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Abstract

Background: During last years, there has been an intensive search for blood 

biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management 

of the disease. Methods: In this study, we first conducted a weighted gene 

coexpression network analysis to address differentially expressed genes in peripheral 

blood from patients with chronic schizophrenia (n = 30) and healthy controls (n = 15). 

The discriminating performance of the candidate genes was further tested in an 

independent cohort of patients with first-episode schizophrenia (n = 124) and healthy 

controls (n = 54), and in postmortem brain samples (cingulate and prefrontal cortices) 

from patients with schizophrenia (n = 34) and healthy controls (n = 35). Results: The 

expression of the Eukaryotic Translation Initiation Factor 2D (EIF2D) gene, which is 

involved in protein synthesis regulation, was increased in the chronic patients of 

schizophrenia. On the contrary, the expression of the Thymocyte Selection-Associated 

High Mobility Group Box (TOX) gene, involved in immune function, was reduced. EIF2D 

expression was also altered in first-episode schizophrenia patients, but showing 

reduced levels.  Any of the postmortem brain areas studied did not show differences of 

expression of both genes. Conclusions: EIF2D and TOX are putative blood markers of 

chronic patients of schizophrenia, which expression change from the onset to the 

chronic disease, unraveling new biological pathways that can be used for the 

development of new intervention strategies in the diagnosis and prognosis of 

schizophrenia disease.  
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1. Introduction

During recent decades, great efforts have been made to understand the molecular 

basis of schizophrenia (SZ). As a result, a growing list of genetic polymorphisms, rare 

genetic variants, de novo mutations, epigenetic changes and other genomic alterations 

showing association with SZ has been provided(1-3). However, these findings have not 

been translated into suitable biomarkers for clinical use because most markers account 

for low disease risk and those based on gene expression in postmortem brain tissues 

cannot be analyzed since brain biopsies are not acceptable for clinical evaluation.

Blood is a good source of samples for disease assessment in living patients because 

this tissue is easily accessible and is in contact with tissues and cells throughout the 

body. Many studies have showed that alteration of metabolism and cellular functions 

in the central nervous system (CNS), as well as disturbances in neurotransmitter and 

hormonal systems are related with altered function and metabolism of blood cells (4, 

5). This connection results from a complex network involving the nervous, endocrine 

and immune systems and has been investigated in several neuropsychiatric disorders. 

Different studies have compared gene expression in peripheral blood (PB) and brain to 

evaluate the usefulness of PB as a source of biomarkers that mirror the state of disease 

in the brain (6-8). Results from transcriptomic, proteomic and epigenomic analysis 

support the view that some genes, which expression is dysregulated in blood, might 

reflect specific changes that characterizes the abnormal biological processes in CNS (9-

12). Therefore, in recent years, there has been an intensive search for this type of 

biomarker as a useful and cheaper alternative for SZ (13).
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Here, we sought to identify gene expression markers in PB that may be useful as 

biomarkers of development and disease evolution in SZ. We first performed an 

expression microarray analysis in blood samples from male SZ patients with several 

years of illness duration for comparison to controls. To prioritize biomarkers, a systems 

biology approach was used based on weighted gene coexpression network analysis 

(WGCNA), and the discriminating performance of candidate genes was further tested 

in an independent cohort of patients with first-episode SZ.

2. Methods

2.1 Peripheral sample cohorts

Thirty unrelated male patients with SZ were recruited at the Psychiatric Out-patient 

Unit of the Clinic Hospital of Valencia University, Spain (cohort 1). The control group 

(CNT) consisted of 15 age-matched healthy males without a history of drug abuse or 

familial background of mental disorders. A second sample of 124 patients with first-

episode SZ (62 males) and 54 healthy controls (30 males) were recruited from the 

University Hospital Marqués de Valdecilla in Santander, Spain (cohort 2). Detailed 

description of these cohorts is shown in the supplementary material and 

supplementary Table 1. This study was performed according to the guidelines of each 

institution involved and was approved by the Local Ethics Committee of each 

participating center. 

2.2 Postmortem sample
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Frozen RNA from the postmortem frontal cortex and cingulate cortex was obtained 

from the Stanley Medical Research Institute Array Collection 

(http://www.stanleyresearch.org/brain-research/array-collection). Postmortem brain 

samples were from donor subjects with SZ (n = 35) and controls with no history of 

psychosis (n = 34). The distributions of age and gender in the two groups remained 

similar. The tissue characteristics of this sample are detailed in Supplementary Table 2.

2.3 Expression microarray analysis

PB of subjects from cohort 1 was collected in RNA-stabilizing PAXgene tubes (Qiagen, 

Izasa, Spain). Total RNA was extracted from the obtained cells using the PAXgene 

blood RNA Kit (Qiagen, Izasa, Spain) according to the manufacturer's protocol 

(supplementary Table 1). Gene expression analysis was performed using the GeneChip 

Human Gene 2.0 ST Array (Affymetrix, Santa Clara, CA, USA) covering more than 

750,000 unique 25-mer oligonucleotide features constituting over 40,000 RefSeq 

transcripts. Hybridization experiments and microarray data generation were 

conducted in the Central Unit for Research in Medicine Faculty-INCLIVA, University of 

Valencia (Spain). A gene expression profile was obtained for each subject in cohort 1.

2.4 Gene coexpression network analysis

WGCNA package in R(14) was used to calculate the coexpression network from the 

reduced gene set (24618 probes). We initially identified the value that transformed the 

data into an approximate scale-free topology. Next, we used Pearson’s correlation 

coefficient, a minimum module size of 30 genes and a minimum height value of 0.25 to 

merge modules (groups of highly correlated genes). For the functional annotation of 

the network modules associated with the different traits, we used the Database for 
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Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/home.jsp). We considered only those results with a false 

discovery rate of 0.05 to be significantly enriched. DAVID analysis results were 

visualized using the EnrichmentMap 2.0.1(15) plugin for Cytoscape 3.3.0 

(http://cytoscape.org). For detailed description see supplementary material. 

2.5 Reverse transcription quantitative PCR (RT-qPCR)

Total RNA of subjects from cohort 1 was converted into cDNA with Expand Reverse 

Transcriptase and hexanucleotide mix (Roche Applied Science, Indianapolis, USA), 

following the experimental conditions as previously described (16). 

Amplification was conducted with an ABI PRISM 7700 Sequence Detector (Applied 

Biosystems) as previously described(16), using 5X HOT FIREPol EvaGreen qPCR Mix Plus 

(Solis BioDyne, Estonia) and gene-specific primers (Supplementary Table 3). 

2.6 RNA sequencing (RNA-seq)

Total RNA was extracted from the PB of individuals from cohort 2. mRNA was isolated 

from the total RNA and was fragmented once transformed into cDNA. Fragments of 

300 bp on average were selected to construct the libraries for sequencing. Pair-end 

sequences of 70 nucleotides for each end were produced. Then it was sequenced using 

Illumina HiSeq instruments (San Diego, CA, USA).

RT-qPCR and RNA-seq analyses are further described in the supplementary material.

2.7 Statistical analyses 

Demographic, clinical and tissue features of cohorts were compared using ANOVA and 

t-test. Statistical significance was indicated at p < 0.05. To identify potential blood 

http://david.abcc.ncifcrf.gov/home.jsp)
http://cytoscape.org
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biomarkers for SZ contributing to the differentiation between control individuals and 

patients, a binary logistic regression was carried out with the gene expression data. A 

significance test of the Wald statistic was conducted to investigate genes whose 

expression is significantly associated in the final equation (p < 0.05). All statistical 

analyses were performed using SPSS v14.0 software (SPSS, Chicago, IL).

3. Results

3.1 Gene expression array analysis

Whole transcriptome analysis in PB samples of cohort 1 was performed to identify 

potential biomarkers in SZ. We focused on male subjects to minimize sex differences in 

gene expression. We identified 10 modules of correlated genes (genes with similar 

expression attending to the different groups studied and variables of the sample), each 

one of them was coded with an arbitrary color, and an eleventh gray module 

containing the genes that were not part of any particular module. The functional 

annotation of each module is shown in Supplementary Table 4.

The main purpose of the analysis was to identify genes whose expression was 

associated with the clinical condition (CNT versus SZ). We specified a significance 

threshold of p-value ≤ 0.05 for the correlation between connected-gene modules and 

traits. According to this threshold, four modules (turquoise, purple, yellow and blue) 

significantly correlated with the clinical condition (Figure 1), which means that there 

are differences in gene expression levels among CNT versus SZ. In addition, two 

modules (magenta and blue) were correlated with the patient condition, which 

accounts for differences in gene expression levels between SZ patients with and 
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without auditory hallucinations. Three modules (turquoise, purple and yellow) were 

associated with medication (supplementary Table 5); two modules (black and pink) 

correlated with RNA purity and one module (black) with the subject’ age. Importantly, 

we did not identify any highly connected gene module specifically related to 

chlorpromazine dosage under the thresholds applied (Figure 1).

Figure 1:  Relationship between the different traits analyzed (RNA purity measured as 

A260/A280 and A260/230; Clinical condition; Patient condition; Age; Medication; 

Chlorpromazine equivalent) and gene modules using the WGCNA approach. Gene modules 

are designated by different colors on the left, color scheme on the right (blue-red) denotes 

the correlation (-1 to 1) between module and trait, and the p-value of the correlation in 

each interaction is indicated in brackets. 
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3.2 Selection of candidate genes as potential blood biomarkers in schizophrenia

We selected modules that were significantly correlated with the clinical or the patient 

conditions (with a cutoff value of p ≤ 0.02 at least in one of these conditions) but that 

showed no correlation with the other traits analyzed. Gene expression in the blue 

module (Figure 1) is associated with the clinical condition (p = 0.02) and patient 

condition (p = 0.03). Purple and turquoise modules showed correlations with the 

clinical condition (p = 0.02 and 0.01, respectively). In these two modules, medication 

might have an effect on the expression of the included genes (p = 0.03 and p = 0.01, 

respectively). No significant effect was observed for the remaining confounding 

factors. Finally, the magenta module is associated with the patient condition (p = 0.02).

Next, we chose genes from the selected modules (Supplementary Figures 1-4), whose 

expression differed in the clinical or patient condition traits with high statistical 

significance (p < 0.001 in the blue and turquoise modules because they included a high 

number of genes; p < 0.01 for purple and magenta modules, with fewer genes). A total 

of 14 genes were selected; CPQ, MSL1, NRD1, SRPK1, CMTM5, APOBEC3G, NKG7, 

SLAMF6, TOX, C12orf73, EIF2D, RNPS1, KPL29P2 and SIGIRR (supplementary Table 6). 

These genes are involved in different biochemical pathways, including proteolysis, 

chromatin organization and RNA splicing (turquoise module); chemotaxis (magenta 

module); cytidine deamination, inflammatory process, protein binding, regulation of 

immune response and DNA regulation (purple module); and gene expression, 

translation initiation, signal transduction and unknown functions (blue module). 

Expression of these genes was measured by RT-qPCR and compared between the 
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control group and the SZ patients in cohort 1 (Supplementary Figure 5). We found 

differences in two of them. The expression of the Eukaryotic Translation Initiation 

Factor 2D (EIF2D) gene was increased in SZ patients versus controls (fold change = 

2.05, p = 0.008, Figure 2A). On the contrary, the expression of the Thymocyte Selection-

Associated High Mobility Group Box (TOX) gene was reduced in the SZ group (fold 

change = 0.6, p = 0.017, Figure 2A). 

Figure 2. A) Boxplots representing the quartiles of the relative gene expression values for 

the EIF2D and TOX in cohort 1; controls (CNT) are compared with schizophrenia patients 

(SZ). * p<0.05. B) Boxplots in cohort 2, CNT are compared with the SZ patients at the onset 

of the disease (SZ 0), after 3 months (SZ 3 M) and 1 year of disease onset (SZ 1Y), *** 

p<0.001.
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Next, we studied the expression of both genes in prefrontal and cingulated post-

mortem brain regions, which have been largely associated with SZ symptoms, and no 

significant changes were observed (Supplementary Figure 6).

3.3 Predictive Model Equation 

Using binary logistic regression, we obtained a predictive equation in which EIF2D and 

TOX gene expression could differentiate the SZ patients versus controls in cohort 1. 

The final equation model is -0.106 + [2.957 × EIF2D] + [-4.198 × TOX], where EIF2D and 

TOX respectively indicate the expression levels of these genes. Applying this equation 

to subjects in cohort 1, SZ patients were distinguished from healthy controls with 

86.5% accuracy, with 0.5 as a cutoff value (Supplementary Table 7).

3.4 Gene expression biomarkers in a new cohort 

We assessed the predictive value of the 14 selected genes by measuring their 

expression in a new cohort (cohort 2). Gene expression was analyzed with RNA-seq 

data at disease onset (0), after 3 months (3M) and after 1 year (1Y) of disease onset. In 

this case, we also found significant differences in EIF2D expression between controls 

and patients, but EIF2D mRNA levels were lower in patients than controls, contrary to 

what we observed in cohort 1. This reduction was found at the 3 time points tested 

(fold change at disease onset = 0.88; after 3 months = 0.87; after 1 year = 0.87, p < 

0.0001 in all cases (Figure 2B). TOX expression was reduced in the SZ patients as in 
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cohort 1, although this change showed a trend at time point 0 and was not significant 

at 3M or 1Y (Figure 2B). 

Next, we investigated a new predictive model equation using the expression data of 

the 14 selected genes in the cohort 2. We again found that EIF2D is included in a 

predictive model at each of 3 time points, but not TOX (Supplementary Table 8). 

Nevertheless, the predictive values of EIF2D expression in cohort 2 were found to be in 

opposite directions relative to those in cohort 1.

3.5 EIF2D changes with disease duration

We found that EIF2D expression increased in SZ patients in cohort 1 but decreased in 

SZ patients in cohort 2 regarding to the corresponding controls. Cohort 1 includes men 

with chronic SZ, while cohort 2 is composed of first-episode patients of both sexes 

evaluated over 1 year from the disease onset (Supplementary Table 1). To examine the 

potential effect of sex on EIF2D expression, we compared EIF2D mRNA levels only in 

men from cohort 2. We found a result similar to that described before for all samples, 

including men and women. Next, we compared EIF2D expression with respect to 

disease duration in SZ patients in cohort 1 and observed a positive correlation trend 

between EIF2D mRNA levels and years of disease (p = 0.0794; r = 0.35) (Figure 3A). 

Then, we grouped the SZ patients into those with a disease duration of less (n = 17) 

and more (n = 9) than 10 years. When comparing the EIF2D expression between both 

subgroups of SZ patients, we found a trend of an increase in the expression levels of 

EIF2D (p = 0.0634) in patients suffering from the disease more than 10 years compared 

with the SZ patients from the other subgroup (Figure 3B).
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Figure 3: EIF2D expression with disease duration in SZ patients in cohort 1. A)  

Correlation between EIF2D mRNA level and the years of the disease in the SZ patients in 

cohort 1. B) Differences in EIF2D expression in SZ patients with less than 10 years of the 

disease compared with SZ patients with more than 10 years of the disease.

4. Discussion

The identification of PB biomarkers for SZ risk assessment has become a new and 

promising area of translational investigation in psychiatry. Our results revealed that 

the expression levels of EIF2D and TOX could discriminate between SZ patients and 

controls with 86.5% accuracy in the cohort 1.

EIF2D encodes a factor involved in a noncanonical translation initiation mechanism of 

protein synthesis that is believed to operate mainly in cells under stress (17). The 

A

B
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expression of the yeast orthologue gene rises under some stresses, such as anoxia, 

oxidative stress and accumulation of unfolded proteins in the endoplasmic reticulum. 

In these situations, the activity of eIF2, which participates in the canonical eukaryotic 

translation initiation pathway, is suppressed (17). In mammalian cells, eIF2 function is 

also blocked by different stress conditions (18). Our results of a two-fold increase in 

EIF2D mRNA levels in SZ patients relative to the levels in controls suggest the presence 

of cellular stressors in SZ patients. A growing body of data supports the implication of 

oxidative and endoplasmic reticulum stress in SZ (reviewed in(19)). Most studies 

analyzing markers of oxidative status, such as glutathione, in blood and in neural 

tissues point out oxidative imbalance in this disease (20, 21).

On the other hand, EIF2D has been involved in translation control of cellular mRNAs 

having short regulatory upstream open reading frames in the 5’UTR (22, 23). A large 

number of mammalian proteins are regulated by this mechanism, including many 

proteins needed for cell growth and proliferation (22). Other noncanonical initiation 

factors, DENR (density regulated protein) and MCT-1 (product of malignant T cell-

amplified sequence 1 oncogene), also promote the translation reinitiation process 

through the DENR-MCTS1 complex (22, 23). Interestingly, missense mutations in DENR 

have been reported in unrelated patients with autism spectrum disorder (24). These 

results highlight the importance of proper mRNA translation reinitiation processes for 

brain development. We can speculate that higher EIF2D doses above its physiological 

level could also interfere with the translation reinitiation mechanism. In this line, 

increasing the levels of eIF4E in mice resulted in exaggerated cap-dependent 

translation and autistic-like behaviors (25). Finally, EIF2D is located on 1q32.1, a 
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chromosomal locus in which several studies have reported genetic linkage with SZ(26, 

27).

TOX is an evolutionarily conserved member of the HMG-box family of transcription 

factors that has been studied mainly in the immune system and hematopoiesis (28, 

29). TOX is necessary for the development of some cells of the adaptive and innate 

immune systems including CD4+ T cells, natural killer cells and lymphoid tissue inducer 

cells (30, 31). Interestingly, a high number of studies related dysregulation of immune 

and inflammatory function with SZ (13, 32). Remarkably, inflammation is closely 

interconnected with oxidative stress, being both a cause and a consequence, and vice 

versa (33). In addition, Tox expression in the mouse thymus is calcineurin dependent 

(34), and the calcineurin pathway has been proposed to be implicated in the 

pathogenesis of SZ (35). In neural tissues, Tox functions as an important regulator of 

neural stem cell proliferation and dendritogenesis, and its expression in the brain is 

also controlled by calcineurin (36). However, the changes in expression of EIF2D and 

TOX that we found in PB were not observed in the prefrontal and cingulated regions 

analyzed when comparing SZ patients with controls (Supplementary Figure 6), but 

these genes might be dysregulated in specific cell types and/or other different brain 

areas. In line, regionally specific changes in gene expression in SZ have been found in 

postmortem brain tissue samples (37).

To further assess the predictive value of the 14 selected genes for SZ risks, we analyzed 

their expression in a second independent cohort of patients and controls. This sample 

comprised first-episode SZ patients and then, its comparison with the chronic SZ 

subjects from cohort 1 could also reveal potential PB biomarkers dependent on the 
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disease evolution. In cohort 2, TOX expression was also reduced with respect to 

controls, but it was not significant. In this cohort, we also found significantly altered 

expression of EIF2D between the first-episode SZ patients and control subjects; 

however, EIF2D mRNA levels were reduced in this case. This finding contrasts with the 

increased EIF2D mRNA levels in the chronic patients of cohort 1. The reduction of 

EIF2D expression in patients of cohort 2 was similar in the three time points tested 

during the first year of disease duration, suggesting that medication probably did not 

affect EIF2D expression. The different results obtained for this gene in the SZ patients 

of the cohorts 1 and 2 might be explained by the disease state. In line with these 

findings, we observed a trend toward increased EIF2D expression in patients suffering 

from the disease for more than 10 years compared with patients with less than 10 

years of illness. Therefore, the expression level of this gene may be indicative of redox 

status in PB revealing higher redox dysregulation after several years of disease 

progression. This result agrees with lower antioxidant response found in SZ patients 

with longer duration of illness (38).  So, EIF2D expression may show a stage of disease 

progression. Future longitudinal studies in the first-episode SZ patients are needed to 

address this question together with molecular approaches to identify the underlying 

mechanism.

One of the limitations of our work is the sample size, but it is comparable to that used 

in other studies looking for biomarkers in human tissues (39, 40). Then further analysis 

should be followed up in larger cohorts at different time points and in different 

postmortem brain regions to compare the results. In addition, we cannot exclude the 

possibility that medication may have an effect on gene expression levels. It could be, in 

part, the cause of the differences found between the two cohorts, since the cohort 1 is 
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composed by long term medicated chronic patients and the cohort 2 is composed by 

naïve patients. Nevertheless, the significant reduction of EIF2D expression in cohort 2 

was maintained during the first year of the disease, when the patients are already 

medicated. Moreover, we tried to reduce the effect of this variable in the first 

discrimination point, excluding the nodes of genes associated with medication. Finally, 

different approaches have been used to study gene expression (RNA microarray, RT-

qPCR and RNA sequencing), which could result in some variability in the final results. 

Nevertheless, all the techniques are evaluating the differences in gene expression. 

Also, appropriate controls were chosen to discard any alteration of the techniques and 

all methods have been normalized to minimize such technical deviations. In 

conclusion, we can underline the potential implication of protein synthesis regulation, 

oxidative stress and immune processes in the development and prognosis of SZ, 

marked by the expression of EIF2D and TOX genes in our samples. Our results support 

the use of antioxidants in SZ as an adjunctive treatment to standard antipsychotic 

medication.
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Highlights

- The EIF2D and TOX genes, involved in protein synthesis and immune function 

are blood markers of schizophrenia. 

- EIF2D gene expression in blood changes with disease duration.

- EIF2D as a potential marker of schizophrenia disease status.


