanent or temporary),
the foreign worker’s country of origin, or the degree of specialization of the work. For
instance, the H-1B visa allows specialized foreign workers to obtain a temporary permit.

1https://www.yelp.com/
2https://www.yelp.com/dataset/challenge
3https://www.foreignlaborcert.doleta.gov/performancedata.cfm

https://www.yelp.com/
https://www.yelp.com/dataset/challenge
https://www.foreignlaborcert.doleta.gov/performancedata.cfm


3.5 Evaluation 77

Q1 attributes_ranking_for stars
     of Businesses
     with city equals Edinburgh 
      and stars <= 3;

Q2 find_reasons_for status equals denied
     of H-1B_Visas
     with year = 2017;

Q3 get_common_patterns
     of H-1B_Visas 
     with status equals certified
       or status equals certified-withdrawn;

Fig. 3.13 Queries of the business reviews (Q1) and visa approval (Q2, Q3) DMDLs.

Among other aspects, this visa requires an approved sponsoring employer prior to the
filing of the petition. Each petition follows different status updates until it reaches a
final outcome. The DMDL aims to find information about, for instance, what makes a
visa request to be approved or denied.

To clarify how the third and fourth DSLs work, and since they have not been
introduced previously, Figure 3.13 shows some examples of queries written with these
DSLs.

The first query aims to find those business features that have a higher influence on
the stars rating of the businesses from Edinburgh with a rating lower or equal to three
stars. For this purpose, the AttributesRanking command is used. This command
returns a list of attributes ordered by their correlation strength with the evaluated
attribute (stars).

The second and third queries analyse the H-1B_Visas entity, which represents a
specific type of work visa. The second query tries to find causes that made petitions in
2017 to be denied. The third query seeks for patterns in those petitions that either
were approved (status = certified) or, despite its approval, were not finally completed
(status = certified-withdrawn).

The order in which these DMDLs were developed is the same as the one used for the
above description. This order has an influence on the development effort of each DSL,
as those languages that were developed later could reuse elements that were created for
prior DSLs. For instance, the first two DSLs made use of the initial ShowProfile
and FindReasonsFor query commands. For the third DSL, two new commands,
AttributesRanking and GetCommonPatterns, were created. The fourth DSL
also made use of these commands, but as they were created before, it was possible to
simply reuse them, which decreased its development costs.



78 FLANDM: A Framework to Develop DSLs for Data Mining

Table 3.2 Parameters of the simple cost productivity model.

Name Description
C Obtained cost of developing a product through component reuse, relative

to the development of the complete product from scratch.
R Percentage of the original effort for developing a product that is avoided

thanks to component reutilisation.
b Cost of integrating a reused component in a product, relative to the

development of that component from scratch.

3.5.2 Reduction of Development Costs

The main contribution of FLANDM is a reduction in development costs of a DMDL.
This reduction is achieved thanks to the reutilisation of different modules, such as the
autocompletion feature, the external syntax validator, or the code generation templates,
among others.

This section measures the effectiveness of this reutilisation, regarding development
effort, of the different modules provided by the FLANDM framework. To accomplish
this objective, we relied on a third-party cost model for software applications based on
reutilization. This model is described in the next section.

Reusability Measurement Method

As a measure of component reusability, we relied on the cost productivity model
provided by Gaffney and Durek [62]. These authors provide a set of models to measure
different issues of component reutilisation, such as forecasting when the effort of
building a reusable component will pay-off. From this set of models, we used the
simple model, which was the one that best fitted with our needs. The simple model
aims to estimate what is the reduction cost obtained when some parts of a software
application are built from reused components, which is how our DMDLs are developed.
This simple model is based on several parameters, which are described in Table 3.2.

Parameter C aims to measure reusability effectiveness when developing a new
product. A value of C = 1 implies that the obtained cost through reutilisation of
components is the same as the cost of developing that product without reusing elements,
this is, as a completely new product. Therefore, reutilisation does not provide any
benefit from a cost point of view in this case. However, reutilisation might provide other
benefits, such as lower presence of bugs. When C ≤ 1, reutilisation is cost-effective,



3.5 Evaluation 79

whereas C > 1 indicates the opposite. Therefore, we are interested in obtaining a C

value as low as possible.
The parameter b measures the required effort to integrate a reused component in the

new system. Software modules can rarely be reused as they are, as some customisations
and integration code needs often to be written. When b = 1, the effort required to
integrate the components would be equivalent to developing those components from
scratch. A value of b < 1 indicates that the integration of a component was cheaper
than developing it, whereas b > 1 means the opposite. Thus, we are interested again
in getting values of b ≤ 1 and as low as possible.

R specifies which portion of the development effort required for building a product
from scratch can now be saved due to component reutilisation. For instance, if we are
reusing a couple of components whose development effort, if these components were
developed from scratch, is 20% of the whole product, then R = 0.2.

C = (1−R) · 1 + R · b = (b− 1) ·R + 1 (3.1)

With these definitions, to calculate the value of C, Gaffney and Durek define
the equation 3.1. In this equation, “1” represents the cost of developing a product
completely from scratch. So, (1−R) · 1 represents the cost of developing those parts
of a software product that are new, whereas R · b adds the cost of integrating the
components that are reused.

To clarify how this formula works, let us suppose we are developing an application
where 50% of their development effort can be saved by reusing some prebuilt components.
In addition, let the cost of integrating these components be a half of the cost of
developing them from scratch. These premises imply that R = 0.5 and b = 0.5, so
C = 0.75, which means we have saved a quarter of the whole development effort thanks
to saving a half of a half of the original development effort.

For the sake of simplicity, development effort is measured in lines of code (LOC).
The use of this metric is debatable, but it is often, as in this case, the best available
one without compromising objectivity (Boehm [22]).

In the calculations of the cost model parameters, we consider only in the implemen-
tation level of the development process of a DMDL. For the purpose of simplicity, other
stages, like requirements elicitation, architecture design or testing are not considered.
To estimate the effort associated to these stages can be highly complex and it is beyond
the scope of this work.

To calculate the value of R, we firstly analysed what stages of the development
process of a DMDL can be skipped by reusing componentes provided by FLANDM.



80 FLANDM: A Framework to Develop DSLs for Data Mining

Table 3.3 Stages of a DMDL development using FLANDM with their estimated weights.

Step Name ∽Weight
S1 Domain Definition 45 %
S1.1 Data Acquisition 35 %
S1.2 Domain Entities Definition 10 %
S2 DSL Editor Development 30 %
S2.1 Abstract Syntax Definition 10 %
S2.2 Complementary Syntax Validations 5 %
S2.3 Concrete Syntax Definition 10 %
S2.4 Auto-complete Development 5 %
S3 Query Execution 25 %
S3.1 Query Translation to DM processes 10 %
S3.2 Platform Code Generation 15 %

Then, we provided a rough estimation, based on our experience when developing
DMDLs, of the percentage of the global development effort associated to each stage.
Table 3.3 shows these development stages and their corresponding estimations.

As it can be observed, the first step, S1, is domain-specific. Consequently, its
artefacts can be hardly reused across different domains. For instance, the data
acquisition code for retrieving data from an e-learning platform and formatting it
according to the ARFF format is specific for the educational DMDL, and it is not
expected that it can be reused for other DMDLs. The same argument applies to the
specification of the domain entities. For the remaining stages, S2 and S3, FLANDM
provides components that can be reused as they are, or adapted depending on the
particularities of each domain.

So, we consider the code produced in the stage S1 as new code that needs to
be written to create a DMDL, whereas stages S2 and S3 represent code that comes
from reutilization. This means that the development effort associated to stage S1

would be the (1−R) term of the Gaffney and Durek’s cost model, and the sum of the
development effort of the other stages would be R. Therefore, R = 0.55 in our case,
according to the weights of Table 3.3.

We based the calculation of b on three parameters, which are described in Table 3.4.
MLOC (Modified Lines of Code) represents the lines of code that need to be modified
when reusing a FLANDM component. For instance, some descriptions provided of the
content assistant are often modified to adapt them to the particularities of each domain
and thus become more user-friendly. CLOC (Customisation Lines of Code) counts



3.5 Evaluation 81

Table 3.4 Lines of code (LOC) parameters used for the definition of b.

Name Description
MLOC Modified lines of code when adapting a FLANDM component to a

new domain.
CLOC New lines of code written to customise a FLANDM component for

the new domain.
TLOC Effective total lines of code of a component.

how many lines of code were added to a FLANDM component for its usage in a new
domain. For instance, to update how queries are translated into a data mining process,
we need to write an ETL rule that overrides the default one. This code is considered
customisation code. Similarly, if a new code generation template is added to support a
new data mining platform, the whole template is treated as customisation code.

Finally, TLOC (Total Lines of Code) counts the lines of a FLANDM component
that are effectively used in DMDL. It should be taken into account that some FLANDM
components might have more lines of code than the ones that are actually used. For
instance, the query execution component might have code generation templates for
several target platforms, but just one platform is typically used. Therefore, to avoid
noise, we just count those lines of a component that are really executed in a DMDL.

b = MLOC + CLOC

TLOC
(3.2)

Considering these premises, b is defined as in equation 3.2. This formula states
that the relative effort for integrating a component or a set of components can be
calculated as the sum of LOC that have been modified or newly written to adapt
these components (MLOC + CLOC), divided by the total number of LOC of those
components that are actually executed in a domain (TLOC). This is, if a quarter of
the code of a component is modified or customisation code, b = 0.25, which means that
the effort of integrating this component has been a quarter of the effort of developing
it.

In our case, values of b were calculated for each development step where FLANDM
components were reused. Then, a global b value was provided by calculating the
weighted average of the b values obtained per step. As weights for the average, the
estimated percentage of development effort provided in Table 3.3 were used.



82 FLANDM: A Framework to Develop DSLs for Data Mining

Table 3.5 Values of the b parameter for each step, weighted averages of b for each
DMDL (bSavg) and final relative cost (C). Last row shows the average values of the
four DMDLs.

bS2.1 bS2.2 bS2.3 bS2.4 bS3.1 bS3.2 bSAvg
C

DSL1 0.000 0.046 0.070 0.071 0.150 0.011 0.054 0.480
DSL2 0.000 0.046 0.070 0.071 0.150 0.011 0.062 0.484
DSL3 0.083 0.046 0.148 0.107 0.218 0.183 0.143 0.529
DSL4 0.000 0.046 0.065 0.107 0.161 0.010 0.070 0.489
Avg 0.021 0.046 0.088 0.089 0.170 0.054 0.082 0.495

2.
1

2.
2

2.
3

2.
4

3.
1

3.
2

A
vg

Step

0.000
0.075
0.150
0.250

0.500

0.750

1.000

V
al

ue

Integration cost b (lower is better)
bdsl1
bdsl2
bdsl3
bdsl4
bdslAvg

Fig. 3.14 Relative Integration cost (b) per development step of each implemented case
study, plus its weighted average value (Avg b). The dashed line at value 1 specifies the
critical point above which reutilisation is not cost-effective.

Reusability Results and Discussion

Table 3.5 shows the gathered results after developing the four DMDLs previously
commented. This table contains the values of b per development step of each DMDL.
Besides, we provide the global value of b for each DMDL (bSAvg

), computed as the
weighted average of its indivual b values; and C, which indicates the relative cost
of developing each DMDL, as compared to developing it completely from scratch.
Figures 3.14 and 3.15 depict these values graphically, so that they are easier to compare
and visualise.

Figure 3.14 shows the values of b, i.e. the relative integration cost, per each step
of the development process. The dashed line in the top of this graph indicates the



3.5 Evaluation 83

critical case where b = 1. In this case, reutilisation would not be effective from a cost
point of view. Thus, we are interested in getting values of b placed as below as possible
of this reference value. These values of b are shown for each developed DMDL (e.g.
bDSL1 − bDSL4). Besides, the average value of these bs per step (bDSLAvg

) is depicted.
Finally, the family of bars at the right (Avg) shows the global value of b for each DSL
and the global average value of the experimentation.

These data show a considerable benefit from component reuse. The averaged
global integration cost was 8.2%, which indicates that the effort for integrating reused
FLANDM components was only an 8.2% percent of the effort that would have been
required if developing these components from scratch. This is, approximately 90% of
the development effort was saved. These results show that FLANDM components are
domain-independent enough to be integrated in new domains with very low effort.

As a consequence of this low integration effort, the averaged DMDL relative cost C

was 49.5%. This implies that, due to the use of FLANDM, the development cost of a
new DMDL is reduced, in average, by half. We discuss these results more in-depth in
the following.

With respect to abstract syntax definition (S2.1), the four DMDLs used the ab-
stract syntax provided by FLANDM with no major modifications, which generated
a low relative cost for its integration (Avg(b2.1) = 2%). The graph exhibits a pat-
tern that repeats in other steps. The highest b value appears in the third language
(bDSL3 = 8.3%). In this language, two new commands, i.e. GetCommonPatterns

and AttributesRanking, were introduced. In the case of the abstract syntax, the
Command metaclass of the abstract syntax had to be extended twice to create these
commands. The fourth DSL also used these commands, but as they were already
present in the abstract syntax, it could simply reuse them. Due to this reuse, the
integration cost of the fourth DSL was low again. This phenomena reveals that b will
decrease as the FLANDM framework grows and more and more elements can be reused.
Therefore, cost effectiveness of FLANDM usage is expected to improve over time.

The integration effort of the syntax validator (S2.2) exhibited the advantages of
isolating domain elements in the entities metamodel. In the four cases, the base
complementary syntax validator could be reused practically as is, which made its
integration cost almost inexistent. About 95% of the original development effort was
saved (Avg(b2.2) = 4.6%).

The integration cost of the concrete syntax (S2.3) was similar to the cost of the
abstract syntax. The base grammar provided by FLANDM was adapted to each case
study with little difficulties. Although the averaged cost was higher (Avg(b2.3) = 8.8%)



84 FLANDM: A Framework to Develop DSLs for Data Mining

than in the abstract syntax, it remained consistently low across all the DMDLs, with the
exception of the third language, because of the newly added commands, as previously
commented.

Once again, the isolation of domain-specific elements highly benefited the integration
cost of a component, in this case, the content assistant module (S2.4). As in the case
of the syntax validator (S2.4), practically no changes were required (Avg(b2.4) = 8.9%).
The only changes that were performed between domains, apart from basic configurations
to glue components, took place in the commands proposal provider. When suggesting
existing commands to use in a query, the assistant also shows a brief description of
what each command does. To improve usability, these descriptions were adapted to
better fit in with each domain.

Finally, regarding the execution of queries (steps S3.1 and S3.2), the usage of a data
procedure metamodel as intermediate representation allowed the reuse of both default
transformation rules and code generation templates across domains. However, some
extra work was required to adapt the analysis for each domain.

Specially, this can be noticed in the values for step S3.1, i.e. the transformation of
the query into an abstract data procedure. In this step, data mining processes are
often adapted to improve accuracy according to the specificities of each domain. This
adaptation provokes that this step had the highest integration costs (Avg(b3.1) = 17%)
when compared with other steps. However, this value, from a general perspective,
remains low, indicating that components for this step can be reused with an integration
effort of 20% of the cost of developing them as completely new modules. The code
generation templates (step S3.2) were free of these adjustments, and contained only
target platform details. As there was no need to change the target platform, these
templates could be reused with less effort.

The phenomena related to the addition of new commands appeared in these steps
again. In DMDLs 1 and 2, two data procedures and its corresponding templates offered
by FLANDM were reused (Xmeans and J48Rules specifically). For DMDL 3, two new
analyses were introduced (FullAttributeCorrelation and AprioriRules) to
give response to the newly defined commands. This increased the integration cost
(bDSL3,S3.1 = 21.8%; bDSL3,S3.2 = 18.3%), as the framework had to be customised to
incorporate two new data procedures, plus their corresponding ETL rules and code
generation templates. However, in the case of DMDL4, these new templates were
reused, and the b values improved accordingly (bDSL4,S3.1 = 16.1%; bDSL4,S3.2 = 1%).

Figure 3.15 shows the relative development cost for each DSL. As before, the critical
point above which reutilisation would not be cost-effective, i.e. C = 1 is depicted as a



3.5 Evaluation 85

Dsl1 Dsl2 Dsl3 Dsl4 Avg
0.00

0.25

0.50

0.75

1.00

V
al

ue

Development cost C (lower is better)

Fig. 3.15 Development cost C of the implemented case studies, along with the average
value (Avg). Dashed line at value 1 marks the cost of creating each case study from
scratch.

dashed line. The obtained results were very stable, around the 50% level. In the third
case, which incorporated more changes, the relative cost was higher. However, this
cost decreased again for the fourth language, showing that the opportunities of reuse
when developing new DSLs increase as the FLANDM ecosystem grows.

These results show very good values taking into account the proportion of the final
product that was actually reused. We were providing a framework for reusing the
domain-independent components of a DMDL, whereas for the domain-specific part we
did not provide any specific support. This means that we were providing support to
55% of the development effort, and achieving a relative cost reduction of ∽50 %, which
implies that the integration costs were really low.

Nevertheless, as the reader might notice, the value of R might vary depending on
domain size, which would affect the final C. To clarify this issue, let us suppose the
following two extreme cases. First, if we needed to analyse a toy domain comprised
of just two small entities and whose data are stored in two clearly identified tables
of a relational database, the effort associated to domain data definition might be
really low. On the other hand, if we needed to deal with a huge domain containing
hundreds of entities, whose data are retrieved using complex web scrapping techniques,
the effort of domain data definition could be so high that the benefits of reusing the
domain-independent part might be not noticeable.

To illustrate this issue, Fig. 3.16 shows the relation between R and C based on
the Gaffney and Durek’s cost formula [62], and with the value of b fixed at 8.2%, the
average value of our case studies. The point of this function corresponding to our
case, where R = 0.55, is highlighted with a triangle. The points marked with a circle
and a square represents two examples of cases the domain complexity increases and
decreases. If the relative effort associated to the domain-specific part increased to a



86 FLANDM: A Framework to Develop DSLs for Data Mining

0.00 0.25 0.50 0.75 1.00
Proportion of reuse (R)

0.00

0.25

0.50

0.75

1.00
Co

st 
(C

)

C = 1 0.918 R
R = 0.40, C = 0.63
R = 0.55, C = 0.50
R = 0.70, C = 0.36

Fig. 3.16 Relation between DMDL cost C and proportion of reuse R, for b = 8.2%.

60%, we might yet obtain a 27% of cost reduction, whereas if this domain-specific effort
decreased to a 30%, we might save a 64% of the original development effort.

Therefore, it can be concluded that FLANDM reduces the cost of developing new
DMDLs, by providing components that can be reused across different domains with low
integration costs. These benefits might vary depending on the domain complexity but,
even for relative large domains, it can still provide some noticeable benefits. Threats
to the validity of these conclusions are analysed in next section.

Threats to validity

There exist some internal and external threats to the validity that might affect the
previously discussed results. This section analyses how we have managed these threats.

Internal Threats to Validity
These threats are related with the method we used to measure reusability and some

of the decisions we have adopted. First of all, we might have used an inaccurate cost
model that biased our results. To avoid this, we have relied of a mature and well-known
cost model, which have been widely used in the literature (e.g. Adams et al. [2], Ajila
and Wu [3], Johar et al. [81], Kim et al. [90]).

Secondly, it can be argued that the weights we have provided for the relative effort of
each stage of the development process of a DMDL (Table 3.3) are rough and inaccurate
estimations, that might present higher variations. These weights affect to the values of
R and b.



3.5 Evaluation 87

In the case of R, as previously stated, this variation might be true due the relation
of efforts assigned to the domain-specific and the domain-independent stages of the
DMDL development process. Due to this fact, we have stated in the previous section
that the value of C might vary depending on the domain complexity and size, which
might make the benefits of our approach negligible for very large and complex domains.

Nevertheless, much lower variations are expected for the relative weights of each step
of the domain-independent stages, i.e. DSL Editor Development and Query Execution
(see Table 3.3), which influences the value of b. These weights vary proportionally in
relation to the difficulty of each step. This is, the effort associated to the definition of
the concrete syntax is expected to be approximately twice the effort for the development
of the auto complete module. Since the relation between these weights remains stable,
the weighted average of b values would not be affected. Moreover, since there are not
high differences between the values of b for each stage, small variations in the weights
would not produce noticeable changes in the results of the weighted average either.

In third place, the formula we have used to calculate b is self-elaborated, so it might
be inaccurate or even wrong. To mitigate this threat, we paid special attention to the
design of this formula, which was defined after a long process of refinement. Moreover,
it was checked that the formula returned meaningful and reasonable results in different
reuse scenarios.

Fourthly, for the sake of simplicity, we simplified the estimation of the development
effort of a DMDL focusing just on the implementation stage. Other phases were simply
ignored, so this might have an effect in our results. Regarding this issue, it should be
noticed that the cost of some of these phases might also be reduced thanks to the use
of FLANDM. For instance, a lower testing effort is expected since reused components
do not need to be completely tested at the unit level; an analysis of their modifications
and of the integration of the component with the whole system would be sufficient.
For other stages, such as requirements elicitation, the associated cost is expected to
be similar. In any case, the cost is not expected to be higher by the use of FLANDM
because of these development stages. Therefore, these simplifications do not invalidate
our conclusions.

We must also consider how appropriate is the use of Lines of Code (LOC) for
measuring effort. This is a classical effort metric whose accuracy has been largely
discussed. There are three main drawbacks associated to this metric:

1. The effort for producing a line of code might vary between languages.



88 FLANDM: A Framework to Develop DSLs for Data Mining

2. Two pieces of code of equal size and written in the same language might have a
different cost because one is conceptually more complex than the other one.

3. Two pieces of code written in the same language and with the same functionality
might vary in size due to different coding styles.

It should be noticed that LOCs are used to calculate the values of b. This parameter
is calculated per each development stage. Therefore, when calculating b, we are mostly
taking into account LOCs coming from the same language, e.g. ETL in step 3.1 of
Table 3.3, and with the same conceptual complexity. Moreover, the differences between
the conceptual complexity of each stage are considered in the weights associated to
each stage (see Table 3.3). These facts contribute to mitigate issues 1 and 2. Regarding
the third use, we have ensured, before measuring LOCs, that all pieces of code followed
the same coding rules.

Finally, we acted as DSL developers when implementing the DMDLs for the
evaluation. Obviously, we are experts in the structure of FLANDM, so it may be said
that the cost reduction offered by FLANDM is due to this expertise. Nevertheless, the
evaluation results are expressed in relative terms, which are applicable independently
to the expertise of the developer of the DMDLs. For instance, a newbie DSL developer
may take more total effort to develop a DMDL by employing FLANDM than we did.
However, if FLANDM helps reduce this effort by ∽50% as stated, then the reduction
for this developer would be that 50%, although of a larger total effort.

External Threats to Validity
Related to external threats, it might be that the results were influenced by some

particularities of the four analysed DSLs. To mitigate this issue, we relied on third-party
case studies, over which we do not have influence, and which came from heterogeneous
domains.

3.5.3 Reduction of Maintenance Costs

With respect to maintenance costs, the usage of DSLs might be beneficial, as domain
experts have more hands-on control in the created code; but also it could increase
these costs if, as stated by Deursen and Klint [47], the DSL itself needs to be updated
frequently. In our case, the whole FLANDM environment can be considered as an
external DSL, whereas each DMDL derived from FLANDM might be viewed as internal
DSL embedded in the FLANDM architecture (Hinkel et al. [74], Kiczales et al. [89]).



3.5 Evaluation 89

Table 3.6 Change scenarios.

Id Name

ChSc1 Syntax Renaming or Translation
ChSc2 Domain Entities Evolution
ChSc3 Customisation of the Query Transformation Process
ChSc4 Addition of New Commands

Abstract Syntax

Concrete Syntax

Validator Proposal
Provider

Query to Code
Generator

Data Sources
Connector

Abstract Syntax

Concrete Syntax

Validator Proposal
Provider

Query to DataProcedure
Translator

Data Sources Connector

Entities Model

DataProcedure model

DataProcedure to Code
Generator

(a) Initial Version (b) FLANDM

Fig. 3.17 DMDL architecture without (a) and with (b) FLANDM.

The definition of internal DSLs brings some benefits, such as reuse of base language
elements, but it might also lead to maintenance problems, since changes in the base
language might have ripple effects on the internal DSLs defined on it.

Therefore, we took care of avoiding these ripple effects. To do it, we put a special
effort during the refactoring process of the original DMDL structure that took place
during the development of FLANDM, in order to design a loosely-coupled, modular
DMDL architecture, which is used as base for the definition of new DMDLs. FLANDM’s
architecture should contribute to a better evolution and maintenance by limiting the
impact of changes.

To illustrate and evaluate this complementary benefit, this section discusses a set
of change scenarios that we have typically faced. These scenarios can be found in
Table 3.6. The changes range from purely aesthetic fine-grained issues (e.g. changes
in the syntax (ChSc1 )) to the addition of new coarse-grained elements (e.g. support
new commands in the DMDL(ChSc4 )). For each scenario, we compared how the
original architecture of the DMDL for the educational domain and the new architecture
of FLANDM were able to deal with the required changes. Both architectures are
summarised in Fig. 3.17. For simplicity, in the following, we refer to the architecture
of the DMDL for the educational domain as the initial version.



90 FLANDM: A Framework to Develop DSLs for Data Mining

ChSc1: Syntax Renaming or Translation

Change scenario ChSc1 was motivated by a request of some teachers about translating
the syntax of the DMDL to Spanish, which was their mother tongue. This change
scenario comprises two different kind of changes: (1) renaming the domain-independent
part of the DMDL, i.e. command names and other keywords such as and or with, and
(2) renaming its domain-specific part, which was comprised of names of domain entities
and their attributes.

Regarding renaming of domain-independent parts, the changes can be easily ac-
commodated in both versions of the DMDL by just changing the concrete syntax
definition, thanks to the separation between abstract and concrete syntax. Moreover,
to address completely this issue, error messages shown by the syntax checker and the
auto complete feature were also translated. In summary, the effort was similar in
both cases. This was expected, since this benefit comes from the metamodeling-based
approach followed for the language definition in the two versions.

On the other hand, the second kind of changes involved different tasks between
the versions. In FLANDM, the changes were limited to the entities model component,
due to the double-named nature of elements (see section 3.3). In the original version,
this change scenario was not foreseen, and the domain elements were scattered across
different components. More specifically, a change in a term affected the validator, the
autocompletion, and the data source connector components.

ChSc2: Domain Entities Evolution

Domains evolve, which means that new domain elements might need to be added or
existing ones removed.

Adding a new entity, or a new attribute to an existing entity, implies that new data
must be gathered. If an entity or attribute is removed, data might also need to be
removed. This effort is equal for both versions, since neither of them provide support
for the data acquisition stage. Moreover, the data connector component needs also to
be updated in both versions.

Once these data sets have been updated, we would need to modify the DSL syntax
to support these new elements and remove the old ones, as in scenario ChSc1. As we
mentioned, in FLANDM, this change only impacts the domain entities model, whereas
in the initial version, more components would be affected.



3.6 Summary 91

ChSc3: Customisation of the Query Transformation Process

As previously commented, some parameters of the data mining processes generated
during the transformation of a query might need to be adjusted to best fit to a
specific domain, with the objective of improving their accuracy. These changes range
from the modification of an algorithm parameter of the data mining procedure being
instantiated to the creation of a completely new transformation process that employs
another algorithms.

In the original version, code generators were monolithic, tangling the abstract
transformation process with platform specificities, whereas in FLANDM, these stages
are separated, which creates smaller and more cohesive modules. Therefore, this change
can be more easily incorporated in FLANDM, since we need only to change some ETL
transformations, which are free of target platform details. In the initial version case,
these changes implied to search for actual transformation steps inside a code generation
template bloated of platform-specific details.

If the change requires the creation of a new data mining procedure, in FLANDM,
we would need to add it to the data procedure metamodel. This action would not be
required in the initial version, and it is an extra cost we need to pay in FLANDM for
achieving a better separation of concerns. Nevertheless, the effort associated to this
extra step is low and it usually pays off quickly.

ChSc4: Addition of New Commands

New analyses might be required in a domain, which implies adding new commands that
support them. This change involves updating the DSL syntax, descriptions provided
by the content assistant and providing a new full query transformation process. This
full transformation process in FLANDM comprises both the query to data procedure
transformation step and the code generation step. Although the effort in both cases
would be similar, as before, we would benefit of a better separation of concerns in the
FLANDM case.

3.6 Summary
This chapter has presented FLANDM, a framework designed to reduce the development
cost of Data Mining Democratisation Languages (DMDLs) that allows to adapt each
defined language to the specific domain of application.



92 FLANDM: A Framework to Develop DSLs for Data Mining

The framework was built over a previous work (de la Vega et al. [41]), where the
architecture of our first DMDL was presented. For FLANDM, we refactored this initial
architecture to support and ease component reuse, fixing some flaws detected in it.
Since these DMDLs share several commonalities, the development cost reduction is
achieved by means of a modular structure, which promotes component reuse and easy
language customisation. The refactored infrastructure allows creating DMDLs starting
from a generic solution, which gets specialized into the final domain through modular
changes that are easy to introduce.

Two new elements were included in this refactored architecture: (1) an entities
metamodel, and (2) a data procedure metamodel. The first one contributed to encapsulate
domain-specific elements in one module. This helped to make the other components of
the architecture domain-independent, and, therefore, more reusable across domains.
On the other hand, the data procedure metamodel allowed the separation of platform-
independent and platform-specific issues, making the code generation components for
these DMDLs more cohesive.

The benefits of our approach were evaluated by using a cost model that measured
the effectiveness achieved through components reuse. The obtained results show that
the development cost of a DMDL can be reduced by 50% thanks to our approach.
In addition, the modular structure of DMDLs generated with FLANDM allows for a
better maintenance, as there is a minimum coupling between the different components.



Chapter 4

Lavoisier: High-Level Selection and
Preparation of Data

4.1 Introduction
As described in Chapter 3.3, when creating a query with a DMDL, decision makers
select (1) an analysis command to execute; and (2) the entity whose data is to be used
in such analysis. Each DMDL has an entities model that contains the set of entities
available for analysis. This set is static, so decision makers are constrained to select
one of the available entities, not being possible to define their own customised ones.

The definition of new entities over which to invoke analysis processes is not a trivial
task. Each entity is linked to a dataset, which stores the data used in the analysis.
These datasets have to conform to a very specific two-dimensional tabular format,
in order to be usable as input for data mining algorithms. In this format, all the
information related to each one of the elements being analysed must be placed in a
single row. For instance, if we are trying to find the reasons why a business becomes
successful, all the information we have about a single business must be placed in a
single row the dataset containing the data about businesses.

As a consequence, these algorithms cannot work with hierarchical or linked data
such as JSON files, XML files or relational databases containing several tables with
relationships between them. These are the formats in which data are typically stored
or provided. Consequently, to execute a data mining algorithm, we need to transform
data from their original representation to the commented tabular format that data
mining algorithms can digest.

The creation of these datasets from the original data sources is often a tedious,
highly technical, and prone to errors task. As such, this task is most of the time only



94 Lavoisier: High-Level Selection and Preparation of Data

achievable by data scientists, which prevents average decision makers from creating
custom datasets by themselves. Our systematic review detected that approaches that
try to help these decision makers participate in this task are scarce, even when the
inputs of a domain expert could play an important role in the success of an analysis.

To alleviate this situation, we present an operator that automates this task. Using
this operator, we only need to specify which elements of the available data we want to
include in an analysis. Then, the operator automatically computes the corresponding
tabular representation. To execute this tasks, the operator executes a set of low-level
data transformations, which adapts transformation patterns coming from different
fields, such as object-relational mappers (Fowler [60], Hainaut [69]) or data processing
(Cunningham [39], Wickham [165]).

To define this operator, we needed to determine how to represent the available data
to analyse from each concrete domain. We opted for using object-oriented models to
describe these data. Object-oriented models are nowadays widely used to construct
domain models that can serve as a communication points between domain experts
and developers (Evans [54]). Therefore, the use of domain models might make easier
the participation of decision makers in the process of identifying relevant data of a
particular domain to be analysed.

Therefore, this work focuses on the definition of an operator for automatically
transforming data that can be accessed through an object-oriented representation into
a tabular format that can be used as input for data mining algorithms. Moreover, based
on the definition of this operator, we developed a language, called Lavoisier, which
provides a set of high-level declarative primitives for constructing tabular datasets
from object-oriented domain models. Using this language, data scientists and domain
experts can focus on the selection of relevant data for an analysis and forget about
the low-level details of the process required to transform the selected data, as this
process is transparently executed thanks to our operator. Therefore, data scientists are
relieved of executing them by hand, which decreases errors and increases productivity.

Expressiveness and effectiveness of our approach were assessed using a data mining
open challenge belonging to the domain of business reviews (Yelp [174]). We specified
different data selection and transformation processes over data of this challenge. Then,
compared the results of performing these specifications with Lavoisier against two
representatives of the state-of-the-art tools for data transformation, namely, the SQL
language (Beighley [18]) and the Pandas data manipulation library (McKinney [114]).
As a result of this comparison, we concluded that Lavoisier’s dataset specifications are
more compact, and require less constructs and with a higher level of abstraction.



4.2 Case Study and Problem Statement 95

Business

b_id : EString
name : EString
stars : EFloat = 0.0
isOpen : EBoolean = false

Category

name : EString

Feature

name : EString

AvailableFeature

available : EBoolean = false

ValuedFeature

value : EString

User

u_id : EString
name : EString

Tip

text : EString
date : EDate

Review

r_id : EString
date : EDate
stars : EFloat = 0.0
text : EString

Vote

UsefulVote

FunnyVoteCoolVote

Location

address : EString
city : EString
state : EString
postalCode : EString

GroupedFeature Group

name : EString

[0..*] categories

[0..*] features

[0..*] friends

[0..*] fans

[1..1] business

[0..*] tips

[1..1] user

[0..*] reviews

[1..1] business

[0..*] reviews

[1..1] user

[0..*] votes

[1..1] location

[1..1] review[0..*] votes

[1..1] user

[0..*] tips [1..1] group

Fig. 4.1 Conceptual Model for the Yelp Dataset Challenge.

After this introduction, the work is structured as follows: Section 4.2 exposes the
motivation behind this work. The chapter continues with a discussion about related
work in Section 4.3. Our data transformation operator is described in Section 4.4.
Section 4.5 presents the different features of the Lavoisier language. The chapter
finishes with a recapitulation and an enumeration of future objectives of this work in
Section 4.7.

4.2 Case Study and Problem Statement
This section describes the motivation behind the contributions of this chapter. First,
a running example that we used throughout our descriptions is introduced. Then,
we explain how our approach fits inside a generic data mining process. Finally, the
motivation behind this work is detailed using the running example.

4.2.1 Running Example: The Yelp Dataset Challenges

Yelp is an American company that provides an online business review service. Using
this service, owners can describe and advertise their businesses and customers can
write their opinions about these businesses.

Yelp collects and makes available bundles of data for academic usage and proposes
a new challenge periodically1. We used these data and challenges as running example
throughout this article.

1https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge


96 Lavoisier: High-Level Selection and Preparation of Data

Results to 
Validate & Interpret

Algorithm
 Selection

Business
 Questions

Sources
 Selection

Widok
-model: Model
+ustawModel(model: Model)
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokLiść
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokKompozyt
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

       1

0..n

Kontroler
-widok: Widok
-model: Model
+ustawModel(model: Model)
+ustawWidok(widok: Widok)
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler1
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler2
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

Model
-obserwatorzy: Widok[]
+dodajObserwatora(widok: Widok)
+usuńObserwatora(widok: Widok)
+powiadom()
+operacjaModelu()

KonkretnyModel1
+operacjaModelu()

KonkretnyModel1
+operacjaModelu()

10..n

1 1
posiada

   1

 1
posiada

1

   1

posiada

Kontroler

Widok Model

Intermediate 
Domain Model

Data
 Reshaping

Data
 Preparation

Algorithm
 Execution

1 2 3

4 5

6 7

Fig. 4.2 Data mining process. (Some icons by Smartline from Flaticon)

Yelp provides their data as a bundle of interconnected JSON (JavaScript Object
Notation) files. To help visualise these files, we rebuilt the conceptual object-oriented
model to which these files would conform. This conceptual data model is depicted in
Figure 4.1 .

As it can be seen, for each registered business, Yelp provides information about its
location; the different features it offers, such as the availability of Wi-Fi or a smoking
area; and the categories which best describes it, e.g., Cafes, Restaurant, Italian, Gluten-
Free, and so on. Users can review these businesses, rate them and introduce a text
describing their experience. Additionally, users can write tips, which are small pieces
of advice about a business, such as do not miss its salmon! Yelp also provides some
social network capabilities, so users can have friends or fans. Users can also receive
votes in their reviews in case other users found these reviews funny, useful or cool.

Using these data, Yelp proposes as challenges analysis tasks like identifying reasons
behind a business becoming successful, or finding what kind of opinions are most likely
to set a new trend.

4.2.2 Data Mining Processes Extended

In this section, some stages of the data mining process introduced in Chapter 1.3 have
been split into several substages, in order to clarify some issues related to the work of
this chapter.



4.2 Case Study and Problem Statement 97

Any data mining process is created to answer business questions (Figure 4.2, Step
1). These are derived from the business or domain experts needs. For instance, in
the case of Yelp, data mining processes are elaborated to try to answer the questions
raised in their challenges, such as finding reasons that make a business successful.

Once the business questions are identified, we need to decide what data sources will
be used to answer them (Figure 4.2, Step 2). These sources are also selected with the
help of the business experts. We might use several data sources, each one of a different
nature, for answering the business questions. Yelp challenges’ data include information
from different subsystems, such as the review system or its social network.

When several data sources are used to answer business questions, the elaboration
of an intermediate domain model that abstracts from these sources might be helpful
(Figure 4.2, Step 3). This data store would collect the data available in a particular
context for being used as input for data mining algorithms. This intermediate data
store might be skipped in some cases, such as, for example, when a single data source
is used. In the case of Yelp, this intermediate data store is provided by Yelp itself by
means of a set of interconnected JSON files. As previously commented, these JSON
files can be abstracted into the conceptual data model depicted in Figure 4.1.

Subsequently, we must select the data mining technique that we consider most
adequate for answering each business question (Figure 4.2, Step 4). For instance, in Yelp
challenges, clustering techniques might be employed to group businesses according to
the similarity of their characteristics. This might give indications of what commonalities
are shared among successful and unsuccessful businesses.

For each data mining technique, such as clustering, there is a plethora of algorithms
available in the literature. Each one of these algorithms is designed to perform better
than the others depending on certain characteristics of the input data. Therefore, we
are also in charge of selecting the algorithm that best fits with the nature of our input
data. For instance, to analyse data from Yelp, an algorithm like DBSCAN (Ester et al.
[53]) might be a reasonable choice for reasons that are beyond the scope of this work.

Most data mining algorithms can only accept as input data arranged in a very
specific tabular format. Data scientists often refer to bundles of data arranged in
this format as datasets. Therefore, as next step of a data mining process, we need
to reshape the data contained in the intermediate data store - or the data sources
when this model is skipped - to create datasets that can be digested by data mining
algorithms (Figure 4.2, Step 5). The work presented in this chapter focus on this
specific step of a data mining process. Consequently, this step is explained more in
detail in next section.



98 Lavoisier: High-Level Selection and Preparation of Data

(a) Information of each business in a single row
BName Stars WiFi Parking

Pete’s Pizza 4.5 true true
Sushi & Go 3.8 false true

Wine Heaven 4.0 true

(b) Information of each business in several rows
BName Stars Feature Available

Pete’s Pizza 4.5 WiFi true
Pete’s Pizza 4.5 Parking false
Sushi & Go 3.8 WiFi false... ... ... ....

Fig. 4.3 Two tabular arrangements of businesses’ data.

In addition to this reshaping, each algorithm might impose other extra constraints
to their input data. For instance, some distance-based algorithms require data to be
normalised into the range [0, 1]. Therefore, we would need to perform some extra
data transformations in order to ensure these constraints are satisfied before using a
dataset as input data for these algorithms. These transformations can take place after
a dataset has been produced or at the same time it is generated (Figure 4.2, Step 6).

Finally, we execute the selected data mining algorithms with the generated datasets
(Figure 4.2, Step 7), which would produce several results. These results must be
analysed to asses their quality and reliability. Then, curated results can be passed to
the business or domain experts, who would interpret them to extract some conclusions
and make some decisions. As an example, after performing an analysis over data
from a Yelp challenge, the obtained results might provide interesting advice for an
entrepreneur before starting a new venture.

Next section details the stage of this data mining process in which this work
focuses: the creation of tabular datasets from non-tabular information, such as linked
or hierarchical data.

4.2.3 The Data Reformatting Problem

Before executing a data mining algorithm, we need to transform the data to be analysed
into a specific tabular format. This format, in addition to being tabular, imposes an
extra and non-trivial constraint: for each instance of the domain entity being analysed,
all the information about this instance that we want to include in an analysis must be
placed in a single row of the tabular format. In the following, we elaborate on this
issue to clarify it.



4.2 Case Study and Problem Statement 99

features
*

a) Domain Model

Business

name : String
stars : float

Feature

name : String
available : boolean

b) Model Instances

[ {“name” : “Pete’s Pizza”, “stars” : 4.5,
“features” : [

{“name” : “WiFi”, “available” : true},
{“name” : “Parking”, “available” : true}]},

{“name” : “Sushi & Go”, “stars” : 3.8,
“features” : [

{“name” : “WiFi”, “available” : false},
{“name” : “Parking”, “available” : true}]},

{“name” : “Wine Heaven”, “stars” : 4.0,
“features” : [

{“name” : “WiFi”, “available” : true}]} ]

Fig. 4.4 (a) Business ratings model excerpt; (b) graph with some instances of (a).

Let us suppose that, in the context of the running example, we want to identify
business features, or combinations of features, that might lead to a business having a
high stars rating. In this case, businesses would be the domain entity being analysed.
To compute this information, we decided to use as information for the analysis the
business name to identify businesses, its stars rating, and its set of available features.
In this case, our problem is how to produce a tabular arrangement like illustrated in
Figure 4.3 (a). As it can be seen, in this arrangement, all the information related to
one business is placed in just one row. Alternative tabular representations, such as
shown in Figure 4.3 (b) would not be valid inputs to nowadays existing data mining
algorithms for the analysis of businesses.

Therefore, we must face the problem of how to produce an adequate tabular
representation as depicted in Figure 4.3 (a). The very first to do to achieve this goal is
to filter the original data so that it only contains those data in which we are interested
on. This can be easily achieved using data management tools. Figure 4.4 shows an
excerpt, in JSON format, of the results of this filtering process.

The second task involves rearranging these data into the specific tabular format of
Figure 4.3 (a). This is not a trivial task and it might involve a lot of small issues and
picky details, as we comment throughout this article. In the specific case of Figure 4.4,
a question to be addressed is that JSON data is hierarchical. This is, a JSON object
can contain inside another JSON object that might containt another JSON object, and



100 Lavoisier: High-Level Selection and Preparation of Data

so on. Therefore, we need to flat this hierarchy to convert it into a an information
vector.

In this particular case, we must combine the information belonging to the Business
and Feature classes so that it becomes a flat data vector. To do it, we would create
a new column for each feature that a business might have, e.g. WiFi. Each column
would take as value true or false depending on the registered value for that feature.
Other cases might need different strategies.

Generally speaking, our problem is that domain data is often stored in a hierarchical
or linked form. For instance, in the case of JSON files, as already seen, an object
can contain another object. When using relational databases, a table might reference
another table by means of a foreign key. Therefore, we need to convert these hierarchial
and linked data into flat vectors of information. This process will be referred in the
following as a flattening operation2. Next section analyses how this flattening operation
can be achieved using state-of-the-art techniques.

4.3 State-of-the-Art Data Flattening Strategies
To address the data formatting problem presented in the previous section, data scientists
rely currently on data management languages or libraries, such as SQL (Structured
Query Language) (Beighley [18]) or Pandas (McKinney [114]). This section reviews
these state-of-the-art strategies, highlighting strengths and weaknesses.

4.3.1 SQL Languages

SQL (Structured Query Language) is probably the most well-known data management
language, which was created to manipulate relational database tables. Using SQL,
the contents of two or more entities, represented as relational tables, can be combined
by means of join operations. A join operation takes two tables and one column of
each table as input, calculates the Cartesian product of these tables and removes all
those tuples where the specified pair of columns do not match, providing a new table
as a result. Therefore, a join operation can be used to merge two tables into a single
table, which is somehow what we are looking for. Nevertheless, joins do not fulfill the
requirement of a flattening operation, which is placing all the information about a
single entity in a same row.

2This term is inspired by a similar operation often performed in functional programming



4.3 State-of-the-Art Data Flattening Strategies 101

Fig. 4.5 (a) Business and Features entities represented as relational database tables;
(b) Result of a join operation between Business and BusinessFeature tables.

To illustrate this shortcoming, Figure 4.5 (a) shows the Business and Feature

entities represented as relational database tables, whereas Figure 4.5 (b) shows the
result of a join between these tables, using Business.b_id and BusinessFeature.b_id as
joining columns. As it can be seen, in the result table, information about individual
business is scattered across several rows. To address this issue, several workarounds
might be used, as we comment in the following.

Listing 4.1 SQL flattening operation using aggregation queries and the case operator.
1 select b.b_id, b.name, b.stars,

2 max(case features.name when ’Parking’

3 then available end) as feature_parking,

4 max(case features.name when ’WiFi’

5 then available end) as feature_wifi,

6 max(case features.name when ’Smoking’

7 then available end) as feature_smoking

8 from features

9 right join business b on b.b_id = features.b_id

10 group by b.b_id, b.name, b.stars

Listing 4.1 shows an example where, by employing SQL’s CASE operator in an
aggregation query, the tabular representation of Figure 4.3 (a) can be obtained from
the tables depicted in Figure 4.5 (a). As it can be seen, a main shortcoming of this
strategy is that we need to add an aggregation query with a case operator for each



102 Lavoisier: High-Level Selection and Preparation of Data

column of the resulting table we want to generate. This strategy might be prohibitive
when processing a larger number of features. For instance, if we wanted to include
information about business benefits, disaggregate per month and including data of the
last five years, we would need to create a SQL query with 60 nested aggregation queries.
Moreover, as time passes, we would need to update this script to add aggregation
queries for new months and years, as well as removing obsolete months and years, if
required.

4.3.2 Data Warehouse Operations

Data warehouses store large volumes of information, which can be consulted for
reporting and analytical purposes (Malinowski and Zimanyi [112]). These data are
usually organised into multidimensional models based in facts and dimensions. Facts
store quantitative measures around a business concept, while dimensions offer different
perspectives, such as space and time, from which to obtain and analyse fact measures.

Data warehouse solutions typically provide special systems known as OLAP (Online
Analytical Processing) (Wrembel and Koncilia [173]) to query and analyse data from
their multidimensional models. These systems include operators for data selection
(slice and dice), aggregation (roll-up, drill-down), and rotation (pivot). From these,
the most interesting one for our objective is the pivot operator.

By performing a pivot operation, we can compact into a single row information
about the same entity that is initially scattered across several rows of a table. This is,
using a pivot, we can transform the table of Figure 4.5 (b) into Table 4.3 (a). In this
case, the pivot operation would take as input the table of Figure 4.5 (b), a pivoting
column, that would be featureName, and a set of columns to be pivoted, that in this
case would be just {available}. With these inputs, the pivot operation would work as
follows.

First, the structure of the output table is determined. To do it, all columns not
involved in the pivot operation are added as columns to the output table. In our case,
BusinessName and BusinessStars would be added. Then, for each distinct value of
the pivoting columns, a new column is added to the output table. In our example,
the pivoting column is featureName, which has as values WiFI and Parking. So, the
columns WiFI and Parking are added to the output table.

Once this table structure is created, the output table is populated with data from
the input table. Each distinct tuple for the non-pivoted columns is added as a new
row in the output table. In our example, the tuples (Pete’s Pizza, 4.5), (Sushi & Go,
3.8), and (Wine Heaven, 4.0) would be added as new rows to the output table. As it



4.3 State-of-the-Art Data Flattening Strategies 103

can be noticed, these rows are incomplete and the newly created columns, i.e., WiFI
and Parking, would still need to be filled. To fill these columns, the pivot operator
checks, for each new added row, whether the input table contains a row that has the
non-pivoted values plus the corresponding pivoting column value. If such a row is
found, the pivot operator copies the value of the pivoted column of this row into the
corresponding cell of the output table. For instance, continuing with our example,
to calculate the value of the WiFi column for the (Pete’s Pizza, 4.5) row, the pivot
operator checks if the input table has a row containing the values (Pete’s Pizza, 4.5,
WiFi). If so, the value of the available column for that row is copied into the cell
corresponding to the WiFi column. Finally, it is worth to comment that this operator
has associated a set of picky low-level details, such as how to proceed when no row
is found in the input table for a pivoted column; or when, oppositely, several rows
are found. These cases are not commented in this section for the sake of simplicity,
since our goal is just to illustrate how a pivot works. A more formal definition of this
operator is given in Section 4.3.2.

This operator, apart from being present in OLAP systems, can also be found with
slightly different implementations in some proprietary database management systems
such as SQL Server (Cunningham [39]), and in popular data analysis frameworks like
R (Wickham [165]).

As it can be seen, using a pivot, we can compact the table of Figure 4.5 (b) into an
appropriate tabular format. This means that by combining joins and pivots, we could
perform a flattening operation. Nevertheless, as the information to be included in an
analysis grows, the number of chained join and pivot operations increases, which can
lead to large and complex data manipulation scripts, that would be hard to update.
This kind of complexity is what we try to reduce by creating a flatten operator that
performs all these operations transparently.

4.3.3 Data Management Frameworks and Libraries

Some frameworks for data analysis, such as R [157], provide their own data management
languages. On the other hand, there are libraries for general purpose programming
languages, e.g., Pandas (McKinney [114]) in the case of Python. Both approaches offer
facilities for retrieving, cleaning and formatting data. Nevertheless, these approaches
do not include advanced operators, different from the previously commented ones, that
can be used to perform a flatten operation. So, as with previous approaches, users
of these frameworks and libraries have to manually combine low-level operators to
produce the required tabular structures.



104 Lavoisier: High-Level Selection and Preparation of Data

In summary, as it can be seen, state-of-the-art approaches for data manipulation do
not provide any high-level operator for the arranging data belonging to different entities
into a tabular data structure that fulfils the requirements demanded by data mining
algorithms. To improve this situation, we have created a new high-level flattenning
operator, which is described in the next section.

4.3.4 Automatic Feature Extraction

The previous approaches allow data scientists to manually perform flattening operations.
However, there is a research topic known as propositionalisation (Boullé et al. [23],
Kanter and Veeramachaneni [88], Knobbe et al. [96], Samorani [142]), whose aim is
to automatically reduce multi-relational data to a single-table structure for analysis
purposes, i.e., to automate the flattening process. This automation works as follows:
starting from the entity of interest, e.g., Business of the Yelp case study, an algorithm
randomly generates features by applying aggregation functions over the relationships
between the selected entity and other entities in the model.

This random exploration has the potential to discover previously unknown features
that are relevant for an analysis. However, it also has some drawbacks, such as
scalability (the combination of applicable aggregations with the possible relationship
transversals forms an enormous feature space to explore) or performance (i.e. most
obtained features may not be useful at all, which makes necessary to generate a large
number of them). In addition, this approach only works by aggregating relations of
the conceptual model, and the result of each aggregation is a single value. Therefore,
flattening scenarios where the reformatted information is distributed into several
columns, such as the features one presented in Figure 4.3 (a) would not be possible
when applying this approach.

4.4 Flattenning Operator Description
This section provides the specification of a flattening operator that takes as input several
entities and their associated data, and produces as output a tabular representation
of these inputs that can be digested by data mining algorithms. Before specifying
this operator, we need to define the format in which input entities should be provided.
This is, we need to define a notation or language for the intermediate domain model
(Figure 4.2, step 3). Typically, object-oriented models (Evans [54]), ontologies ([145] or
multidimensional models (Golfarelli and Rizzi [66]) are used for this purpose. Each one



4.4 Flattenning Operator Description 105

of these options provides advantages and disadvantages, depending on their intended
use.

In this work, we focused on object-oriented domain models because of two reasons.
Firstly, this kind of models are a good starting point for the long-term goal of defining
flattening operators for any kind of domain model. Once this first operator is available,
techniques and strategies developed for its creation might be used as basis for the
definition of new operators, for instance, for ontologies. Secondly, object-oriented
domain models have been acknowledged in the literature as an effective mechanism
to improve the communication between stakeholders and developers (Evans [54]). As
an example, these models can contribute to the incorporation of domain experts into
software development processes. These domain experts, as commented in Section 4.2,
are key to identify the data that might be of relevance for each concrete analysis
process. Therefore, we expect that, by using object-oriented models, domain experts
can participate more directly in the data selection tasks of these processes.

The strategy we have used to define this flattening operator for object-oriented
models is as follows: there is a trivial flattening case that involves transforming a single
class, without multivalued attributes, into a tabular representation. In this case, data
would be tabulated according to our requirements by default, so no action would be
needed. Therefore, if we were able to reduce all potential scenarios that might appear
in an object-oriented model to this trivial case, the flattening problem would be solved.
So, we have focused on determining how to reduce each one of these scenarios into
a single class by means of chaining data transformations. This single class must be
the one that represents the entities under analysis, e.g., businesses or reviews. In the
following, this prominent single class is referred as the main class.

Thus, an implementation of the flattening operator should identify each one of
these scenarios in the input model and execute the corresponding data transformations
until reducing the original model to the trivial case. These data transformations are
based on typical data management operations, such as joins or pivots, as well as on
transformation patterns used by Object-Relational Mappers (Atzeni et al. [8], Fowler
[60], Hainaut [69]).

Next subsections describe and formalise how each one of these reductions work.
Each definition and pattern is explained with the help of the Yelp case study.

4.4.1 Preliminaries

Before explaining how our reduction patterns work, we specify the formal notation we
used to define them.



106 Lavoisier: High-Level Selection and Preparation of Data

Primitive Types

Definition 4.4.1. A primitive type T is a set of well-defined values.

Definition 4.4.2. An literal value of a primitive type T is an element lv where
lv ∈ T .

Examples of primitive types are Integer, Char, Boolean or String. These types are
usually offered as built-in types in programming languages. Examples of literal values
of these types are 17, ‘c’, true or “John”, respectively.

In the following, when a name appears in italics and with the initial letter capitalised,
it represents the set of all elements denoted by that word. For instance, PrimitiveType
represents the set of all primitive types, and Type is the set of all existing types.

Object-Oriented Models

Definition 4.4.3. A class C is defined as a tuple (n, Properties) ∈ String ×
Set{Property}, where n is the name of the class, and Prop is the set of properties of
the class. Classes also define types, i.e., C ∈ Type.

Definition 4.4.4. A property is defined as a tuple (n, t, c) ∈ String × Type ×
Cardinality, where n is the name of the property, t is a type (which can be a primitive
type or a class type), and c is a cardinality.

Definition 4.4.5. A cardinality c ∈ N × N ∪ {∗} is a pair of values (cmin, cmax)
that determine the number of values that a property of a class instance can hold. If
cmax ∈ N, then cmax ≥ 1 ∧ cmin ≤ cmax. Also, cmax can take a special value, ∗, which
represents the absence of a limit, i.e., an instance can have an unbounded number of
values for a property p when cmax = ∗.

For example, if c = (1, 3) for certain property p = (n, t, c) of a class C, one value of
p has to be defined at least in each instance of C, and, at most, p can have 3 values.

Definition 4.4.6. An attribute is a property (n, t, c) where t ∈ PrimitiveType.

Definition 4.4.7. A reference is a property (n, t, c) where t ∈ Class.

Definition 4.4.8. typeOf : (LiteralV alue ∪ Property)→ Type is a function that,

1. given a literal value lv, returns the primitive type to which that value belongs.
This is, typeOf(lv) = t⇐⇒ lv ∈ t.

2. given a property p(n, t, c), typeOf(p) = t.



4.4 Flattenning Operator Description 107

Class Instances

Definition 4.4.9. Given a class C = (n, Prop), with Prop = {p1, · · · , pn}, pi =
(ni, ti, (cmini

, cmaxi
)), an instance is a tuple (values1, · · · , valuesn) where valuesi is

a tuple with cmini
≤ |valuesi| ≤ cmaxi

, typeOf(v) = ti,∀v ∈ valuesi.

Definition 4.4.10. propValues : Instance × Property → Tuple{LiteralV alue} ∪
Tuple{Instance} is a function that, given an instance ins = (values1, · · · , valuesn) of
a class C = (n, Prop) with Prop = {p1, · · · , pn}, then propV alues(ins, pi) = valuesi.

Instances might have undefined properties. If a property pi is not defined in an
instance, then valuesi = (), which is an empty tuple. Obviously, cmini

= 0 is required
to accept instances with zero values in a property. This is equivalent to pi being null,
as usually denoted in conventional programming languages.

Definition 4.4.11. A data bundle is defined as a tuple (DBclass, DBdata) ∈ Class×
Set{Instance}, where DBclass ∈ Class, and DBdata is a set of instances of DBclass.

Tables

Definition 4.4.12. A table T is a tuple (Theader, Tdata), where Theader is also a tuple
(columnName1, · · · , columnNamen), and Tdata is a m × n matrix of literal values,
with typeOf(Tdata(i, j)) = typeOf(Tdata(i, k)),∀i ∈ [1, m], ∀j, k ∈ [1, n], i.e., all values
on the same column are of the same type.

Auxiliary Functions

Definition 4.4.13. stringify : Tuple{LiteralV alue∪Instance} → String is a func-
tion that, given a tuple of elements, produces a string of characters by concatenating
the representation of each one of these elements as a String. Concatenated values are
separated by the char ‘_’.

For instance, stringify(“John”, 27, true) would return “John_27_true”.

Definition 4.4.14. The tuple concatenator, denoted as •, is a function • : Tuple×
Tuple → Tuple that, given two tuples ta = (ta1 , · · · , tan) and tb = (tb1 , · · · , tbm),
produces as a result a tuple tab = (ta1 , · · · , tan , tb1 , · · · , tbm)).

Definition 4.4.15. emptyTuple : N → Tuple is a function that, given a number
n ≥ 1, returns a tuple t = (t1, · · · , tn) where ti = (), ∀i ∈ [1, n].



108 Lavoisier: High-Level Selection and Preparation of Data

Definition 4.4.16. projection : Instance × Set{Property} → Tuple is a func-
tion that, given an instance ins of class C = (n, Prop) and a set of properties
ProjectionProp = {pp1, · · · , ppn}, ProjectionProp ⊂ Prop, then the expression
projection(ins, ProjectionProp) = ins′, where ins′ is a tuple of elements calculated
as ins′ = (propV alues(ins, pp1), · · · , propV alues(ins, ppn)).

Definition 4.4.17. filterEqual is a function : Set{Instance} × Set{Property} ×
Tuple→ Set{Instance}, that, given a set of instances Ins of a class C (n, Prop), a
set of properties FilterProps = {fp1, · · · , fpn}, F ilterProps ⊂ Prop, and a tuple of
values FilterV alues = (values1, · · · , valuesn), then
filterEqual(Ins, F ilterProps, F ilterV alues) =
{ins | ins ∈ Ins ∧ propV alues(ins, fpi) = valuesi, ∀i ∈ [1, n]}.

4.4.2 Basic Transformation Operations

Here we define two basic data transformation operations, join and pivot, that we used
to define the flattening operator.

Join

The object-oriented join operator combines instances of a data bundle of a class C

with instances of one of its references, producing a new data bundle. As compared to
the classical natural join, this operation can be considered as a left outer join, as we
are interested in conserving all instances of the class C even in those cases where the
processed reference is empty. Algorithm 1 describes precisely how this concrete join
operation is computed.

A join accepts as input a data bundle A(Aclass, Adata) and a reference ref, which
belongs to Aclass and has as type another class B. With these inputs, the join operator
produces as output a new data bundle A′, whose class has all the properties of Aclass,
minus the reference ref, and all the properties of B. As data, the output data bundle
has all instances of Aclass that have no relation with any instance of B, and, for each
instance of Aclass related to one or more instances of B, the instances resulting of
combining such an instance of Aclass with each instance of B to which the Aclass instance
relates.

As an example, if we perform the operation join(Business, features) over the data
bundle of Figure 4.4, we would get a data bundle whose instances would have the same
structure as the table shown in Figure 4.3 (b).



4.4 Flattenning Operator Description 109

Algorithm 1: Join operation.
Input: A data bundle A = (Aclass, Adata), Aclass = (nameA, P ropA)
Input: A reference ref
Precondition : ref is a reference, ref ∈ PropA

Output: A data bundle A′ = (A′
class, A′

data)
// Construct A’ class

1 Let B ← typeOf(ref), B = (nameB, P ropB);
2 name′ ← stringify(nameA, “and” , nameB);
3 Prop′ ← PropA − {ref} ∪ PropB;
4 A′

class ← (name′, P rop′);
// Construct A’ data

5 A′
data ← ∅;

6 foreach a ∈ Adata do
7 case propV alues(a, ref) = () do
8 A′

data ← A′
data ∪ {projection(a, PropA − {ref}) • emptyTuples(q)} where

q = |PropB|;
9 case propV alues(a, ref) = BInstancesa do

10 foreach b ∈ BInstancesa do
11 A′

data ← A′
data ∪ {projection(a, PropA − {ref}) • b};

12 end
13 end
14 end

FinancialResults

businessName
year
month
week
in
out

businessName year month week in out
Pete’s Pizza 2018 Jan 1 2000$ 1500$
Pete’s Pizza 2018 Jan 2 1450$ 1200$
Pete’s Pizza ... ... ... ... ...
Pete’s Pizza 2019 Jan 2 1700$ 1350$
Pete’s Pizza ... ... ... ... ...
Sushi & Go 2018 Jan 1 4000$ 2200$

Fig. 4.6 A data bundle FinancialResults to be pivoted. Left, the class of the bundle;
right: class instances represented in a table

Pivot

Algorithms 2, 3, and 4 describe precisely how the pivot operator works. This operator
was informally introduced in Section 4.3. To avoid overwhelming the reader with
intricate low-level details, we have considered in these algorithms that properties of a
class can hold just single values, i.e, their max cardinality is 1. The same assumption
is made throughout this section, and, at the end of it, we explain how this operator
can be easily generalised to work with multi-valued properties.



110 Lavoisier: High-Level Selection and Preparation of Data

Algorithm 2: Pivot operation.
Input: A data bundle A = (Aclass, Adata), Aclass = (nameA, P ropA),
Input: A set of static properties SP = {sp1, · · · , spp}
Input: A set of pivoting properties Pivoting = {ping1, · · · , pingq}
Input: A set of pivoted properties Pivoted = {ped1, · · · , pedr}
Input: A set of aggregations Aggregates = {agg1, · · · , aggr}
Precondition : SP ̸= ∅ ∧ SP ⊂ PropA

Precondition : Pivoting ̸= ∅ ∧ Pivoting ⊂ PropA

Precondition : Pivoted ̸= ∅ ∧ Pivoted ⊂ PropA

Precondition : SP , Pivoting, and Pivoted are disjoint sets.
Precondition : aggi : Tuple(typeOf(pedi))→ Ti, Ti ∈ Type
Output: A data bundle A′ = (A′

class, A′
data)

1 Let aggregateOf : Pivoted→ Aggregate | aggregateOf(pedi) = aggi

2 A′
class, originalProperty, NewProperties← ConstructClass()

3 A′
data ← ConstructData()

Algorithm 3: Pivot - ConstructClass Function.
Input: Those of the pivot operation.
Output: A′

class = (nameA′ , P ropA′)
Output: A function originalProperty : Property → Property
Output: A Set{Property} NewProperties

1 Function ConstructClass:
2 Prefixes← {stringify(projection(ins, P ivoting)) | ins ∈ Adata};
3 NewProperties← ∅;
4 foreach ped = (name, type, c) ∈ Pivoted do
5 foreach prefix ∈ Prefixes do
6 newName← stringify((prefix, name));
7 newProperty ← (newName, typeOf(aggregateOf(ped)), c);
8 originalProperty(newProperty)← ped;
9 NewProperties← NewProperties ∪ {newProperty};

10 end
11 end
12 nameA′ = stringify((nameA,‘′’));
13 PropA′ = SP ∪NewProperties;

The pivot operation accepts as input a data bundle A, three disjoint subsets of
their properties, and a set of aggregation functions. The subsets are called static
properties, pivoting properties, and pivoted properties, and they represent, respectively,
the properties that are not affected by the pivot operation; the properties that are used
as values to pivot; and the properties that are pivoted, i.e., rearranged. There must be



4.4 Flattenning Operator Description 111

Algorithm 4: Pivot - ConstructData Function
Input: Those of the pivot operation.
Input: A′

class = (nameA′ , P ropA′)
Input: A function originalProperty : Property → Property
Input: A Set{Property} NewProperties
Output: A Set{Instance} A′

data

1 Function ConstructClassData:
2 A′

data ← ∅, PartialIns← {projection(ins, SP ) | ins ∈ Adata};
3 foreach partialIns ∈ PartialIns do
4 newV alues← ();
5 Tuples← filterEqual(Adata, SP, partialIns);
6 foreach newProp ∈ NewProperties do
7 origProp← originalProperty(newProp);
8 origV alues← (propV alues(t, origProp)|t ∈ Tuples);
9 if Set(origV alues) = {()} then

10 aggV alue← ();
11 else
12 aggFun← aggregateOf(origProp);
13 aggV alue← aggFun(origV alues);
14 newV alues← newV alues • (aggV alue);
15 end
16 newIns← partialIns • newV alues, A′

data ← A′
data ∪ {newIns};

17 end

FinancialResults’

businessName
2018_Jan_in
2018_Jan_out
2018_Feb_in
2018_Feb_out
2019...

2018 2019
Jan Feb ....

businessName in out in out ....
Pete’s Pizza 8500$ 5350$ 7000$ 5700$ ....
Sushi & Go 19000$ 9900$ 15000$ 8500$

Fig. 4.7 Resulting data bundle of applying pivot to the one of Figure 4.6.

an aggregation function associated to each pivoted property, so that each aggregation
function accepts as input a tuple of values of the associated pivoted property type, and
produces as output a single value of an arbitrary type.

We explain these concepts with the help of the FinancialResults data bundle of
Table 4.6. The objects, or class instances of this data bundle are simple objects without
nested objects, so they can be more easily represented as table rows rather than as
JSON objects. Using this example, we might pivot the FinancialResults bundle of
Table 4.6 using as static properties just the business name, as pivoting columns year



112 Lavoisier: High-Level Selection and Preparation of Data

and month, and, as pivoted columns, income and outcome (represented as in and out
in the picture for space reasons). As aggregation function for each pivoted property,
we might use sum : Tuple{R} → R.

Using these inputs, the pivot operation produces as output a new class A′, which
has as properties the static properties of A plus a set of new properties. To calculate
these new properties, we extract first all distinct tuples corresponding to the pivoting
properties of A. Then, we derive a string representation of each one of these tuples
using the stringify auxiliar function. In our example, the distinct tuples for the pivoted
properties year and month would be ((2018, Jan), (2018, Feb), (2018, Mar), ...).
After being stringified, these tuples would produce the set { “2018_Jan”, “2018_Feb”,
... }. We refer to this set as the prefixes set.

Then, for each pivoted property and for each element in the prefixes set, we create
a new property. The name of each new property is formed by concatenating the
prefix element and the property name being processed. As type, the property has the
type of its corresponding aggregation function, and, as cardinality, the cardinality of
the original pivoted property. In the example, we would generate as new properties
{(2018_Jan_in, R, (1,1)), (2018_Feb_out, R, (1,1)), ...}. As it can be seen, the
number of properties of the output class can be much larger than the number of
properties of the input class. In our example, twenty-four new properties would be
created per year contained in the instances of the input data bundle.

After defining the structure of the output class, their instances are computed.
For this purpose, all distinct tuples corresponding to the static properties of A are
calculated. In our example, just the (Pete’s Pizza) and (Sushi & Go) tuples would be
retrieved.

To complete each one of these tuples with values for the newly created properties,
the following non-trivial process is executed. Let p be a newly created property of
a tuple a. For instance, let p be the 2018_Jan_in property of (Pete’s Pizza). To
calculate this value, we search for all instances of A whose static properties match
with a, and whose pivoting properties match with the values corresponding to p. In
our case, we search for instances of A having as values (Pete’s Pizza, 2018, Jan) for
the name, year and month properties, respectively. We would get four instances in
our case, one per week in a month. Next, we extract the value of each one of these
instances for the pivoted property associated to p. This is, we would extract the value
for the Income property of each one of these four instances. Finally, all these values
are reduced by applying the corresponding aggregation function. The result is used as
value for the newly created property. In our case, we would calculate the sum of the



4.4 Flattenning Operator Description 113

four extracted values, and this value would be placed in the 2018_Jan_in property of
the (Pete’s Pizza) tuple.

As the reader can notice, while we mentioned that the number of properties of A′

can be considerably higher when compared with A, the number of instances of A′ would
be lower. This happens because the pivot operation is compressing replicated instances
in a single one, spreading the information of each replica over the new properties.

It could be the case that, for some of these new properties, we do not have any
values to aggregate for certain instances. For example, if the Pete’s Pizza business was
closed in August 2018, we would not have income values for any week of the generated
property 2018_August_in. If this happens, then the value for such properties is left
undefined, i.e., 2018_August_in = () for the Pete’s Pizza business.

One special pivot case happens when, after defining the static and pivoting property
sets, there are no properties left to be pivoted. For instance, we might want to pivot
a BusinessCategories (businessName, category) class, whose instances store business-
category pairs, meaning that such a business belongs to the related category. For
this operation, we would select {businessName} as static properties, and {category}
as pivoting properties, while the pivoted properties set would be empty. The pivot
operation would take place as follows: a boolean property would be generated for each
category value, with the same name as the category. The value of each category property
would be true for those businesses related with that category in the BusinessCategories
data bundle, and undefined for the not related.

Finally, it is worth to mention that, if we wanted to extend the Algorithms 2, 3
and 4 to work with properties with cardinality higher than 1, we would need only to
modify the profiles of the stringify and aggregate functions so that they work with
tuples of tuples of values instead of just tuples of values.

Next sections describe how the flattening operator can be defined with the help of
the join and pivot operations.

4.4.3 Trivial Case: Single Class, Single-Value Attributes

The trivial input for a flattening operation is a class that just contains single-value
attributes. Figure 4.8 (left) provides an example of such a class. In this example,
we want to create a table, or dataset, for the Review class, which contains the r_id,
stars and text attributes. The flattening process for this case, which is described in
Algorithm 5, is straightforward. The operation accepts as input a data bundle, where
the class only contains the definition of single-value attributes, and produces as output
a table. To define the table header, for each property in the class, a column is created



114 Lavoisier: High-Level Selection and Preparation of Data

Review

r_id : string
stars : double
text : string

r_id stars text

R1 4.5 We were recommended this by . . .
... ... ...
R2 3.7 The first impression was not . . .

Fig. 4.8 Left: Main class (Review) to be transformed; right: The resulting table.

Algorithm 5: Flatten - Trivial Case.
Input: A data bundle A = (Aclass, Adata)
Output: A table T = (Theader, Tdata)

1 Let Aclass = (nameA, P ropA), Theader ← ();
2 foreach prop ∈ PropA do
3 Let prop = (name, type, cardinality);
4 Theader ← Theader • (name);
5 end
6 Tdata ← Adata;

user
0..1

Review

r_id
stars
text

User

u_id
name

Review

r_id
stars
text
user_u_id
user_name

Fig. 4.9 One-bounded association.

with the same name. Then, each instance of the class is copied as a row in the output
table. All the other patterns that can be found in an object-oriented model are reduced
to this base case.

In our example, we would construct a table with columns r_id, stars and text.
Then, each Review instance would be added as a row to this table.

4.4.4 Single-Bounded Reference

The second pattern corresponds to the case of a class A containing single-valued
attributes and one reference ref with upper bound 1 to a class B, which contains
single-valued attributes and no references. This case is illustrated in Figure 4.9 (left),
where we wish to flatten the Review class, now containing a single reference user to a
User class.



4.4 Flattenning Operator Description 115

features
*

Business

b_id
stars

ValuedFeature

name
value

Business

b_id
stars
features_NoiseLevel_value
features_AgesAllowed_value
features_Smoking_value

Fig. 4.10 Reduction of an unbounded reference.

To reduce this pattern to the base case, we need to combine both classes in a single
class and remove the reference ref . This is achieved by joining the class A with the
class B through the reference ref . After performing the join, the resulting class A′

contains the same instances as A, since each instance of A is combined with at most
one instance of B; and all attributes of A and B, but the reference ref would have
been removed. So, after the join, the pattern is reduced to the trivial case. In summary,
the flattening of this pattern can be formalised as follows:

flatten(A) = flatten(join(A, ref))

Figure 4.9 (right) shows the result of this join of the Review class with the User
class through the user reference. As it can be seen, this class can now be flattened
using the trivial case strategy.

4.4.5 Unbounded Reference

In this new pattern, we have, as before, a class A containing single-valued attributes
and one reference ref to a class B, which contains single-valued attributes and no
references, but now ref is unbounded. Figure 4.10 illustrates this case with an example,
where we want to flatten the Business class, which has an unbounded reference to a
ValuedFeature class.

In this pattern, unlike in the previous one, each instance of A can relate to many
instances of B. Consequently, if we simply join classes A and B, we would have a class
A′ with all attributes of A and B, but the data corresponding to each instance of A

would be replicated in several instances of A′, such as in Figure 4.5 (b). Therefore,
a join operation would not be enough in this case, as it would not satisfy all the
constraints imposed by data mining algorithms.

To solve this problem, we can compact the output of the join operation using a
pivot. Since we want to have one row per instance of A, we have to use all properties



116 Lavoisier: High-Level Selection and Preparation of Data

of A as static properties for the pivot operation. This ensures that the output of the
pivot operation has as many instances as A has. Thus, using some of the attributes of
B as pivoting properties and the remaining of then as pivoted properties, the pattern
would be reduced to the trivial case.

The problem is now precisely how to decide which attributes of B would become
pivoting properties and which ones would be pivoted properties. Since we want to
preserve all information of each instance of B related to each instance of A, each
instance of B should be spread over a set of attributes reserved for that instance. For
instance, in our example, the information of each ValuedFeature associated to one
business should be placed in a set of attributes created for that ValuedFeature.

A solution to achieve this is to use as pivoting properties a set of attributes of B that
uniquely identify each instance of B inside the collection represented by the reference
being processed. In our example, we want to find an attribute that can identify each
ValuedFeature inside the features collection of a Business. In this case, the name
attribute can play this role. Finding these attributes requires knowing the semantics
behind each attribute. Since the flatten operator is only able to analyse the syntactic
structure of a pattern, it cannot compute these attributes by itself. Consequently, the
user must provide these attributes as an input for the flattening operator in this case.
These user-specified attributes of B are used as pivoting properties and the remaining
ones as pivoted properties.

It must be taken into account that we are pivoting the result of the join of A and
B, this is, A′. In A′, the name of the properties of B are prefixed with the name of the
reference used for the joins, so that name collisions in A′ are avoided. Consequently,
when performing the pivot, the names of the pivoting and pivoted properties, coming
from B, need to be updated to match with those in A′. With all these considerations,
the flattening of this pattern can be formalised as follows:

flatten(A, {(ref, P ivoting)}) =
flatten(pivot(join(A, ref),

P ropA,

updateNames(Pivoting),
updateNames(PropB − Pivoting)))

For our example, if we use the name property of ValuedFeatrure as pivoting prop-
erty, the flatten operator would firstly join the Business and ValuedFeature data
bundles through the features reference. This resulting data bundle is pivoted, us-



4.4 Flattenning Operator Description 117

categories

*

Business

b_id

Category

name

Business

b_id
categories_buffet
categories_dj
categories_kosher

Fig. 4.11 Special unbounded reduction where no value attributes are present (the
category name is used as pivoting attribute).

[{name : "Pete's Pizza", stars : 4.5,
  categories : ["buffet", "dj"]},
 {name : "Sushi & Go", stars : 3.8
  categories : ["buffet", "kosher"]},
 {name : "Wine Heaven", stars : 4.0,
  categories : ["buffet", "dj","kosher"]}]

Fig. 4.12 Businesses with their categories represented as a multivalued attribute.

ing {b_id, stars} as static properties; {features_name} as pivoting properties; and
{features_value} as pivoted properties. Figure 4.10 (right) shows a potential output
class for this process. In this case, we have considered there are three possible names
for a ValuedFeature: NoiseLevel, AgesAllowed and Smoking. Therefore, three new
attributes are created to host the values associated to these features.

In Figure 4.11, the example that is commented in the special pivot case at the end of
Section 4.4.2 is depicted. No pivoted attributes are present in this case (Pivoted = ∅),
as the Category class only has one attribute, name, which is used as pivoting property.
Therefore, the generated attributes indicate whether each business’s categories reference
points to any of the possible categories (buffet, dj or kosher in the example). The
flatten operation would be flatten(Business, (categories, {name}).

4.4.6 Multi-Valued Attributes

Another potential input pattern might be a single class, with no references, but with
one multivalued attribute. A multivalued attribute is an attribute, i.e., a property with
a primitive type, but with an upper bound greater than one. For instance, in the
Yelp conceptual model, the Categories class only has one string attribute, name. In
addition, this class is only related to the Business class. Therefore, these categories
could also be registered in the model by including a multivalued attribute, of type
String, into the Business class. Figure 4.12 depicts this example with a JSON file
where the categories of each business are registered through an array of strings.



118 Lavoisier: High-Level Selection and Preparation of Data

categories

*

location
1

Business

b_id

Category

name

Location

address
state
postcode

Business

b_id
location_address
location_state
location_postcode
categories_buffet
categories_dj
categories_kosher

Fig. 4.13 Multiple references reduction.

Since multivalued attributes can be viewed as a degenerated case of unbounded
references, we can follow a similar strategy and rely on the pivot operation. For this
operation, we would use as pivoting values the set of values of the reduced attribute,
and as pivoted value the mere presence of each individual value in the multivalued
attribute of a class instance, just as in the special pivot case commented at the end of
Section 4.4.2.

In the Yelp example, if categories were a multivalued attribute of Business as
described in the previous paragraph, a pivot operation could be invoked by using the
different category names as pivoting values, and the presence of such category names
in the multivalued attribute of each business instance would be used as pivoted values
for each business. This would be conceptually equivalent to firstly transforming the
example of Figure 4.12 into the case of Figure 4.11 and then reducing it.

4.4.7 Multiple Reductions

Now that we have seen the different ways to flatten a reference, we can start with those
where several references are reduced. In Figure 4.13, we are reducing two references
from the Business class, namely, location and categories.

When reducing multiple references from the main class, the strategy is to reduce
each reference individually, using the previously described patterns. As each reduction
generates its own set of new properties, these properties do not collide and, therefore,
it does not matter the order in which they are executed. It is worth to hightlight that,
as it was specified in the unbounded references section, the reduction of an unbounded
reference requires the specification of the pivoting properties. Consequently, when
multiple unbounded references are reduced, we need to specify, for each unbounded
reference, which properties of the referenced class will be used as pivoting properties.
Therefore, the flatten operator needs in this case as extra argument the collection of
(unbounded reference, pivoting attributes) pairs that provide such information.



4.4 Flattenning Operator Description 119

b
1

cs
*

b
1

Review

r_id
stars

Business

b_id
stars

Category

name

Review

r_id
stars

Business

b_id
stars
cs_buffet
cs_dj
cs_kosher

Review

r_id
stars
b_b_id
b_stars
b_cs_ buffet
b_cs_dj
b_cs_kosher

Fig. 4.14 A two-step reduction of multilevel references.

Based on this description, the command to accomplish the reduction of Figure 4.13
would be as follows:

flatten(Business, {(categories, {name})})

When executing that command, the flatten operator would reduce the location
reference using the single-bounded pattern of Section 4.4.4; and then, the categories
reference with the unbounded pattern of Section 4.4.5. For this second reduction, the
pivoting properties set is required, which is passed as a parameter of the operator. As
commented, the order of these reductions can be swapped.

4.4.8 Multi-Level Reductions

Until now, we have considered that a referenced class does not have its own references.
In this subsection, we extend the previous patterns by allowing referenced classes to also
reference other classes, which might also have references again, and so on. Figure 4.14
(left) shows an example of this pattern, where we wish to reduce the information of
three connected classes: Review, which plays the role of main class, Business and
Category. Reference names have been abbreviated for space reasons.

The strategy to reduce a chain of references to a single class is to reduce step by
step each class in the chain to a single class, going from tail to head, until compacting
the full chain into the main class. In the case of Figure 4.14, the cs reference is reduced
first, and the Category class gets merged into Business class by means of a join plus a
pivot, according to the pattern for unbounded references. The result of this step is
shown in Figure 4.14 (middle). After this first step, we would reduce the b reference
using the pattern for single-bounded references, obtaining the result of Figure 4.14
(right).

So, the command to achieve this reduction is:



120 Lavoisier: High-Level Selection and Preparation of Data

flatten(Review, {(cs, {name})}) (4.1)

As it can be observed, similarly to the case of multiple references, for each unbounded
reference to be reduced, we need to specify which properties of the referenced class
should be used as pivoting properties, such as for the Categories reference.

4.4.9 Inheritance

In all previous patterns we ignored that object-oriented models can contain inheritance
relationships. This section describes how inheritances are handled by the flattening
operator. Before that, we show how we extended the formalisation provided in
Section 4.4.1 to support inheritance relationships.

Inheritance Formalization

We extended the definition of class and instance, so that a class can have superclasses.
For this purpose, we also introduced two new functions, properties and isKindOf.

Definition 4.4.18. A class C is a tuple (n, Properties, Superclasses) ∈ String ×
Set{Property} × Set{Class}, where n is the name of the class, Prop is the set of
properties of the class, and Superclasses is a set of classes that are superclasses of
this class.

Definition 4.4.19. properties : Class → Set{Property} is a function that, given
a class C = (n, Prop, Super), where Super = {SC1, · · · , SCn}, then properties(C) =
Prop ∪ ⋃n

i=1 properties(SCi).

Definition 4.4.20. isKindOf : Type × Type → Boolean is a function that, given
two types t1 and t2,

1. If t1 = t2, then isKindOf(t1, t2) = true.

2. If t1, t2 ∈ Class, t1 = (name, Prop, SC) and t2 ∈ SC, then isKindOf(t1, t2) =
true.

3. Otherwise, isKindOf(t1, t2) = false.

For the sake of simplicity, we consider that our input models are free of name
conflicts due to the presence of multiple inheritances. This is, a class cannot inherit a



4.4 Flattenning Operator Description 121

property with the same name from more than one superclass. If these conflicts are
detected in the conceptual model, they are reported to the designer, who must fix this
model by modifying a property name.

Definition 4.4.21. Given a class C, with properties(C) = {p1, · · · , pn}, and pi =
(ni, ti, (cmini

, cmaxi
)), an instance is a tuple (values1, · · · , valuesn) where valuesi is

a tuple with cmini
≤ |valuesi| ≤ cmaxi

, isKindOf(typeOf(v), ti), ∀v ∈ valuesi.

Definition 4.4.22. propValues : Instance × Property → Tuple{LiteralV alue} ∪
Tuple{Instance} is a function that, given an instance ins = (values1, · · · , valuesn)
of a class C with properties(C) = {p1, · · · , pn}, propV alues(ins, pi) = valuesi.

General Strategy for Inheritance Reduction

When applying a reduction pattern, if a class in the pattern is part of an inheritance
hierarchy, we first compact this hierarchy into the mentioned class, and then the
pattern can be reduced as usual. In the following, we denote the class over which the
inheritance hierarchy is compacted as the reduction class.

This reduction class can be at any level of an inheritance hierarchy: either the root
class, a leaf, or an intermediate class. So, as it can be noticed, when compacting an
inheritance hierarchy into a reduction class, we are including in that class all properties
coming from their super and subclasses. Including superclasses properties is natural,
since these properties are, by definition, properties of the reduction class too. Including
subclass properties is also considered in our case, because these properties might be of
interest in some data analysis.

The way of including subclasses properties is borrowed from the Single Table
Pattern used by Object-Relational Mappers (Fowler [60]). Algorithm 6 details this
operation. This pattern adds any attribute coming from a subclass to the reduction
class. Since two subclasses might define a property with the same name, the prefix
sub_<ClassName>_ is added to the name of each subclass property to avoid name
collisions. Finally, a new property type is added to the reduction class. This property
is used to know the concrete class of the inheritance hierarchy to which each instance
belongs.

When compacting a hierarchy, we consider that all classes in the hierarchy are
classes made up of just single-bounded attributes. If not, those classes that do not
fulfill this constraint should be reduced to a single class using the previously specified
patterns, and then the hierarchy would be compacted.



122 Lavoisier: High-Level Selection and Preparation of Data

Algorithm 6: Inheritance Reduction - General Case
Input: A data bundle A = (Aclass, Adata), Aclass = (nameA, P ropA, SCA)
Output: A data bundle A′ = (A′

class, A′
data), A′

class = (nameA′ , P ropA′ , ∅)
// Construct A’ class

1 nameA′ = stringify(nameA, “ ′ ”);
2 PropA′ = PropA;
3 Let SubclassesA = {C | C ∈ Class, C ̸= Aclass, isKindOf(C, A)};
4 foreach C = (nameC , P ropC , SCC) ∈ SubclassesA do
5 foreach p = (namep, t, (cmin, cmax)) ∈ PropC do
6 newP ← (stringify(“sub_”, nameC , “_”, namep), t, (0, cmax));
7 PropA′ ← PropA′ ∪ {newP}
8 end
9 end

10 PropA′ ← PropA′ ∪ {(“type”, String, (1, 1))};
// Construct A’ data

11 foreach ins ∈ Adata do
12 ins is an instance of class C(nameC , P ropC , SCC), isKindOf(C, Aclass);
13 newIns← ins;
14 foreach prop ∈ A′

class do
15 case prop ∈ properties(C) do
16 propV alues(newIns, prop) = propV alues(ins, prop);
17 case prop = propType do
18 propV alues(newIns, propType) = nameC ;
19 otherwise do
20 propV alues(newIns, prop) = ();
21 end
22 end
23 end



4.4 Flattenning Operator Description 123

group

1

Feature

name

AF

available

GF Group

name

VF

value

Feature

name

AF

available

GF

group_name

VF

value

Feature

name
sub_AF_available
sub_GF_group_name
sub_VF_value
type

Fig. 4.15 Inheritance Reduction - General Case

This process is illustrated with the example of Figure 4.15 (left), where we the
Feature class is the main class, and consequently, the reduction class of that hierarchy.
To compact this hierarchy, since the GF class has a single reference to Group, this
reference is reduced first with the pattern of Section 4.4.4 (Figure 4.15 (middle)).
Then, all the Feature subclasses’ properties are merged into this class with their
corresponding prefixes. Then, the new type property is added, generating the result
shown in Figure 4.15 (right).

One problem associated to the Single Table Pattern, and, consequently, to our
strategy for inheritance reduction, is that those properties coming from a specific
subclass are not defined in those instances belonging to other subclasses. For ex-
ample, in Figure 4.15, instances of VF would not have any value for the properties
sub_AF_available or sub_AF_group_name. This might reduce the quality of the anal-
ysis results, since some data mining algorithms might have problems dealing with null
values. Nevertheless, this is the price we must pay if we want to consider subclass-level
information. However, there is a particular case where this problem can be mitigated.
This case is described in the following section.

Special Case: Reduction Class in Unbounded Reference

In the specific case where the reduction class is part of an unbounded reference, the
null values problem previously described gets worse, since the reduction of unbounded
references generates several sets of properties, one per value of the pivoting properties
(see Section 4.4.5).

Figure 4.16 is used to illustrate this case. Each Business has an unbounded reference
to the Feature class, which is the root of the hierarchy that we reduced previously (see
Figure 4.15).



124 Lavoisier: High-Level Selection and Preparation of Data

features
*

availableFeatures
*

valuedFeatures* featureGroups

*

Business

b_id

Feature

name{id}

AvailableFeature

available

ValuedFeature

value

FeatureGroup

Business

b_id

AvailableFeature

name
available

ValuedFeature

name
value

FeatureGroup

name

Fig. 4.16 Left: Business and its reference to the Feature inheritance; right: type division
of the features reference performed in the special subclass reduction.

Applying the general case reduction (Algorithm 6), the properties of Feature would
be augmented with the set {sub_AF_available, sub_VF_value, sub_GF_group_name,
type}. This is, we move from one property in Feature to five. When reducing the features
unbounded reference, these properties are replicated for each one of its associated
pivoting values. Assuming we use name as pivoting property, all this set of properties
would be used for each existing feature.

Nevertheless, in this case, it might be not necessary to include all subclasses
properties when pivoting a specific instance of the Feature class. For example, let us
focus in a specific feature instance whose name is AgesAllowed. This feature would be
a ValuedFeature that can take as value an indication of an age restriction for a business
(e.g. “18plus” or “21plus”). Therefore, when pivoting such an instance, only two
properties out of the five contained in the compacted Feature class are needed. This
is, for the group of properties associated to the AgesAllowed pivoting value, just the
name and value properties are required, so the other properties can be removed. Any
extra property included in this set would be undefined, since AgesAllowed is always an
instance of ValuedFeature, and not of any other subclass.

Taking this into account, we can apply the following strategy to reduce the number
of null values: one new unbounded reference is generated for each one of the subclasses
of the reduction class. These references would then be populated with the instances
from the original unbounded reference belonging to each concrete type. Therefore,
references pointing to the subclasses, when reduced, would replicate just the properties
of each concrete class, decreasing the number of null values in the resulting dataset.
This process is more precisely specified in Algorithm 7.

In Figure 4.16, the features reference would be split into one reference for each class
in the hierarchy. For instance, for the ValuedFeature class, a features_ValuedFeature
reference is generated. The Feature class does not get a reference because it is an
abstract class, so no instances can be generated for this type. References are populated



4.5 Lavoisier: Dataset Extraction Language 125

Algorithm 7: Unbounded reference splitting method.
Input: A data bundle A = (Aclass, Adata), Aclass = (nameA, P ropA, SCA)
Input: A reference ref = (nameref , B, c), B = (nameB, P ropB, SCB)
Output: An updated data bundle A

1 Let SubclassesB = {C | C ∈ Class, C ̸= B, isKindOf(C, B)};
2 NewRefs← ∅;
3 foreach C = (nameC , P ropC , SCC) ∈ SubclassesB ∪ {B} do
4 newRef ← (stringify(nameref , “_”, nameC), C, (0, ∗));
5 NewRefs← NewRefs ∪ {newRef};
6 end
7 PropA ← PropA ∪NewRefs;
8 foreach ins ∈ Adata do
9 RefV alues← propV alues(ins, ref);

10 foreach newRef = (namenewRef , CnewRef , c) ∈ NewRefs do
11 propV alues(ins, newRef)← (values |

value ∈ RefV alues ∧ typeOf(value) = CnewRef ;
12 end
13 end
14 PropA = PropA − {ref};

with the instances of their type present in the features reference: ValuedFeatures
originally contained in features would be moved to the features_ValuedFeature reference,
AvailableFeatures to features_AvailableFeature, and so on. After this process, each
one of the new references can be reduced into the Business class as explained in
Section 4.4.5.

4.5 Lavoisier: Dataset Extraction Language
Once the flattening operator was fully specified, we built a language, based on that
operator, to perform dataset extractions from conceptual models. We named this
language Lavoisier. Listing 4.2 shows the minimal example of a Lavoisier snippet.

Listing 4.2 Lavoisier’s simplest dataset specification.
1 dataset yelp_reviews {

2 mainclass Review

3 }

In Lavoisier, extractions are expressed by defining dataset specifications, which are
expressed with the dataset keyword followed by a name (for instance, yelp_reviews in
Listing 4.2), and a body block surrounded by braces (lines 1-3). A dataset specification



126 Lavoisier: High-Level Selection and Preparation of Data

must always declare a main class (line 2), which is the class whose instances would be
placed in each row of the output dataset. If we do not include any further information, a
flattening process is applied to this main class, including all its attributes and excluding
all its references. This is a pragmatic convention, but not enough for most cases, so
Lavoisier provides some options to modify this default behaviour. These options are
commented in the following.

4.5.1 Properties Selection

If we do not want to include all attributes of the main class, we can select a subset of
them by specifying a list of attributes between brackets. This list appears after the
main class specification. In Listing 4.3, line 2 only the r_id and stars attributes of a
Review are selected to be included in the output dataset.

Listing 4.3 Reviews data with some attribute and reference selections.
1 dataset yelp_reviews {

2 mainclass Review [r_id, stars]

3 include user

4 include business {

5 include location[address, postalCode]

6 include categories by name

7 }

8 }

The selection of references is different from that of attributes because of two main
reasons: (1) referenced types can have nested attributes and references that we may
need to manage; and (2) references might be unbounded, which introduces the need to
specify a set of attributes to play the role of pivoting attributes in the reduction (see
Section 4.4.5). Therefore, the treating of references might require extra configuration
as compared with the syntax for selecting attributes.

Single-bounded references can be incorporated to a dataset through the include
keyword. For example, in Listing 4.3, line 3, the user reference is included in the
dataset through the include user statement. If no extra information is given, all
attributes of the included class (e.g. User in this case) would be flattened into the
main class, i.e., u_id and name.

In line 4 of Listing 4.3, another single-bounded reference is included in the dataset
specification, business in this case. If we want to customise which elements of the
reduced reference are included, we can do so by adding a block to the include construct,
such as the one used in the case of business (lines 4-7). Inside this block, we can use



4.5 Lavoisier: Dataset Extraction Language 127

the same modifiers as in the main class to include more references, and we can keep
including references up to the nesting level that is required for each concrete dataset
specification.

Inside the business inclusion block, first the location reference is included (line
5). From this reference, just the address and postal code attributes are selected to
be included in the output dataset. This selection was performed by indicating these
attributes between brackets after the reference name, just as we did with the attributes
of the main class at line 2 of the listing. Then, categories is included, which is an
unbounded reference (line 6). As an additional parameter for unbounded references, we
need to specify the set of attributes from the included reference that should be used as
pivoting attributes. This is done with the by keyword after the name of the unbounded
reference. For the example, the name of the categories is used as pivoting attribute.

4.5.2 Inheritance Management

As we saw in Section 4.4.9, inheritances may appear in the main class of a flattening
operation, or in one of the reduced references. In both cases, if no extra information is
provided, Lavoisier by default reduces inheritances by including all attributes of the
super and subtypes of the reduction class, either by the properties collapse reduction or,
if reducing an inheritance present in an unbounded reference, by the reference splitting
method (see Sections 4.4.9 and 23, respectively).

On the other hand, as users of Lavoisier might just be interested in some of the types
of an inheritance, or they could want to include any of the references of a concrete type,
the language includes support for customising this reduction process. First, attributes
and references contained in the superclasses of the reduction class can be included
in the dataset with no special syntax, i.e., by making use of the attribute selection
and reference inclusion constructs that we introduced in the previous section. For the
selection of properties from subclasses, a new pair of constructs was introduced: as
and only as.

Listing 4.4 Inclusion of GroupedFeature’s group reference in the inheritance reduction.
1 dataset yelp_businesses {

2 mainclass Business[name, stars]

3 include features by name {

4 as GroupedFeature { include group }

5 }

6 }



128 Lavoisier: High-Level Selection and Preparation of Data

Listing 4.4 shows a dataset specification where business data is being extracted.
Among the selected business’ properties, the features unbounded reference is included
(lines 3-5). As we know, features are represented through an inheritance hierarchy.
Therefore, Lavoisier would apply the reference splitting inheritance reduction (see Sec-
tion 23) including only attributes from the involved classes: Feature, AvailableFeature,
ValuedFeature and GroupedFeature. For the last of these classes, a very important
property is present in a reference: the group of the property. By default, Lavoisier
would omit this reference when reducing the inheritance, as this language only processes
attributes. If we want to also include certain references, we can do so with the as
construct. This construct allows selecting the concrete properties of a type that are
to be flattened. For instance, to include the group feature, we have to specify the as
keyword followed by the name of the type to customise (i.e. GroupedFeature in this
case) and by a block, where we can make use of inclusion mechanisms, such as the
include construct that is used to select the group reference in line 4.

Listing 4.5 Selection of only two subclasses from the inheritance for the reduction.
1 dataset yelp_businesses {

2 mainclass Business[name, stars]

3 include features by name {

4 only as AvailableFeature {}

5 only as ValuedFeature {}

6 }

7 }

The previous type customisation only affects the type being modified, as any other
type in the inheritance would be processed through the default behaviour (i.e. all
attributes processed, no references). Another configuration we might want to do when
reducing an inheritance is to only reduce some concrete types of such an inheritance,
instead of all of them. We can do so by using the as construct, but preceding it
with the only keyword. In Listing 4.5 shows a dataset specification where two only
as statements are used in the reduction of the features reference (lines 4-5). These
statements refer to the AvailableFeature and ValuedFeature classes, which means that
only these types of the inheritance would be flattened in the reduction. Any other type
of the inheritance would be omitted.

4.5.3 Instances Filtering

It might also the case that we are not interested in including al instances of a class in
a particular dataset. For example, in the Yelp case study, we might want to limit an



4.5 Lavoisier: Dataset Extraction Language 129

analysis to the reviews of businesses of a specific city. This can be achieved in Lavoisier
by means of filters. A filter is specified after a class or reference name (or the attribute
selection list, if present), using the where keyword. A filter contains a predicate that
is evaluated for each instance. If the predicate evaluates to true, then the instance is
processed; otherwise it is discarded.

Listing 4.6 Lavoisier’s simplest dataset specification.
1 dataset yelp_reviews {

2 mainclass Review [r_id, stars]

3 where business.location.city = "Edinburgh"

4 ...

5 }

Listing 4.6 shows a Lavoisier snippet using a filter, where we are interested in
selecting only those reviews from the city of Edinburgh. This restriction is specified
with the where keyword followed by a boolean equality which compares the city of a
business to the string “Edinburgh” (line 3).

4.5.4 Derived Values

It is worth to comment that, when applying the pattern for reducing unbounded
references (see Section 4.4.5) between a class A and a class B, it could happen that
certain instances of A are not related to certain instances of B. For example, if the set
of features defined by each business is not somewhat homogeneous, this means, each
business defines a set of features that others seldom define, the execution of Listing 4.4
would genearte as output a dataset with a non-negligible amount of undefined feature
values. Undefined values often hamper the quality of results of data mining algorithms.
So, we must take care of not flattening unbounded references that can generate large
amounts of undefined values.

In an extreme case, the set of instances contained in the unbounded reference
of an instance of the main class could not have any relation with the sets of other
instances. This phenomenon happens with the reviews that each business instance
has: this set is personal for each business, and disjoint of the reviews that other
businesses have received. Therefore, references like reviews should not be flatenned,
as the generated dataset would have poor quality. Instead, these references should be
processed by calculating some statistical values that summarise them. For instance,
we might calculate the number of reviews received by each business, or the number of
these reviews that were positive (e.g. that gave 4 or more stars).



130 Lavoisier: High-Level Selection and Preparation of Data

Listing 4.7 Lavoisier’s calculate construct to perform aggregations.
1 dataset yelp_businesses {

2 mainclass Business[name, stars]

3 calculate numReviews

4 as count(reviews)

5 calculate numPositiveReviews

6 as count(reviews) where stars >= 4

7 }

To support these derived values, Lavoisier provides users with the calculate primitive.
Listing4.7 shows an example where this primitive is used. The numReviews column
is calculated by applying the count function over the reviews reference of a business
(lines 3-4). The numPositiveReviews is obtained through a similar calculation, but this
time only those reviews with 4 stars or more are counted (lines 5-6). This selection is
performed with a where clause, just as instances were filtered in Section 4.5.3.

The main limitation of the calculate primitive is that it only supports spreadsheet-
like aggregation functions, such as count, avg, min or max. Although these functions
can be combined with the instances filtering mechanism to provide an acceptable set
of basic calculations, they might not be enough for obtaining more complex derived
values, such as the ratio of positive vs. negative reviews during the last summer. If
these complex values are used somehow as KPIs (Key Performance Indicators) in the
domain being analysed, they should be included in the conceptual domain model, not
being responsibility of Lavoisier to calculate them. However, it might be case that, in
the light of new facts identified when analysing a data bundle, new KPIs arise. In this
case, it would be interesting that Lavoisier provides facilities to calculate these values.
The main problem would be that, to include support for calculating these values, a
small but very-close-to-programming language might be required, and the skills to
manipulate such a language might be out of the scope of those average decision makers
for which Lavoisier was designed.

4.5.5 Implementation

Lavoisier has been implemented with the Xtext framework (Eysholdt and Behrens
[55]), and the conceptual models queried by this language are represented in the Ecore
format (Steinberg et al. [152]). Through the usage of Xtext, we obtain a very capable
editor, with easy inclusion of terms proposal and validation into the language. The
user gets assisted through the dataset specification process, which is validated against



4.6 Evaluation 131

the conceptual model to ensure correctness and to provide useful suggestions. The
implementation of Lavoisier is freely available in an external repository3.

When executing a Lavoisier script, a CSV (Comma-Separated Values) file is gener-
ated for each dataset specification. First, the instances of the main class to be included
in this the output dataset file are gathered, taking into account the specified filters.
Then, the attribute and reference inclusions constructs are processed to determine
the different sets of columns that must be generated, in the same order that they
were defined. Lastly, these columns are calculated for each gathered instance of the
mainclass, and placed as rows in the output dataset.

Notice that, although Lavoisier snippets seem small and simple, a considerable
number of entities from the model intervene in some of the presented dataset specifi-
cations. For instance, 5 entities are involved in the specification of Listing 4.3. This
example might suggest the power offered by Lavoisier’s apparently simple constructs,
in part thanks to the defined flattening patterns that this language uses internally. To
offer a more objective study of the benefits of Lavoisier, in the next section we compare
this language with some state-of-the-art technologies for data flattening.

4.6 Evaluation
This section evaluates whether Lavoisier is an effective language for the creation of
datasets from a high-level perspective, without the need of having to perform low-level
data transformation operations like joins or pivots.

In this evaluation, we firstly analysed whether Lavoisier is expressive enough to
create datasets for a wide range of contexts. Secondly, we studied in detail the
advantages provided by Lavoisier when compared with state-of the-art languages
used for defining datasets. More specifically, we compared Lavoisier against the SQL
(Beighley [18]) language and the Pandas (McKinney [114]) data transformation library.
These technologies have been selected as representatives of the main groups discussed
in Section 4.3.

The comparison was carried out by analysing conciseness and specification complex-
ity of different dataset extraction scripts developed using Lavoisier, SQL and Pandas.
These scripts were devised to cover a wide range of dataset creation scenarios. By
analysing conciseness, or script size, we expected to measure how much boilerplate
code can be saved due to the use of Lavoisier; whereas by comparing specification

3https://github.com/alfonsodelavega/lavoisier

https://github.com/alfonsodelavega/lavoisier


132 Lavoisier: High-Level Selection and Preparation of Data

Table 4.1 Lavoisier support for dataset creation tasks.

Category Subtasks Supported

Structural

Single table Yes
Single-bounded reference Yes
Unbounded reference Yes
Multi-valued attributes Yes
Multiple reductions Yes
Multi-level reductions Yes
Inheritance Yes

Customisation
Attribute filter Yes
Instance filter Simple
Subclass selection Yes

Calculation Aggregations Simple
Derived features Pending

complexity, we aim to know how many operations and parameters need to be specified
when using each one of the compared technologies.

4.6.1 Expressiveness

To assess Lavoisier’s expressiveness, we checked whether and how this language supports
those tasks that are typically carried out when producing a tabular dataset during a
data mining process (see Figure 4.2, Step 5). These typical tasks were grouped into
three categories: Structural, Customisation, and Calculation. The Structural category
contains those tasks where certain pattern of the conceptual model is reduced to a
simpler form, e.g., the reduction of a class with an unbounded reference to a single
class. The Customisation category covers all operations related to the personalisation
of the extracted data, for instance, by filtering out certain instances of a particular
class. Finally, the Calculation category refers to those tasks related to the definition of
new features based on aggregation functions or arithmetical operations.

We decomposed each one of these categories into several subtasks, and, for each
subtask, we analysed how well Lavoisier addresses it. Table 4.1 shows the results of
this decomposition and analysis process.

The structural category was decomposed into seven different subtasks, which match
with the transformation patterns identified for the flatenning operator. As can be
seen in Table 4.1, Lavoisier supports all tasks in the structural category. This was
expected, because Lavoisier was built on top of the flatenning operator, designed to
address these patterns (see Section 4.4). Therefore, Lavoisier is able to deal with the
different patterns that might appear in an object-oriented model.



4.6 Evaluation 133

Regarding the customisation category, three different subtasks were identified: (1)
attribute filter; (2) instance filter; and (3) subclass selection. The first subtask refers to
selecting which attributes of a class should be included in the flattening process. The
second subtask is used to discard those instances that do not comply with a filtering
criteria. Lastly, the third subtask can be employed to select and personalise a subset
of the existing types in an inheritance hierarchy to intervene in the flattening process.

Partial support is currently provided for filtering instances of a class. In some
cases, this filtering requires the use of arithmetical operations. We have opted for not
yet including arithmetic operators, such as additions, substractions, multiplications
or divisions in the language. These operators could be included with not that much
effort, in the same way we added support for aggregate functions. Nevertheless, we are
somehow reluctant to incorporate them because, to calculate complex cases, we might
need a full-fledged programming language, which is in conflict with our initial goal of
creating a language accessible to average decision makers. Despite all, we will include
some basic arithmetic operators in Lavoisier as part of our future work. For the third
customisation task, Lavoisier includes concrete mechanisms to select and configure the
flattening of subclasses of an inheritance (see Section 4.5.2).

Concerning the calculation category, two different subtasks are considered: (1)
reductions by the use of aggregation functions to summarise data, such as average,
min or count; and (2) the creation of properties with derived values, such as a student
average grades, that might not be initially included in a domain model. With respect
to the first task, as it was shown in Section 4.5.4, Lavoisier provides basic support
for this aggregated values. However, as it was commented, just basic spreadsheet-like
functions are provided, which prevents from computing more complex aggregations
using Lavoisier. In the case of derived values, Lavoisier does not provide any support
for them at the current moment since, as commented, we have not included arithmetic
operators in the language yet.

Summarising, Lavoisier does not seem to contain expressiveness problems, beyond
those related to the computation of complex derived values to be used for instance
filtering or for including new columns in an output dataset. However, this lack of
expressiveness is somehow intentional in order to make the language accessible for a
wider audience.

4.6.2 Conciseness and Conceptual Comparison Method

After checking that Lavoisier was free of expressiveness flaws, we analysed whether it
provides advantages over representative tools of the current practice. As mentioned



134 Lavoisier: High-Level Selection and Preparation of Data

Group

name : String
createdAt : Date

User

username : String
 
 

UnlockedAchievement

completedAt : Date
 

Purchase

purchaseId : String
purchaseDate : Date
 
 

PurchaseLine

price : double
 
 
 

Achievement

achievementId : String
name : String
description : String

VideoGame

name : String
launchDate : Date
price : double
 
 

Language

name : String
 
 

Tag

name : String
 
 
Publisher

name : String
 
 

friends [0..*]

groups [0..*]

user [1..1]

purchases [0..*]

purchaseLines [0..*]

achievement [1..1]

videoGame [1..1]

videoGames [0..*]

achievements [0..*]

videoGame [1..1]

voiceLanguages [0..*]

textLanguages [1..*]

tags [0..*]

publisher [1..1]

Fig. 4.17 Conceptual model of the VideoGames case study.

before, the selected tools for the comparison were SQL (Beighley [18]) and Pandas
([114]).

To perform the comparison, we created scripts for different dataset creation scenarios
using Lavoiser, SQL and Pandas. Then, for each scenario, we measured the size of each
script in characters; and we analysed what operations and parameters were required in
each language. The first measurement should show how much boilerplate or low-level
code is required to create a dataset by using each approach. The second comparison
aims to investigate what skills are required to manage each language, as well as the
conceptual complexity behind them.

The set of scenarios used for the comparison was designed to cover a wide range of
cases that might appear when creating a dataset. These scenarios only address tasks
related to the structural category. The reason for excluding the customisation and
calculation categories is twofold: (1) at the time of writing this document, Lavoisier
offers a limited support for the tasks of these categories; (2) Lavoisier does not claim
to provide better abstractions than SQL or Pandas for these tasks.

These dataset extraction scenarios were designed over the Yelp case study. Nev-
ertheless, this case study does not contain appropriate elements for covering some
scenarios, so they were specified using a second case study, based on a online video
game platform. Using a second case study also provides some evidence of Lavoisier
constructs not being constrained to a concrete context, i.e., they can be applied to
conceptual models from other domains.



4.6 Evaluation 135

Figure 4.17 shows a conceptual object-oriented model for a video games domain.
This model represents the different elements of a video game platform, and it is inspired
in existing platforms such as Steam4. In the video game platform, a User owns a
collection of VideoGames. Users can belong to Groups, and maintain a list of friends. In
addition, users have access to their video game Purchases. For each VideoGame, data
are stored about its Publisher company, the received Tags (e.g. strategy, multiplayer),
which in-game textual and voice Languages are available, and the list of Achievements
that users can complete while playing. In the following, we refer to this example as
the VideoGames case.

Table 4.2 shows the concrete set of scenarios that was finally used. These scenarios,
as already commented, focus on discovering how the different structures that can be
found in an object-oriented model are managed by each language. Each scenario was
labelled with a code composed of a single character plus a number. The character
indicates the kind of pattern being analysed: a refers to the trivial single class case; b
are those cases where a single reference is included in the main class; c cases are the
same as b’s, but for unbounded references; d refers to those cases involving inheritance;
and e test the capabilities to perform multiple and multilevel reductions. Besides each
scenario, the classes to be included in each dataset are provided.

Lavoisier is able to perform dataset extractions over conceptual models directly.
However, SQL and Pandas need to work at the relational or table level. Therefore,
we derived the relational models associated to the conceptual models of the Yelp and
VideoGame case studies. This transformation process was straightforward, except for
the cases where inheritance was present. Inheritances can be transformed into relational
elements using typically three strategies, known as Single Table, Concrete Table, and
Class Table, also known as Joined Mapping [60]. Therefore, for those scenarios that
tackle inheritance, we created three different relational models, each one following
a different inheritance mapping strategy; and we performed the comparison against
each one of these relational models. Next subsection discusses the results of these
comparisons.



136 Lavoisier: High-Level Selection and Preparation of Data

Table
4.2

D
ataset

extraction
scenarios

perform
ed

in
the

com
parison.

C
ode

C
ase

M
odel

D
escription

a
Single

table/class
V

ideoG
am

es
Just

V
ideoG

am
e

b1
Single-bounded

reference
Yelp

Reviews
and

their
user

b2
Single-bounded

reference
V

ideoG
am

es
Achievem

ents
and

their
videoG

am
e

c1
U

nbounded
reference

Yelp
Business

and
their

categories
c2

U
nbounded

reference
V

ideoG
am

es
V

ideoG
am

e
and

their
textlanguages

d1
Inheritance

Yelp
Features

(relationalsingle
table)

d2
Inheritance

Yelp
Features

(relationalconcrete
table)

d3
Inheritance

Yelp
Features

(relationalclass
table)

d4
U

nbounded
Inheritance

Yelp
Businesses

and
their

features
(relationalsingle

table)
d5

U
nbounded

Inheritance
Yelp

B
usinesses

and
their

features
(relationalcon-

crete
table)

d6
U

nbounded
Inheritance

Yelp
B

usinesses
and

their
features

(relationalclass
table)

e1
C

om
bination

(m
ultiple)

V
ideoG

am
es

V
ideoG

am
es

w
ith

tags
and

publisher
e2

C
om

bination
(m

ultilevel)
Yelp

Reviews
w

ith
their

business
and

the
categories

ofsuch
business



4.6 Evaluation 137

a b1 b2 c1 c2 d1 d2 d3 d4 d5 d6 e1 e2
Dataset Extraction Case

0

200

400

600

800

Sc
rip

t 
Si

ze
 (

C
ha

ra
ct

er
s)

SQL
Pandas
Lavoisier

Fig. 4.18 Script size in characters of the extractions for each approach (a: single table;
b: unary reference; c: unbounded reference; d: inheritance; e: combination).

4.6.3 Comparison Results

Figure 4.18 shows the size in characters of the scripts for each scenario, created using
each analysed language5. When counting characters in each script, we ignored any
kind of white space and line breaks.

On a first glimpse, it can be seen that the size of the expressions for both SQL and
Pandas considerably increases as the scenario complexity grows, as it was expected.
This phenomenon can be clearly appreciated in scenarios d3-d6, e1 and e2. In contrast,
Lavoisier’s script size grow is steadier across all cases.

For b-coded cases, SQL and Pandas scripts are slightly more verbose than Lavoisier’s.
These cases refer to the reduction of single-value references, which is achieved by using
an include clause in Lavoisier, a join operation in SQL, and a merge operation in
Pandas. The join and merge operations are a little more complex than the include
primitive of Lavoisier, as they require some extra parameters.

For instance, join and merge require those columns of the tables to be joined that
should be used for matching rows of the two tables, whereas in the case of the include
primitive we only need to specify the reference that should be reduced. In addition,

4https://store.steampowered.com/
5The extraction queries for SQL, Pandas and Lavoisier can be consulted in an external repository:

https://github.com/alfonsodelavega/lavoisier-evaluation.

https://store.steampowered.com/
https://github.com/alfonsodelavega/lavoisier-evaluation


138 Lavoisier: High-Level Selection and Preparation of Data

SQL and Pandas users have to manually address the following issue: column name
collisions. When joining two or more tables, if these tables have the same name in
some of their columns, users to manually specify an alias to differentiate them in
the resulting joined table. As an example, in the b2 extraction, the Achievement
and VideoGame entities of the VideoGames case study are joined, but both entities
have a name attribute. So, this pair of attributes must be aliased, either with the as
keyword in SQL or with the suffixes merge parameter in Pandas. On the contrary,
Lavoisier’s include construct prevents users from having to worry about this problem
by automatically adding appropriate prefixes in the reductions.

For unbounded references (c cases), the results for SQL and Pandas are noticeably
worse. When using these two approaches, to reduce these references, we need to execute
a join operation and then a pivot. So, multiple operations need to be combined along
with their parameters to achieve the reduction. In the case of Lavoisier, just the name
of the reference and the set of attributes to be used as pivoting attributes are required.
Therefore, script size is reduced in these cases by ∼60-70%.

The performance of SQL and Pandas is also clearly worse for those cases that
include inheritances (d1 -d6 ). In general, SQL and Pandas need to perform several
operations to compact the inheritance hierarchy, which adds a lot of boilerplate code in
these cases. These operations are automatically carried out by Lavoisier, so the end user
does not need to deal with them. The increase in script size is specially noticeable in
the d3 to d6 scenarios. These scenarios correspond to the pattern where an unbounded
reference pointing to a class included in an inheritance tree must be reduced (see
Section 23). In these cases, the inheritance hierarchy needs to be compacted several
times, once per leave in the inheritance hierarchy, which contributes to increase the
amount of boilerplate code associated to these tasks in SQL and Pandas. In addition,
it can be observed that the script size in SQL and Pandas seems to be independent of
the strategy used for mapping the inheritance. Only SQL might slightly benefit from
the use of the Single-Table mapping, as there are fewer tables to combine during the
reduction.

Finally, the e1 and e2 scenarios are combinations of simpler cases. As it can be
seen, script size increases clearly in the SQL and Pandas cases, as more intermediate
operations with its corresponding boilerplate code are required; whereas script size
remains stable in the Lavoisier case.

One detected benefit of Lavoisier is that reference inclusions in the dataset spec-
ifications are independent one of another. For instance, in the e1 case, data about
VideoGames are extracted, along with their publisher and tags references. In Lavoisier,



4.6 Evaluation 139

each reference is selected through the use of an include construct, and neither of these
two constructs needs to be aware of the other one. On the contrary, in SQL and
Pandas, one of the references would be reduced first into the video games data, and
then the other one would be compacted to the result of the first reduction. Therefore,
we have to pay attention to the reduction order, and to different issues such as the
column name collisions problem previously commented in this section.

In summary, Lavoisier scripts’ size is, generally speaking, lower than their SQL and
Pandas counterparts. This size reduction can be noticeable as the number of entities
to be included in a dataset grows; or when these entities are involved in inheritance
hierarchies. The larger script size manifested by SQL and Pandas is caused by the
need to invoke and configure lower-level data transformation operations, such as joins
and pivots. These operations require extra parameters, and the combination of several
operations required for some extractions results in tedious and prone-to-errors processes.
Lavoisier avoids the majority of these low-level issues, mostly by the use of the defined
flattening operator.

4.6.4 Threats to Validity

There are some threats to the validity of the previously commented conclusions. We
discuss these threats in this section.

In the first place, it might be argued that results are due to the selection of the
reduction scenarios, and that other selection might have lead to different results. These
scenarios were not arbitrarily selected, but with the objective of covering all input
cases that a flattening operation might face. So, we considered all possible scenarios
that we might face during a flattening operation. Moreover, these scenarios were kept
simple, this is, we have not created artificially complex scenarios that, according to
the gathered results, would benefit Lavoisier. For instance, we have not included any
scenario containing large chains of references, or very large inheritance hierarchies,
which are cases where Lavoisier would have played clearly better.

Secondly, it could be considered that results are biased due to the selected case
studies, and that other case studies would have returned a different outcome. The
Yelp and Videogame case studies were selected just for giving some semantics to the
pattern to be reduced, and for making them easier to understand. Other case studies
would have lead to the same results, since the flattening operator and, consequently,
Lavoisier, just processes the syntactic structure of the pattern to be flattened, so what
a class or an attribute represents does not matter.



140 Lavoisier: High-Level Selection and Preparation of Data

Thirdly, it can be stated that conciseness is not a good measure for easiness of
use. An operator, or language, can be very concise, but really hard to use. This
is absolutely true, and we have used conciseness as an indirect indicator to explore
easiness of use. For each scenario, we analysed what were the reasons because Lavoisier
achieved a better conciseness. The analysis revealed that conciseness was better mainly
due to the use of high-level primitives that abstract complex operations and avoid large
amounts of boilerplate code. Therefore, Lavoiser helps to simplify dataset creation
tasks, but not because it is more concise than SQL and Pandas, but because it provides
some high-level primitives specifically designed for these tasks that hide and automate
different low-level operations.

Finally, it can be considered that the comparison between Lavoisier, SQL and
Pandas is not fair because Lavoisier works against an object-oriented domain model,
whereas SQL and Pandas do it against a relational model. Therefore, Lavoisier benefits
of using a more high-level input model. This is true, and this is the reason why we
decided to use an object-oriented conceptual model as input for Lavoisier.

4.7 Chapter Summary
This chapter has presented our initial contributions for allowing decision makers to
participate in the data selection and data transformation steps of an analysis.

One of the identified complexities of these steps was formatting the available data
into a tabular format digestible by data mining algorithms. We have formalised a
flattening operator for automatically processing a selection of interconnected elements
from an object-oriented domain model. This operator is able to reduce any structure
pattern present in a domain model into the required tabular format.

The flattening operator has been integrated into a high-level language, called
Lavoisier. Working with Lavoisier, users just specify, through a set of high-level
primitives, which part of a domain model should be considered for a data mining
task, and the language automatically rearranges the selected data into an appropriate
tabular format. This avoids that large and complex scripts to accomplish this task
have to be created by hand, saving time and reducing errors.

We compared Lavoisier against state-of-the-art solutions for the preparation and
arrangement of data. This comparison involved the specification of dataset extractions
with Lavoisier and two representatives of the state of the art in data transformation
and manipulation, i.e., SQL (Beighley [18]) and Pandas (McKinney [114]). From this
comparison, it can be stated that Lavoisier specifications are more compact than the



4.7 Chapter Summary 141

others, and the constructs offered by this language are more abstracted from low-level
details, thanks to the usage of the flattening operator.

As another result of this comparison, we detected that Lavoisier’s syntax was not
adequate for the definition of complex derived values, as this syntax did not include
low-level features such as arithmetical operations. We will include support for these
operations in the future, while trying to avoid increasing the entry-level complexity of
the language syntax. At the same time, we will perform empirical experiments, to see
how comfortable decision makers are when using Lavoisier for data preparation tasks.





Chapter 5

Pinset: Advanced Extraction of
Datasets from Models

5.1 Introduction
To evaluate Lavoisier, we tested it in the educational and software engineering domains.
We selected these domains because:

1. They are domains in which we have expertise.

2. Data mining has demonstrated to be helpful in these domains (D’Ambros et al.
[40], Jugo et al. [84], Omta et al. [127], Zorrilla and García-Saiz [176]).

3. In the particular case of software engineering, there is a growing interest for using
data analysis techniques in the model-driven engineering community (Babur et al.
[9], Di Rocco et al. [48]), which is very familiar to us.

During this evaluation, we identified a limitation of Lavoisier: it was complex, or
directly unfeasible, to create datasets containing columns that hold complex derived
values. For instance, in the educational domain, complex values such as the “percentage
of completed assignments for those subjects that were failed” can be calculated for each
student. This kind of values are useful to domain experts as indicators of certain issues
or behaviours. As an example, the previous indicator might be used to know whether
students made an effort to pass the subjects but failed or, instead, they dropped early.

Calculating these complex values could be supported in Lavoisier by adding some
constructs to specify basic computations, such as conditionals or loops. Neverhtehess,
this idea is in conflict with one of the main objectives of this language, i.e., that



144 Pinset: Advanced Extraction of Datasets from Models

Lavoisier primitives are accessible to any potential user. Some of these users, like
general teachers, are very likely to not have programming skills. So, even if we include
these constructs in Lavoisier, they would not be able to take advantage of them.
Moreover, adding these constructs to Lavoisier’s syntax might pollute it, and increase
its learning curve. Therefore, we decided to not include them into Lavoisier and leaving
it as it is.

On the other hand, domain experts from other domains, such as software engineers
or physicists, who are expected to have some programming skills, could benefit from
the availability of these constructs. Thus, we decided to create an alternative language
to Lavoisier, called Pinset, oriented to these power users.

Pinset is implemented as an extension of the Epsilon (Paige et al. [128]) model-
driven development suite. This allows making use of the facilities this platform provides,
such as the OCL-like expressions provided by EOL (Epsilon Object Language) (Kolovos
et al. [98]) or support for many model types, increasing the ability to query models
from the object-oriented domain models that are supported by Lavoisier.

We evaluated Pinset to confirm that this language is able to overcome the Lavoisier
limitations that originated its development. In addition, we compared Pinset with a
general purpose transformation language for the objective of extracting datasets from
models. As a result of this comparison, Pinset scripts were ∼70% more compact, more
readable, and easier to maintain.

The rest of this chapter is organised as follows. Section 5.2 details the motivation
behind this work. Pinset’s syntax constructs are described in Section 5.3, while
Section 5.4 presents the structure and internals of this language. Then, in Section 5.6
we describe the evaluation activities we performed to assess pinset capabilities. Lastly,
Section 5.7 summarises and concludes this chapter.

5.2 Motivation: Support for Advanced Calculations
This section details the motivation behind the creation of Pinset, based mostly in
some shortcomings we found in Lavoisier when performing calculations of derived data.
First, we describe the running example that is used throughout the chapter, and then
we introduce the shortcomings we found in Lavoisier.



5.2 Motivation: Support for Advanced Calculations 145

User

id : String
name : String
 

Model

 
 
 
 

Technology

name : String
 
 

Commit

date : String
 
 
 

Repository

name : String
stargazers : int
watchers : int
forks : int
fork : boolean
size : int

File

path : String
 

Developer

name : String
email : String
 
 
 

[0..*] users [0..*] technologies

[0..1] user

[0..*] repositories

[1..1] owner

[0..*] commits

[0..*] files

[1..1] repository

[0..*] files

[0..*] commits

[0..*] files

[1..1] technology

[0..*] developers

[0..*] commits

[1..1] author

Fig. 5.1 The Github-MDE (Ghmde) model.

5.2.1 Running Example: Github-MDE (Ghmde)

Kolovos et al. [101] carried out an assessment study on the usage of model-driven
technologies in open-source software projects. For this purpose, they performed an
extensive search over versioned repositories hosted on GitHub1, where they looked for
files of several model-based technologies (e.g. EMF, ATL, Xtext, Epsilon). The collected
files information was later enriched with more data about the repositories, commits and
developers who performed those commits. In order to make this information available
to other researchers, they generated and published the Github-MDE (Ghmde) model,
which contains data about 1928 repositories, 34.442 files and 74.403 commits.

The domain model to which the Ghmde data conforms can be found in Figure
5.1. A Repository is composed of Files and Commits, which are used for registering
file inclusions and/or modifications. Each file belongs to a concrete Technology, such
as Ecore, ETL, or Xtext, among others. As stated by Kolovos et al. [101], Github
differentiates between the User that uploaded a commit to the repository and the
Developer that actually authored this commit. So, these two entities exist separately
in the domain model.

1https://www.github.com/

https://www.github.com/


146 Pinset: Advanced Extraction of Datasets from Models

5.2.2 Limitations of Lavoisier

In our efforts of making the Lavoisier language easy to use by people without experience
in data mining techniques or even in programming languages, we did not include in
its syntax some advanced constructs that may be required to perform calculations of
derived data. Some examples of these constructs are the following:

• L1 : Not instance-based datasets. Lavoisier’s syntax is based on selecting a
type, i.e., the main class of a domain model, and then gather information around
this type. Instances of this type become the rows of the resulting dataset. In
some cases, we might want to aggregate data from a model instead of focusing in
a concrete type. For instance, in the Ghmde example, we could want to extract
a dataset that aggregates the information of commits and developers pear year.
Examples of other aggregates might be the number of commits by Technology,
the most popular repositories, or the developers that contributed most. Each
row of this dataset would show the mentioned data for a concrete year, e.g., 2018
or 2019. Therefore, rows of this dataset do not represent concrete instances of
any type from the input model.

• L2 : Arithmetic operations. Lavoisier does not allow performing arithmetic
operations such as additions or divisions, which might be useful to calculate
derived values. As an example, we could be interested in extracting a dataset of
Repositories data including a column that represents the ratio of stargazers2 over
watchers2 for each repository.

• L3 : Support of advanced operators. In addition to the previous example,
typical first-order logic operators (e.g. select, collect, exists) that are available
in other model-oriented languages such as OCL (Object Management Group
[124]) or EOL (Kolovos et al. [98]) are not supported by Lavoisier. Including
these operators could be interesting, more so if end users are familiar with
them. For instance, if we had a collection of Commits, and we were interested
in the set of Technologies of the Files affected in those commits, we could
concatenate some of these operators to obtain this information. In EOL, such
calculation could be performed with the following operation:commits.collect(c |
c.files).flatten().collect(f | f.technology).asSet(). This operation might be perceived
as natural by experienced programmers, but it can be scary for people without
these skills. Therefore, this kind of expression is not supported in Lavoisier.

2These terms are specific to the Github platform. Stargazers are users who have starred a repository,
while watchers are the ones who follow the evolution of such repository.



5.3 Solution Description 147

• L4 : Availability of imperative code structures. The use of a declarative
syntax makes Lavoisier’s constructs natural and easy to use. However, some
advanced calculations might be better performed through the use of imperative
code structures, i.e., by employing code blocks based on conditions, loops and
variables. For example, we could be interested in analysing the commits of each
Developer during the last year, for which we would first extract a dataset with
this information. In this dataset, we could want to add a column including the
most contributed repository for each developer. This column would be calculated
by gathering the commits from the last year, grouping these commits by the
repository to which they belong, and then selecting the repository with the
greatest number of commits. This operation, although not impossible to achieve
with a declarative syntax, might be easier to achieve if split into different subtasks
Therefore, we would be confronting an easier problem in each of these subtasks,
and we could test these tasks separately.

• L5 : Reuse of intermediate calculations. The existence of variables could
also benefit performance. For instance, if we wanted to generate several datasets
containing data from a subset of repositories obtained by using a filtering opera-
tion, having access to this subset through a variable would make unnecessary to
recalculate it each time, which would translate in a performance improvement.

In summary, Lavoisier’s declarative syntax does not support certain features that
may be required to perform some advanced calculations during dataset creation, such
as complex aggregations. We wanted to offer support for these calculations but, at
the same time, we did not want to transform Lavoisier into a language only accessible
for programmers. Therefore, we decided to build a new language for these specific
power users. This new language was denoted as Pinset (PINcer of dataSETs), and
it is presented in this chapter. Next section describes this language through dataset
extraction examples performed over the Ghmde model presented in Section 5.2.1.

5.3 Solution Description
We start by presenting the syntax of Pinset with a basic example, followed by more
in-depth descriptions of some advanced features.



148 Pinset: Advanced Extraction of Datasets from Models

5.3.1 Syntax Overview

Listing 5.1 shows an example of Pinset script. This script extracts some basic informa-
tion of Repositories from data conforming to the Ghmde model of Figure 5.1.

Listing 5.1 A Pinset dataset rule that extracts some basic information of a Repository.
1 dataset repositoriesInfo over r : Repository {

2 column name : r.name

3 column owner_name : r.owner.name

4 column owner_id : r.owner.id

5 column number_of_commits : r.commits.size()

6 column owner_commits_ratio {

7 if (number_of_commits == 0) {

8 return 0;

9 }

10 return r.commits.select(c | c.user = r.owner)

11 .size()

12 / number_of_commits;

13 }

14 column files_with_several_commits : r.filesWithMoreCommitsThan(1)

15 .size()

16 }

17
18 operation Repository filesWithMoreCommitsThan(numCommits: Integer) {

19 return self.files.select(f | f.commits.size() > numCommits);

20 }

A Pinset script defines one or more dataset rules. Each one of these rules specifies
the structure and contents of a different dataset. In its simplest form, a dataset rule
consists of (i) a name, (ii) a typed parameter, and (iii) a set of column generators.
Listing 5.1 provides a dataset rule example, denoted as repositoriesInfo. The typed
parameter specifies which entity of the input model is going to be processed when
populating the rows of the output dataset. In the following, we will refer to the entity
selected by this parameter as the main entity of the dataset rule. For instance, in
Listing 5.1, this main entity is Repository. Lastly, column generators are used to define
the columns that the final dataset will have, and how the values of these columns are
calculated.

As output, the execution of a Pinset script generates a CSV file for each specified
dataset rule. Each generated file has the same name as its corresponding rule. When
executing the example of Listing 5.1, a repositoriesInfo.csv file is created. The first row
of this file contains the name of the defined columns separated by commas. Then, a row



5.3 Solution Description 149

is included for each element of type Repository in the input model. Each row contains
the column values calculated by executing the column generators of the dataset rule,
being these values separated with commas.

Column generators can have different flavours. In this first example, the Column
generator is employed. This generator requires a name, which defines the header of
the column to be generated; plus a piece of code that specifies how this column must
be calculated for each instance of the main entity. This piece of code can be defined
using different styles. In the simplest version, column values are obtained through an
EOL expression. EOL (Epsilon Object Language) (Kolovos et al. [98]) is an OCL-like
language from the Epsilon (Paige et al. [128]) model-driven development suite. This
language has capabilities for manipulating models conforming to a metamodel structure.
These EOL expressions are invoked over each instance of the main entity.

Listing 5.1, line 2 shows a Column generator example. This example specifies
that the output dataset has a column called name, which contains the name of each
repository, retrieved through the expression r.name, where r represents each concrete
instance being processed. This variable was specified in the header of the dataset rule,
as the parameter name (line 1).

When defining a column, it is possible to traverse the references of the main entity.
For instance, the second and third column definitions (lines 3 and 4 respectively)
define the columns owner_name and owner_id by navigating the owner reference of a
repository (i.e. r.owner.name and r.owner.id).

Additionally, we can invoke functions from the processed objects, such as the
operations offered by EOL to manipulate collections. In line 5, the column num-
ber_of_commits is calculated by invoking the size function of the commits collection
(r.commits.size()).

As commented, more complex expressions can be employed if needed. The column
owner_commits_ratio stores the ratio of commits that the owner of a repository has
uploaded over the total number of commits in the repository. Such a ratio can be
used to estimate the amount of external collaboration that a project’s repository has
attracted. This column is calculated with an EOL block (lines 6-13), which is composed
of a set of instructions that return the value that will be used to populate the column.
If the repository has no commits, we return zero without performing any operation
(lines 7-9). When the repository has commits, we calculate the owner ratio by dividing
the number of owner commits by the total number of commits (lines 10-12).

Column values are calculated in the same order they appear in the dataset rule.
This way, already calculated columns can be used in posterior column definitions. For



150 Pinset: Advanced Extraction of Datasets from Models

instance, when defining owner_commits_ratio, we referred to the number_of_commits
column previously defined (lines 5-13).

Lastly, the column definition of lines 14-15 show that it is possible to call external
functions from column expressions. The column files_with_several_commits stores the
number of files from the repository that have more than one commit. To calculate this
number, the filesWithMoreCommitsThan function is called (lines 18-20) with 1 as a
parameter. This function returns those files of a repository whose number of commits
is greater than the one provided as a parameter.

After this initial overview, the following sections describe more advanced data-
extraction mechanisms provided by the language.

5.3.2 Properties Accessors

When we want to define columns that only hold values from properties of the main
entity, the Column generator syntax can become too verbose and redundant. For
example, in the name column definition of Listing 5.1 (line 2), the name of the column
matches the name of the retrieved property. Therefore, this name could be easily
deducted from that property. For these cases, Pinset provides shorthand constructs
that allow defining columns for simple properties in a more concise way.

Listing 5.2 Dataset extraction that employs properties and reference helpers.
1 dataset repositoriesInfo over r : Repository {

2 properties[name, watchers, stargazers as stars]

3 reference owner[name, id]

4 }

Listing 5.2 shows how this syntactic sugar can be used. In line 2, the properties
generator selects some properties from the processed type to be included as columns.
Property names must be indicated between square brackets, separated by commas. For
each property, a new column with the same name is created, which holds the value
of that property for each processed element. These properties must hold values of
a primitive type, not being possible to apply this generator over references to other
entities. In our example, the name, watchers, and stargazers properties of a Repository
are included in the target dataset. Properties can be renamed if desired, by using the
as keyword. In the example, the stargazers property, which comes from the Github
terminology, is renamed to stars, which is more understandable for the general public.

To include some information about types related to the processed one, we can
use the Reference generator. This construct receives the name of a reference of the



5.3 Solution Description 151

processed type, and a set of properties from that reference. The generator creates
a new column for each specified property of the reference, and the values of these
columns will be simply obtained from the corresponding properties, as before. If no
alias is provided, the name of the columns is obtained by combining the reference and
property names with an underscore. In our example, this construct is used to include
the name and id of the owner of each repository (Listing 5.2, line 3). As a result, new
columns denoted owner_name and owner_id are created. This generator can only be
used over references with an upper bound of 1. For processing those references with a
greater upper bound, we must use a different generator.

The presented generators automatically manage any presence of null values in the
model. If a property is not present, a blank value is inserted instead. In the same
way, if the reference of an element points to null, blanks are inserted for all included
properties of that reference.

5.3.3 Row Filtering Options

In the previous examples, datasets contain one row for each instance from the main
entity. However, it could be the case that we are not interested in processing all these
instances, but a subset of them. Pinset offers two alternatives to perform instances
filtering: (1) specifying a guard condition; or (2) declaring a from expression. One
alternative might be more suitable than the other, depending on the characteristics of
the filtering process. Listings 5.3 and 5.4 illustrate both alternatives, respectively. For
the sake of simplicity, column definitions have been omitted from these listings.

Listing 5.3 Selection over the type elements of a dataset with a guard.
1 dataset developerSelectionGuard over d : Developer {

2 guard : d.commits.size() > 25

3 ...

4 }

A guard is a condition declared with the guard keyword followed by a boolean
expression (Listing 5.3, line 2). This expression is evaluated over each instance of the
corresponding type. Those instances that do not match the condition are discarded.
Therefore, no row is generated for them in the dataset. As an example, in Listing 5.3,
we are generating a dataset with Developers data. However, as specified by the guard
(line 2), only those developers who have authored more than 25 commits are included
in the dataset.

Listing 5.4 Selection over the type elements of a dataset with from.



152 Pinset: Advanced Extraction of Datasets from Models

1 dataset developersSelectionFrom over d : Developer

2 from : Developer.all.select(dev | dev.commits.size() > 25); { ... }

Another way of performing the same selection is shown in Listing 5, which employs
a from clause. This clause explicitly indicates the collection of elements to be used in
the creation of the dataset. The clause is declared with the from keyword, followed by
an expression that returns the mentioned collection of instances. Listing 5.4 provides
an example of this use case. The from expression includes those developers with more
than 25 commits (line 2).

It should be noted that, when the from clause is used, the dataset rule may not
need to access the input model to search for instances of the main entity if, for instance,
a collection of instances has been previously calculated. In Pinset, it is possible to
perform these prior calculations in pre blocks, which are sets of EOL statements that
are executed before any of the dataset rules. Any variable defined by these blocks is
visible and ready to be used in the these rules. To illustrate these blocks, Listing 5.5
repeats the example of Listing 5.4, but this time the calculation of the developers
subset takes place in a pre block.

Listing 5.5 Selection over the type elements of a dataset with from.
1 pre {

2 var significantDevs =

3 Developer.all.select(d | d.commits.size() > 25);

4 }

5
6 dataset developersSelectionFrom over d : Developer

7 from : significantDevs { ... }

In the pre block of the example, the significantDevs variable includes those develop-
ers that have authored more than 25 commits (lines 2-3). Then, in the from expression
of the dataset rule (line 6), just a reference to this significantDevs variable is necessary.

Therefore, in those cases where the same subset of instances is used as input for
several dataset rules, the from option might be preferred over a guard for performance
reasons, since this subset would be calculated just once for all rules.

Finally, it is worth pointing out that both mechanisms are not mutually exclusive,
and can be applied in combination. When combined, the guard condition is evaluated
over the collection of elements provided by the from clause, so the guard is used in
this case to filter that collection. This feature might be used to obtain refined datasets
after performing some preliminary analysis over a broader dataset. For instance, a
first analysis over all developers with more than 25 commits might indicate that those



5.3 Solution Description 153

Table 5.1 Dataset storing usage of technologies in a repository.

name uses_Ecore uses_GMF uses_Xtext . . .
R1 true false true . . .
R2 true true false . . .
. . . . . . . . . . . . . . .

using certain MDE technology, e.g., Ecore, participate in more projects than others. A
second analysis could focus just in this more concrete subset of developers, in order to
investigate this phenomenon more accurately. Such an example is shown in Listing 5.6.

Listing 5.6 Selection by combination of guard and from expressions.
1 pre {

2 var significantDevs =

3 Developer.all.select(d | d.commits.size() > 25);

4 }

5
6 dataset developersSelectionFromAndGuard over d : Developer

7 from : significantDevs {

8 guard : d.commits.collect(c | c.files)

9 .flatten()

10 .collect(c | c.technology)

11 .exists(t | t.technology.name = "Ecore")

12 ...

13 }

5.3.4 Multiple Columns Definition: Grid

In some cases, we detected that some columns were defined with an almost identical
expression. This happens, for instance, when we want to determine which technologies
are used in each repository. This dataset would look like shown in Table 5.1.

The columns of this dataset represent the different MDE technologies that might
appear in each repository. Each row of this table represents a repository, and the cells
of these rows determine the usage of technologies, i.e., if certain technology is used in a
repository, then its corresponding cell would be true, and false otherwise. For instance,
the repository R_1 of Table 5.1 uses the Ecore technology, but it does not use GMF.

As it can be expected, the EOL expression for computing the uses_Ecore, uses_GMF
or uses_Xtext columns is pretty similar. So, the one-by-one definition of these columns
by using the Column generator becomes redundant, as the expression that checks



154 Pinset: Advanced Extraction of Datasets from Models

the usage of a technology is the same except for the concrete technology that is
searched each time. Listing 5.7 shows a dataset using this strategy, only including
the 3 mentioned technologies (there are 11 in the GhMDE model). In the example,
we look for the existence of technologies in the repository with the same name as the
one for each column. We obtain the technologies used in a repository through the
getUsedTechnologies function (lines 1-4). The @cached annotation of this function
improves the performance of this operation by storing the calculated values to avoid
future calculations.

Listing 5.7 Technologies usage by each repository using the column generator.
1 @cached

2 operation Repository getUsedTechnologies() {

3 return self.files.collect(f | f.technology).asSet();

4 }

5
6 dataset technologiesInRepository over r : Repository {

7 properties [name]

8 column uses_Ecore : r.getUsedTechnologies()

9 .exists(t | t.name = "Ecore")

10 column uses_GMF : r.getUsedTechnologies()

11 .exists(t | t.name = "GMF")

12 column uses_Xtext : r.getUsedTechnologies()

13 .exists(t | t.name = "Xtext")

14 ...

15 }

In addition to the redundancy problem in the definition of columns, the dataset
rule of Listing 5.7 would require updates if, for instance, new technologies appear in
subsequent data bundles. If that is the case, we would need to add extra column
generators to process these new technologies adequately.

The column expressions of Listing 5.7 can be abstracted by converting their variable
element, i.e., the concrete technology to be searched, into a parameter of certain
construct. With this purpose, we developed the Grid generator, which allows defining
multiple columns over the same expression. This generator creates a set of columns
based on a collection of elements, denoted as keys, which is specified by means of an
EOL expression. Each key is then processed to generate a column, based on two extra
components: (1) a header, which determines the name of each column being generated:
and, (2) a body, which contains the piece of code that calculates the value for each
generated column. Both header and body expressions can access to the key being
processed through the key reserved word.



5.3 Solution Description 155

Listing 5.8 Grid example that generates the dataset of Table 5.1.
1 @cached

2 operation Repository getUsedTechnologies() {

3 return self.files.collect(f | f.technology).asSet();

4 }

5
6 dataset technologiesInRepository over r : Repository {

7 properties [name]

8 grid {

9 keys : Technology.all

10 header : "uses_" + key.name

11 body : r.getUsedTechnologies().includes(key)

12 }

13 }

Listing 5.8 shows a dataset rule that uses a grid generator (lines 8-12) to create
the dataset of Table 5.1. In this case, the keys collection is specified by obtaining
all the diferent elements of type Technology that exist in the input model (line 9).
These elements represent all existing technologies from the input model. Next, the
header specifies the name of each column by concatenating the “uses_” string with
the name property of each key (line 10). Lastly, for each instance of the main entity
being processed, the body is evaluated for each key. In our example, this body is used
to determine whether a technology is used in a repository (line 11). This body uses
again the getUsedTechnologies function to retrieve the technologies used in a repository
(lines 1-4).

It should be noticed that a grid can be used to generate datasets with a variable
number of columns, i.e., dependent on the contents of the input model. For instance,
for a concrete model, maybe only a reduced subset of technologies is used, e.g., four
or five technologies. On the other hand, we could use another model containing a
very heterogeneous set of repositories, including more than 20 technologies. The grid
generator would work in the same way in both cases, generating on each case a different
number of columns. So, those dataset rules that employ grids avoid needing updates
in their column definitions depending on the input data, as opposed to the example
of Listing 5.7. To this respect, the grid generator is somehow similar to the pivot
operation described in Chapter 4.4.2.



156 Pinset: Advanced Extraction of Datasets from Models

5.3.5 Nested Column Definitions

Sometimes, a subset of generators of a dataset rule use the same value to calculate
their columns. This value might be derived, i.e., obtained by executing a set of
expressions over the processed data. In this context, to prevent code duplication, we
might encapsulate these expressions into an external function. Moreover, if we wanted
to avoid that this value is calculated repeatedly, we can make use of the cached function
annotation provided by EOL.

However, the excessive use of external functions might pollute the Pinset script
with a lot of dataset-specific operations. To alleviate this, we offer the NestedFrom
composite generator. This generator can be understood as a way to define on-the-fly
anonymous functions inside dataset rules. The result of these functions is stored in a
variable, which can be used by several column generators.

Listing 5.9 Example of a NestedFrom definition including internal generators.

1 @cached

2 operation Collection getUsedTechnologies() {

3 return self.collect(commit | commit.files)

4 .flatten()

5 .collect(file | file.technology)

6 .asSet();

7 }

8
9 dataset nestedFrom over d : Developer {

10 properties [name, email]

11 from recent_commits : d.commits.select(c |

12 c.date.getYear() == 2014) {

13 column number : recent_commits.size()

14 grid {

15 keys : Technology.all

16 header : "use_" + key.name

17 body : recent_commits.getUsedTechnologies().includes(key)

18 }

19 }

20 }

Listing 5.9 shows an example of this generator. In the example, a dataset with data
from developers is created. This dataset gathers information of the latest commits
available, which in the case of the Ghmde model corresponds to the year 2014. Therefore,
the collection of these latest commits is used in the generation of different columns.



5.3 Solution Description 157

To avoid code duplication and having to define external functions, we made use of a
nestedFrom generator (lines 11-19).

A nestedFrom is composed of a variable declaration, an expression and a block.
The block contains a set of column generators. The expression computes a value that
is stored in the variable. This variable can then be used by any column generators
defined inside the block.

In the example, the recent_commits variable stores the result of the expression
that follows (lines 11-12), which gathers all commits of the developer in the year 2014.
Two column generators are defined inside the NestedFrom block (lines 13-18). First,
a Column generator gathers the total number of recent commits of the processed
developer by calling the size function over the recent_commits variable. Then, the
MDE technologies used in these recent commits are obtained through a Grid generator,
in a similar way as to the example shown in Listing 5.8. To improve the clarity of the
code snippet, some functionality has been again extracted into the external function
getUsedTechnologies (lines 1-7).

The columns inside a NestedFrom block are calculated as usual, but taking into
account that the defined variable is available for the nested column generators of the
block. Column names of these nested generators are prefixed with the NestedFrom
variable name and an underscore. Therefore, the two generators inside the NestedFrom
of Listing 5.9 define the following columns: recent_commits_number, and one column
for each technology indicating its usage by the developer, e.g., for the Ecore technology,
a column recent_commits_use_Ecore would be generated.

5.3.6 Typeless Dataset Rules

In the previous examples, datasets were created over an entity from the model, e.g.,
Repositories or Developers. However, it is possible that, instead of placing the data
from each instance of a type in a row of the final dataset, we may want to aggregate
instances of certain types according to some grouping criteria. For instance, we might
be interested in knowing the number of commits by year across all technologies and
repositories, so that we can see the tendency on the use of MDE technologies in
open-source software throughout the time. Similarly, we could also obtain the number
of different developers in each year. So, to obtain this dataset, we would calculate
aggregations for each existing year in the data. In the case of the Ghmde model, this
range goes from 2003 to 2014.

To perform this kind of aggregations, Pinset provides typeless dataset rules. These
rules do not have a main entity. Instead, they iterate over a set of elements gathered



158 Pinset: Advanced Extraction of Datasets from Models

by a from clause. In section 5.3.3, the from construct was presented as a row filtering
mechanism, where it provided the list of instances of the main entity that were to be
transformed into rows. The process now is the same: the from expression provides
the list of elements used to generate rows, but these elements are not restricted to an
entity from the model.

Listing 5.10 Typeless rule that counts the number of commits and developers per year.
1 operation String getYear() : Integer{

2 return self.substring(0,4).asInteger();

3 }

4
5 @cached

6 operation commitsByYear(year : Integer) {

7 return Commit.all.select(c | c.date.getYear() == year);

8 }

9
10 dataset infoByYear over year from : 2003.to(2014) {

11 column year : year

12 column num_commits : commitsByYear(year).size()

13 column num_devs : commitsByYear(year).collect(c | c.author.email)

14 .asSet()

15 .size()

16 }

Listing 5.10 shows the rules that generates the dataset of the previously described
example (lines 10-16). This rule uses a collection of years, i.e., integers, as elements to
generate the rows of the dataset. The parameter of the rule, which does not have a
type in this case, holds the year value (line 10). This parameter will iterate over the
values provided by the expression 2003.to(2014), which returns a sequence with all the
integer values between 2003 and 2014, including the limits. We used this expression
for the sake of simplicity of the example, as it would have been more appropriate to
extract this collection of years from the commits of the model.

The result of this rule is a dataset containing twelve rows (one for each year in the
interval) and three columns: the year being considered, the number of commits, and
the number of different developers in that year. The number of commits is calculated
with the help of the function commitsByYear (lines 5-8), which returns the collection
of commits of the year received as a parameter. The date of a commit is stored in the
Ghmde model as a string. So, to extract the year, we need to parse a fragment of this
string, which we do with the function getYear (lines 1-3). The number of different
developers is obtained also by calling to commitsByYear, and then obtaining the set of



5.3 Solution Description 159

unique developers from the commits of each year based on the developer emails, in the
same way that Kolovos et al. [101] did in their work.

5.3.7 Column Post-Processing

After a dataset is generated, we might need to perform some extra computations
to adopt the dataset to the particularities of a specific data mining algorithm. For
instance, some data mining algorithms do not allow null/missing values. Therefore,
before using these algorithms, we must process the dataset and replace nulls with a
proper default value, such as the column mean or mode.

To support this kind of transformations, Pinset provides with a set of constructs
denoted as post-processors, which are specified through column annotations. Listing 5.11
shows two of these post-processors.

Listing 5.11 Post-processing nulls filling and normalization examples.

1 dataset postProcessing over r : Repository {

2 properties [name]

3 @fillNulls unknownId

4 column owner_id : r.owner.id

5 @normalize

6 column stars : r.stargazers

7 @normalize

8 column number_of_commits : r.commits.size()

9 }

The first post-processor, fillNulls (lines 3-4), replaces null values with a specified
one. In the Ghmde model, the Github Id of the repository owners was not present for
about 30% of the User instances. Using the fillNulls post-processor, these null values
are replaced with an “unknownId” generic value.

Other supported ways of filling nulls can be applied: using mode or mean as value
would fill null cells with the mode or the mean of the column, respectively. Obviously,
the mean option can only be used in those columns that are numerical.

The second post-processor helps with another constraint typically imposed by data
mining algorithms: normalising numerical vales of a column into the [0, 1] interval. This
normalisation is important when comparing numerical values of different scale, such as
number of commits and number of stars of a repository extracted in the example (lines
5-8). The normalize post-processor is used to carry out this transformation for the the
stars and number_of_commits columns.



160 Pinset: Advanced Extraction of Datasets from Models

Fig. 5.2 Epsilon architecture: languages (top) and technologies (bottom).

This last feature finishes our description of the Pinset language. The next section
gives details about how we implemented Pinset.

5.4 Implementation
Pinset is freely available as open-source software3. The development is active and
new features might be added in a near future. Pinset is built in top of the Epsilon
model-driven development suite (Paige et al. [128]). Right now, the implementation
consists of two Eclipse plugins. The first one contains Pinset’s parser and execution
engine, while the second one offers an Eclipse editor with support for Pinset’s syntax
and configurable execution wizards.

The following sections describe the internal components of Pinset, and the steps
that take place in the execution of a Pinset file.

5.4.1 Epsilon Platform Usage

As commented, Pinset is build atop Epsilon. Epsilon (Paige et al. [128]) is a software
suite composed of interoperable languages, each supporting a different model man-
agement task. Some examples of this languages are: (1) EVL () for model validation;
(2) Flock () for model migration; (3) ETL (Kolovos et al. [99]) for model-to-model

3https://github.com/alfonsodelavega/pinset

https://github.com/alfonsodelavega/pinset


5.4 Implementation 161

transformations; or (4) EGL (Rose et al. [141]) for model-to-text transformations. All
these languages share a common core: the Epsilon Object Language (EOL) (Kolovos
et al. [98]). This language provides OCL-like expressions for model management,
and supports imperative language structures such as conditional and loop statements,
user-defined operations and import declarations. Figure 5.2, top shows some of the
languages that have been defined based on EOL. All languages by the Epsilon suite
are developed atop EOL’s syntax and execution engine. Following the same approach,
we implemented Pinset using EOL as base.

The syntax of EOL is defined in an ANTLR grammar, and any program written in
EOL is executed through a Java interpreter. We defined our own grammar that made
use of those EOL’s elements that were useful for the objectives of Pinset, and extended
the interpreter to be able to execute Pinset scripts.

Other benefit provided by Epsilon is that all its languages can be used to process
information stored in multiple formats, such as EMF, UML, XML, or spreadsheets,
among many others. A subset of these formats are shown in the bottom of Figure 5.2.
This access is provided by the Epsilon Model Connectivity (EMC) layer, which allows
supporting new model types through the implementation of a driver.

5.4.2 Structure of Pinset

Figure 5.3 shows the abstract syntax of Pinset. As the language is defined over EOL,
some elements are inherited from it, such as Expressions or Operations.

Pinset scripts are organized in modules. A module (PinsetModule) can import
external modules from the Epsilon platform, such as an EOL library file with operation
definitions. Each module also contains optional Pre and Post EOL statement blocks,
which are executed before and after the datasets are generated, respectively. As we
have seen, it is also possible to declare Operations for the encapsulation and reuse of
common functionality during the dataset creation process.

Additionally, the module contains information about where and how to store the
generated datasets. It requires an outputFolder, an extension for the dataset files, and
the separator to be placed between the columns. By default, CSV files are generated,
but these output settings can be modified.

The main component of a module are its DatasetRule definitions. These rules, as
previously defined, have a name, a parameter, and a set of ColumnGenerators.

The ColumnGenerator interface defines two methods: getNames, which returns the
names of the columns it defines; and getValues(Object), which calculates the column
values for the object that is passed as parameter. Depending on the column generator,



162 Pinset: Advanced Extraction of Datasets from Models

Fig. 5.3 Abstract syntax of Pinset.

one or more columns will be generated. For instance, a Column construct always
returns one column, while in the case of the other generators this number is variable.

5.4.3 Execution Process of a Pinset Script

To process a Pinset script, first, pre blocks are executed, in the same order they were
declared. Secondly, each defined DatasetRule is processed individually. To do it,
the elements that will be iterated to generate rows are gathered as a first step (see
section 5.3.3). Then, column names are obtained once from the getNames method of
the generators. These names define the header of the resulting dataset. Then, the
selected elements are processed one by one. Cell values of a row are calculated by
feeding the getValues method of the declared generators with the respective element of
that row. For those generators that employ expressions, the element is made accessible
through the name of the rule’s parameter. Post-processing operations are performed as
the last calculation step. The obtained datasets are stored following the output details
of the PinsetModule, regarding destination folder, column separator and file extension.
Finally, post blocks, are executed, in the order that they were declared. These blocks
share the same structure as the pre blocks we introduced in Section 5.3.3 but, as their
name indicates, their code is run at the end of a Pinset script execution instead of at
the beginning.



5.5 MDE that Helps Data Mining Help MDE 163

5.5 MDE that Helps Data Mining Help MDE
When applying Lavoisier and Pinset to the software engineering field, we discovered
a novel research trend where data mining techniques are being applied to modeling
artefacts. In this trend, software models are analysed for different purposes. For
instance, Basciani et al. [14] apply clustering techniques to large metamodel repositories
to find groups with similar characteristics and for the automatic categorization and
organization of these repositories. [9] also cluster metamodels by applying document
retrieval and natural language processing mechanisms to, for instance, detect model
clones.

As commented in Section 1.6.1, models in Model-Driven Engineering approaches
conform to, or are instances of, a metamodel. These metamodels are often represented
by means of object-oriented models, such as it happens when using EMF’s Ecore
notation (Steinberg et al. [152]). Therefore, a model can be also seen as data conforming
to an object-oriented model. Consequently, we could analyse these data to study the
different properties of a model.

As in any data mining context, FLANDM, Lavoisier and Pinset can be of help
here. More specifically, Lavoisier and Pinset could be used in this context to construct
datasets from models that could later be analysed with data mining tools and libraries.
In this context, the use of Pinset is even more obvious, since EOL expressions are
probably familiar to a wide range of MDE users.

To explore this hypothesis, we performed some dataset extractions in a case study
inspired by the work of H. Osman et al. [68]. This work evaluates how different
automatic feature selection techniques affect the accuracy of bug predictors. A bug
predictor is a tool that uses a data mining process to determine whether a piece of
code might be a potential source of bugs, usually within some confidence range (we
introduced this analysis example in Section 1.2.3).

As input for the bug predictors, Osman et al. rely on an external dataset, provided
by D’Ambros et al. [40], which has been widely used in the bug prediction literature
(C. Couto et al. [27], Tantithamthavorn et al. [156]). This dataset collects data at the
class level, by analysing source code hosted in software repositories augmented with
some change metrics coming from other sources, such as configuration management
systems. Therefore, the main entities under analysis are classes. For each class, a set
of metrics, such as the ones defined by Chidamber and Kemerer [33], are calculated.
Table 5.2 lists some of these metrics.



164 Pinset: Advanced Extraction of Datasets from Models

Table 5.2 Object-Oriented (OO) and Chidamber and Kemerer (CK) [33] class metrics.

Metric Description
CK_WMC Weighted method count
CK_DIT Depth position on the inheritance tree
CK_NOC Number of children
CK_CBO Coupling between objects
OO_FanIn Number of other classes that reference the class
OO_FanOut Number of other classes referenced by the class
OO_NOF Number of features
OO_NOA Number of attributes
OO_NOPA Number of public attributes
OO_NOPRA Number of private attributes
OO_NOIA Number of inherited attributes
OO_NOM Number of methods
OO_NOPM Number of public methods
OO_NOPRM Number of private methods
OO_NOIM Number of inherited methods

By using Pinset, the class-level metrics of Table 5.2 could be extracted from UML
Class Diagrams, so that this kind of diagrams can also be used as data sources when
training a bug predictor.

5.6 Evaluation
This section comprises the different activities we performed to evaluate the Pinset
language. We started by determining if Pinset allows overcoming the Lavoisier limita-
tions presented in Section 5.2.2, which were the main motivation for defining this new
language.

Secondly, we considered comparing Pinset against some data transformation tools,
such as SQL and Pandas, as we did in the case of Lavoisier. In the end, we decided
to not perform this comparison, as the same results would have been obtained due
to the similarities between Lavoisier and Pinset. Nevertheless, when exploring how
data mining can help MDE (Section 5.5), we discovered that model-driven engineers
sometimes used model transformation or model management languages, such as OCL
(Object Management Group [124]), ATL (Jouault et al. [83]) or Epsilon’s EOL (Kolovos
et al. [98]) or ETL (Kolovos et al. [99]), for dataset extraction tasks. Since Pinset is



5.6 Evaluation 165

implemented over the Epsilon Platform, we decided to compare Pinset with ETL, i.e.,
the model transformation language of the Epsilon suite.

Next sections present the different parts of this evaluation.

5.6.1 Overcoming of Lavoisier’s Limitations

In Section 5.2.2, we enumerated a set of limitations manifested by Lavoisier when
performing certain advanced column calculations. Here we discuss whether Pinset
features allow getting over these limitations.

• L1 : Not instance-based datasets. Lavoisier’s dataset generation is rooted
in a main class of the domain model, and each row of the dataset corresponds to
data from an instance of such class. As stated in Seccion 5.2.2, this method may
prevent Lavoisier users from performing aggregations of several instances into
the same row.

Pinset avoids this problem through typeless rules. These special rules were
described in Section 5.3.6, and allow defining datasets from a collection of
elements of arbitrary type, not necessary belonging to the input model. As an
example, Listing 5.10 shows some data aggregations performed at a year level.

• L2 : Arithmetic operations. Lavoisier’s syntax does not include support for
typical arithmetic operations, such as additions and divisions. These operations
might be required, for instance, to calculate derived values, such as ratios or
differences.

Pinset is based in the EOL language (Kolovos et al. [98]), which supports primitive
types and operations between them. So, this kind of operations can be performed
in Pinset if required. Listing 5.12 shows some of these operations performed over
data from a Repository.

Listing 5.12 Basic arithmetic operations over repositories data.
1 dataset operationsOverRepositories over r : Repository {

2 column name : r.name

3 column stars_and_watchers : r.stargazers + r.watchers

4 column stars_to_forks_ratio : r.stargazers / r.forks

5 }

• L3 : Support of advanced operators. As Lavoisier was intended for users
without programming skills, some advanced features such as first-order logic



166 Pinset: Advanced Extraction of Datasets from Models

operations were not included. However, these operations may be helpful for some
users when manipulating data from a model.

Again, the use of EOL expressions in Pinset’s syntax provides us with these
advanced operations. Function getUsedTechnologies of Listing 5.9 (lines 1-7) is a
good example of the use of first-order logic operations in Pinset scripts.

• L4 : Availability of imperative code structures. For defining some columns,
the use of imperative, structured code might be preferred, as the definition can
be split into smaller steps that can be verified independently and more easily.

In Pinset, we can define columns in blocks of EOL statements. For instance, the
star_to_forks_ratio column of Listing 5.12 includes a division by the forks of a
repository. If this number is zero, this expression would generate an arithmetical
error. This error can be avoided by the use of an EOL block, where we first check
whether the repository has any forks. If it does not, we return zero directly, to
avoid the division error. Listing 5.13 shows the updated example.

Listing 5.13 Use of a block to calculate a column through several statements.
1 dataset operationsOverRepositories over r : Repository {

2 ...

3 column stars_to_forks_ratio {

4 var res = 0;

5 if (r.forks <> 0) {

6 res = r.stargazers / r.forks;

7 }

8 return res;

9 }

10 }

• L5 : Reuse of intermediate calculations. Lavoisier’s syntax does not include
that many features to perform calculations, so it is expected to also not offer a
way to store intermediate values of such calculations. On the other hand, storing
these intermediate values can translate into a performance improvement, more
so if the values are used several times.

Pinset allows to store these values in several ways: (1) when using an EOL block
to calculate a column, we might define a variable through the var keyword, such
as it is done in line 4 of Listing 5.13; (2) external functions in Pinset can be
cached, so that each returned value of this functions is stored, and successive
invocations of the same functions with the same parameters would return the



5.6 Evaluation 167

Class

name : String
qualifiedName : String
isAbstract : boolean
 

Property

name : String
type : Type
visibility : VisibilityKind

Operation

name : String
type : Type
visibility : VisibilityKind

Package

name : String
qualifiedName : String
 
 
 

children [0..*]

superclass [0..*]

attributes [0..*]

operations [0..*]

package [1..1]

Fig. 5.4 Fragment of the UML Class Diagram metamodel.

stored value instead of calculating it again; and (3) Pinset offers the NestedFrom
generator (see Section 5.3.5), which can be used to calculate a concrete value
only once, and then it is shared by multiple column generators.

In summary, we believe that Pinset overcomes the Lavoisier limitations that we
detected in some concrete contexts. Next section presents the case study that was used
to compare Pinset with the ETL model transformation language.

5.6.2 Metrics Extraction with Pinset

We used the metrics extraction from class diagrams example introduced in Section 5.5 to
compare the capabilities of Pinset against model transformation languages. Figure 5.4
shows a simplified fragment of the UML Class Diagram syntax that was queried when
performing these extractions, expressed in an Ecore metamodel.

A Class has a name, and can be defined as abstract. Each class belongs to a
Package. Both classes and packages have a qualified name, which includes the hierarchy
of containers where they belong. For instance, if a class Repository is contained in
a github package, which at the same time is contained in a versionControl package,
the qualified name of this class would be versionControl.github.User. Classes can have
attributes and operations. Attributes are Properties that, among other features, have a
name, a visibility (e.g. public, protected, or private), and a type. Operations represent
the methods of a class, and share the same features as the ones described for attributes,
and others.

Now we show how Pinset can be used to extract the metrics contained in Table 5.2
from UML class diagrams. As a source of this kind of diagrams, we used the data
gathered from open-source projects by R. Hebig et al. [136]. These data conforms to
the metamodel of Figure 5.4.



168 Pinset: Advanced Extraction of Datasets from Models

Listing 5.14 shows how some of the metrics of Table 5.2 can be computed using
Pinset. The dataset rule in this case is defined to use all Class type instances from
the input model (line 1). Then, Column generators are used to extract the following
information from each class: (1) its name (line 2); (2) whether it is abstract (line
3); (3) the name of its parent class, if any (lines 4-10); (4) its number of attributes
(OO_NOA) (line 11); (5) its number of methods (OO_NOM ) (line 12); (6) its number
of features, i.e., the sum of attributes and methods(OO_NOF) (line 13); and (7) its
depth inside an inheritance tree (CK_DIT ) (line 14).

Listing 5.14 A Pinset dataset rule that extracts some metrics of Table 5.2.
1 dataset basicClassMetrics over class : Class {

2 column name : class.name

3 column isAbstract : class.isAbstract

4 column parentName {

5 var name = null;

6 if (not class.superClass.isEmpty()) {

7 name = class.superClass.first().name;

8 }

9 return name;

10 }

11 column OO_NOA : class.attributes.size()

12 column OO_NOM : class.operations.size()

13 column OO_NOF : OO_NOA + OO_NOM

14 column CK_DIT : class.dit()

15 }

16
17 operation Class dit(): Integer {

18 var dit = 0;

19 var node = self;

20 while (not node.superClass.isEmpty()) {

21 node = node.superClass.first();

22 dit += 1;

23 }

24 return dit;

25 }

As it can be seen, metrics from Table 5.2 can be computed with a relatively low
effort by using Pinset. A Pinset dataset rule showing how to obtain all rules from this
table can be found in Listing B.17 of Appendix B.8. Next section shows how the same
metrics can be obtained with a model transformation language.



5.6 Evaluation 169

Model Dataset

name : EString

Row

Column

name : EString

Cell

value : Object

[0..*] datasets [0..*] columns

[0..*] rows

[0..*] cells

[1..1] column

Fig. 5.5 Dataset Metamodel used as output in the M2M transformations.

5.6.3 Metrics Extraction with ETL

We show here how a transformation can be expressed in ETL to extract the class
diagram metrics of our case study. ETL is a Model-to-Model (M2M) transformation
language, so we need an output metamodel to serve as target of our transformations.
ATL (Jouault et al. [83]), which is another M2M language, offers in its documentation
a wide range of M2M transformation examples, including a specific entry for a table
extraction scenario4. We used for our transformations the original table metamodel of
this ATL transformation with slight modifications, in order to (1) allow the definition
of several datasets in the same model; and (2) to explicitly store the column headers of
each dataset, as it is usual in the data mining community. This metamodel is depicted
in Figure 5.5.

A model conforming to this metamodel contains Dataset instances, i.e., one or
more datasets. A Dataset is composed of a set of Column headers, plus a set of rows.
Each Row stores Cell values, one for each column of the dataset. Each cell indicates
to which column it corresponds.

The relationship between Cell and Column might be avoided by imposing an
order both to the cells of each row and to the column headers. This way, cells in
a certain position inside a row would correspond to the column header in the same
position. Nevertheless, this solution makes instances and model transformations harder
to maintain because of the required attention to ordering. For instance, if we removed
a column of a dataset, we would need to update, in addition to the values of that
column, how the values of subsequent columns are assigned, since these values would
now correspond to a lower position. Keeping each cell associated to its column avoids
this problem.

4https://www.eclipse.org/atl/atlTransformations/Java2Table/
ExampleJavaSource2Table[v00.01].pdf

https://www.eclipse.org/atl/atlTransformations/Java2Table/ExampleJavaSource2Table[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/Java2Table/ExampleJavaSource2Table[v00.01].pdf


170 Pinset: Advanced Extraction of Datasets from Models

Listing 5.15 shows how the metrics extracted with Pinset in Listing 5.14 can be
extracted with ETL. The ETL script computing all metrics of Table 5.2 can be found
in Listing B.16 of Appendix B.8.

Listing 5.15 ETL transformation that extracts basic class metrics.
1 pre {

2 var modelRoot = new Dataset!Model();

3 var metricsDataset = createDataset("BasicMetrics");

4 modelRoot.datasets.add(metricsDataset);

5 var bmd_c_name = createColumn("name");

6 var bmd_c_isAbstract = createColumn("isAbstract");

7 var bmd_c_parentName = createColumn("parentName");

8 var bmd_c_OO_NOA = createColumn("OO_NOA");

9 var bmd_c_OO_NOM = createColumn("OO_NOM");

10 var bmd_c_OO_NOF = createColumn("OO_NOF");

11 var bmd_c_CK_DIT = createColumn("CK_DIT");

12 metricsDataset.columns =

13 Collection {bmd_c_name, bmd_c_isAbstract,

14 bmd_c_parentName, bmd_c_OO_NOA,

15 bmd_c_OO_NOM, bmd_c_OO_NOF,

16 bmd_c_CK_DIT};

17 }

18
19 rule BasicMetricsClass2Row

20 transform class : Model!Class

21 to row : Dataset!Row {

22 metricsDataset.rows.add(row);

23 row.cells.add(createCell(bmd_c_name, class.name));

24 row.cells.add(createCell(bmd_c_isAbstract,

25 class.isAbstract));

26 var parentName = "";

27 if (not class.superClass.isEmpty()) {

28 parentName = class.superClass.first().name;

29 }

30 row.cells.add(createCell(bmd_c_parentName,

31 parentName));

32 var OO_NOA = class.attributes.size();

33 var OO_NOM = class.operations.size();

34 var OO_NOF = OO_NOA + OO_NOM;

35 row.cells.add(createCell(bmd_c_OO_NOA, OO_NOA));

36 row.cells.add(createCell(bmd_c_OO_NOM, OO_NOM));

37 row.cells.add(createCell(bmd_c_OO_NOF, OO_NOF));

38 row.cells.add(createCell(bmd_c_CK_DIT, class.dit()));



5.6 Evaluation 171

39 }

40
41 operation Class dit(): Integer {

42 var dit = 0;

43 var node = self;

44 while (not node.superClass.isEmpty()) {

45 node = node.superClass.first();

46 dit += 1;

47 }

48 return dit;

49 }

50
51 operation createCell(col: Dataset!Column, val: Any): Dataset!Cell {

52 var cell = new Dataset!Cell();

53 cell.column = col;

54 cell.value = val;

55 return cell;

56 }

First, the dataset and its columns are instantiated in a pre block (lines 1-17).
In ETL, a pre block contains code that is executed before any transformation rule.
These blocks usually set up certain elements that need to be configured before running
the transformations. In our case, the use of a pre block makes the defined datasets
globally accessible during the execution process, which allows the transformation rules
to populate them with rows. Thus, in lines 2-4 a new dataset called BasicMetrics is
defined and added to the model root element. Then, in lines 5-16, the columns of
the BasicMetrics dataset are defined and assigned. For the creation of datasets and
columns, we rely on helper functions named accordingly (createDataset, createColumn).
For the sake of simplicity, some helper functions have been left out of this listing, but
they can be consulted in Appendix B.

It should be noticed that this pre block makes the dataset and the column headers
globally accessible to any element in the transformation, avoiding that the transforma-
tion rules have to incorporate complex code to traverse the output model and recover
these elements.

Once we have created the dataset schema, it is populated by the BasicMetric-
sClass2Row transformation rule. This rule transforms each class in a class diagram
into a row in the output dataset (lines 20-21). This row is added to the BasicMetrics
dataset (line 22), and then it is populated with a cell for each column. Thus, first of all,
the name of the class is extracted (line 23) and assigned to the corresponding column
header by means of the createCell helper function (lines 51-56). Then, in the same



172 Pinset: Advanced Extraction of Datasets from Models

way, the value for the isAbstract column is taken from the isAbstract class attribute
(lines 24-25). Next, the parentName column value is computed (lines 26-31). To do it,
we check if the class has a superclass. If so, the corresponding name is extracted from
the parent class, otherwise this value is set to an empty string.

Other values, like NOA, NOM or NOF are obtained using the same techniques
(lines 32-34). Finally, to calculate the DIT value for each class (line 38), due to its
complexity, we have opted for extracting the code that computes it to an external
function (lines 41-49).

We can see how the management of the dataset structure introduces extra verbosity
and complexity in the extraction process. This verbosity obfuscates the final goal
of the transformation, which is how elements from the input model get transformed
into rows of the resulting datasets. We tried to alleviate this obfuscation by defining
some helper functions and providing several global variables. This kind of variables, as
everybody knows, might lead to undesired side effects.

It is worth mentioning that the described problems are not due to the use of a
transformation language. If we have opted for using a general-purpose programming
language such as Java, the problem would be worse, since this language does not offer
facilities for manipulating models.

As conclusion, it can be stated that Pinset provides a higher-level, more compact,
and less verbose syntax for computing datasets of model metrics as compared to
languages such as ETL. Next section analyses this statement more in-depth.

5.6.4 Pinset vs. ETL Comparison

To make a more exhaustive comparison between Pinset and ETL-like languages, we
devised several metrics computation scenarios. Each scenario makes use of different
Pinset features, such as Grid or NestedBlock generators, to identify how the same
functionality would be provided by a general-purpose model transformation language.
The complete set of scenarios is described in Table 5.3, and the corresponding Pinset
and ETL extraction scripts can be found in Appendix B and in an external repository5.

We evaluated first the compactness of both languages by measuring the size of their
scripts. For these measurements, we used the size in characters of the transformations,
omitting any white space. For ETL scripts, some artefacts that are reused across
scripts were not considered in these measurements. These artefacts are: (1) the helper
functions for dataset management (Listing 5.15); (2) the dataset metamodel definition

5https://www.github.com/alfonsodelavega/pinset-examples

https://www.github.com/alfonsodelavega/pinset-examples


5.6 Evaluation 173

Table 5.3 Metrics extraction scenarios for the comparison.

Scenario Description

S1 : Basic Metrics Get a set of class metrics as described in Section 5.6.2
and Listings 5.14-5.15.

S2 : Features Accessors
(Section 5.3.2)

Get the name, package name, and abstractness of a
class.

S3 : Extended Accessors
Get the name of a class, if it is abstract, whether it is a
leaf (i.e. no subclasses), its qualified name, its visibility,
and the name and qualified name of its package.

S4 : Row Filtering (Sec-
tion 5.3.3) Process only those classes that are abstract.

S5 : Grid (Section 5.3.4) Get the number of attributes of a class grouped by
visibility.

S6 : Nested From (Sec-
tion 5.3.5)

Get the name of a class, the name of its package, and
the number of classes contained in that package.

S7 : Typeless rules (Sec-
tion 5.3.6)

Get the number of classes that meet certain thresholds
for different metrics: number of attributes (NOA),
number of methods (NOM), FanIn and FanOut.

S8 : All Metrics Extract all metrics from Table 5.2

(Figure 5.5); and, (3) the model-to-text transformations that would generate the final
CSV files.

Table 5.4 summarises the results of this comparison. These results show that Pinset
was able to reduce scripts size by more than two-thirds (∽69%), when compared
with ETL scripts. This reduction is due to the use of high-level column generators
specifically designed for certain data acquisition tasks. These primitives avoid the
need to explicitly manage column creation. Moreover, some columns generators, such
as feature accessors (see section 5.3.2), greatly help reduce script size. This specific
syntactic sugar constructs are specific for dataset creation and, obviously, they are
not avialable in model transformation languages, nor they will be. So, Pinset provides
benefits for dataset creation, as it is specifically designed for this task.

Moreover, apart from a better compactness, Pinset provides some specific features
that help simplify code, such as the management of null values. For some generators,
when a reference is accessed, we do not need to check if this reference points to null. If it
does, instead of raising an exception, Pinset provides an appropriate default behaviour,
which most of the time prevents developers from having to take care of this issue.

The high-level syntax of Pinset also contributes to improve maintainability. Thanks
to this syntax, we do not need to manage explicitly the dataset structure, which makes



174 Pinset: Advanced Extraction of Datasets from Models

Table 5.4 Size in characters/bytes of Pinset and ETL scripts.

Extraction Script ETL/Bytes Pinset/Bytes Reduction
S1 : Basic Metrics 1284 502 60,90%
S2 : Features Accessors 744 96 87,10%
S3 : Extended Accessors 1397 150 89,26%
S4 : Row Filtering 350 90 74,29%
S5 : Grid 892 287 67,83%
S6 : Nested From 816 199 75,61%
S7 : Typeless rules 1108 488 55,96%
S8 : All Metrics 2220 916 58,74%
Aggregate of all scripts 8811 2728 69,04%

dataset definitions easier to maintain. As an example, if we wanted to include or
remove a column from a dataset in Pinset, we would only need to update one section
of the script, that is, the generator where the column is defined and calculated. In the
ETL scripts, such as the one shown in Listing 5.15, there are three different places that
would require modifications: (1) the section where columns are created (lines 5-11);
(2) the statement where columns are assigned to the dataset (lines 12-16); and (3) the
piece of code that calculates the values for that column (lines 23-38). This redundancy
makes maintenance more complex, and it might lead to inconsistencies and errors.

These improvements in conciseness and maintainability seem to indicate that Pinset
scripts might be easier to understand when compared to equivalent versions written
in a generic model-transformation language. However, to be rigorous, this assessment
needs to be confirmed with empirical experiments, where potential end-users, i.e.,
software engineers, evaluate Pinset against the tools they employ daily. This will be
part of our future work.

Next section recapitulates the presented contents and concludes this chapter.

5.7 Chapter Summary
This chapter has presented Pinset, an domain-specific language for the extraction of
two-dimensional datasets from models.

The creation of Pinset was motivated by some shortcomings detected when trying
to use Lavoisier for calculating complex derived values, such as data aggregations.
Pinset offers programming language constructs and conventional model-management
operations, which ease defining these advanced calculations and should make this



5.7 Chapter Summary 175

language feel familiar to experts from the MDE field and, more generally, to users with
programming experience.

When compared with existing model transformation tools, Pinset offers an equally
powerful but more concise way of declaring datasets. This mainly happens because
existing tools require preparing and managing the structure of the datasets explicitly
while, in the case of Pinset, this structure is managed internally by the language.
Therefore, it allows forgetting about boilerplate code and focusing on the features we
wish to extract from the models. In addition, Pinset offers high-level constructs that
facilitate the definition of dataset columns and the execution of typical dataset-related
tasks that would need to be manually performed instead, such as normalisations and
filling null values.

The existence of Pinset eases the inclusion of models as data sources in those data
mining processes that aim to study data extracted from software projects. In addition,
Pinset also facilitates the assessment of these models through advanced quality analysis
techniques.

As future work, we will carry out more detailed performance and end-user tests,
to empirically assess the language and to see what kind of new features would be
well-received.





Chapter 6

Evaluation

6.1 Introduction
This chapter aims to assess whether the contributions of this thesis improve the state of
the art and, as a result, might be helpful in real contexts. Once the different languages
that comprise our work were defined, and the tooling that supports it reached an
acceptable level of completeness and stability, we started a validation process to assess
whether they could be used by average decision makers.

We describe here the different steps we performed to evaluate our DMDLs, which
were the first focus of our evaluation. Precisely, these steps aimed to accomplish the
following objectives:

1. Determine whether domain experts without knowledge in data mining techniques
are able to understand and employ a DMDL to analyse bundles of data.

2. Identify any hidden problems in these DMDLs that might preclude its usage.

3. Collect feedback and suggestions for improvement to address in future works.

As the start of this evaluation, we compared our DMDLs with existing approaches
in the data mining democratisation literature, to check whether our approach improves
the state of the art. As a result of this comparison, we concluded that our approach
provides the following extra benefits:

• A reduction of costs during the adaptation to specific contexts.

• Support for some analysis refinements.

• More facilities for dataset creation.



178 Evaluation

As a second step towards assessing whether average decision makers could make
use of our DMDLs, we checked if these DMDLs were free of obvious usability flaws.
For this purpose, we analysed whether our DMDLs fulfil a well-known set of usability
heuristics (Nielsen [123]).

The analysis of these heuristics showed that, in general terms, our DMDLs offer
different features that contribute to the satisfaction of those heuristics more directly
related with the academic nature of our work.

To perform a more in-depth assessment of whether average decision makers are
able of specifying and executing data mining tasks with our DMDLs, we performed a
set of empirical experiments with different end users. We followed existing guidelines
in software engineering experimentation (Barisic et al. [13], Wohlin et al. [170]) to plan
and design these experiments.

In these experiments, we provided domain experts with a DMDL prototype gen-
erated with the FLANDM framework. This DMDL was devised for the educational
domain, and the end users who took part in the experiments were university teachers
from different areas, such as computer science, mathematics, and education.

During these experiments, participants had to solve some analysis tasks using our
DMDL. These tasks were oriented to determine whether these participants were able
to understand sentences written with our languages, as well as to produce them. The
results showed that most participants managed to correctly complete these tasks.

As the reader can notice, these experiments did not yet attempt to assess the
utility of Lavoisier or Pinset. Preparing the different artefacts that were necessary,
coordinating the participants, executing the experiments, and processing the results
required a considerable effort and time. Replicating these efforts for Lavoisier and
Pinset would require around half a year, which was beyond the time frame for this
thesis. Nevertheless, we will perform end-user tests with these languages in the near
future.

The structure of this Chapter is as follows. Section 6.2 compares our DMDLs
against state-of-the-art data mining democratisation approaches. In Section 6.3, we
analyse how well DMDLs support well-known usability heuristics (Nielsen [123]). Then,
Section 6.4 describes the planning and design of the performed end-user experiments.
Section 6.5 presents and discusses the experiment results. Finally, in Section 6.6, any
identified threat to the validity of these experiments is commented, and Section 6.7
recapitulates our findings and concludes the chapter.



6.2 Comparison with State of the Art Approaches 179

Table 6.1 Coverage of the data mining process, including DMDLs.

Category\Stage Action Collect Preprocess Mine Interpret Refine
Black-Box Components ✓ ✓
Development Frameworks ✓ ✓ ✓ ✓ (✓)
DMDLs ✓ ✓ ✓ ∼ ✓

6.2 Comparison with State of the Art Approaches
In Chapter 2, we showed the results of our systematic review of the state-of-the-art
of the data mining democratisation field. This review found a set of approaches that
we organised in four categories: workflows, Self-Service Business Intelligence (SSBI)
solutions, black-box components, and development frameworks. These categories and
their approaches can be consulted in Table 2.9. In this section, we compare the features
of our DMDLs against these approaches.

First, it is important to remember that our review concluded the following: (1)
workflow applications are not ready to be used by average decision makers, as these
applications are still to complex to configure and understand; (2) although SSBI
solutions are prepared to be easy to use by decision makers without experience in
data mining, this is only true for reporting and basic analytics tasks. In the light of
these conclusions, we decided to exclude these categories from this comparison, and
we focused on comparing DMDLs against black-box components and development
frameworks.

In our systematic review, we defined an objective procedure to evaluate the ap-
proaches for the data mining democratisation field. We applied this procedure to our
work. This procedure can be consulted in Section 2.1.6, and was composed of two parts:
(1) determining the assistance offered by the approaches for the different data mining
tasks; and (2) a set of quality attributes that are usually part of the different tradeoffs
of performing an analysis process. The results of applying this procedure to our work
can be found in Tables 6.1 and 6.2. These results are shown along with the ones for
black-box components and development frameworks for easing their comparison.

With respect to assistance during the data mining process, DMDLs offer support
for all stages, including the ability to refine such processes. For instance, users of a
DMDL can change the data subset over which an analysis is performed by including a
boolean comparison; or change the data columns under analysis by modifying some
parameters of the available query commands. Most black-box components only support
the data mining stage. While development frameworks also offer support for the whole



180 Evaluation

Table
6.2

Q
uality

attributes
by

category,including
D

M
D

Ls.

Q
uality

A
ttribute

B
lack-B

ox
C

om
ponents

D
evelopm

ent
Fram

eworks
FLA

N
D

M
D

M
D

Ls
A

doption
C

ost
EQ

2.1.
C

an
it

be
deployed

w
ithout

adaptations?
Yes

N
o

N
o

EQ
2.2.

C
an

non-experts
perform

the
adaptations?

-
N

o
N

o
A

ccuracy
EQ

2.3.
C

an
the

analysis
reach

expert-levelaccuracy?
N

o
Yes

Yes
EQ

2.4.
C

an
the

approach
be

tuned
to

im
prove

accuracy?
N

o
N

o
Yes

EQ
2.5.

C
an

non-experts
perform

the
tunings?

-
-

Som
e

C
om

pleteness
EQ

2.6.
W

hat
analysis

techniques
are

available?
Predictive

A
ll

A
ll

Evolvability
EQ

2.7.
H

ow
easy

it
is

to
extend

the
approach?

H
ard

M
ed.

M
ed-Low

EQ
2.8.

C
an

new
analysis

techniques
be

included?
N

o
Yes

Yes



6.2 Comparison with State of the Art Approaches 181

process, out of the 5 approaches in this category, only Santos et al. [145] provides some
support for refining analysis processes. As a point to improve, our work did not focus
that much in improving the interpretation of analysis results. We will study this stage
in future research.

The results for the quality attributes reveal that, as expected, if we were to
classify our work into one of the categories of the review, this category would be
the development frameworks, as FLANDM offers languages that can be adapted to
different contexts. Both these frameworks and DMDLs require some work to be
deployed in a concrete domain, being a data scientist necessary to perform this work.
In addition, both can reach expert level accuracy, as their analysis processes are
customised for the characteristics of the application domain. On the other hand,
one of the advantages offered by DMDLs over development frameworks is a greater
support for some customisations or tunings of the invoked analysis processes. As these
customisations are performed through small changes in the queries, they can even
be performed by end users of these languages, e.g., decision makers. However, these
customisations do not yet include the configuration of low-level parameters, such as
controlling the concrete statistic employed in a correlation analysis. We will try to
steadily include some of these parameters in future DMDLs to see if decision makers
can make use of them. The rest of the quality attributes are the same: both approaches
can use any data mining techniques, and they can be extended to support new analysis
techniques. The FLANDM framework was developed to reduce development and
maintenance costs, so we might also benefit from a lower effort when extending or
updating a DMDL.

For the quality attributes comparison with black-box components, these have the
advantage of not requiring any changes to be used in a new domain. However, as
previously stated, the lack of adaptations of these components to the peculiarities of the
concrete domain might hamper the accuracy of the analysis results. This possible loss
of accuracy would not affect development frameworks or DMDLs, as these approaches
can be adapted to avoid this problem.

In summary, when attending the different tradeoffs of each analysis context, DMDLs
seem to offer advantages over the other approaches for data mining democratisation
available in the literature. Next sections aim to determine if these languages can be
directly used by average decision makers.



182 Evaluation

Table 6.3 Usability heuristics defined by Molich and Nielsen [117].

# Heuristic
H01 Simple and natural dialogue.
H02 Speak the user’s language.
H03 Minimise the user’s memory load.
H04 Consistency.
H05 Feedback.
H06 Clearly marked exits.
H07 Shortcuts.
H08 Good error messages.
H09 Prevent errors.
H10 Help and documentation.

6.3 Fulfilment of General Usability Heuristics
As one of the first steps for the evaluation of our languages, we checked whether these
languages were free of obvious usability flaws. During the development of the FLANDM
framework, we focused on making the generated DMDLs as usable as possible. For
this reason, these DMDLs have a simple and easy to use syntax, and several assistance
features, e.g., autocompletion and validation mechanisms (see Sections 3.3.5 and 3.3.3
respectively). Therefore, we expected our languages to be free of the mentioned flaws.

To confirm this hypothesis, we studied how well our DMDLs supported a set of
general Usability Heuristics (Gerhardt-Powals [65], Holcomb and Tharp [75], Nielsen
[123]). Usability heuristics can be understood as sets of principles to guide the creation
or evaluation of end-user software interfaces. Although heuristics analysis is not as good
as empirical experiments, it is an inexpensive method to perform system assessment,
and it serves as a starting point that can help focus future user testing evaluations.

For this analysis, we used the set of ten heuristics defined by Molich and Nielsen
[117], who enumerated general considerations that can be applied to most types of
interfaces, from character to graphical-based ones. These heuristics can be found in
Table 6.3.

Some of these heuristics have an industrial viewpoint, in the sense that they focus on
complying with some requirements that are more typical for production-ready software.
It should be remembered that we are evaluating academic prototypes built as proof
of concept for validating a scientific work. Therefore, these prototypes lack of certain
features, such as help documentation, that should be found in a fully-developed system.
Therefore, we discarded some heuristics that were not of interest for our objectives.



6.3 Fulfilment of General Usability Heuristics 183

More specifically, we discarded the heuristics referring to providing continuous feedback
to the end user of what is currently happening when navigating the windows and menus
of the tool (H05 ); to clearly defining how to exit or cancel current processes (H06 ); or,
as commented, to evaluating the quality of the provided help material (H10 ). These
more pragmatic issues will be addressed in the future.

Here we describe the remaining 7 heuristics that we studied from the context of a
DMDL language generated with FLANDM:

• H01: Simple and Natural Language. This heuristic refers to simplifying
user interfaces as much as possible. Every element appearing in the interface
has to be justified. Also, interfaces have to feel as natural as possible when
performing the tasks for which they were designed.

DMDLs’ syntax has been made as concise and simple as possible, only requiring
the command to apply and the data this command would process. This syntax
follows the natural structure of giving simple orders, in a similar fashion as giving
orders to another person.

• H02: Speak the User’s Language. The dialogue between system and user
should employ concepts and vocabulary from the user’s domain, this is, it should
be familiar terminology to end users.

This is one of the main advantages of using DSLs in general: commands can be
renamed/created to reflect domain-specific tasks, and the vocabulary that is used
comes directly from the day-to-day terminology of the application domain.

• H03: Minimise the user’s memory load. This heuristic relates to reducing
the information that users have to mentally store when employing a system.

When using a DMDL, users do not need to memorise the concrete syntax of
commands or entities: DMDLs have a proposal provider that shows such elements
in a list-like format to choose (see Section 3.3.5). Lastly, the fact that the DMDL
commands and vocabulary are close to the domain (as commented in H2 ) might
make the syntax easier to remember.

• H04: Consistency. The functionality of the system should provide a feeling of
consistency: the same set of available actions should be offered throughout the
different system windows.

With respect to this, the syntax of the different commands of the DMDLs is very
similar, as only some parameters of these commands may differ. This similarity



184 Evaluation

gives a homogeneous and consistent image to the end user, who only has to
remember one general syntax structure.

• H07: Shortcuts. The interface should include some accelerators (e.g. keyboard
shortcuts), so that experienced users in the systems can go faster than using the
basic and more time-consuming processes that are available for non-experts to
work with the systems, e.g., typical wizards that require end users to steadily
navigate through several windows to perform a task.

DMDLs provide an autocompletion mechanism to write queries based on the
available commands and data (described in Section 3.3.5). Once a user gets
familiar with this mechanism, queries can be written and tuned considerably
faster, as users do not have to type by themselves the whole query.

• H08: Good error messages. Error messages should be as informative as
possible, and they should be expressed in natural language. In addition, error
messages should suggest ways to solve any encountered error.

A validation mechanism is provided within the DMDL editor to assist users
during the composition of queries (see Section 3.3.3). This system also uses
terminology from the domain, so it should feel natural and helpful to the end
users. For instance, if the user performs row filtering over an entity by an
attribute that does not belong to such entity, a very precise message such as
“the entity entityName does not have an attribute named attributeName” is
reported. Similar messages are offered in other contexts. The suggestion of error
fixing options is something that is still pending, and it could be a nice feature to
include in a near future.

• H09: Prevent errors. Rather than providing a good error notification mecha-
nism, the system should limit the number of errors that a user may commit as
much as possible.

The combination of autocompletion and validation mechanisms gives users good
advice about how to compose the queries, so if users employ these mechanisms
the errors they encounter should get reduced. In addition, the system does not
allow users to execute a query that has validation errors until fixed, avoiding
any posterior malfunctions during the analysis caused by, for instance, a badly
written entity name, or an incompatible attribute comparison (e.g. comparing a
number with a textual string, or using a numerical comparison like moreThan in
a nominal attribute such as “gender”).



6.4 Empirical Experiments 185

To sum up our comments about usability heuristics, DMDLs generated with the
FLANDM framework seem free of obvious usability flaws. The adaptation of the syntax
to the concrete domain should make the generated DMDL easy and natural to use; and
the validation and autocompletion mechanisms described in Sections 3.3.3 and 3.3.5
should help users reach the correct formulation of an analysis query.

However, as commented before, this heuristics evaluation is not enough to certify
that, by using our languages, average decision makers would be able to execute data
mining tasks. For that reason, we opted for validating these initially promising results
by performing some empirical experiments. Details about how these experiments were
carried out are given in the next section.

6.4 Empirical Experiments
We start this section by giving an overview of the main aspects of the performed
experiments. After that, more concrete details of these experiments are provided.

6.4.1 Overview

Software engineering experiments usually follow a comparison-based approach (Wohlin
et al. [170]). In this kind of approach, a new solution or method is evaluated against
what is currently available in industrial practises, which are often referred as the control
or baseline solutions. The comparison is done in a controlled environment, where most
variables are fixed, and only the ones we are interested in measuring are affected during
the experiment.

For instance, if we wanted to assess whether Test-Driven Development (TDD)
methods (Beck [16]) provide any benefits when compared with traditional, tests-after-
code methodologies, we could perform an experiment where some software programs
are developed by two groups of participants: the first group would follow TDD methods,
while the second one would use the traditional approach (i.e. the baseline). Then, we
could compare the results to assess whether TDD improved the variables under analysis
(e.g. code readability or number of bugs) with respect to the baseline approach. An
experiment of these characteristics was performed and discussed by Santos et al. [144].

Nevertheless, in our case, there is no baseline practise against which we can compare
our work. Using current practices, domain experts without knowledge in data mining
are not able of executing data mining tasks by themselves. Therefore, we cannot follow
a classical, comparison-based approach.



186 Evaluation

Table 6.4 Summary of the performed empirical experiments.

Criteria Description
Domain Analysis of Educational Data
DSL Educational DMDL
Quality Focus Understandability, Learning Curve
Context Offline, Professional, Real Problem, Specific
Participants University Professors (3 areas), Graduate (PhD) Students
#Participants Computer Science (9), Mathematics (8), Education(7)

Graduate Students (13)
Training Previous explanation and demo training (∼30 min)
Experiment Pre: multi-choice questionnaire on participants skills

Evaluation: DMDL-based test
Post: usability questionnaire

Runs Single case study on 4 heterogeneous groups
Results - Teachers were able to understand and use the DMDL to

launch data mining processes.
- Most teachers answered all questions correctly.
- Teachers’s opinion on DMDL’s usability was positive.

Consequently, to analyse whether our work helps these domain experts, we used a
different approach: we designed a set of analysis tasks to be completed by employing
one of our DMDLs. If domain experts were able to achieve these tasks, it would be an
indicator that our DMDLs satisfy our initial goals.

We applied the previous approach in a set of experiments devised around a DMDL
for the educational domain. The experiments were planned and designed with the help
of the software experimentation guidelines promoted by Wohlin et al. [170] and Barisic
et al. [13]. According to these guidelines, we first established the scope and goals of
these experiments. Then, we analysed potential participants, selected the most suited
ones, and designed the experiments.

Before carrying out the designed experiments, a pilot test was performed to assess
the correctness of the different experiment components. The participants of this test
had expertise in FLANDM concepts, but they had not previously used any prototype
DMDLs of any kind. As a result of this pilot test, some issues were detected and fixed,
e.g. the training presentation was improved, and some minor inconsistencies in the
educational DMDL’s syntax were fixed.

Table 6.4 gives a summary of the main aspects that conform the planning and
design of the performed experiments. Next sections give more details on these aspects.



6.4 Empirical Experiments 187

6.4.2 Scope

Before planning and executing any experiment, it is important to determine its goals,
to ensure that the results of this experiment will be useful for the purposes it was
defined.

We established the scope and objectives of our experiments via the Goal/Ques-
tion/Metric (GQM) paradigm from Basili and Rombach [15]. In our case, the goal
was to determine whether domain experts, without knowledge on data mining, are
able to execute data mining tasks using our languages. For this goal, the question is
trivial: How well can domain experts execute data mining tasks with our languages?.
To measure this question, we proposed domain experts to complete some analysis tasks
of increasing complexity, and we gathered how many of these tasks they were able to
complete.

To perform these experiments, we selected some participants for the role of domain
experts without knowledge in data mining. As we were surrounded by university teach-
ers, and these teachers lack this knowledge, we decided to select them as participants.
Consequently, the DMDL that these experts used during the experiment targeted
the educational domain, in the university context. In summary, in our experiments,
university teachers tried to complete some analysis tasks over data from a university
course with the help of an educational DMDL.

With this information, and following the GDM directives of Basili and Rombach
[15], the scope of these experiments was established by filling a predefined template,
where the following aspects are specified: the objects under study; the purpose of
the experiment; the quality focus of the experiment; the perspective or point of view
from which the experiment is carried out; and the context of the experiment, this is,
determining the concrete subjects (participants) and the objects (software artefacts)
that intervene in the experiment.

Each of the above aspects is defined in the GQM template, one aspect per line. For
the carried out experiments, the GQM template would be as follows:

Analyse < DMDLs >
for the purpose of < enabling domain experts to execute data mining
tasks by themselves >
with respect to its < understandability and learning curve >
from the point of view of < any domain expert >
in the context of < university teachers analysing data from a course >.



188 Evaluation

Next section details the context of the experiments we performed to accomplish
the goals of the above template.

6.4.3 Context

After setting the scope of our experiment, the next step involved determining its
context. For that purpose, the following four context dimensions were determined:

1. Online vs. Offline. Online experiments are performed in real, production
environments, using professionals or clients as subjects. For instance, Amazon
performs A/B Testing on its e-commerce webpage by offering different views to
its clients, and then comparing the performance of these views, e.g., by analysing
which view was more successful in selling products) (Hill et al. [73]). Offline
experiments are executed in a controlled environment that is separated from the
real one, but that tries to resemble it as much as possible.

In our case, an online context would have required to gather data from the courses
of each one of the participants. This was not an affordable task, so we opted for
executing an offline experiment where all participants worked with data from the
same course.

2. Student vs. Professional. It is hard to find companies willing to lend their
workers’ time to perform empirical experiments. So, students are commonly
employed in these tests instead of the real professionals, although this change
might imply that the experiment results are less reliable (Falessi et al. [57]).

For our experiments, fortunately, we could use university teachers, who are target
professionals of an educational DMDL. In addition, in order to increase the
number of subjects, a set of PhD students also participated in the experiments.
Nevertheless, most of these students had some previous experience as teach-
ing assistants, so they qualify as quasi-professional subjects for our empirical
experiments.

3. Prefabricated vs. Real Problems. The use case of an experiment could be
prefabricated for that concrete setup, or it could come from existing, real projects.

We used course datasets that follow the structure of what can be found in profes-
sional e-learning platforms, such as Moodle (Rice [138], see also Section 1.2.1).
Consequently, these datasets are the typical ones used in educational data mining
research (Jugo et al. [84], Romero and Ventura [140], Zorrilla and García-Saiz



6.4 Empirical Experiments 189

[176]). However, for data protection reasons, we were not allowed to use the real
data of these datasets in the experiments. So, we had to replace this real data
with synthetic one. We introduced specific patterns in the synthetic data to be
found by the participants when invoking analysis processes with the provided
DMDL. In any case, the structure and nature of the employed data were the same
as if these data were real. Therefore, we are inclined to say that our experiments’
setup resembles more of a real problem than of a prefabricated one.

4. General vs. Specific. The conclusions of an experiment could be generally
applicable to a whole field, e.g., Software Testing; or to a specific subfield, such
as Software Testing for Embedded Systems.

The results of these experiments would be exclusive of the educational domain.
These results might give some clues about how experts from other domains would
behave when using a DMDL from their domain. Nevertheless, from the results
of these experiments, we cannot make any sound statement about other domains.
This will be a subject of future work.

In summary, based on the reasons presented above, the context dimensions of our
experiments are offline, professional, real problem and specific. Next section describes
the subjects that participated in these experiments.

6.4.4 Participants Selection

To represent a real test for the applicability of the DMDL, participants would ideally
have limited or no knowledge at all in data mining techniques. As mentioned in the
previous sections, the context of these experiments was the educational domain. We
managed to enroll a total of 37 subjects in our experiments. These subjects can be
organised in the following two sets:

1. University teachers. The educational DMDL was tested by 3 groups of
university teachers, each of them belonging to a different area. Namely, the
experiments included 9 teachers of Computer Science, 8 of Mathematics, and
7 from Education, making a total of 24 university teachers. From these, only
2 Mathematics teachers declared to have extensive experience in data mining
techniques.

2. Graduate Students. A fourth group of 13 students, mostly PhD candidates,
accepted to participate in the experiments. A good characteristic of this set is that



190 Evaluation

Table 6.5 Available commands in the improved educational DMDL.

Command Description
find_reasons Searchs for causes of a concrete data phenomenon.
show_groups Groups data according to simmilarities.
describe_entity Shows a description of an entity and its attributes.
show_data Shows the tabular data of a given entity.
attribute_ranking Shows a ranking of the most-related attributes to a

given one.
show_relation Calculates the relation between two attributes of an

entity.

it contains participants from a broad range of research topics, such as Mathematics,
Physics, Computer Science, and Civil Engineering. Additionally, most of these
students have teaching experience in university subjects, so they are knowledgeable
of the educational context that is used in the analysis. Although the degree of
expertise in data analysis techniques varied between these participants, none
of them worked directly in the data mining field, or considered herself a data
mining expert.

In summary, these four groups of participants can be considered experts in the
educational domain and, although some of them are proficient or have some knowledge
in data mining, most of them have no skills in this field. This lack of these skills
made them a good group of subjects to test our educational DMDL. At the same time,
having some experts in the data mining field participating in the experiments could
give us another professional perspective about how to improve our DMDLs.

Next section describes the educational DMDL prototype that these participants
used in the experiment.

6.4.5 DMDL Prototype

This DMDL is an updated version of the original data mining DSL for the educational
domain that started our work in data mining democratisation. We introduced this
original DSL in Section 3.1. The changes performed to this updated DMDL with
respect to the original are the following:

1. First, we ported the original DSL to the infrastructure defined by FLANDM.

2. One important change that we introduced in this DMDL was that, to better test
the language in the local context of the participants, we translated its syntax



6.4 Empirical Experiments 191

to Spanish. Although most of the selected teachers were English speakers, we
considered that it would be easier for them to learn a new technical language
in their mother tongue, than having to make an extra effort to understand the
presented concepts in the English language. Additionally, it is important to
highlight that, for a subset of the participants in this experiment, this DMDL was
the first contact they had with a programming language of any kind. So, again,
establishing this first contact in the mother tongue of the teachers seemed an
easier endeavour. The modular structure of FLANDM allowed us to translate the
grammar, validation and result messages with reduced effort (see Section 3.5.3).

3. We increased the number of available commands from the original two types of
queries available in our first prototype, so that we had a wider range of options to
propose analysis tasks. The complete list of commands of the updated DMDL is
shown in Table 6.5. Consequently, new analysis subprocesses were also included
among the available ones in FLANDM.

4. Lastly, for the data to be analysed with this DMDL, we included three entities
that stored students information of different nature:

• Demographic data, which included, among others, whether the student was
repeating the course, class assistance, or if Spanish was her mother tongue.

• Activity data, as gathered from the e-learning platform (see Section 1.2.1).
This data included, for instance, the number of sessions in the platform, the
average duration of these sessions, or the usage of the platform’s forum, e.g.,
number of visits and written messages.

• A third entity containing both demographic and activity data, which was
useful to launch analyses over the complete set of students information.

As stated in Section 6.4.3, we were not allowed to use the real data of these
datasets in the experiments because of data protection regulations. Instead,
we maintained the structure of the datasets, i.e., the existing columns, with
respect to the original ones, and then filled these datasets with synthetic data.
So, although not with the original data, participants used the educational DMDL
in the same manner and over the same data bundles as they would if the data
were the original one.

Once the infrastructure for the experiments was ready, we designed the set of tasks
that participants would have to complete, and the different measurements that would



192 Evaluation

Table 6.6 Statements of the Pre questionnaire.

Task Statement
Basic Office I use basic office apps such as word and presentation

processors.
Basic Calc Sheets I use calc sheets just to tabulate data.
Advanced Calc Sheets I use advanced calc sheets functions such as formulas

and graphs to analyse data.
SQL I use the SQL language to query and manage data

in a relational database.
Analysis Tools I use GUI-based analysis tools for the analysis of

data, e.g., Tableau, Rapidminer, IBM SPSS.
Analysis Libraries I use libraries or programming languages focused

in the management or analysis of data: R, Pandas,
Scikit-Learn, Weka, or similar.

be taken during the experiments. We divided these experiments in three parts: a
pre-test, a test, and a post-test. The pre-test aimed to know the degree of familiarity
with data mining techniques of the participants. The test contained the experiment
itself. The objective of the post-test was to collect participants’ opinions about the
provided language. These parts are described in the following sections.

6.4.6 Pre-Test: Assessment of Skills

A pre-test was filled by the participants at the beginning of each experiment, with
the objective of determining their expertise level in data management and/or analysis
techniques. To achieve this objective, we gathered information about the participants’
usage of these techniques with the following questions:

• First, we asked participants whether they employ data management and data
analysis techniques during their daily activities. In addition, we included a free
text field to allow them to briefly describe these activities.

• Second, we showed a set of statements about different data-related tools that
participants may use in their activities. Table 6.6 shows an English translation
of these statements. The statements were showed in increasing difficulty, i.e.,
we started with tasks related to office apps and spreadsheets, and finished with
the use of data mining libraries. Users had to select those that matched their
activities. Additionally, they could also include any extra tool that was not
present in the statements by using a free-text field of the form.



6.4 Empirical Experiments 193

6.4.7 Test: Execution of Data Mining Tasks

The second section of the experiment involved the proper test, where participants had
to complete a set of data mining tasks or challenges. For each challenge, the participant
had to provide an answer for a question with the help of the educational DMDL. These
questions are shown in Table 6.7.

The set of test questions was designed to steadily increase the complexity of the
tasks. These increments had the objective of offering a steady test, so that participants
would not feel frustrated of not knowing how to solve the first questions; and to
determine how far these participants could reach in understanding and using the
DMDL.

For instance, Q1 only involved indicating which command was the appropriate one
to perform a task, while in Q2 participants had to describe what was the objective of
a given query. This is, Q2 aims to determine whether domain experts are at least able
to understand the language. In Q3, participants had to copy and execute a given query
into the environment, and then interpret the results. Question Q4 involved refining
the introduced query in Q3. In Q5, participants received a query that contained
mistakes to fix. Q6 and Q7 required to write a query from scratch, and then refining
it, respectively. Finally, the last question (Q8 ) required to write a complete query from
scratch and from an informal description of the objective of the analysis, so participants
had to understand the requirements and compose a concrete query to get the results.

In addition, some questions had a secondary objective of testing certain features of
the DMDL, e.g., the validation mechanism (Q5 ), or the assisting commands, such as
the describe_columns command (Q8 ).

For each question, participants had to give an answer in an online questionnaire.
In addition, participants were asked to copy the DMDL query that led them to the
provided answer, so that any mistakes could be matched with the formulated query.
The original set of questions in Spanish that participants answered in the test can be
found in Appendix D.

6.4.8 Post-Test: Satisfaction Questionnaire

After completing the data mining tasks of the test, participants had to answer another
questionnaire, where we asked for their opinion about the general usefulness of the
language. This questionaire was composed of a set of statements, which participants
have to grade within a Likert scale from 1 to 5, being 1 a strong disagreement with
the statement and 5 a strong agreement. This set of statements is shown in Table 6.8.



194 Evaluation

Table 6.7 Translated test questions corresponding to data mining tasks.

# Question
Q1 If we want to compare two columns of a table to determine if there is

any relation between them, ¿which command should we use?
Q2 What is the objective of the following query? <show_data of

students_demographic with origin equals highschool>. Describe it
briefly.

Q3.1 Execute the query <show_groups of students_activity with origin
equals highschool>, whose objective is to look for the different student
profiles that exist in the course based on the student activity. How
many groups or profiles appear?

Q3.2 What is the average total sessions number for group 1?
Q4 Modify the previous question, so that now only those students that

failed the course are grouped. What is the new number of groups
after including this modification?

Q5 The next query searchs for reasons why students have failed the
course, using for that task all the available data: <find_causes of
course_result equals 0 of all_students_data>. However, this query
contains mistakes. Copy the query into the editor and try to fix these
mistakes.

Q6.1 Write a query that, using the activity data, shows the more related
columns to the course outcome of the students. What is the most-
related activity column?

Q6.2 What is the second most-related activity column?
Q7 Repeat the previous query, but now use the demographic data. What

is now the most-related column with the course outcome?
Q8 We want to study whether there is a relation between two activity

columns: total number of sessions in moodle, and number of written
messages in the forum. Write a query that obtains this relation and
introduce here the numerical value of this relation. You can use
the describe_columns command to discover the concrete column
names you should use when writing this query.



6.4 Empirical Experiments 195

Table 6.8 Post questionnaire.

# Statement
Post1 Commands of the DMDL were easy to understand.
Post2 I considered easy to interpret the objective of a given query.
Post3 The use of vocabulary from the educational domain was useful to

better understand the objective of an analysis.
Post4 Error messages provided by the validation system were useful to

identify and fix query mistakes.
Post5 I considered easy to include modifications in previously written

queries.
Post6 The autocompletion system was of help when creating or updating

queries.
Post7 I considered easy to create queries from scratch.
Post8 I think that users without knowledge in data mining techniques might

find this kind of languages too complex to use.
Post9 I consider necessary to receive a training session for the correct usage

of this language.
Post10 In general, I think this language is easy to use.
Post11 I would consider positive/useful the existence of a language of these

characteristics in my working domain to help me with daily tasks.

For almost all statements, a strong agreement indicates a positive opinion. Only
one statement, Post8, was the opposite: a strong disagreement represents a positive
outcome. This negated statement was introduced to help determine the attention
level with which participants were answering this questionnaire. Along with their
Likert-scale points, participants could also include a rationale for the given grade.

These statements follow the same incremental complexity as included in the tests.
Moreover, some concrete statements aimed to gather the opinion that participants had
on some features of the DMDL, such as the validation (Post5 ) and autocompletion
(Post6 ) systems.

In addition, participants were asked about their opinion concerning the easiness
of use of the DMDL (Posts 8 and 10 ) and whether they would find useful to have a
DMDL adapted to their domain to help them with their daily activities (Post11 ).

Lastly, a final free-text field was left for users to express any opinions on the DMDL
or in the performed experiment.



196 Evaluation

6.4.9 DMDL Training

As it was never our objective for domain experts to be able to use a DMDL without
any initial guidelines, we designed a training session that participants received before
performing the experiments.

Some of these participants had zero knowledge about data mining techniques, so the
training started with a seminar about how these techniques can be used to analyse data.
In addition, the complexity problem associated with democratising data mining was
also described, which allowed us to introduce our contributions to this area, including
the DMDLs.

In the second part of the training, a demo of how to use a DMDL was shown.
Participants followed a brief seminar, where we presented the syntax of a DMDL, its
commands, and the Eclipse environment used during the experiment.

During this demo session and also in the test, printed documentation in the form of
a two-page manual was provided. Participants also had this manual available during
the experiments execution. The manual included, on one page, a summary of the
DMDL’s query syntax, and the available commands along with a small description of
how to employ them with their parameters. The second page was a summary of the
entities that could be analysed with the DMDL they were using. The manual can be
found in Appendix C.

The syntax and the available commands of the DMDL employed in this demo session
were the same as in the educational DMDL used for the experiment. Nevertheless,
to avoid influences and biases in the experiments, the domain of the training DMDL
demo was finance, instead of education. During this demo, participants were guided in
the analysis of data from bank clients, with the objective of focusing phone marketing
campaigns in those clients that a priori seemed more keen to accept a term deposit
offer. These data included different indicators, such as the client’s balance, whether
the client had a credit or mortgage, among others. Along with these data, the result
of previous marketing calls was also present, which allows, for instance, to train a
prediction model to identify those clients more inclined to accept a future marketing
offer.

Apart from the domain change, and again to avoid bias, training and experiment
sessions were separated in time. This separation had the objective of disconnecting
subjects’ minds between the sessions, so that the test did not simply involve copying
and adapting the queries they had just seen in the training session. As a minimum,
two hours passed between the training and test sessions, being this interval in the order
of days for half the experiments.



6.5 Analysis of Results 197

We finished this training by giving participants an overview of the test structure,
so that in the test session only a recap of the most important details was necessary.
Next section discusses the obtained results in these experiments.

6.5 Analysis of Results
Here we show the results obtained for the three sections of the experiment, in the same
order that the participants performed them.

6.5.1 Pre-Test

The first question of the Pre questionnaire asked participants whether they tried to
gather and analyse data in their research and/or teaching activities. Their answers
show that only ∼40% of the participants perform these data-related tasks. Most of
them do it to see if there is any link between the performance of their students with
other indicators of the course, such as the use of the learning materials, the assistance
to classes, or even the students’ opinion gathered at the end of the course.

In some cases, participants indicated they perform analyses for research purposes,
e.g., determining the distribution of a random number generator, performing statistics
of laboratory data, or calculating psychological indicators.

On a side note, some participants also mentioned that they do analyse data for
personal finance purposes, or to determine how their time is distributed among the
different activities of a day.

Figure 6.1 shows the analysis tools usage answers of the different groups. We can
see that most partipants employ basic office and spreadsheet programs, with many
them also using advanced spreadsheet functions. Interestingly, none of the participants
use the SQL language in their daily work. Another interesting detail is that, while most
university teachers from the Education group are familiar with GUI-based analysis
tools, such as IBM SPSS1, this kind of tools is not very popular for the other groups.
Lastly, only some participants from the Mathematics group and a small part of the
Grad students have some experience with advanced data mining libraries or languages.

Apart from the tools of Figure 6.1, participants could also indicate any other tool
they use in a free field of the questionnaire. Different tools were indicated in this field:

• Reporting facilities of the Moodle e-learning platform, which allow, for instance,
to study how the students use the available learning materials.

1https://www.ibm.com/analytics/spss-statistics-software

https://www.ibm.com/analytics/spss-statistics-software


198 Evaluation

0 20 40 60 80 100

analysisLibraries

analysisGUIs

SQL

advancedCalcSheet

basicCalcSheet

basicOffice
Computer Science
Grad Students
Mathematics
Education

Fig. 6.1 Pre questionnaire answers of tools usage.

• Data analysis tools such as Kaleidagraph2 or Minitab3, for analysing research
projects’ data. These tools can be used to generate data graphs, including
confidence or error intervals; or to perform basic statistics, such as Student
t-tests, ANOVA, or Wilcoxon, among others.

• Software to perform qualitative analyses of natural language texts. The mentioned
tools were QDA Miner4 and ATLAS.ti5. These tools were used, for instance, to
objectively measure the richness of the student delivered texts when performing
argumentation assignments.

• Anecdotally, one participant mentioned that she tries to find links between
students’ course outcomes and other indicators intuitively, this is, by manually
looking at the data and trying to find an evident relation without employing any
tool.



6.5 Analysis of Results 199

Q1 Q2 Q3.1 Q3.2 Q4 Q5 Q6.1 Q6.2 Q7 Q8
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Wrong
Correct

Fig. 6.2 Aggregated results of the test.

6.5.2 Test

In Figure 6.2, the aggregated results for all participants are shown. As it can be seen,
participants completed their tasks correctly in most of the cases. So, it can be stated
that teachers without experience in the data mining field were able to use our DMDL
to execute analysis processes.

Figure 6.3 shows the results of this test for each one of the four groups. The
following aspects can be highlighted:

• Disaggregating the results, we can se that these were still positive across all
groups. In addition, the graduate students group was very multidisciplinary by
itself. Therefore, we can conclude that the DMDL can be used by any teacher,
independently of his area.

• A slightly higher number of mistakes can be found in the group formed by
Education teachers. This was somewhat expected, as their background was the
less close to computer technologies of all the groups. Nevertheless, this number
of mistakes was not significant in general terms.

• From the answers, we detected that the statement of question Q3.2 might have
led to some misunderstandings on what was the correct answer. Question Q3
asked participants to copy and execute a given grouping query (see Table 6.7

2http://www.synergy.com/wordpress_650164087/kaleidagraph/
3https://www.minitab.com/en-us/
4https://provalisresearch.com/products/qualitative-data-analysis-software/
5https://atlasti.com/

http://www.synergy.com/wordpress_650164087/kaleidagraph/
https://www.minitab.com/en-us/
https://provalisresearch.com/products/qualitative-data-analysis-software/
https://atlasti.com/


200 Evaluation

Computer Science Graduate Students

Mathematics Education

Q1 Q2 Q3.1 Q3.2 Q4 Q5 Q6.1 Q6.2 Q7 Q8
0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3.1 Q3.2 Q4 Q5 Q6.1 Q6.2 Q7 Q8
0

1

2

3

4

5

6

7

Q1 Q2 Q3.1 Q3.2 Q4 Q5 Q6.1 Q6.2 Q7 Q8
0

1

2

3

4

5

6

7

8

Wrong
Correct

Q1 Q2 Q3.1 Q3.2 Q4 Q5 Q6.1 Q6.2 Q7 Q8
0

2

4

6

8

10

12

Fig. 6.3 Results of the test for the different groups.

or Appendix D). In sub-question Q3.2, a concrete numerical answer about the
average total sessions of group 1 was required. Four participants answered
incorrectly this question: one of them gave the value of another group (returned
groups by the clustering algorithm were labeled starting from 0, so group 1 was
misunderstood with being the first one); the other three answered the value of
another row of the correct group: instead of giving the average total sessions
value, they introduced the average total duration of a session. We will try to
avoid this kind of misunderstandings in future experiments.

The mistakes made by participants, which were scarce, were the following:

• A bad explanation of the objective of the show_data query (Q2 ), which only
shows data of a subset of the students, while some participants thought that it
was performing some kind of advanced analysis.



6.5 Analysis of Results 201

62

91

56

64

97

97

91

62

72

83

100

negative response neutral positive response

11. I would like a DMDL
for my daily work

10. DMDL was easy to
use

9. Training is
necesssary

8. Non-experts may find
the DMDL too complex

7. Queries easy to
write

6. Autocompletion was
helpful

5. Queries easy to
modify

4. Error messages were
useful

3. The educational
jargon was beneficial

2. Easy to interpret
queries' objectives

1. DMDL commands were
easy to understand

Fig. 6.4 Likert-scale responses of the post-questionnaire.

• Using the wrong entity to invoke an analysis. In some of the questions, participants
had to only analyse either the demographic or the activity data of the students,
but they selected the wrong entity when formulating the query.

• Similar to the previous one, and as commented in the above highlights, using the
wrong attribute when formulating an analysis query or when gathering a value
from the results was also a detected as a mistake.

Next section comments on the subjective opinion of the participants in the usefulness
of the DMDL prototype.



202 Evaluation

6.5.3 Post: Participants’ Opinion

The results of the satisfaction questionnaire filled by the participants after the test are
shown in Figure 6.4. Positive responses, these are, those ones that are positive from
the point of view of the DMDL, appear on the right side, green-filled, and with their
percentages shown in white color. Neutral responses are indicated in light grey, and
negative responses appear on the left in a darker grey.

Almost all participants considered that the objective of commands and written
queries were easy to understand (statements 1 and 2). Additionally, most participants
manifested that the use of a vocabulary close to their domain was beneficial for this
understanding (statement 3). On the other hand, a few participants disagreed with
this last statement, claiming that the domain was irrelevant (1 participant), that the
main reason was the use of natural language-like syntax (2 participants), or that the
importance was in understanding the commands’ objective (1 participant). Two of
the participants also mentioned that they would need to try a DMDL focused in an
unfamiliar topic to be able to properly answer this query.

The opinion on the error messages was more divided (statement 4). A few partici-
pants recognised that they did not pay attention to the error messages, and that in
those cases where an error was shown they tried to rewrite the query completely, as
queries were small and the autocompletion system made this rewriting faster. Other
participants fixed their errors by using the provided printed documentation instead
of these error messages. For more than 20% of the participants, the experience with
this feature was negative. The reason for this resides in the maturity of the provided
DMDL prototype: although a good amount of effort was invested in providing as
many friendly error messages as possible, some of the error messages that remained
were the ones generated by default by Xtext, i.e., the tool we used to implement
this editor. These messages are domain-agnostic technical errors related to syntax
structural problems found by the query parser. Therefore, these messages offered bad
assistance to participants non-familiar with computer languages during the process of
writing a query. Nevertheless, more than 60% of users considered the validator a good
feature. As future work, we will try to provide more user-friendly and informative
error messages.

When modifying or refining an existent query (statement 5), those participants who
struggled had most of their problems when the change was in the middle of such a query
(e.g. in a command parameter, or in the employed entity name). The rewriting of the
query described in the previous paragraph was also applied in this case. Again, these



6.5 Analysis of Results 203

issues were only experienced by a minority of the participants, as the vast majority of
them (∼90%) considered that refinements were easy to include.

The autocompletion system was considered a very useful feature by all participants
(statement 6). This system, along with the received training and the printed help
material, made writing queries from scratch a feasible task (statement 7).

More than 60% of users considered that non-expert users could learn to use this kind
of languages (statement 8). Additionally, among those that indicated the opposite in
the Likert scale, we detected that some participants had marked the opposite value with
respect to the provided rationale about the selected value (remember that statement
8 was the only one where a disagreement value is a positive answer for the test, so
that could have confused these participants.). We did not alter these responses, but it
probably means that the number of participants considering that non-experts could
learn to use a DMDL is slightly larger than 60%.

Around half of the participants considered necessary to receive some training to
properly use the DMDL (∼55%, statement 9). Those who did not commented that, for
instance, the given documentation was enough to understand how to use the language.

As a general agreement, 90% of the participants indicated that the provided DMDL
was easy to use (statement 10). Those who disagreed mentioned that the problems
they encountered when using the DMDL would get mitigated with a longer training
period.

Lastly, 60% of the particpants considered that a DMDL adapted to their domain
could be an useful tool to assist them with their activities (statement 11). Some of
the comments provided by those who did not see useful the existence of such a DMDL
related to the absence of data analysis in their concrete field, e.g., Mathematics teachers
whose research is based in performing demonstrations or in solving differential equation
systems did not find DMDLs useful for their field, as it is natural.

To conclude, users could give some general opinions about the language and the
experiments in a free-text field. We found the following two issues the most interesting
ones:

• Some participants were curious about how data could be introduced into the
system, e.g., to use their own courses data to launch questions. This is directly
linked with the use of Lavoisier, so we hope to include this language into the user
tests in future experiments.

• Also, a few participants manifested their interest in knowing the background
analysis processes that were being executed to try to understand better what was



204 Evaluation

happening. For instance, some participants mentioned that they would like to
know the concrete correlation technique employed when calculating the relation
between two columns of the dataset, e.g., Pearson, Kendall or Spearman. It could
be interesting to investigate the development of white-box analysis processes, i.e.,
processes that try to explain to the non-expert how they are analysing the data
in some sort of high-level language.

In conclusion, participants’ subjective opinions confirm our previous findings, and
we can state that experts of the educational domain can use our DMDL to execute data
mining tasks. Moreover, participants consider that experts of other domains should be
able to use similar DMDLs although, from a scientific point of view, we cannot claim
this without further experiments.

6.5.4 Results Summary

The pre-questionnaire information shows that the subjects that participated in these
experiments have a heterogeneous technical background. Although most of them use
office and spreadsheet apps, only a handful use advanced analysis tools, either through
professional software or by directly employing specialised languages and libraries.

Most of the participants completed correctly the data mining tasks we proposed,
which indicates that the DMDL was understood, and that they could employ it.
The test was harder for those participants with a less technological background, i.e.,
Education teachers. Nevertheless, the results were still very good in their case.

The opinion given by the participants in the post-questionnaire matches the results
of the tests. These participants found the provided DMDL easy to use and understand,
and a good portion of them considered the existence of such a language to assist them
in their application domain an interesting option.

6.6 Threats to Validity
This section discusses potential threats to the validity of the conclusions we reached
after performing our experiments. Specifically, we identified the following threats:

1. The use of synthetic data.

2. The effect of the training session.

3. False positives on the tests.



6.6 Threats to Validity 205

4. Generalisation of results.

5. Nature of the case study.

6. Nature of the proposed analysis tasks.

7. Number of case studies.

We comment on these threats in the following.
Use of synthetic data. As mentioned in Section 6.4.3, despite having real

data, and due to personal data protection laws, we had to use synthetic data in our
experiments. Nevertheless, it should be noted that we were not analysing whether our
DMDLs are able of finding useful facts in real data, but if domain experts are able to
use a DMDL over real data. To this respect, our synthetic data mimics the structure
of data used in the educational data mining domain (Jugo et al. [84], Romero and
Ventura [140], Zorrilla and García-Saiz [176]). Therefore, our domain experts had to
face the same problems as if they were working with the real data.

Effect of the training session. As a second threat to validity, it might be that,
during the training session, we solved very similar problems to the ones that domain
experts, i.e., teachers, had to solve during the test. Therefore, teachers could have
solved some tasks simply by imitation, replicating steps they remembered from the
training sessions. This would imply that teachers were able to use our DMDL, although
they did not understand how it actually works. To alleviate this threat, we changed
the domain of the training session to a bank marketing analysis example, so that the
details of the educational domain were received for the first time in the test session.
Additionally, we ensured that some time, at least two hours, passed between the
training and the test sessions, to allow participants to disconnect their minds between
both sessions. Also, it is important to remark that participants did not have any
incentive in scoring a high grade in the test, as this test was anonymous, and they
would not get any benefit from cheating the questions.

False positives in the tests. The results of some analysis tasks were just a
number, or a choice among a reduced number of options. Therefore, a teacher could
have provided a correct answer by accident, instead of as a result of a correct process.
To detect and remove these false positives, we not only collected the simple answer
of each task, but also some extra information, such as the formulated queries. This
helped us to detect these false positives. As an example, in one of the queries some
participants used the wrong data for the analysis (e.g. demographic instead of activity
data), but the result returned by the analysis was coincidentally the same as with



206 Evaluation

the correct entity. As we had the query they used to answer the question, we could
correctly identify the mistake and mark these answers as wrong.

Generalisation of results. Certain characteristics of the participants could have
made the results of these experiments not generalisable to a wider population. For
instance, if we had used just Biology professors, we could not claim that our results
also apply to teaching assistants in History. To avoid this, we selected participants of
different kind (e.g. teachers and graduate students) and belonging to different knowledge
areas. Also, these participants had heterogeneous technical backgrounds, e.g., previous
experience with programming languages, or even in computer skills. Therefore, we
believe that the experiment participants offer a good spectrum of different technical
knowledge levels and, as a result of that, the conclusions of this experiment should at
least be generalisable to the university educational level. Moreover, we did not detect
any specific advantage of the university context in using the DMDL that might make
the conclusions of these experiments not extensible to other educational levels, such as
high schools.

Nature of the case study or the proposed tasks. It might be argued that
our findings are due to some characteristics of the used data or the proposed questions,
but that other data or different questions might have led us to different conclusions.
In particular, it can be claimed that the set of proposed tasks is quite short. This
statement is absolutely right. First of all, the experiment was intentionally designed to
be short, in order to encourage participation. It must be highlighted that participants
volunteered to participate in these experiments, and that they were not rewarded in
any way. So, we did not want to take too much time from them. Secondly, we have
not detected any prominent issue in the case study that might be biasing our results.
Nevertheless, we plan to replicate these experiments with the same participants but
with different data and analysis tasks as part of our future work.

Only one case study. Another external threat about generalisation comes from
the fact that our experiments only included one case study: a DMDL for the educational
domain used to answer one set of questions. The absence of more case studies was
provoked by our limited time frame to prepare these experiments. As commented,
we tried to mitigate this issue by using this case study in several experiments with
heterogeneous participants, but the inclusion of more case studies would have been
preferred. We will expand these experiments in the future with new sets of questions
in the same educational domain, or with new DMDLs applied to new contexts.



6.7 Chapter Summary 207

6.7 Chapter Summary
This chapter has shown our efforts to evaluate whether DMDLs created with the
FLANDM framework meet our initial goals.

We started by comparing the features offered by our DMDLs with existing ap-
proaches from the state of the art. This comparison shows that DMDLs match the
benefits offered by these approaches, and in some cases they provide better results for
some quality attributes, such as granting users the ability to fine-tune the executed
data mining processes without requiring the intervention of a data scientist.

Our evaluation actions continued by analysing how well DMDLs support a set of
general usability heuristics defined by Molich and Nielsen [117]. In this analysis, it
was concluded that the different assistance features provided by our DMDLs offered a
good support for these heuristics.

As the next step, we performed empirical experiments with one of our DMDLs.
The DMDL prototype used in the experiments is an updated version of the educational
DSL that we devised as our first contribution to the data mining democratisation field.
In these experiments, university teachers and graduate students had the opportunity
to test our DMDL prototype by performing some analysis tasks over data from a
university course. The results of these experiments show that most participants were
able to correctly complete these tasks with the assistance of the DMDL. In addition,
these participants later manifested that the provided DMDL was understandable, and
that the analysis queries were easy to write and interpret.

The effort invested to carry out these experiments only allowed us to test a DMDL
from the FLANDM framework. In the future, we plan to extend these empirical
experiments for more DMDLs set up for other contexts, and to include end-user
validation of Lavoisier and Pinset.





Chapter 7

Summary and Future Work

7.1 Thesis Summary
Data mining techniques allow finding useful insights, previously undetected, in data
from a domain. These techniques, however, cannot be used by average decision makers,
these are, people who are experts in a domain but who, in most cases, do not have
the knowledge that is required to properly apply these analysis techniques. This
knowledge involves different advanced aspects, such as statistics, data manipulation,
or the definition of algorithms with one or more programming languages.

Data Mining Democratisation is a field that aims to make data mining techniques
usable by people without deep knowledge in these technical aspects. In this thesis,
we studied the status of this field, and tried to overcome some of its current issues
through the application of Model-Driven Engineering and Domain-Specific Languages
technologies. These technologies seemed ideal for this purpose, as they allow increasing
the abstraction level of an application, so that low-level details can be omitted from
the end user’s perspective if desired. In addition, these abstractions can contribute to
reducing development costs, as implementation-dependent details are only a concern
at the last step of the development process.

As almost any research methodology recommends, we started our work by analysing
the state of the art of the data mining democratisation field. This analysis was
performed by means of a systematic review, which encompassed both works from the
academia and available applications from the state of the art. This combination allowed
us to get a holistic view of the field, and to identify some of its current shortcomings.
In this thesis, we focused on two of these shortcomings: (1) the importance and cost of
developing easy-to-use analysis solutions customised for each application domain; and



210 Summary and Future Work

(2) the scarcity of existing solutions to help with the data selection and transformation
tasks.

We targeted the first shortcoming by developing high-level DSLs for the execution
of data mining processes, which we denoted as Data Mining Democratisation Languages
(DMDLs). These DMDLs shield end users from any technical details of the analysis
processes executed in the background, so that users do not need to have deep knowledge
in the techniques applied in such processes. Both the syntax and analysis processes of
each DMDL are adapted to its concrete domain, e.g., educational, medical, software
development, among others. Therefore, these DMDLs are devised to feel familiar to
end users, and also their analyses are prepared to take into account details of the
domain, so the accuracy of these analyses is not compromised. To alleviate the cost
of developing a different DMDL for each concrete domain, we designed a framework,
FLANDM (Framework to develop LANguages for Data Mining), which allows for an
easy instantiation of DMDLs with reduced costs.

The described DMDLs operate over tabular datasets, which need to be created by
data scientists from the available data in the domain. For this creation task, the input
of a domain expert can be very valuable, as these experts have a lot of knowledge of
the meaning, implications, and intrinsic relationships present in data that may not be
detected by a data scientist. As the second shortcoming we detected in our review, not
that many works exist to try help end users participate in this task. To help with this
issue, we devised Lavoisier, a DSL that provides end users with an adapted syntax to
select the bundle of data be included in an analysis from a high-level conceptual model
of the available domain data. Users of this language only have to worry about selecting
the data that they consider interesting for an analysis, and Lavoisier automatically
transforms this selection into a tabular dataset that can be digested by conventional
analysis tools and libraries.

Continuing with the second shortcoming, we detected that Lavoisier’s syntax was not
adequate to perform certain advanced calculations, such as aggregates over the provided
conceptual model. These computations required a syntax closer to the constructs
that are offered by conventional programming languages such as C or Java. To avoid
increasing the complexity of Lavoisier by including these constructs in its syntax, we
developed a complementary language, called Pinset, that offers these constructs, and
as such it is more oriented to users with computer programming skills.

We evaluated our contributions throughout their development, e.g., the reduction
in development or maintenance costs offered by FLANDM (see Section 3.5), or the
better conciseness of Lavoisier and Pinset when compared with existing tools for the



7.2 Thesis Contributions 211

same objectives (see Sections 4.6 and 5.6.4, respectively). Additionally, we started the
end-user evaluation of our DSLs through some empirical experiments, as described in
Section 6.4.

We believe that our MDE and DSL-based contributions have improved the current
state of the Data Mining Democratisation field. Next section presents a summary of
these contributions, and Section 7.3 describes possible future works to continue with
this research.

7.2 Thesis Contributions
Most contributions of this thesis are already published in peer-reviewed conferences and
journals (see List of Publications on page xxv). The following highlights summarize
the outcomes of these contributions:

• A systematic review involving around 700 tools and academic works in data
mining democratisation.

• A detailed analysis of 28 tools and 15 works identified in this review.

• A grouping of these works in four categories, according to their strategies.

• A study of these categories, to identify their strengths and weaknesses.

• The identification of a set of current shortcomings in the data mining democrati-
sation field, to serve as guide for future research.

• The development of Domain-Specific Languages for Data Mining Democratisation
(DMDLs), for non-expert users to apply data mining techniques to data from
their domains.

• The definition of a framework, FLANDM, that reduces the development of a
DMDL by 50%.

• The creation of several DMDLs for different domains, to validate the benefits
claimed by FLANDM.

• The formal definition of a flattening operator, which allows selecting informa-
tion from an object-oriented domain model and automatically transforms this
information into a dataset ready for analysis.



212 Summary and Future Work

• A high-level DSL, Lavoisier, that internally employs this operator to allow decision
makers to actively participate in the data selection and data preparation tasks of
a data mining process.

• A conciseness and complexity demonstration against state-of-the-art tools to
perform this data preparation tasks, where Lavoisier provided better results than
these tools.

• A DSL for power users, Pinset, which combines primitives specific to the dataset
extraction task with conventional software programming constructs such as
conditions or loops, for the advanced extraction of datasets from models.

• A comparison of Pinset against general-purpose model transformation languages,
which assessed the benefits of having a DSL for the dataset extraction task.

• A comparison of the developed DMDLs against solutions for the state of the
art, to assess whether some of the shortcomings detected in the review were
mitigated.

• A set of empirical tests with an educational DMDL, where university teachers
were able to launch data mining processes to analyse courses data.

Finally, as the last contribution of this thesis, in the next section we present some
possible research lines to continue this work in the future.

7.3 Future Work
There are several ways to continue the lines of work started during this thesis, and
some new lines that we would like to study in detail. These can be summarised as
follows:

• We will increase the empirical experiments with DMDLs, to make them one
of the fundamental indicators of how to improve the FLANDM framework, as
some authors defend (Barisic et al. [13]). More tests will be included in the same
educational domain, to answer different questions and to analyse other bundles
of data. Also, DMDLs for new domains will be developed and tested.

• Lavoisier and Pinset will be included in the end-user experiments. These exper-
iments will help assess whether Lavoisier constructs can be easily understood



7.3 Future Work 213

and applied by non-expert users, and determine if Pinset presents advantages to
power users (e.g. software programmers) over the tools that these users employ
daily. Any shortcomings detected in these experiments would help with the
improvement of these languages.

• Our initial experiments with a DMDL showed that non-experts are able to use
them. Apart from selecting the data bundle and the analysis to perform, this
DMDL did not include any technical parameters to customise the data mining
processes executed in the background. We will study how to give end users a
more fine-grained control of these processes by the inclusion of some configurable
parameters, while at the same time maintaining the DMDLs benefit of being
easy to use.

• While performing the experiments, some participants were curious about the
underlying data mining processes being executed. To make this execution more
transparent, we will work in different ways to explain non-expert users the analysis
processes being carried out, so that we advance from black-box processes to a
white- or open-box processes approach.

• It is difficult to provide encapsulated data mining processes that can work
properly with different datasets and contexts, which provokes that changes in
these processes are required when moving to a new domain. To reduce the
need of data scientists when creating a new DMDL, we will study how some
promising techniques, such as meta-learning (Lemke et al. [103]) or parameter-
less algorithms (Zorrilla et al. [177]), can help define more autonomous and
auto-configurable analysis processes.

• One of the detected shortcomings of Lavoisier was the lack of support for cal-
culating complex derived values. We will try to include this support without
increasing the complexity of the other constructs of the language.

• As for the Pinset language, new features will also be worked on, such as improved
support for extracting datasets from batches of models, instead of a single one.
Also, as this language is more oriented towards advanced users such as software
programmers, we believe that performance is a relevant indicator to convince
these users to employ this language. Therefore, we will include a performance
study in our future work with this language.



214 Summary and Future Work

• We will also investigate how to extend the support of Lavoisier and Pinset for
other conceptual models apart from object-oriented models, such as ontologies or
multidimensional models.

• Lastly, we will put the contributions of this thesis to test in new and emergent
domains where data mining might play a key role, such as Ambient Intelligence,
Smart Cities or Industry 4.0.



References

[1] A Abelló, J Darmont, L Etcheverry, M Golfarelli, J N Mazón, F Naumann, T B
Pedersen, S Rizzi, J Trujillo, P Vassiliadis, and G Vossen. Fusion cubes: Towards
self-service business intelligence. International Journal of Data Warehousing and
Mining, 9:66–88, 2013. ISSN 15483924. doi:10.4018/jdwm.2013040104.

[2] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. An
empirical study of integration activities in distributions of open source software.
Empirical Software Engineering, 21(3):960–1001, Jun 2016. ISSN 1573-7616.
doi:10.1007/s10664-015-9371-y.

[3] Samuel A. Ajila and Di Wu. Empirical study of the effects of open source
adoption on software development economics. Journal of Systems and Software,
80(9):1517 – 1529, 2007. ISSN 0164-1212. doi:10.1016/j.jss.2007.01.011.

[4] J.M. Alonso and C. Mencar. Building cognitive cities with explainable artificial
intelligent systems. CEUR Workshop Proceedings, 2071, 2018. ISSN 16130073.

[5] Paul Alpar and Michael Schulz. Self-Service Business Intelligence. Business
& Information Systems Engineering, 58(2):151–155, apr 2016. ISSN 2363-7005.
doi:10.1007/s12599-016-0424-6.

[6] D. Ameller and et al. Dealing with non-functional requirements in model-driven
development: A survey. IEEE Transactions on Software Engineering, pages 1–1,
2019. ISSN 0098-5589. doi:10.1109/TSE.2019.2904476.

[7] Mihael Ankerst, Martin Ester, and Hans-Peter Kriegel. Towards an effective
cooperation of the user and the computer for classification. Proceedings of the
ACM SIGKDD international conference on knowledge discovery and data mining
(KDD), pages 179–188, 2000. doi:10.1145/347090.347124.

[8] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bernstein, and
Giorgio Gianforme. Model-independent schema translation. VLDB Journal, 17
(6):1347–1370, 2008. ISSN 10668888. doi:10.1007/s00778-008-0105-2.

[9] Önder Babur, Loek Cleophas, and Mark van den Brand. Hierarchical Clustering
of Metamodels for Comparative Analysis and Visualization. In Modelling Founda-
tions and Applications, volume 7949, pages 3–18. 2016. ISBN 978-3-642-39012-8.
doi:10.1007/978-3-319-42061-5_1.

http://dx.doi.org/10.4018/jdwm.2013040104
http://dx.doi.org/10.1007/s10664-015-9371-y
http://dx.doi.org/10.1016/j.jss.2007.01.011
http://dx.doi.org/10.1007/s12599-016-0424-6
http://dx.doi.org/10.1109/TSE.2019.2904476
http://dx.doi.org/10.1145/347090.347124
http://dx.doi.org/10.1007/s00778-008-0105-2
http://dx.doi.org/10.1007/978-3-319-42061-5_1


216 References

[10] John W. Backus. The syntax and semantics of the proposed international
algebraic language of the zurich ACM-GAMM conference. In IFIP Congress,
pages 125–131, 1959.

[11] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large
Industrial Context — Motorola Case Study. In Lionel Briand and Clay Williams,
editors, Model Driven Engineering Languages and Systems, pages 476–491,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32057-9.
doi:10.1007/11557432_36.

[12] Imad Bani-Hani, Olgerta Tona, and Sven Carlsson. From an information consumer
to an information author: a new approach to business intelligence. Journal of
Organizational Computing and Electronic Commerce, 28(2):157–171, apr 2018.
ISSN 1091-9392. doi:10.1080/10919392.2018.1444358.

[13] Ankica Barisic, Vasco Amaral, and Miguel Goulão. Usability driven DSL devel-
opment with USE-ME. Computer Languages, Systems & Structures, 51:118–157,
2018. doi:10.1016/j.cl.2017.06.005.

[14] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Al-
fonso Pierantonio. Automated clustering of metamodel repositories. In Advanced
Information Systems Engineering - 28th International Conference, CAiSE 2016,
pages 342–358, 2016. doi:10.1007/978-3-319-39696-5_21.

[15] V. R. Basili and H. D. Rombach. The tame project: towards improvement-
oriented software environments. IEEE Transactions on Software Engineering, 14
(6):758–773, June 1988. ISSN 0098-5589. doi:10.1109/32.6156.

[16] Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321146530.

[17] Michael Behringer, Pascal Hirmer, and Bernhard Mitschang. Towards interactive
data processing and analytics putting the human in the center of the loop.
Proceedings of the 19th International Conference on Enterprise Information
Systems - ICEIS 2017, 3(Iceis):87–96, 2017. doi:10.5220/0006326300870096.

[18] Lynn Beighley. Head first SQL. O’Reilly, 2007. ISBN 978-0-596-52684-9.

[19] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing travis ci
and github for full-stack research on continuous integration. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pages
447–450, May 2017. doi:10.1109/MSR.2017.24.

[20] M Ben Ayed, H Ltifi, C Kolski, and A M Alimi. A user-centered approach
for the design and implementation of KDD-based DSS: A case study in the
healthcare domain. Decision Support Systems, 50:64–78, 2010. ISSN 01679236.
doi:10.1016/j.dss.2010.07.003.

[21] Besim Bilalli, Alberto Abelló, Tomàs Aluja-Banet, and Robert Wrembel. Intelli-
gent assistance for data pre-processing. Computer Standards & Interfaces, 57:
101–109, 2018. doi:10.1016/j.csi.2017.05.004.

http://dx.doi.org/10.1007/11557432_36
http://dx.doi.org/10.1080/10919392.2018.1444358
http://dx.doi.org/10.1016/j.cl.2017.06.005
http://dx.doi.org/10.1007/978-3-319-39696-5_21
http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.5220/0006326300870096
http://dx.doi.org/10.1109/MSR.2017.24
http://dx.doi.org/10.1016/j.dss.2010.07.003
http://dx.doi.org/10.1016/j.csi.2017.05.004


References 217

[22] B. W. Boehm. Improving software productivity. Computer, 20(9):43–57, Sept
1987. ISSN 0018-9162. doi:10.1109/MC.1987.1663694.

[23] Marc Boullé, Clément Charnay, and Nicolas Lachiche. A scalable robust and
automatic propositionalization approach for Bayesian classification of large mixed
numerical and categorical data. Machine Learning, 2018. ISSN 0885-6125.
doi:10.1007/s10994-018-5746-9.

[24] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 1st edition, 2012. ISBN
1608458822, 9781608458820. doi:10.2200/S00441ED1V01Y201208SWE001.

[25] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta.
Metalearning: Applications to Data Mining. Springer Publishing Company,
Incorporated, 1 edition, 2008. ISBN 3540732624, 9783540732624.

[26] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and
Mohamed Khalil. Lessons from applying the systematic literature review process
within the software engineering domain. Journal of Systems and Software, 80(4):
571 – 583, 2007. ISSN 0164-1212. doi:10.1016/j.jss.2006.07.009.

[27] C. Couto et al. Predicting software defects with causality tests. Journal of Systems
and Software, 93:24 – 41, 2014. ISSN 0164-1212. doi:10.1016/j.jss.2014.01.033.

[28] M M Campos, P J Stengard, and B L Milenova. Data-centric automated data
mining. In ICMLA 2005: 4th International Conference on Machine Learning
and Applications, pages 97–104, 2005. ISBN 0769524958 (ISBN); 9780769524955
(ISBN). doi:10.1109/ICMLA.2005.18.

[29] Longbing Cao. Domain-Driven Data Mining: Challenges and Prospects. IEEE
Transactions on Knowledge and Data Engineering, 22(6):755–769, jun 2010.
doi:10.1109/TKDE.2010.32.

[30] Longbing Cao. Data science and analytics: a new era. International Journal of
Data Science and Analytics, 1(1):1–2, apr 2016. doi:10.1007/s41060-016-0006-1.

[31] Jesús Caro-Gutiérrez, Oscar M. Peréz-Landeros, Félix F. González-Navarro,
Mario A. Curiel-Álvarez, Benjamín Valdez-Salas, and Nicola Radnev-Nedev.
Data mining to predict the average outer diameter of vertically aligned tio2
nanotubes. Computational Materials Science, 162:82 – 87, 2019. ISSN 0927-0256.
doi:10.1016/j.commatsci.2019.02.041.

[32] Jian Chen, Manar H. Alalfi, Thomas R. Dean, and S. Ramesh. Modeling
autosar implementations in simulink. In Modelling Foundations and Applications,
pages 279–292. Springer International Publishing, 2018. ISBN 978-3-319-92997-2.
doi:10.1007/978-3-319-92997-2_18.

[33] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented de-
sign. IEEE Transactions on Soft. Eng., 20:476–493, 1994. ISSN 0098-5589.
doi:10.1109/32.295895.

http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.1007/s10994-018-5746-9
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1016/j.jss.2014.01.033
http://dx.doi.org/10.1109/ICMLA.2005.18
http://dx.doi.org/10.1109/TKDE.2010.32
http://dx.doi.org/10.1007/s41060-016-0006-1
http://dx.doi.org/10.1016/j.commatsci.2019.02.041
http://dx.doi.org/10.1007/978-3-319-92997-2_18
http://dx.doi.org/10.1109/32.295895


218 References

[34] Luca Chittaro, Carlo Combi, and Giampaolo Trapasso. Data mining on temporal
data: a visual approach and its clinical application to hemodialysis. Jour-
nal of Visual Languages & Computing, 14(6):591–620, 2003. ISSN 1045926X.
doi:10.1016/j.jvlc.2003.06.003.

[35] David Raymond Christiansen, Klaus Grue, Henning Niss, Peter Sestoft, and
Kristján S. Sigtryggsson. An actuarial programming language for life insurance
and pensions. 2013.

[36] B. Combemale, J. DeAntoni, B. Baudry, R. B. France, J. Jezequel, and J. Gray.
Globalizing modeling languages. Computer, 47(06):68–71, jun 2014. ISSN 0018-
9162. doi:10.1109/MC.2014.147.

[37] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
Jim R.H. Steel, and Didier Vojtisek. Engineering Modeling Languages. Chapman
and Hall/CRC, 2016. ISBN 9781466583733.

[38] Sven F. Crone, Stefan Lessmann, and Robert Stahlbock. The impact of prepro-
cessing on data mining: An evaluation of classifier sensitivity in direct marketing.
European Journal of Operational Research, 173(3):781 – 800, 2006. ISSN 0377-
2217. doi:10.1016/j.ejor.2005.07.023.

[39] C Cunningham. PIVOT and UNPIVOT: Optimization and Execution Strategies
in an RDBMS. Proceedings of the 30th International Conference on Very Large
Data Bases, pages 998–1009, 2004.

[40] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison
of bug prediction approaches. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pages 31–41, May 2010.
doi:10.1109/MSR.2010.5463279.

[41] Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla, and Pablo Sánchez.
Towards a DSL for Educational Data Mining. In Languages, Applications and
Technologies, pages 79–90, 2015. doi:10.1007/978-3-319-27653-3_8.

[42] Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla, and Pablo Sánchez. On
the Automated Transformation of Domain Models into Tabular Datasets. ER
FORUM, 1979, 2017. ISSN 16130073.

[43] Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla, and Pablo Sánchez.
FLANDM: a development framework of domain-specific languages for data
mining democratisation. Computer Languages, Systems and Structures, 54:
316–336, 2018. ISSN 14778424. doi:10.1016/j.cl.2018.07.002.

[44] Alfonso de la Vega, Pablo Sanchez, and Dimitris Kolovos. Pinset: A DSL
for Extracting Datasets from Models for Data Mining-Based Quality Analysis.
Quality of Information and Communications Technology (QUATIC), pages 83–91,
2018. doi:10.1109/quatic.2018.00021.

[45] Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla, and Pablo Sánchez. How
Far are we from Data Mining Democratisation? A Systematic Review. arXiv e-
prints, art. arXiv:1903.08431, Mar 2019. URL https://arxiv.org/abs/1903.08431.

http://dx.doi.org/10.1016/j.jvlc.2003.06.003
http://dx.doi.org/10.1109/MC.2014.147
http://dx.doi.org/10.1016/j.ejor.2005.07.023
http://dx.doi.org/10.1109/MSR.2010.5463279
http://dx.doi.org/10.1007/978-3-319-27653-3_8
http://dx.doi.org/10.1016/j.cl.2018.07.002
http://dx.doi.org/10.1109/quatic.2018.00021
https://arxiv.org/abs/1903.08431


References 219

[46] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977. ISSN 00359246. doi:10.1111/j.2517-
6161.1977.tb01600.x.

[47] Arie Van Deursen and Paul Klint. Little languages: little maintenance?
Journal of Software Maintenance: Research and Practice, 10(2):75–92,
1998. ISSN 1040-550X. doi:10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-
SMR168>3.0.CO;2-5.

[48] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio.
Mining Metrics for Understanding Metamodel Characteristics. In International
Workshop on Modeling in Software Engineering, MiSE 2014, pages 55–60, 2014.
ISBN 978-1-4503-2849-4. doi:10.1145/2593770.2593774.

[49] Laurent Doldi. Validation of Telecom Systems with SDL: The Art of SDL
Simulation and Reachability Analysis. Wiley, April 2003.

[50] Gaia Donati and Chris Woolston. Information Management: Data Domination.
Nature, 548:613–614, 2017. doi:10.1038/nj7669-613a.

[51] Nicole Dungca. In first, Uber to share ride data with Boston. The Boston Globe;
http://bit.ly/1NrvUhm, January 2015. [Online; accessed March 2019].

[52] Roberto Espinosa, Diego García-Saiz, Marta Zorrilla, Jose Jacobo Zubcoff, and
Jose-Norberto Mazón. Enabling non-expert users to apply data mining for
bridging the big data divide. In Data-Driven Process Discovery and Analysis,
International Symposium, SIMPDA 2013, pages 65–86, 2015. ISBN 978-3-662-
46436-6. doi:10.1007/978-3-662-46436-6_4.

[53] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96,
pages 226–231. AAAI Press, 1996.

[54] Eric Evans. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004.

[55] Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster
Than the Quick and Dirty Way. In Companion to the 25th Annual Con-
ference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (SPLASH/OOPSLA), pages 307–309, 2010. ISBN 978-1-4503-0240-1.
doi:10.1145/1869542.1869625.

[56] F. Palomba et al. Investigating Code Smell Co-Occurrences Using Asso-
ciation Rule Learning: A Replicated Study. In IEEE Workshop on ML
Techniques for Soft. Quality Evaluation (MaLTeSQuE), pages 8–13, 2017.
doi:10.1109/MALTESQUE.2017.7882010.

http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
http://dx.doi.org/10.1145/2593770.2593774
http://dx.doi.org/10.1038/nj7669-613a
http://bit.ly/1NrvUhm
http://dx.doi.org/10.1007/978-3-662-46436-6_4
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1109/MALTESQUE.2017.7882010


220 References

[57] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. Empirical software engineering experts
on the use of students and professionals in experiments. Empirical Software
Engineering, 23(1):452–489, 2018. doi:10.1007/s10664-017-9523-3.

[58] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning.
In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, pages 2755–2763, Cambridge, MA,
USA, 2015. MIT Press.

[59] Iztok Jr. Fister, Tomaž Kosar, Iztok Fister, and Marjan Mernik. Easy-
time++: A Case Study Of Incremental Domain-Specific Language Develop-
ment. Information Technology And Control, 42(1), mar 2013. ISSN 1392-124X.
doi:10.5755/j01.itc.42.1.1968.

[60] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321127420.

[61] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st
edition, 2010. ISBN 0321712943, 9780321712943.

[62] JE Gaffney and TA Durek. Software reuse — key to enhanced productivity:
some quantitative models. Information and Software Technology, 31(5):258–267,
jun 1989. ISSN 09505849. doi:10.1016/0950-5849(89)90005-0.

[63] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, October 1994.

[64] E García, C Romero, S Ventura, and C De Castro. A collaborative educational
association rule mining tool. Internet and Higher Education, 14:77–88, 2011.
ISSN 10967516. doi:10.1016/j.iheduc.2010.07.006.

[65] Jill Gerhardt-Powals. Cognitive engineering principles for enhancing human-
computer performance. International Journal of Human-Computer Interaction,
8(2):189–211, 1996. doi:10.1080/10447319609526147.

[66] Matteo Golfarelli and Stefano Rizzi. Data Warehouse Design: Modern Prin-
ciples and Methodologies. McGraw-Hill Education, 1 edition, 6 2009. ISBN
9780071610391.

[67] Thomas Guyet, Catherine Garbay, and Michel Dojat. Knowledge con-
struction from time series data using a collaborative exploration system.
Journal of Biomedical Informatics, 40(6):672–87, 2007. ISSN 1532-0480.
doi:10.1016/j.jbi.2007.09.006.

[68] H. Osman et al. Automatic feature selection by regularization to improve bug pre-
diction accuracy. In IEEE Workshop on ML Techniques for Soft. Quality Evalua-
tion (MaLTeSQuE), pages 27–32, 2017. doi:10.1109/MALTESQUE.2017.7882013.

http://dx.doi.org/10.1007/s10664-017-9523-3
http://dx.doi.org/10.5755/j01.itc.42.1.1968
http://dx.doi.org/10.1016/0950-5849(89)90005-0
http://dx.doi.org/10.1016/j.iheduc.2010.07.006
http://dx.doi.org/10.1080/10447319609526147
http://dx.doi.org/10.1016/j.jbi.2007.09.006
http://dx.doi.org/10.1109/MALTESQUE.2017.7882013


References 221

[69] Jean-Luc Hainaut. The Transformational Approach to Database Engineering. In
Generative and Transformational Techniques in Software Engineering: Interna-
tional Summer School, GTTSE 2005, Braga, Portugal, pages 95–143. Springer,
2006. doi:10.1007/11877028_4.

[70] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. . The weka data mining software: An update. SIGKDD Explorations
Newsletter, 11(1):10–18, 2009. doi:10.1145/1656274.1656278.

[71] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques, 3rd edition. Morgan Kaufmann, 2011. ISBN 978-0123814791. URL
http://hanj.cs.illinois.edu/bk3/.

[72] Zhao Han and Carson K Leung. FIMaaS. In Proceedings of the 2015 International
Conference on Big Data Applications and Services - BigDAS ’15, pages 84–91.
ACM Press, 2015. ISBN 9781450338462. doi:10.1145/2837060.2837072.

[73] Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and S. V. N. Vishwanathan.
An efficient bandit algorithm for realtime multivariate optimization. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pages 1813–1821,
2017. doi:10.1145/3097983.3098184.

[74] Georg Hinkel, Thomas Goldschmidt, Erik Burger, and Ralf Reussner. Using
internal domain-specific languages to inherit tool support and modularity for
model transformations. Software & Systems Modeling, Jan 2017. ISSN 1619-1374.
doi:10.1007/s10270-017-0578-9.

[75] Richard Holcomb and Alan L. Tharp. What users say about software usabil-
ity. International Journal of Human–Computer Interaction, 3(1):49–78, 1991.
doi:10.1080/10447319109525996.

[76] George Hripcsak. Writing arden syntax medical logic modules. Computers in
Biology and Medicine, 24(5):331 – 363, 1994. ISSN 0010-4825. doi:10.1016/0010-
4825(94)90002-7.

[77] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering
practices in industry: Social, organizational and managerial factors that lead to
success or failure. Science of Computer Programming, 89:144 – 161, 2014. ISSN
0167-6423. doi:10.1016/j.scico.2013.03.017.

[78] Claudia Imhoff and Colin White. Self-Service Business Intelligence: Empowering
Users to Generate Insights. TDWI Best Practices Report, 2011.

[79] Peter Zilahy Ingerman. Panini-Backus Form; Suggested. Commun. ACM, 10(3):
137–, March 1967. ISSN 0001-0782. doi:10.1145/363162.363165.

[80] S Jalali and C Wohlin. Systematic literature studies: database searches vs.
backward snowballing. In Proceedings of the 2012 6th ACM_IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
29–38, 2012. ISBN 9781450310567. doi:10.1145/2372251.2372257.

http://dx.doi.org/10.1007/11877028_4
http://dx.doi.org/10.1145/1656274.1656278
http://hanj.cs.illinois.edu/bk3/
http://dx.doi.org/10.1145/2837060.2837072
http://dx.doi.org/10.1145/3097983.3098184
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1080/10447319109525996
http://dx.doi.org/10.1016/0010-4825(94)90002-7
http://dx.doi.org/10.1016/0010-4825(94)90002-7
http://dx.doi.org/10.1016/j.scico.2013.03.017
http://dx.doi.org/10.1145/363162.363165
http://dx.doi.org/10.1145/2372251.2372257


222 References

[81] Monica Johar, Vijay Mookerjee, and Suresh Sethi. Optimal software design reuse
policies: A control theoretic approach. Information Systems Frontiers, 17(2):
439–453, Apr 2015. ISSN 1572-9419. doi:10.1007/s10796-013-9421-1.

[82] Magne Jorgensen and Martin Shepperd. A Systematic Review of Software Devel-
opment Cost Estimation Studies. IEEE Transactions on Software Engineering,
33(1):33–53, jan 2007. ISSN 0098-5589. doi:10.1109/TSE.2007.256943.

[83] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A Model
Transformation Tool. Sci. Comput. Program., 72:31–39, 2008. ISSN 0167-6423.
doi:10.1016/j.scico.2007.08.002.

[84] Igor Jugo, Božidar Kovačić, and Edvard Tijan. Cluster analysis of student activity
in a web-based intelligent tutoring system. Pomorstvo: Scientific Journal of
Maritime Research, 29(1):75–83, 2015.

[85] M R Kamdar, D Zeginis, A Hasnain, S Decker, and H F Deus. ReVeaLD:
A user-driven domain-specific interactive search platform for biomedical re-
search. Journal of Biomedical Informatics, 47:112–130, 2014. ISSN 15320464.
doi:10.1016/j.jbi.2013.10.001.

[86] B Kamsu-Foguem, G Tchuente-Foguem, L Allart, Y Zennir, C Vilhelm,
H Mehdaoui, D Zitouni, H Hubert, M Lemdani, and P Ravaux. User-
centered visual analysis using a hybrid reasoning architecture for intensive
care units. Decision Support Systems, 54:496–509, 2012. ISSN 0167-9236.
doi:10.1016/j.dss.2012.06.009.

[87] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-
TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 1990. URL http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
11231.

[88] J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards au-
tomating data science endeavors. In 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 1–10, Oct 2015.
doi:10.1109/DSAA.2015.7344858.

[89] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[90] Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. Enriching
documents with examples: A corpus mining approach. ACM Trans. Inf. Syst.,
31(1):1:1–1:27, January 2013. ISSN 1046-8188. doi:10.1145/2414782.2414783.

[91] Barbara Kitchenham and Stuart Charters. Guidelines for Performing Systematic
Literature Reviews in Software Engineering (Version 2.3). EBSE 2007-001, 2007.

[92] S Klenk, J Dippon, P Fritz, and G Heidemann. Interactive survival analysis
with the OCDM system: From development to application. Information Systems
Frontiers, 11:391–403, 2009. ISSN 13873326. doi:10.1007/s10796-009-9152-5.

http://dx.doi.org/10.1007/s10796-013-9421-1
http://dx.doi.org/10.1109/TSE.2007.256943
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.jbi.2013.10.001
http://dx.doi.org/10.1016/j.dss.2012.06.009
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://dx.doi.org/10.1109/DSAA.2015.7344858
http://dx.doi.org/10.1145/2414782.2414783
http://dx.doi.org/10.1007/s10796-009-9152-5


References 223

[93] Anneke Kleppe. A Language Description is More than a Metamodel. In Models
in Software Engineering, number 612, pages 28–33. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-69073-3_4.

[94] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 2008. ISBN 0321553454,
9780321553454.

[95] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Professional, April 2003.

[96] Arno Jan Knobbe, Marc De Haas, and Arno Siebes. Propositionalisation and
Aggregates. Principles of Data Mining and Knowledge Discovery, 2168:277–288,
2001. ISSN 16113349. doi:10.1007/3-540-44794-6_23.

[97] Ron Kohavi, Dan Sommerfield, and James Dougherty. Data Mining using
MLC++, A Machine Learning Library in C++. International Journal on Artifi-
cial Intelligence Tools, 6(4):537–566, nov 1996. doi:10.1142/S021821309700027X.

[98] Dimitrios S Kolovos, Richard F Paige, and Fiona A C Polack. The Epsilon Object
Language (EOL). In Model Driven Architecture – Foundations and Applications,
pages 128–142, 2006. ISBN 978-3-540-35910-4. doi:10.1007/11787044_11.

[99] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. Polack. The Epsilon
Transformation Language. In Proceedings of the 1st International Conference
on Theory and Practice of Model Transformations, pages 46–60, 2008. ISBN
978-3-540-69926-2. doi:10.1007/978-3-540-69927-9_4.

[100] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On the
evolution of OCL for capturing structural constraints in modelling languages. In
Rigorous Methods for Software Construction and Analysis, pages 204–218, 2009.
doi:10.1007/978-3-642-11447-2_13.

[101] Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontzelos, Sophia
Ananiadou, and Richard F. Paige. Assessing the Use of Eclipse MDE Tech-
nologies in Open-Source Software Projects. In Proceedings of the International
Workshop on Open Source Software for Model Driven Engineering co-located
with ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2015), CEUR Workshop Proceedings, Vol.
1541, pages 20–29, 2015.

[102] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003. ISBN
0321197704.

[103] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey
of trends and technologies. Artificial Intelligence Review, 44(1):117–130, Jun
2015. ISSN 1573-7462. doi:10.1007/s10462-013-9406-y.

http://dx.doi.org/10.1007/978-3-540-69073-3_4
http://dx.doi.org/10.1007/3-540-44794-6_23
http://dx.doi.org/10.1142/S021821309700027X
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://dx.doi.org/10.1007/s10462-013-9406-y


224 References

[104] S. Lepreux, M. Abed, and C. Kolski. A human-centred methodology applied
to decision support system design and evaluation in a railway network con-
text. Cognition, Technology & Work, 5(4):248–271, Dec 2003. ISSN 1435-5566.
doi:10.1007/s10111-003-0128-9.

[105] Lihua Li, Hong Tang, Zuobao Wu, Jianli Gong, Michael Gruidl, Jun Zou, Melvyn
Tockman, and Robert A. Clark. Data Mining Techniques for Cancer Detection
Using Serum Proteomic Profiling. Artificial Intelligence in Medicine, 32(2):71 –
83, 2004. ISSN 0933-3657. doi:10.1016/j.artmed.2004.03.006.

[106] Shih-Wei Lin and Shih-Chieh Chen. Parameter Determination and Feature
Selection for C4.5 Algorithm Using Scatter Search Approach. Soft Computing,
16(1):63–75, Jan 2012. ISSN 1433-7479. doi:10.1007/s00500-011-0734-z.

[107] Qi Lu, Zhi-jun Lyu, Qian Xiang, Yaqin Zhou, and Jinsong Bao. Research
on data mining service and its application case in complex industrial pro-
cess. In 2017 13th IEEE Conference on Automation Science and Engineer-
ing (CASE), pages 1124–1129. IEEE, aug 2017. ISBN 978-1-5090-6781-7.
doi:10.1109/COASE.2017.8256255.

[108] T D Luu, A Rusu, V Walter, B Linard, L Poidevin, R Ripp, L Moulinier, J Muller,
W Raffelsberger, N Wicker, O Lecompte, J D Thompson, O Poch, and H Nguyen.
KD4v: comprehensible knowledge discovery system for missense variant. Nucleic
Acids Research, 40:W71–W75, 2012. ISSN 0305-1048. doi:10.1093/nar/gks474.

[109] M. Ochodek et al. Using Machine Learning to Design a Flexible LOC
Counter. In 2017 IEEE Workshop on Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE), pages 14–20, Feb 2017.
doi:10.1109/MALTESQUE.2017.7882011.

[110] J. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif.,
1967. University of California Press.

[111] Ruchika Malhotra. A Systematic Review of Machine Learning Techniques for
Software Fault Prediction. Applied Soft Computing, 27, 2015. ISSN 1568-4946.
doi:10.1016/j.asoc.2014.11.023.

[112] Elzbieta Malinowski and Esteban Zimanyi. Advanced Data Warehouse Design,
From Conventional to Spatial and Temporal Application. Springer, 2008. ISBN
9783540744047.

[113] Yulkeidi Martínez, Cristina Cachero, and Santiago Meliá. Evaluating the Im-
pact of a Model-Driven Web Engineering Approach on the Productivity and
the Satisfaction of Software Development Teams. In Marco Brambilla, Take-
hiro Tokuda, and Robert Tolksdorf, editors, Web Engineering, pages 223–237,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-31753-8.
doi:10.1007/978-3-642-31753-8_17.

http://dx.doi.org/10.1007/s10111-003-0128-9
http://dx.doi.org/10.1016/j.artmed.2004.03.006
http://dx.doi.org/10.1007/s00500-011-0734-z
http://dx.doi.org/10.1109/COASE.2017.8256255
http://dx.doi.org/10.1093/nar/gks474
http://dx.doi.org/10.1109/MALTESQUE.2017.7882011
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1007/978-3-642-31753-8_17


References 225

[114] Wes McKinney. Data Structures for Statistical Computing in Python . In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[115] David A Mellis, Ben Zhang, Audrey Leung, and Björn Hartmann. Machine
Learning for Makers. In Proceedings of the 2017 Conference on Designing
Interactive Systems - DIS ’17, volume 2, pages 1213–1225. ACM Press, 2017.
ISBN 9781450349222. doi:10.1145/3064663.3064735.

[116] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005. ISSN
03600300. doi:10.1145/1118890.1118892.

[117] Rolf Molich and Jakob Nielsen. Improving a human-computer dialogue. Commun.
ACM, 33(3):338–348, March 1990. ISSN 0001-0782. doi:10.1145/77481.77486.

[118] Martin Monperrus, Jean Marc Jézéquel, Benoit Baudry, Joël Champeau, and
Brigitte Hoeltzener. Model-driven generative development of measurement soft-
ware. Software and Systems Modeling, 10(4):537–552, 2011. ISSN 16191366.
doi:10.1007/s10270-010-0165-9.

[119] M. Arthur Munson. A study on the importance of and time spent on different
modeling steps. SIGKDD Explor. Newsl., 13(2):65–71, May 2012. ISSN 1931-0145.
doi:10.1145/2207243.2207253.

[120] Carlos Márquez-Vera, Alberto Cano, Cristobal Romero, Amin Yousef Mohammad
Noaman, Habib Mousa Fardoun, and Sebastian Ventura. Early dropout prediction
using data mining: a case study with high school students. Expert Systems, 33
(1):107–124, 2016. doi:10.1111/exsy.12135.

[121] Daniel Müllner. fastcluster: Fast Hierarchical, Agglomerative Clustering Routines
for R and Python. Journal of Statistical Software, Articles, 53(9):1–18, 2013.
ISSN 1548-7660. doi:10.18637/jss.v053.i09.

[122] Solomon Negash. Business intelligence. Communications of the Association for
Information Systems, 13(15), 2004.

[123] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993. ISBN 0125184050.

[124] Object Management Group. Object Constraint Language Specification (OCL).
https://www.omg.org/spec/OCL/, 2014.

[125] Object Management Group. Meta Object Facility (MOF) Core Specification.
https://www.omg.org/spec/MOF/, 2016.

[126] Object Management Group. Unified Modeling Language (UML) Specification.
https://www.omg.org/spec/UML/, 2017.

http://dx.doi.org/10.1145/3064663.3064735
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/77481.77486
http://dx.doi.org/10.1007/s10270-010-0165-9
http://dx.doi.org/10.1145/2207243.2207253
http://dx.doi.org/10.1111/exsy.12135
http://dx.doi.org/10.18637/jss.v053.i09
https://www.omg.org/spec/OCL/
https://www.omg.org/spec/MOF/
https://www.omg.org/spec/UML/


226 References

[127] Wienand A. Omta, Roy G. van Heesbeen, Romina J. Pagliero, Lieke M. van der
Velden, Daphne Lelieveld, Mehdi Nellen, Maik Kramer, Marley Yeong, Amir M.
Saeidi, Rene H. Medema, Marco Spruit, Sjaak Brinkkemper, Judith Klumperman,
and David A. Egan. HC StratoMineR: A Web-Based Tool for the Rapid Analysis
of High-Content Datasets. ASSAY and Drug Development Technologies, 14(8):
adt.2016.726, 2016. ISSN 1540-658X. doi:10.1089/adt.2016.726.

[128] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, and
Fiona A. C. . The Design of a Conceptual Framework and Technical Infrastructure
for Model Management Language Engineering. In IEEE International Conference
on Engineering of Complex Computer Systems, 2009. ISBN 978-0-7695-3702-3.
doi:10.1109/ICECCS.2009.14.

[129] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A C Polack. A tutorial on
metamodelling for grammar researchers. Science of Computer Programming, 96
(P4):396–416, 2014. ISSN 01676423. doi:10.1016/j.scico.2014.05.007.

[130] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive ll(*) parsing: The
power of dynamic analysis. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 579–598, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2585-1. doi:10.1145/2660193.2660202.

[131] Dau Pelleg and Andrew Moore. X-means: Extending K-means with Efficient
Estimation of the Number of Clusters. In Proceedings of the 17th International
Conference on Machine Learning, pages 727–734, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2.

[132] C Peng, M Deng, and L Di. User-oriented agricultural drought infor-
mation cluster. In International Geoscience and Remote Sensing Sym-
posium (IGARSS), pages 3105–3108, 2014. ISBN 9781479957750 (ISBN).
doi:10.1109/IGARSS.2014.6947134.

[133] Chunming Peng, Meixia Deng, Liping Di, and Weiguo Han. Delivery of agri-
cultural drought information via web services. Earth Science Informatics, 8(3):
527–538, 2015. ISSN 1865-0473. doi:10.1007/s12145-014-0198-7.

[134] Carla Proietti, Martha Zakrzewski, Thomas S. Watkins, Bernard Berger, Shihab
Hasan, Champa N. Ratnatunga, Marie-Jo Brion, Peter D. Crompton, John J.
Miles, Denise L. Doolan, and Lutz Krause. Mining, visualizing and comparing
multidimensional biomolecular data using the Genomics Data Miner (GMine)
Web-Server. Scientific Reports, 6(November):38178, 2016. ISSN 2045-2322.
doi:10.1038/srep38178.

[135] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

[136] R. Hebig et al. The Quest for Open Source Projects That Use UML: Mining
GitHub. In ACM/IEEE 19th Int. Conf. on Model Driven Engineering Lan-
guages and Systems (MODELS), pages 173–183, 2016. ISBN 978-1-4503-4321-3.
doi:10.1145/2976767.2976778.

http://dx.doi.org/10.1089/adt.2016.726
http://dx.doi.org/10.1109/ICECCS.2009.14
http://dx.doi.org/10.1016/j.scico.2014.05.007
http://dx.doi.org/10.1145/2660193.2660202
http://dx.doi.org/10.1109/IGARSS.2014.6947134
http://dx.doi.org/10.1007/s12145-014-0198-7
http://dx.doi.org/10.1038/srep38178
http://dx.doi.org/10.1145/2976767.2976778


References 227

[137] Matthias Reif, Faisal Shafait, Markus Goldstein, Thomas Breuel, and Andreas
Dengel. Automatic classifier selection for non-experts. Pattern Analysis and
Applications, 17(1):83–96, 2014. ISSN 1433-7541. doi:10.1007/s10044-012-0280-z.

[138] William Rice. Moodle 2.0 E-Learning Course Development. Packt Publishing,
2011. ISBN 9781849515269.

[139] William Rice. Blackboard Essentials for Teachers. Packt Publishing, July 2012.
ISBN 9781849692922.

[140] Cristobal Romero and Sebastian Ventura. Data mining in education. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1):12–27,
2013. doi:10.1002/widm.1075.

[141] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. Polack. The
Epsilon Generation Language. In Proceedings of the 4th European Conference on
Model Driven Architecture: Foundations and Applications, pages 1–16. Springer-
Verlag, 2008. ISBN 978-3-540-69095-5. doi:10.1007/978-3-540-69100-6_1.

[142] Michele Samorani. Automatically Generate a Flat Mining Table with Dataconda.
Proceedings - 15th IEEE International Conference on Data Mining Workshop,
ICDMW 2015, (Figure 1):1644–1647, 2016. doi:10.1109/ICDMW.2015.100.

[143] A Santos and R Camacho. ILP made easy C3. In IADIS European Conference
on Data Mining, Part of the IADIS Multi Conference on Computer Science
and Information Systems, MCCSIS, pages 175–180, 2011. ISBN 9789728939533
(ISBN).

[144] Adrian Santos, Janne Järvinen, Jari Partanen, Markku Oivo, and Natalia Juristo.
Does the performance of TDD hold across software companies and premises? A
group of industrial experiments on TDD. In Product-Focused Software Process
Improvement - 19th International Conference, PROFES, pages 227–242, 2018.
doi:10.1007/978-3-030-03673-7_17.

[145] R S Santos, S M F Malheiros, S Cavalheiro, and J M P de Oliveira. A data
mining system for providing analytical information on brain tumors to public
health decision makers. Computer Methods and Programs in Biomedicine, 109:
269–282, 2013. ISSN 01692607. doi:10.1016/j.cmpb.2012.10.010.

[146] Peggy Schlesinger and Nayem Rahman. Self-Service Business Intelligence Result-
ing in Disruptive Technology. Journal of Computer Information Systems, 56(1):
11–21, 2016. doi:10.1080/08874417.2015.11645796.

[147] David Schuff, Karen Corral, Robert D. St. Louis, and Greg Schymik. Enabling
self-service BI: A methodology and a case study for a model management ware-
house. Information Systems Frontiers, 20(2):275–288, 2018. ISSN 15729419.
doi:10.1007/s10796-016-9722-2.

[148] Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):
19–25, 2003. doi:10.1109/MS.2003.1231146.

http://dx.doi.org/10.1007/s10044-012-0280-z
http://dx.doi.org/10.1002/widm.1075
http://dx.doi.org/10.1007/978-3-540-69100-6_1
http://dx.doi.org/10.1109/ICDMW.2015.100
http://dx.doi.org/10.1007/978-3-030-03673-7_17
http://dx.doi.org/10.1016/j.cmpb.2012.10.010
http://dx.doi.org/10.1080/08874417.2015.11645796
http://dx.doi.org/10.1007/s10796-016-9722-2
http://dx.doi.org/10.1109/MS.2003.1231146


228 References

[149] Floarea Serban, Joaquin Vanschoren, Jörg-Uwe Kietz, and Abraham Bernstein.
A survey of intelligent assistants for data analysis. ACM Comput. Surv., 45(3):
31:1–31:35, July 2013. ISSN 0360-0300. doi:10.1145/2480741.2480748.

[150] Jack W Smith and et al. Using the ADAP Learning Algorithm to Forecast the
Onset of Diabetes Mellitus. Proceedings of the Annual Symposium on Computer
Application in Medical Care, pages 261–265, November 1988. ISSN 0195-4210.

[151] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[152] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
clipse Modeling Framework. Addison-Wesley Professional, 2nd edition, 2009.
ISBN 0321331885.

[153] Safwan Sulaiman, Tariq Mahmoud, Stephan Robbers, Jorge Marx Gómez, and
Joachim Kurzhöfer. A Tracing System for User Interactions towards Knowledge
Extraction of Power Users in Business Intelligence Systems. In Proceedings
of the 8th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, volume 3, pages 199–207, 2016. ISBN
978-989-758-203-5. doi:10.5220/0006053601990207.

[154] Mark Sweney. Netflix gathers detailed viewer data to guide its search for the next
hit. The Guardian, 2014. URL https://goo.gl/4nQVxE. last accessed: March
2019.

[155] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Systematic mapping
study of template-based code generation. Computer Languages, Systems and
Structures, 52:43–62, 2018. ISSN 14778424. doi:10.1016/j.cl.2017.11.003.

[156] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. Automated parameter optimization of classification techniques
for defect prediction models. In 38th International Conference on Soft-
ware Engineering (ICSE), pages 321–332, 2016. ISBN 978-1-4503-3900-1.
doi:10.1145/2884781.2884857.

[157] The R Project for Statistical Computing. https://www.r-project.org/.

[158] K. Trase and E. Fink. A model-driven visualization tool for use with model-based
systems engineering projects. In 2014 IEEE Aerospace Conference, pages 1–10,
March 2014. doi:10.1109/AERO.2014.6836268.

[159] U. Fayyad et al. The KDD Process for Extracting Useful Knowledge from
Volumes of Data. Commun. ACM, 39:27–34, November 1996. ISSN 0001-0782.
doi:10.1145/240455.240464.

[160] Gitte Vanwinckelen and Hendrik Blockeel. A declarative query language for
statistical inference. ECML/PKDD 2013 Workshop: Languages for Data Mining
and Machine Learning, 2013.

http://dx.doi.org/10.1145/2480741.2480748
http://dx.doi.org/10.5220/0006053601990207
https://goo.gl/4nQVxE
http://dx.doi.org/10.1016/j.cl.2017.11.003
http://dx.doi.org/10.1145/2884781.2884857
https://www.r-project.org/
http://dx.doi.org/10.1109/AERO.2014.6836268
http://dx.doi.org/10.1145/240455.240464


References 229

[161] Matias Ezequiel Vara Larsen and Arda Goknil. Railroad Crossing Heterogeneous
Model. In GEMOC workshop 2013 - International Workshop on The Globalization
of Modeling Languages, Miami, Florida, United States, September 2013. URL
https://hal.inria.fr/hal-00867316.

[162] Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, and Arie van
Deursen. Lessons learned from developing mbeddr: a case study in language
engineering with MPS. Software and System Modeling, 18(1):585–630, 2019.
doi:10.1007/s10270-016-0575-4.

[163] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats
Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL
Engineering - Designing, Implementing and Using Domain-Specific Languages.
dslbook.org, 2013. ISBN 978-1-4812-1858-0.

[164] Jane Webster and Richard T Watson. Analyzing the Past to Prepare for the
Future: Writing a Literature Review. MIS Quarterly, 26(2):13–23, 2002.

[165] Hadley Wickham. Reshaping data with the reshape package. Journal of Statistical
Software, 21(1):1–20, 2007. ISSN 1548-7660. doi:10.18637/jss.v021.i12.

[166] Rüdiger Wirth. CRISP-DM: Towards a Standard Process Model for Data Mining.
In Proceedings of the Fourth International Conference on the Practical Application
of Knowledge Discovery and Data Mining, pages 29–39, 2000.

[167] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Min-
ing: Practical Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 4th edition, 2016. ISBN 0128042915,
9780128042915.

[168] Claes Wohlin. Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (EASE),
pages 1–10, May 2014. doi:10.1145/2601248.2601268.

[169] Claes Wohlin and Rafael Prikladnicki. Systematic Literature Reviews in Software
Engineering. Information and Software Technology, 55(6):919–920, jun 2013.
doi:10.1016/j.infsof.2013.02.002.

[170] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in Software Engineering. Springer, 2012.
doi:10.1007/978-3-642-29044-2.

[171] D. H. Wolpert. The Lack of A Priori Distinctions Between Learning Algo-
rithms. Neural Computation, 8(7):1341–1390, Oct 1996. ISSN 0899-7667.
doi:10.1162/neco.1996.8.7.1341.

[172] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr 1997. ISSN
1089-778X. doi:10.1109/4235.585893.

https://hal.inria.fr/hal-00867316
http://dx.doi.org/10.1007/s10270-016-0575-4
http://dx.doi.org/10.18637/jss.v021.i12
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.infsof.2013.02.002
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1109/4235.585893


230 References

[173] Robert Wrembel and Christian Koncilia. Data Warehouses And Olap: Concepts,
Architectures And Solutions. IRM Press, 2006.

[174] Yelp. Yelp Dataset Challenge Round 9. https://www.yelp.com/dataset_challenge.
[Online; accessed 21-May-2019].

[175] Athanasios Zolotas, Horacio Hoyos Rodriguez, Dimitrios S. Kolovos, Richard F.
Paige, and Stuart Hutchesson. Bridging Proprietary Modelling and Open-
Source Model Management Tools: The Case of PTC Integrity Modeller
and Epsilon. 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 237–247, 2017.
doi:10.1109/MODELS.2017.18.

[176] M Zorrilla and D García-Saiz. A Service Oriented Architecture to Provide Data
Mining Services for Non-Expert Data Miners. Decision Support Systems, 55:
399–411, 2013. ISSN 01679236. doi:10.1016/j.dss.2012.05.045.

[177] Marta E. Zorrilla, Diego García-saiz, and Jose L. Balcázar. Towards parameter-
free data mining: Mining educational data with yacaree. In EDM 2011 - Pro-
ceedings of the 4th International Conference on Educational Data Mining, pages
363–364, 2011.

[178] Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik. Ontology driven
development of domain-specific languages. Computer Science and Information
Systems, 8(2):317–342, 2011. ISSN 1820-0214. doi:10.2298/CSIS101231019C.

https://www.yelp.com/dataset_challenge
http://dx.doi.org/10.1109/MODELS.2017.18
http://dx.doi.org/10.1016/j.dss.2012.05.045
http://dx.doi.org/10.2298/CSIS101231019C


Appendix A

Comments on Ad-Hoc Applications



232 Comments on Ad-Hoc Applications

As previously commented in the selection strategy for scientific databases (see
Section 2.1.4), we excluded a special category of papers from our evaluation process.
This category is composed of ad-hoc applications, which were developed to solve a
concrete analysis problem on a specific domain. Proof of this is that, for instance,
we found several applications focusing on the analysis of large, multidimensional
datasets [92, 127, 134]; on applying Inductive Logic Programming [108, 143]; or on
analysing time-series data [34, 67, 115]. However, each application was developed
independently, and adapted to a concrete domain (e.g medicine for [92], biomedicine
for [127], and biomolecular for [134]). This kind of conventional, personalised develop-
ment is the one that escaped from the focus of this review.

Nevertheless, we decided to include a short summary of these applications, because
they made a special effort to be usable by domain experts without technical knowledge
in data mining techniques. We considered that this effort could be transferred to other
applications, so they are of interest for the ultimate goal of democratising data mining.

Applications of this category offer solutions for very concrete problems. These
applications target heterogeneous domains, including molecular biology, medicine,
biomedicine, genomics, education, electronics and agriculture. Table A.1 shows the
domain of each application, and the specific help they provide for non-experts and that
we consider relevant for the general purpose of data mining democratisation.

For instance, Chittaro et al. [34] applies time-series analysis methods for the
monitoring of haemodialysis processes. This method is integrated in a user-friendly
system, which was developed by data mining experts. The system allows clinicians
to envision the evolution over time of different metrics presented in 2D or 3D user-
friendly visualizations. The application includes a special circular control panel, which
allows clinicians to tune the visualization and analysis parameters. Despite being
an application focused on the study of haemodialysis, part of this solution could be
transferred to the visualization and analysis of time series data coming from other
domains.



233

Ta
bl

e
A

.1
C

ha
ra

ct
er

ist
ic

s
of

en
co

un
te

re
d

ad
-h

oc
ap

pl
ic

at
io

ns
fo

r
no

n-
ex

pe
rt

s.

R
ef

er
en

ce
D

om
ai

n
C

on
tr

ib
ut

io
n

to
da

ta
m

in
in

g
de

m
oc

ra
tis

at
io

n

C
hi

tt
ar

o
et

al
.[

34
]

M
ed

ic
in

e
A

ci
rc

ul
ar

co
nt

ro
lp

an
el

fo
r

th
e

m
an

ag
em

en
t

of
2D

an
d

3D
vi

su
al

isa
tio

ns
of

tim
e

se
rie

s
da

ta
.

G
ar

cí
a

et
al

.[
64

]
Ed

uc
at

io
n

A
n

as
so

cia
tio

n
ru

le
lea

rn
in

g
to

ol
fo

rt
he

an
al

ys
is

of
ed

uc
at

io
na

ld
at

a
th

at
al

lo
ws

sh
ar

in
g

th
e

ob
ta

in
ed

ru
le

s
be

tw
ee

n
co

ur
se

s
of

sim
ila

r
na

tu
re

.

G
uy

et
et

al
.[

67
]

M
ed

ic
in

e
A

to
ol

to
pe

rfo
rm

pa
tt

er
n

m
at

ch
in

g
vi

su
al

ly
in

tim
es

er
ies

da
ta

(e
.g

.r
es

pi
ra

to
ry

da
ta

).

Ju
go

et
al

.[
84

]
Ed

uc
at

io
n

W
eb

-b
as

ed
in

te
rfa

ce
fo

r
cl

us
te

rin
g

an
al

ys
is

an
d

fo
r

gu
id

in
g

us
er

s
in

a
le

ar
ni

ng
pa

th
.

K
am

da
r

et
al

.[
85

]
Bi

om
ed

ic
in

e
A

hi
gh

-le
ve

ls
ys

te
m

to
fo

rm
ul

at
e

da
ta

qu
er

ies
ov

er
on

to
lo

gy
-b

as
ed

da
ta

so
ur

ce
s.

K
am

su
-F

og
ue

m
et

al
.[

86
]

M
ed

ic
in

e
A

m
ac

hi
ne

lea
rn

in
g-

en
ha

nc
ed

m
on

ito
rt

ha
ta

ut
om

at
ica

lly
de

te
rm

in
es

th
e

m
os

t
re

lev
an

ti
nd

ica
to

rs
to

sh
ow

in
a

co
ns

tr
ai

ne
d-

siz
e

di
sp

la
y

(e
.g

.m
ed

ica
li

nt
en

siv
e

ca
re

un
its

).

K
le

nk
et

al
.[

92
]

M
ed

ic
in

e
A

sy
st

em
to

pe
rfo

rm
ca

se
-b

as
ed

re
as

on
in

g
(e

.g
.

hi
st

or
y-

ba
se

d
su

rv
iv

al
an

al
ys

is
of

a
pa

tie
nt

).

Lu
u

et
al

.[
10

8]
G

en
om

ic
s

A
n

In
du

ct
iv

e
Lo

gi
c

Pr
og

ra
m

m
in

g
(I

LP
)

sy
st

em
th

at
an

al
ys

es
da

ta
an

d
gi

ve
s

ru
le

-b
as

ed
ex

pl
an

at
io

ns
un

de
rs

ta
nd

ab
le

by
no

n-
ex

pe
rt

s
in

da
ta

m
in

in
g.

Pe
ng

et
al

.[
13

3]
A

gr
ic

ul
tu

re
A

ge
og

ra
ph

ic
sy

st
em

th
at

al
lo

ws
ob

ta
in

in
g

m
ap

-b
as

ed
vi

su
al

isa
tio

ns
of

di
ffe

re
nt

in
di

ca
to

rs
of

in
te

re
st

(e
.g

.
dr

ou
gh

t
m

ap
s

of
ce

rt
ai

n
ar

ea
s)

M
el

lis
et

al
.[

11
5]

El
ec

tr
on

ic
s

A
hi

gh
-le

ve
ls

ol
ut

io
n

fo
r

th
e

an
al

ys
is

of
ra

w
se

ns
or

da
ta

.

O
m

ta
et

al
.[

12
7]

Bi
om

ed
ic

in
e

W
eb

se
rv

ic
e

fo
r

an
al

ys
in

g
H

ig
h-

C
on

te
nt

(i.
e.

la
rg

e
an

d
m

ul
tid

im
en

sio
na

l)
da

ta
se

ts
.

Pr
oi

et
ti

et
al

.[
13

4]
Bi

om
ol

ec
ul

ar
W

eb
se

rv
ic

e
fo

r
th

e
an

al
ys

is
an

d
co

m
pa

ris
on

of
di

ffe
re

nt
m

ul
tid

im
en

sio
na

l
da

ta
se

ts
.

Sa
nt

os
an

d
C

am
ac

ho
[1

43
]

Bi
om

ol
ec

ul
ar

A
n

IL
P

sy
st

em
fo

rm
ul

ti-
re

la
tio

na
ld

at
a

m
in

in
g

(s
im

ila
ro

bj
ec

tiv
es

to
Lu

u
et

al
.

[1
08

]).





Appendix B

Class Diagrams Dataset
Extractions: Pinset vs. ETL



236 Class Diagrams Dataset Extractions: Pinset vs. ETL

The following sections show how certain dataset extractions would be performed
using either Pinset or ETL. These extractions take place over UML class diagrams, as
explained in Section 5.5. The set of performed extractions seeks to analyse the benefits
offered by Pinset’s specific column generators when compared with using a general
purpose transformation language, where these generators are not available.

Because of formatting, it is possible that the scripts of this appendix does not
return the exact same measurements as provided in Table 5.4 of the comparison (see
Section 5.6.4). The original extractions can be found in an external repository1234.

Operations Used By ETL Scripts
The following operations are required in all ETL examples. These operations were not
taken into account when analysing script size in the comparison of Section 5.6.4.

Listing B.1 Operations Used by ETL scripts.
1 operation createDataset(datasetName: String): Dataset!Dataset {

2 var d = new Dataset!Dataset();

3 d.name = datasetName;

4 return d;

5 }

6
7 operation createColumn(colName: String): Dataset!Column {

8 var col = new Dataset!Column();

9 col.name = colName;

10 return col;

11 }

12
13 operation createCell(col: Dataset!Column, val: Any): Dataset!Cell {

14 var cell = new Dataset!Cell();

15 cell.column = col;

16 cell.value = val;

17 return cell;

18 }

1https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.
pinset.examples/01-examples.pset

2https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.
pinset.examples/02-allMetrics.pset

3https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.
pinset.examples.etlComparison/etl/01-examples.etl

4https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.
pinset.examples.etlComparison/etl/02-allMetrics.etl

https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples/01-examples.pset
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples/01-examples.pset
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples/02-allMetrics.pset
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples/02-allMetrics.pset
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples.etlComparison/etl/01-examples.etl
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples.etlComparison/etl/01-examples.etl
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples.etlComparison/etl/02-allMetrics.etl
https://github.com/alfonsodelavega/pinset-examples/blob/master/es.unican.istr.pinset.examples.etlComparison/etl/02-allMetrics.etl


B.1 Basic Class Metrics 237

B.1 Basic Class Metrics

Listing B.2 Basic Class Metrics (ETL).
1 pre {

2 var modelRoot = new Dataset!Model();

3 var metricsDataset = createDataset("BasicMetrics");

4 modelRoot.datasets.add(metricsDataset);

5 var bmd_c_name = createColumn("name");

6 var bmd_c_isAbstract = createColumn("isAbstract");

7 var bmd_c_parentName = createColumn("parentName");

8 var bmd_c_OO_NOA = createColumn("OO_NOA");

9 var bmd_c_OO_NOM = createColumn("OO_NOM");

10 var bmd_c_OO_NOF = createColumn("OO_NOF");

11 var bmd_c_CK_DIT = createColumn("CK_DIT");

12 metricsDataset.columns =

13 Collection {bmd_c_name, bmd_c_isAbstract,

14 bmd_c_parentName, bmd_c_OO_NOA,

15 bmd_c_OO_NOM, bmd_c_OO_NOF,

16 bmd_c_CK_DIT};

17 }

18
19 rule BasicMetricsClass2Row

20 transform class : Model!Class

21 to row : Dataset!Row {

22 metricsDataset.rows.add(row);

23 row.cells.add(createCell(bmd_c_name, class.name));

24 row.cells.add(createCell(bmd_c_isAbstract,

25 class.isAbstract));

26 var parentName = "";

27 if (not class.superClass.isEmpty()) {

28 parentName = class.superClass.first().name;

29 }

30 row.cells.add(createCell(bmd_c_parentName,

31 parentName));

32 var OO_NOA = class.attributes.size();

33 var OO_NOM = class.operations.size();

34 var OO_NOF = OO_NOA + OO_NOM;

35 row.cells.add(createCell(bmd_c_OO_NOA, OO_NOA));

36 row.cells.add(createCell(bmd_c_OO_NOM, OO_NOM));

37 row.cells.add(createCell(bmd_c_OO_NOF, OO_NOF));

38 row.cells.add(createCell(bmd_c_CK_DIT, class.dit()));

39 }

40



238 Class Diagrams Dataset Extractions: Pinset vs. ETL

41 operation Class dit(): Integer {

42 var dit = 0;

43 var node = self;

44 while (not node.superClass.isEmpty()) {

45 node = node.superClass.first();

46 dit += 1;

47 }

48 return dit;

49 }

Listing B.3 Basic Class Metrics (Pinset).
1 dataset basicClassMetrics over class : Class {

2 column name : class.name

3 column isAbstract : class.isAbstract

4 column parentName {

5 var name = null;

6 if (not class.superClass.isEmpty()) {

7 name = class.superClass.first().name;

8 }

9 return name;

10 }

11 column OO_NOA : class.attributes.size()

12 column OO_NOM : class.operations.size()

13 column OO_NOF : OO_NOA + OO_NOM

14 column CK_DIT : class.dit()

15 }

16
17 operation Class dit(): Integer {

18 var dit = 0;

19 var node = self;

20 while (not node.superClass.isEmpty()) {

21 node = node.superClass.first();

22 dit += 1;

23 }

24 return dit;

25 }



B.2 Features Accesors 239

B.2 Features Accesors

Listing B.4 Features Accessors (ETL).
1 pre classBasicInfoPre {

2 var modelRoot = new Dataset!Model();

3 var classBasicInfoDataset = createDataset("classBasicInfo");

4 modelRoot.datasets.add(classBasicInfoDataset);

5 var cbi_c_name = createColumn("name");

6 var cbi_c_isAbstract = createColumn("isAbstract");

7 var cbi_c_packageName = createColumn("package_name");

8 classBasicInfoDataset.columns =

9 Sequence {cbi_c_name, cbi_c_isAbstract, cbi_c_packageName};

10 }

11 @greedy

12 rule ClassBasicInfo

13 transform class : Model!Class

14 to row : Dataset!Row {

15 classBasicInfoDataset.rows.add(row);

16 row.cells.add(createCell(cbi_c_name, class.name));

17 row.cells.add(createCell(cbi_c_isAbstract, class.isAbstract));

18 var packageName = null;

19 if (class.package <> null) {packageName = class.package.name;}

20 row.cells.add(createCell(cbi_c_packageName, packageName));

21 }

Listing B.5 Features Accessors (Pinset).
1 dataset classBasicInfo over class : Model!Class {

2 properties [name, isAbstract]

3 reference package[name]

4 }

B.3 Extended Accessors

Listing B.6 Extended Features Accessors (ETL).
1 pre classBasicInfoExtendedPre {

2 var cbiExtendedDataset = createDataset("classBasicInfoExtended");

3 modelRoot.datasets.add(cbiExtendedDataset);

4 var cbie_c_name = createColumn("name");

5 var cbie_c_isAbstract = createColumn("isAbstract");

6 var cbie_c_isLeaf = createColumn("isLeaf");

7 var cbie_c_qualifiedName = createColumn("qualifiedName");



240 Class Diagrams Dataset Extractions: Pinset vs. ETL

8 var cbie_c_visibility = createColumn("visibility");

9 var cbie_c_packageName = createColumn("package_name");

10 var cbie_c_packageQualifiedName =

11 createColumn("package_qualifiedName");

12 cbiExtendedDataset.columns = Sequence {cbie_c_name,

13 cbie_c_isAbstract, cbie_c_isLeaf, cbie_c_qualifiedName,

14 cbie_c_visibility, cbie_c_packageName,

15 cbie_c_packageQualifiedName};

16 }

17 @greedy

18 rule ClassBasicInfoExtended

19 transform class : Model!Class

20 to row : Dataset!Row {

21 cbiExtendedDataset.rows.add(row);

22 row.cells.add(createCell(cbie_c_name, class.name));

23 row.cells.add(createCell(cbie_c_isAbstract, class.isAbstract));

24 row.cells.add(createCell(cbie_c_isLeaf, class.isLeaf));

25 row.cells.add(createCell(cbie_c_qualifiedName,

26 class.qualifiedName));

27 row.cells.add(createCell(cbie_c_visibility, class.visibility));

28 var packageName = null;

29 if (class.package <> null) {packageName = class.package.name;}

30 row.cells.add(createCell(cbie_c_packageName, packageName));

31 var packageQualifiedName = "";

32 if (class.package <> null) {

33 packageQualifiedName = class.package.qualifiedName;

34 }

35 row.cells.add(

36 createCell(cbie_c_packageQualifiedName, packageQualifiedName));

37 }

Listing B.7 Extended Features Accessors (Pinset).
1 dataset classBasicInfoExtended over class : Model!Class {

2 properties [name, isAbstract, isLeaf, qualifiedName, visibility]

3 reference package[name, qualifiedName]

4 }



B.4 Filtering 241

B.4 Filtering

Listing B.8 Filtering Examples (ETL).
1 pre classSelectionPre {

2 var csDataset = createDataset("classSelection");

3 modelRoot.datasets.add(csDataset);

4 var cs_c_name = createColumn("name");

5 csDataset.columns = Sequence {cs_c_name};

6 }

7 @greedy

8 rule ClassSelection

9 transform class : Model!Class

10 to row : Dataset!Row {

11 guard : class.isAbstract

12 csDataset.rows.add(row);

13 row.cells.add(createCell(cs_c_name, class.name));

14 }

Listing B.9 Filtering Examples, two versions (Pinset).
1 dataset classSelectionGuard over class : Model!Class {

2 guard : class.isAbstract

3 properties [name]

4 }

5
6 dataset classSelectionFrom over class : Model!Class

7 from : Model!Class.all().select(c | c.isAbstract) {

8 properties [name]

9 }

B.5 Grid

Listing B.10 Grid Example (ETL).
1 pre attributesByVisibilityPre {

2 var visDataset = createDataset("attributesByVisibility");

3 modelRoot.datasets.add(visDataset);

4 var cs_c_name = createColumn("name");

5 visDataset.columns = Sequence {cs_c_name};

6 var visibilities = Sequence{UML!VisibilityKind#public,

7 UML!VisibilityKind#protected,

8 UML!VisibilityKind#private,

9 UML!VisibilityKind#package};



242 Class Diagrams Dataset Extractions: Pinset vs. ETL

10 var visibilityColumns = Map{};

11 for (visibility in visibilities) {

12 var columnName = "#" + visibility + "_attrs";

13 var column = createColumn(columnName);

14 visibilityColumns.put(columnName, column);

15 visDataset.columns.add(column);

16 }

17 }

18 @greedy

19 rule AttributesByVisibility

20 transform class : Model!Class

21 to row : Dataset!Row {

22 visDataset.rows.add(row);

23 row.cells.add(createCell(cbi_c_name, class.name));

24 for (visibility in visibilities) {

25 var column = visibilityColumns.get("#" + visibility + "_attrs");

26 row.cells.add(createCell(column, class.attributes

27 .select(a | a.visibility = visibility)

28 .size()));

29 }

30 }

Listing B.11 Grid Example (Pinset).
1 dataset attributesByVisibility over class : Model!Class {

2 properties [name]

3 grid {

4 keys : Sequence{UML!VisibilityKind#public,

5 UML!VisibilityKind#protected,

6 UML!VisibilityKind#private,

7 UML!VisibilityKind#package}

8 header : "#" + key + "_attrs"

9 body : class.attributes

10 .select(a | a.visibility = key)

11 .size()

12 }

13 }



B.6 Nested From 243

B.6 Nested From

Listing B.12 Nested From Example (ETL).
1 pre nestedFromPre {

2 var nfDataset = createDataset("nestedFrom");

3 modelRoot.datasets.add(nfDataset);

4 var nf_c_name = createColumn("name");

5 var nf_c_packageName = createColumn("package_name");

6 var nf_c_packageNumClasses = createColumn("

package_types_numClasses");

7 nfDataset.columns = Sequence {nf_c_name, nf_c_packageName,

nf_c_packageNumClasses};

8 }

9 @greedy

10 rule nestedFrom

11 transform class : Model!Class

12 to row : Dataset!Row {

13 nfDataset.rows.add(row);

14 row.cells.add(createCell(nf_c_name, class.name));

15 var packageName = null;

16 if (class.package <> null) {packageName = class.package.name;}

17 row.cells.add(createCell(nf_c_packageName, packageName));

18 var packageNumClasses = null;

19 if (class.package <> null) {

20 packageNumClasses = class.package.ownedType

21 .select(t | t.isKindOf(Model!Class))

22 .size();

23 }

24 row.cells.add(createCell(nf_c_packageNumClasses,

25 packageNumClasses));

26 }

Listing B.13 Nested From Example (Pinset).
1 dataset nestedFrom over class : Model!Class {

2 properties [name]

3 from package : class.package {

4 properties[name]

5 from types : package.ownedType {

6 column numClasses : types.select(t | t.isKindOf(Model!Class))

7 .size()

8 }

9 }

10 }



244 Class Diagrams Dataset Extractions: Pinset vs. ETL

B.7 Typeless Rules

Listing B.14 Typeles Rules (ETL).
1 pre typelessPre {

2 var thMetricsDataset = createDataset("thresholdMetrics");

3 modelRoot.datasets.add(thMetricsDataset);

4 var thm_c_threshold = createColumn("threshold");

5 var thm_c_noa = createColumn("classes_with_NOA_leq_th");

6 var thm_c_nom = createColumn("classes_with_NOM_leq_th");

7 var thm_c_fanIn = createColumn("classes_with_FanIn_geq_th");

8 var thm_c_fanOut = createColumn("classes_with_FanOut_geq_th");

9 thMetricsDataset.columns = Sequence {thm_c_threshold, thm_c_noa,

10 thm_c_nom, thm_c_fanIn, thm_c_fanOut};

11 }

12
13 post typelessDataset {

14 var allClasses = Model!Class.all();

15 var thresholds = Sequence{0,1,2,5,10};

16 for (threshold in thresholds) {

17 var row = new Dataset!Row;

18 thMetricsDataset.rows.add(row);

19 row.cells.add(createCell(thm_c_threshold, threshold));

20 row.cells.add(createCell(thm_c_noa,

21 allClasses.select(c | c.attributes.size() <= threshold).size()))

;

22 row.cells.add(createCell(thm_c_nom,

23 allClasses.select(c | c.operations.size() <= threshold).size()))

;

24 row.cells.add(createCell(thm_c_fanIn,

25 allClasses.select(c | c.fanIn().size() >= threshold).size()));

26 row.cells.add(createCell(thm_c_fanOut,

27 allClasses.select(c | c.fanOut().size() >= threshold).size()));

28 }

29 }

Listing B.15 Typeless Dataset Rules (Pinset).
1 pre {

2 var allClasses = Model!Class.all();

3 }

4
5 dataset thresholdMetrics over threshold

6 from : Sequence{0,1,2,5,10} {

7 column threshold : threshold



B.8 All Metrics 245

8 column classes_with_NOA_leq_th : allClasses.select

9 (c |c.attributes.size() <= threshold).size()

10 column classes_with_NOM_leq_th : allClasses.select

11 (c | c.operations.size() <= threshold).size()

12 column classes_with_FanIn_geq_th : allClasses.select

13 (c | c.fanIn().size() >= threshold).size()

14 column classes_with_FanOut_geq_th : allClasses.select

15 (c | c.fanOut().size() >= threshold).size()

16 }

B.8 All Metrics

Listing B.16 All Class Metrics (ETL).
1 pre {

2 var modelRoot = new Dataset!Model();

3 var allMetricsDataset = createDataset("02-allMetricsETL");

4 modelRoot.datasets.add(allMetricsDataset);

5 var c_name = createColumn("name");

6 // CK metrics

7 var c_CK_WMC = createColumn("CK_WMC");

8 var c_CK_DIT = createColumn("CK_DIT");

9 var c_CK_NOC = createColumn("CK_NOC");

10 var c_CK_CBO = createColumn("CK_CBO");

11 // OO metrics

12 var c_OO_FanIn = createColumn("OO_FanIn");

13 var c_OO_FanOut = createColumn("OO_FanOut");

14 var c_OO_NOF = createColumn("OO_NOF");

15 var c_OO_NOA = createColumn("OO_NOA");

16 var c_OO_NOPA = createColumn("NOPA");

17 var c_OO_NOPRA = createColumn("NOPRA");

18 var c_OO_NOIA = createColumn("NOIA");

19 var c_OO_NOM = createColumn("NOM");

20 var c_OO_NOPM = createColumn("NOPM");

21 var c_OO_NOPRM = createColumn("NOPRM");

22 var c_OO_NOIM = createColumn("NOIM");

23 allMetricsDataset.columns =

24 Sequence{c_name, c_CK_WMC, c_CK_DIT, c_CK_NOC, c_CK_CBO,

25 c_OO_FanIn, c_OO_FanOut, c_OO_NOF,

26 c_OO_NOA, c_OO_NOPA, c_OO_NOPRA, c_OO_NOIA,

27 c_OO_NOM, c_OO_NOPM, c_OO_NOPRM, c_OO_NOIM};

28 }

29
30



246 Class Diagrams Dataset Extractions: Pinset vs. ETL

31 rule AllMetrics

32 transform class : Model!Class

33 to row : Dataset!Row {

34 allMetricsDataset.rows.add(row);

35 row.cells.add(createCell(c_name, class.name));

36 row.cells.add(createCell(c_CK_WMC, class.operations.size()));

37 row.cells.add(createCell(c_CK_DIT, class.dit()));

38 row.cells.add(createCell(c_CK_NOC, class.noc()));

39 row.cells.add(createCell(c_CK_CBO, class.cbo()));

40 row.cells.add(createCell(c_OO_FanIn, class.fanIn().size()));

41 row.cells.add(createCell(c_OO_FanOut, class.fanOut().size()));

42 row.cells.add(createCell(c_OO_NOF, class.features.size()));

43 row.cells.add(createCell(c_OO_NOA, class.attributes.size()));

44 row.cells.add(createCell(c_OO_NOPA,

45 class.attributes.select(a | a.visibility = UML!VisibilityKind#

public).size()));

46 row.cells.add(createCell(c_OO_NOPRA,

47 class.attributes.select(a | a.visibility = UML!VisibilityKind#

private).size()));

48 row.cells.add(createCell(c_OO_NOIA, class.allAttributes().size() -

class.attributes.size()));

49 row.cells.add(createCell(c_OO_NOM, class.operations.size()));

50 row.cells.add(createCell(c_OO_NOPM,

51 class.operations.select(o | o.visibility = UML!VisibilityKind#

public).size()));

52 row.cells.add(createCell(c_OO_NOPRM,

53 class.operations.select(o | o.visibility = UML!VisibilityKind#

private).size()));

54 row.cells.add(createCell(c_OO_NOIM, class.allOperations.size -

55 class.operations.size()));

56 }

Listing B.17 All Class Metrics (Pinset).
1 dataset allClassMetrics over class : Model!Class {

2 column name : class.name

3 // CK metrics

4 column CK_WMC : class.operations.size() // simplified due to

weight = 1

5 column CK_DIT : class.dit()

6 column CK_NOC : class.noc()

7 column CK_CBO : class.cbo()

8 // OO metrics

9 column OO_FanIn : class.fanIn().size()



B.8 All Metrics 247

10 column OO_FanOut : class.fanOut().size()

11 column OO_NOF : class.features.size()

12 column OO_NOA : class.‘attributes‘.size()

13 column OO_NOPA : class.‘attributes‘

14 .select(a | a.visibility = UML!

VisibilityKind#public)

15 .size()

16 column OO_NOPRA : class.‘attributes‘

17 .select(a | a.visibility = UML!

VisibilityKind#private)

18 .size()

19 column OO_NOIA : (class.allAttributes().size() -

20 class.‘attributes‘.size())

21 column OO_NOM : class.operations.size()

22 column OO_NOPM : class.operations

23 .select(o | o.visibility = UML!

VisibilityKind#public)

24 .size()

25 column OO_NOPRM : class.operations

26 .select(o | o.visibility = UML!

VisibilityKind#private)

27 .size()

28 column OO_NOIM : (class.allOperations.size -

29 class.operations.size())

30 }





Appendix C

Experiments Manual (Spanish)



250 Experiments Manual (Spanish)



251





Appendix D

Experiments Test Questions
(Spanish)



254 Experiments Test Questions (Spanish)



255



256 Experiments Test Questions (Spanish)



257


	Portada
	Contents
	List of Figures
	List of Tables
	List of Publications
	Acronyms
	Chapter 1. Preliminaries and Objectives
	1.1 Introduction
	1.2 Motivating Analysis Examples
	1.2.1 E-learning Platforms
	1.2.2 Business Recommendation Systems
	1.2.3 Artefacts from Software Projects
	1.2.4 Test Results from Clinical Patients

	1.3 Data Mining Processes
	1.4 General Democratisation Challenges
	1.4.1 Preparation of Data
	1.4.2 Algorithm Selection
	1.4.3 Algorithm Configuration
	1.4.4 Accidental Complexity of Data Mining Tools

	1.5 DSLs for Data Mining Democratisation
	1.6 Background
	1.6.1 Model-Driven Engineering
	1.6.2 Domain-Specific Languages Engineering
	1.6.3 Metamodel-Based DSLs

	1.7 Thesis Contributions
	1.8 Document Structure

	Chapter 2 Literature Review
	2.1 Review method
	2.1.1 Step 1: Research Questions
	2.1.2 Step 2: Types of Primary Studies
	2.1.3 Step 3: Search Resources
	2.1.4 Step 4: Search Strategy and Selection Criteria
	2.1.5 Step 5: Snowballing
	2.1.6 Step 6: Evaluation Procedure

	2.2 Results
	2.2.1 Classification of Selected Studies
	2.2.2 Evaluation Results

	2.3 Discussion
	2.3.1 RQ0. What approaches tackle the problem of data mining democratisation?
	2.3.2 RQ1. When using the approaches identified in the previous question, what actions do decision makers need to carry out to analyse a dataset?
	2.3.3 RQ2. What technical knowledge is required to carry out the actions?
	2.3.4 RQ3. Can non-expert users make use of data mining tools and techniques by themselves?
	2.3.5 RQ4. What trade-offs need to be considered for achieving data mining democratisation?
	2.3.6 RQ5. What should be improved in current state-of-the-art so that decision makers can properly analyse datasets by themselves?

	2.4 Chapter Summary

	Chapter 3 FLANDM: A Framework to Develop DSLs for Data Mining
	3.1 Experience from an Educational DSL
	3.2 Overview of FLANDM
	3.3 Queries Specification
	3.3.1 Domain Entities
	3.3.2 Abstract Syntax
	3.3.3 Query Validator
	3.3.4 Concrete Syntax
	3.3.5 Auto-Completion

	3.4 Queries Execution
	3.4.1 Data Procedure Metamodel
	3.4.2 Query to Data Procedure Transformation
	3.4.3 Data Procedure to Code Transformation

	3.5 Evaluation
	3.5.1 Case Studies
	3.5.2 Reduction of Development Costs
	3.5.3 Reduction of Maintenance Costs

	3.6 Summary

	Chapter 4 Lavoisier: High-Level Selection and Preparation of Data
	4.1 Introduction
	4.2 Case Study and Problem Statement
	4.2.1 Running Example: The Yelp Dataset Challenges
	4.2.2 Data Mining Processes Extended
	4.2.3 The Data Reformatting Problem

	4.3 State-of-the-Art Data Flattening Strategies
	4.3.1 SQL Languages
	4.3.2 Data Warehouse Operations
	4.3.3 Data Management Frameworks and Libraries
	4.3.4 Automatic Feature Extraction

	4.4 Flattenning Operator Description
	4.4.1 Preliminaries
	4.4.2 Basic Transformation Operations
	4.4.3 Trivial Case: Single Class, Single-Value Attributes
	4.4.4 Single-Bounded Reference
	4.4.5 Unbounded Reference
	4.4.6 Multi-Valued Attributes
	4.4.7 Multiple Reductions
	4.4.8 Multi-Level Reductions
	4.4.9 Inheritance

	4.5 Lavoisier: Dataset Extraction Language
	4.5.1 Properties Selection
	4.5.2 Inheritance Management
	4.5.3 Instances Filtering
	4.5.4 Derived Values
	4.5.5 Implementation

	4.6 Evaluation
	4.6.1 Expressiveness
	4.6.2 Conciseness and Conceptual Comparison Method
	4.6.3 Comparison Results
	4.6.4 Threats to Validity

	4.7 Chapter Summary

	Chapter 5 Pinset: Advanced Extraction of Datasets from Models
	5.1 Introduction
	5.2 Motivation: Support for Advanced Calculations
	5.2.1 Running Example: Github-MDE (Ghmde)
	5.2.2 Limitations of Lavoisier

	5.3 Solution Description
	5.3.1 Syntax Overview
	5.3.2 Properties Accessors
	5.3.3 Row Filtering Options
	5.3.4 Multiple Columns Definition: Grid
	5.3.5 Nested Column Definitions
	5.3.6 Typeless Dataset Rules
	5.3.7 Column Post-Processing

	5.4 Implementation
	5.4.1 Epsilon Platform Usage
	5.4.2 Structure of Pinset
	5.4.3 Execution Process of a Pinset Script

	5.5 MDE that Helps Data Mining Help MDE
	5.6 Evaluation
	5.6.1 Overcoming of Lavoisier's Limitations
	5.6.2 Metrics Extraction with Pinset
	5.6.3 Metrics Extraction with ETL
	5.6.4 Pinset vs. ETL Comparison

	5.7 Chapter Summary

	Chapter 6 Evaluation
	6.1 Introduction
	6.2 Comparison with State of the Art Approaches
	6.3 Fulfilment of General Usability Heuristics
	6.4 Empirical Experiments
	6.4.1 Overview
	6.4.2 Scope
	6.4.3 Context
	6.4.4 Participants Selection
	6.4.5 DMDL Prototype
	6.4.6 Pre-Test: Assessment of Skills
	6.4.7 Test: Execution of Data Mining Tasks
	6.4.8 Post-Test: Satisfaction Questionnaire
	6.4.9 DMDL Training

	6.5 Analysis of Results
	6.5.1 Pre-Test
	6.5.2 Test
	6.5.3 Post: Participants' Opinion
	6.5.4 Results Summary

	6.6 Threats to Validity
	6.7 Chapter Summary

	Chapter 7 Summary and Future Work
	7.1 Thesis Summary
	7.2 Thesis Contributions
	7.3 Future Work

	References
	Appendix A Comments on Ad-Hoc Applications
	Appendix B Class Diagrams Dataset Extractions: Pinset vs. ETL
	B.1 Basic Class Metrics
	B.2 Features Accesors
	B.3 Extended Accessors
	B.4 Filtering
	B.5 Grid
	B.6 Nested From
	B.7 Typeless Rules
	B.8 All Metrics

	Appendix C Experiments Manual (Spanish)
	Appendix D Experiments Test Questions (Spanish)

