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Featured Application: Thermal superconductors for cooling electronic devices.

Abstract: The primary wick in a loop heat pipe device is a key component that is central to the
operation of the device. Both high permeability and capillary pumping capacity, two properties
highly dependent on wick structure, are strongly desirable for a satisfactory thermal performance.
In this paper, selective laser melting (SLM), a three-dimensional (3D) printing technology, is used
to create a primary wick for an 80 W heat transfer application. The permeability and capillarity
values of this wick, experimentally measured, are compared with those built with the most widely
used technologies nowadays, such as powder sintering and meshes. In this study, the SLM scaffold
is shown to satisfy the minimum values required by the application in terms of capillarity and
permeability: 0.031 mm/s and 4 × 10−12 m2, respectively. Our comparative study revealed that the
wick produced with the SLM technology presented higher values of permeability, by two orders
of magnitude, and slightly higher capillary figures than those corresponding to powder sintering
for such application. However, it had capillary values well below those of a stainless-steel mesh.
The hydraulic behavior of the SLM wick was better than that of the sintered copper powder, because
it not only met the above-mentioned specifications, but it also improved its performance.

Keywords: capillarity; loop heat pipe; permeability; three-dimensional (3D) printing; porosity;
selective laser melting (SLM); wick; thermal performance

1. Introduction

Loop heat pipes (LHP) are widely used for thermal management and cooling in electronics [1–3]
because of their high capacity to transmit heat over long distances with only small drops in temperature.
The primary wick [4] is central to these devices, because it provides the necessary capillary force to
pump the working fluid around the device from the heat source to the heat sink [5–7].

Porous wicks for LHP are mainly manufactured by powder sintering technology [8–10], which is
a very well-known technology. Nevertheless, two other techniques are also used for LHP: meshes and
foams. With the advent of three-dimensional (3D) printing, the production industry may be on the eve
of a manufacturing revolution. The potential of wick manufacturing by 3D printing to improve LHP
performance has already been experimentally assessed [11–13].
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Selective laser melting (SLM) is a technology for the rapid manufacture of complex geometries
(Figure 1), which would not otherwise be possible. It also controls the specific pore size, distribution,
and connection.

Appl. Sci. 2019, 9, x FOR PEER REVIEW  2 of 22 

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

Selective laser melting (SLM) is a technology for the rapid manufacture of complex geometries 

(Figure 1), which would not otherwise be possible. It also controls the specific pore size, distribution, 

and connection. 

 

Figure 1. Image of stainless-steel structures manufactured by selective laser melting (SLM). 

The type of material, its porosity, internal structure, geometry, and wettability are among the 

key determinants of the porous media performance [14–16]. Precisely how such parameters affect the 

capillary action and the permeability of the medium is essential to the design of an LHP device, (both 

high permeability and high capillary actions are required) [17]. Aiming at performance optimization, 

these two effects need different pore sizes: small for capillary action and pumping, and larger for 

permeability [18,19]. 

The capillary pumping should be sufficient to ensure the correct supply of fluid to the LHP 

evaporation zone, preventing any dry spots from appearing at the wick’s liquid-vapor interface, 

which means that liquid velocity through the wick (ṁ) must be larger than the liquid evaporation 

rate at the liquid-vapor interface (ṁC) [20]. 
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It is known that the Washburn equation determines the capacity of capillary pumping or 
pumping height (y) of a bundle of parallel cylindrical tubes as a function of time (t) and some fluid 

properties (surface tension (σ), contact angle (ϕ), viscosity (µ)), and the tube radius (reff). 
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Figure 1. Image of stainless-steel structures manufactured by selective laser melting (SLM).

The type of material, its porosity, internal structure, geometry, and wettability are among
the key determinants of the porous media performance [14–16]. Precisely how such parameters
affect the capillary action and the permeability of the medium is essential to the design of an LHP
device, (both high permeability and high capillary actions are required) [17]. Aiming at performance
optimization, these two effects need different pore sizes: small for capillary action and pumping,
and larger for permeability [18,19].

The capillary pumping should be sufficient to ensure the correct supply of fluid to the LHP
evaporation zone, preventing any dry spots from appearing at the wick’s liquid-vapor interface,
which means that liquid velocity through the wick

( .
m
)

must be larger than the liquid evaporation rate

at the liquid-vapor interface
( .
mC
)

[20].
.

m ≥
.

mC (1)

It is known that the Washburn equation determines the capacity of capillary pumping or pumping
height (y) of a bundle of parallel cylindrical tubes as a function of time (t) and some fluid properties
(surface tension (σ), contact angle (φ), viscosity (µ)), and the tube radius (reff).

y2 =
re f f ·σ· cosφ

2µ
t (2)

Its use, although with reservations, has also been extended to the imbibitions into a porous medium.
These reservations are: uniform pore distribution, constant pore size, and gravitational forces negligible
compared with the capillaries, but these conditions rarely occur in real cases. In Section 3.1, an error
analysis was performed between the predictions of the Washburn equation and the experimental [21]
values in order to confirm the law’s adequacy. In this article, the Washburn equation is not considered
since the biexponential expression best fits the experimental data. Working fluid wettability is another
influencing parameter already studied in many works [22].

For an 80 W loop heat pipe application with a primary wick of 30 mm in height, the fluid flow
rate at the top of the wick (liquid-vapor interface) must be higher than or equal to 0.031 mm/s.

The permeability of the wick, therefore, depends greatly on its internal structure (pore size
and pore connection). Theoretical permeability as a function of the internal structure of the porous
medium has been widely studied [23]; however, these permeability-internal structure relations are
valid for specific internal arrangements [24] that are not always present in nature. Darcy’s law is a
simple proportional relationship between the instantaneous flow rate through a porous medium of
permeability (κ), the dynamic viscosity of the fluid, and the pressure drop over a given distance in a
homogeneously permeable medium. In this work, it is used to obtain the permeability of different
porous media working with the same fluid (methanol) by measuring pressure drop and flow rate
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through them. In the above-mentioned application, the pressure drop in the wick must be less than
or equal to 100 Pa to arrive at the proper flow rate into the LHP [22]. The wick permeability must,
therefore, be greater than 4 × 10−12 m2.

2. Aims and Methodology

The main objective of this research is to experimentally determine the capillary action and
permeability of a SLM wick for a loop heat pipe [25–27] and to compare both results with those of
other similar wicks made of conventional manufacturing techniques (sintering, mesh, etc.) in order to
evaluate the wick performance.

Experimentation is presented as an efficient means of obtaining the flow velocity through a porous
media, the capillary action curve, which will be obtained by measuring liquid height versus time for
several materials and techniques: (i) sintering, (ii) meshing, and (iii) SLM. The experimental method is
also the most accurate way of determining the permeability of a medium as porous as an LHP wick
with a complex internal structure. In this case, samples with different pore sizes (D) were built through
two different technologies, sintering and SLM, and were finally tested.

The working liquid used throughout all the experiments was methanol, the thermophysical
parameters of which are: density ρ = 786.47 (kg/m3), enthalpy of vaporization hfv = 1,169.2 (kJ/kg),
surface tension σlv = 22.16 (N/m), and viscosity µ = 544.61 (µPas).

3. Measurement Procedure

3.1. Capillary Action

Figure 2a shows the scheme of the test bench used for the capillary action measurement of different
porous media (PM), together with the detail of the real picture of a sample silica gel (Figure 2b),
in which the liquid (methanol) height can be clearly appreciated.
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Figure 2. Capillary pumping measurement equipment; (a) scheme of the test bench and (b) detail of
the sample.

It consists of:

• A vessel to deposit the liquid;
• A wick sample clamping arm;
• A chronometer;
• A camera;
• A PC-data logger. PC: personal computer
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The vessel was filled up with methanol and a sample wick was set up at one end in the clamping
arm to which the camera was also attached (see Table 1, showing the main equipment).

Table 1. Main features of the PENTAX Optio Z10 camera (RICOH, Tokyo, Japan).

Model PENTAX Optio Z10

Resolution 8.0 Megapixels

Optical Zoom 7×

Size 3264 × 2448

Then, the holding arm with the wick sample was placed upright next to the vessel, submerging
the other wick ends into the liquid contained in the vessel. The liquid immediately began to rise up
through the wick, so the ascent of liquid was recorded [28]. The heights recorded in this way were
plotted to obtain the wick capillary action curve (Figure 3). Each data point is the average result of
4 tests.
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Figure 3. Pumping curve for stainless-steel mesh of pitch 60 µm in methanol.

The first step was to evaluate the suitability of the Washburn equation for determining the
capillary curve. This evaluation was made by estimating whether the predicted values (Washburn)
were within the ±5% error of the experimental values. Considering the stainless-steel mesh of 60 µm,
it was observed (Figure 3) that most of the Washburn values were outside the ±5% threshold.

Therefore, a bi-exponential adjustment of the experimental data was done to obtain the analytical
form of the liquid height, in a similar way to [29], with a view to the performance of further comparative
capillary tests. This adjustment predicted values within the ±5% threshold.

y = A1

[
1− e(−

t
t1
)
]
+ A2

[
1− e(−

t
t2
)
]

(3)
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Deriving Equation (3) with respect to time yields the speed of advance of the liquid (4) [30]:

α =
A1

t1
e(−

t
t1
)
+

A2

t2
e(−

t
t2
) (4)

where y represents the liquid height, α the advance speed, and A1, t1, A2, and t2 are constants of the
fluid and wick combination that were experimentally obtained. As the liquid ascended, the speed
dropped to the point where it reached zero (maximum height reached = A1 + A2).

Two clearly differentiated regimes were observed on the curve; a first one in which the height
varied very rapidly (initial regime) and a second one in which the variation of height was slightly slower
(inertial regime). Regarding the advance speed, the maximum value corresponds to αmax = A1

t1
+ A2

t2
.

Constant t1 represents the time at which the height reached is 67% of the maximum height and t2 is the
time at which the speed of advance is decreased to 37 % of maximum speed.

3.2. Permeability

Permeability (κ) is defined as the rate of fluid circulation through a porous medium. The complexity
of the internal configuration of the porous medium means that there is no general relationship that
determines the value of κ as a function of the effective porosity τ (tortuosity), defined in terms of
the path, from the entrance to the outlet, that the fluid has to travel through the medium and pore
size, etc. [31]. Despite this complexity, some approaches aim to simplify this internal structure [32]
so as to obtain an expression for permeability by solving the Navier–Stokes (N–S) equations at pore
level [33,34].

Hence, the use of permeability measurement devices [35–39] permits indirect determination of
wick permeability by measuring the pressure loss (∆P) and flow rate through the medium. The flow
at pore scale must be in the Darcy’s regime, which means that the Reynolds number (Re) must be
Re < 10 [40].

In this section, we intend to determine the effect of pore size (D) on the permeability of the medium
on an experimental basis. A JEOL (JSM5900LV, ELIONIX, Tokyo, Japan) scanning electron microscope
(SEM) was firstly used to determine the pore size, while the porosity level was determined by directly
measuring sample volumes and weights on our permeability test bench. The main features of the SEM
are shown in Table 2.

Table 2. Technical features of JEOL (JSM5900LV) scanning electron microscope (SEM).

Resolution 3 nm @ 30 kV (SEI: Secondary electron imaging)

Sample 8” max., 125 mm X, 100 mm Y

Beam Current 0.5–1 nA

Accelerating Voltage 20 kV

Working Distance 10–12 mm

Imaging 12–20 arrows

On the permeability test bench, methanol flow tests were performed at low speeds (0–0.0012 m/s),
as shown in Figure 4, in order to characterize the Darcy’s curve from which the permeability (slope)
could be obtained.

Permeability quantifies the degree of fluid movement within a solid material. A specific fluid
flows through a closed circuit with the following main elements: a pump, a flow-meter, a reservoir,
a sample holder, a by-pass, and a differential pressure gauge, as depicted in detail in Figure 4 (left).
A simplified scheme is shown on the right side of this figure.
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Figure 4. Permeability test bench (left) and simplified scheme (right).

The pump circulates the fluid inside the closed circuit, discharging it into the reservoir. The reservoir
presents a liquid-free zone preventing vapor flow inside the circuit, which would otherwise distort
the results. The sample holder, where the sample is placed for measurement, has two pressure
measurement points situated immediately before and after the sample. These points, to which the
manometer is connected, determine the pressure loss in the sample. A flow-meter measures the
amount of circulating fluid inside the circuit. Finally, a by-pass around the sample holder is inserted
for fine-tuning of flow control throughout the whole sample.

4. Results and Discussion

4.1. Experimental Determination of the Capillary Action

The following porous media, made of varied materials and techniques [41], were experimentally
characterized:

(a) Sintered powder (silica gel sheets), used to test the setup;
(b) Stainless-steel wire mesh;
(c) Copper powder sintering;
(d) Scaffold 3D laser printing SLM.

The speed of advance was determined at a height of about L = 30 mm and compared in terms of
capillary action with one of the other wicks (manufactured with a different technique). This speed,
slope α, had to be greater than or equal to 0.031 mm/s [23]. Methanol was used as a working fluid due
to its rapid response in terms of capillary action.

4.1.1. Sintered Powder Silica Gel Sheets

Two types of commercial silica gel films commonly used for flat chromatography (Alugram and
Nano Alugram) were characterized [38]. Their main physical characteristics are shown in Table 3,
with methanol as the working fluid.

Table 3. Properties of silica gel sheets and capillary action (methanol).

Material S (µm) A (mm/s) A1 (mm) t1 (s) A2 (mm) t2 (s)

Silica Gel sheets
Alugram-SIL G 5–17 0.14 18.22767 457.8688 30.47236 26.70651

Nano
Alugram-SIL G 2–10 0.16 23.52259 210.0246 25.98887 16.58615
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The capillary action for the silica gel sheets and methanol, in accordance with the above-mentioned
procedure and equipment, is shown in Figure 5.
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Figure 5. Differences between the two types of silica gel with methanol as a working fluid; (a) liquid
height and (b) advance speed.

According to the results shown in Figure 5a, the smaller the pore size, the higher the ascension
velocity. The flow speed (α) was 14% higher for the Nano Alugram than for the Alugram. In both wicks,
α met the application specifications. The Nano Alugram had a superior initial velocity (1.6 mm/s)
compared with that of the Alugram (1.2 mm/s), although it descended drastically with time, (Figure 5b).

The maximum attainable height (H = A1 + A2) in both the Alugram and the Nano Alugram
was, respectively, 44.7 mm and 49.5 mm. In both cases, the maximum height pumped exceeded the
specifications (L = 30 mm).

4.1.2. Stainless-Steel Wire Mesh

AISI 304 stainless-steel (ESZ Company, Taipei, Taiwan) [39] with three different aperture widths
(60, 200, and 300 µm) was tested. Table 4 includes the physical characteristics and the coefficients of
the capillary curves.
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Table 4. Metallic mesh characteristics and capillary action (methanol).

Mesh (µm) d (mm) W (mm) ε α (mm/s) A1 t1 A2 t2

60 0.024–0.027 0.06 0.4756 2.38 31.79135 18.87751 43.23075 18.87751

200 0.072–0.078 0.15–0.16 0.4519 1.17 53.44345 24.76081 5.39677 2.81373

300 0.17 0.3 0.4074 0.88 44.90217 21.22973 3.8112 0.00626

In Figure 6, samples of each aperture width are depicted, including the main dimensions at the
same scale for comparative purposes. Pictures were obtained by optical microscope.

Samples of 10 mm inner diameter with 5 layers of coiled mesh were tested and the results,
with methanol as the working fluid, are plotted in Figure 7a for the three above-mentioned pitches.

Again, as the aperture width decreased, the maximum attainable height increased: at 75 mm for
mesh 60, 58.8 mm for mesh 200, and 48.7 mm for mesh 300. In summary, the lower the pitch, the higher
the liquid height and the stronger the pumping capacity-capillary action, as shown by the α slope in
Table 4. The flow velocity (α) in mesh 60 was 170% faster than that of mesh 300, and 103% faster than
that of mesh 200.
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All the cases present a speed of advance at 30 mm higher than the required value (0.031 mm/s).
In this case, the time constant (t2) of mesh 300 was very small, so the corresponding exponential term
of the speed of advance was negligible. These results meant that the initial speed was well below
the initial speeds of mesh 60 and mesh 200 (Figure 7b). The time constants were comparable (t1 = t2)
for mesh 60, meaning that it had the highest speed of advance [42].
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4.1.3. Copper Powder Sintering

In this case, tests were performed for different sintering samples with copper powder as the
porous medium and methanol as the working fluid. As the objective is to determine the effect of pore
size on the porous media capillary action curve [43], four samples of sintered copper powder, each
with different pore sizes, were built. The complete characterization of the four samples is shown in
Table 5, and the results of liquid height are plotted in Figure 8a.

These results confirmed that the lower the porous size, the higher the liquid height, so a larger
pumping capacity-capillary action can be achieved, evident from the α values provided in Table 5.

The maximum liquid height for the 30µm pore size sample was 101.7 mm, 102% higher than the
liquid height for the 130 µm pore size sample, 73% higher than for the 95 µm sample, and 9.5% higher
than for the 60 µm sample. Flow velocity in the 30 µm pore size sample was 11% faster than in the
60 µm pore size sample, while it was 200% higher than in the 130 µm pore size sample. In this case,
the contribution to the ascension velocity of the second exponential was negligible, as the time constant
(t2) was very small. In all cases, the variation ratio was identical, as t1 was the same in all of them
(Figure 8b).

Pumping capacity varied considerably, with a 77% pore size reduction resulting in a 200% capillary
capacity increase. All samples also met the required advancing speed (α > 0.031 mm/s).

Table 5. Characteristics of sintered powder copper samples and capillary action (methanol).

D (µm) ε A (mm/s) A1 t1 A2 t2

30 0.573 0.6 106.1836 149.382 15.533 0.00626

60 0.573 0.54 96.93418 149.39 14.18 0.00626

95 0.573 0.27 61.30656 149.39 8.96829 0.00626

130 0.573 0.2 52.43766 149.39 7.67 0.00626
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4.1.4. Scaffold SLM

This technique brings total control over the pore size or capillary radius, as previously mentioned,
as well as over the tortuosity of the matrix. Tortuosity is defined as the ratio of the length of a streamline
(flow path) between two points to the straight-line distance between those points.

In this case, the configuration could be roughly described in terms of capillary conduits
arranged parallel to each other. In the manufacturing process, the first step was to generate the
CAD (Computer aided design) file of the wick to determine both its internal passages and its the
external appearance. This file was then loaded into the 3D SLM printer. The main technical features
are listed in Table 6.

Table 6. Technological parameters using the selective laser melting (SLM) printer.

Feature Value

Laser power 200 W

Exposure time 286 µs

Layer thickness 50 µm

Scan speed 350 mm/s

3D optics configuration Dual 1 × 700 W

The printing parameters, such as laser intensity and action radius, powder flow rate and
stainless-steel powder material, and printing depth were carefully adjusted. A general view of the
whole wick is shown in Figure 9, as analyzed in [11].

Appl. Sci. 2019, 9, x FOR PEER REVIEW  12 of 22 

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

This technique brings total control over the pore size or capillary radius, as previously 

mentioned, as well as over the tortuosity of the matrix. Tortuosity is defined as the ratio of the length 

of a streamline (flow path) between two points to the straight-line distance between those points. 

In this case, the configuration could be roughly described in terms of capillary conduits arranged 

parallel to each other. In the manufacturing process, the first step was to generate the CAD (Computer 

aided design) file of the wick to determine both its internal passages and its the external appearance. 

This file was then loaded into the 3D SLM printer. The main technical features are listed in Table 6. 

Table 6. Technological parameters using the selective laser melting (SLM) printer. 

Feature Value 

Laser power 200 W 

Exposure time 286 µs 

Layer thickness 50 µm 

Scan speed 350 mm/s 

3D optics configuration Dual 1 × 700 W 

The printing parameters, such as laser intensity and action radius, powder flow rate and 

stainless-steel powder material, and printing depth were carefully adjusted. A general view of the 

whole wick is shown in Figure 9, as analyzed in [11]. 

 

 

Figure 9. Final result of the 3D printed wick. 

Two samples were built: a fine 90 μm capillary radius (Figure 10a) and a thick 180 μm  capillary 

radius (Figure 10b), with porosities of 30% and 45%, respectively, the main characteristics of which 

are shown in Table 7. 

Figure 9. Final result of the 3D printed wick.

Two samples were built: a fine 90 µm capillary radius (Figure 10a) and a thick 180 µm capillary
radius (Figure 10b), with porosities of 30% and 45%, respectively, the main characteristics of which are
shown in Table 7.

This arrangement reduces the tortuosity of the medium that would improve the pumping capacity.
Despite the fact that SLM has the potential to manufacture complex cells with a better hydrodynamic
behavior, a simple cell has been created in this work.

The scaffold material was stainless-steel, and once again the working fluid was methanol. The load
tests for both configurations offered the following results, as depicted in Figure 11a.
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Figure 10. Samples of scaffold internal structure; (a) fine capillary of 90 µm and (b) thick capillary of
180 µm.

Table 7. Characteristics of scaffold samples and capillary action (methanol).

D (µm) ε A (mm/s) A1 t1 A2 t2

90 0.30 0.2500 36.4042 50.213 6.4253 0.00626

180 0.45 0.0013 25.4825 50.21 4.4976 0.00626

As demonstrated in the previous cases, the lower the pore size (finer pitch), the greater the
pumping capacity. The maximum liquid height (H) for the 90 µm scaffold (38 mm) was roughly 43%
higher than it was for the 180 µm scaffold (28 mm). Flow velocity at 30 mm height for the 90 µm
scaffold (0.25 mm/s) satisfied the application specification (0.031 mm/s), unlike the 180 µm scaffold
(0.0013 mm/s). Likewise, the 180 µm scaffold was hardly able to pump the liquid 30 mm in height.
Figure 11b shows the sudden drop in the forward speed for both cases, as well as the higher initial
speed of the 90 µm scaffold compared to that of the 180 µm scaffold.
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Figure 11. Pumping curve for scaffold of stainless-steel in methanol for the two capillary configurations;
(a) liquid height and (b) advance speed.

4.2. Experimental Determination of the Permeability

The following porous media built with sintering and SLM techniques were
experimentally characterized.



Appl. Sci. 2019, 9, 2905 15 of 22

4.2.1. Sintering

The sample was placed inside the sample holder and then the corresponding working fluid was
pumped through it. Measurements of the flow rate through the wick and its corresponding pressure
drop were recorded, so that the permeability of the sample could be obtained using Darcy’s law. Thus,
the results for the case of 95 µm copper sintering in methanol are shown in Figure 12.
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Figure 12. Darcy’s law for a 95 µm copper sintering sample in methanol.

The influence of pore size on permeability can be clearly observed from the tests of the different
pore size samples shown in Figure 13a. Permeability presented a uniform linear increase in behavior
by pore size; the larger the pore size the higher the permeability.

The permeability of the sintering copper 95 sample was 4.9 × 10−12 m2, just within the admissible
limit for the application (4 × 10−12 m2). It means that the drop in pressure in the wick was precisely the
admissible maximum (100 Pa). This configuration of the wick hardly met the application specifications
with regard to permeability.
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Figure 13. Comparative test; (a) permeability vs. pore size of copper powder sintering,
and (b) permeability vs. meniscus size of scaffold-SLM.

4.2.2. SLM

Three samples were tested (90, 130, and 180 µm pore size). Figure 13b shows the linear effect of
meniscus-pore size on its permeability, revealing the same tendency as in the previous tests. Whatever
the pore size, scaffold permeability was two orders of magnitude higher than that of the sintering
copper. For example, the permeability of the scaffold with 90 µm pore size was 2276% higher than the
permeability of sintering copper 90.

The scaffold has an outstanding permeability compared with the one specified by the application
(4 × 10−12 m2), resulting in a lower pressure drop than in the specifications of the application, 100 Pa.

4.3. Summary

4.3.1. Capillary Action (Loading Curve)

A first conclusion derived from the load curve analysis is that the smaller the pore size, the greater
its pumping capacity, regardless of the method of manufacturing the porous medium or wick. All the
tested wicks satisfied the minimum advance speed specification (0.031 mm/s), which meant that they
all had the capacity to transport higher thermal power. The stainless-steel wire mesh 60 provided
the fastest advance speed (Figure 14a), which meant it could transport higher thermal power, thus
increasing the performance of the wick.

As may be observed, the speed of advance of the scaffold 90 (SLM) was 23% faster than for
copper sintering 95 (the most widely used manufacturing technique) and 377% slower than for the
stainless-steel mesh 60. However, the maximum pumpable height was 63% lower than that of sintered
copper 95 (Figure 14b). The maximum height of the stainless-steel mesh 60 was 67% higher than the
height of the scaffold and equivalent to the height of the sintered copper 95.
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and (b) maximum height of pumping.

In view of the results, the behavior of the scaffold was inferior to the behavior of the stainless-steel
mesh 60, but superior to that of the sintered copper 95. This result implies that the SLM design was
capable of pumping more fluid than the sintering copper 95 and was therefore able to transmit more
thermal power. The opposite occurred when compared with the stainless-steel mesh 60. In view of this
result, the behavior of the SLM scaffold can be seen as appropriate behavior for use in loop heat pipes.

As the liquid rose through the wick, the speed of the liquid front decreased and so too did its
capillary action, hence the importance of ensuring a wick height that is lower than or equal to the
maximum liquid height pumped through it for a good LHP performance. According to the results,
although the scaffold provides a similar ascent velocity as the others, the maximum attainable liquid
height was lower, which in fact limited its physical height. By modifying the design of the scaffold,
the capillarity can be tuned to improve the thermal performance; a very easy operation with SLM
technology, creating an “ad-hoc” internal structure that maximizes capillarity.
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Another key parameter that has a direct impact on LHP performance is its porous media
permeability (κ); the higher this value, the lower the LHP internal pressure drop, resulting in a lower
pumping need.

4.3.2. Permeability

The same samples previously used to determine the loading curves were used to perform
permeability tests, as summarized in Figure 15. An additional scaffold sample of intermediate pore
size (medium 130 µm capillary radius) was used.
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Permeability increased with pore size, regardless of the technology used to manufacture the
porous medium. In Figure 16, a zoom in on Figure 15 for the pore size 90, a permeability of 1.16 × 10−10

m2 for a similar pore size (90 µm), is shown for the SLM sample, 2.276% higher when compared with
the result of 4.9 × 10−12 m2 for copper sintering.
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Another key aspect is the pore arrangement inside the porous media that was revealed through
these comparative tests. Intuitively, it can be deduced that the more complex this pathway is, the lower
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the permeability results, which may be clearly observed from the previous figure when comparing the
permeability of the powder sintering and the scaffold. A permeability value that was two orders of
magnitude higher than the value for the powder sintering method with similar pore sizes demonstrates
one of the great advantages of the SLM technique.

5. Conclusions

SLM technology is being widely used in different sectors as an interesting manufacturing
technique to create prototypes and/or small productions of complex products. Hence, it appears to be
an appropriate technique for the “ad-hoc” manufacture of porous media, particularly wicks for the heat
pipe and loop heat pipe industry, where outstanding capillarity as well as high permeability is required.
This technology generates fully controlled internal passages inside the wick’s body, with the desired
geometry and pore size according to detailed specifications. A new SLM wick was manufactured
and both the capillary action and permeability were addressed through different tests. The results
have been compared to those obtained for wicks manufactured with conventional techniques: sintered
powder and meshes (widely used nowadays in LHP manufacturing).

The first test was performed to measure the liquid pumping capacity and capillary action of
wicks created by different techniques (sintering, mesh, SLM). The wick specifications were a speed
of advance of 0.031 mm/s at a height of 30 mm imposed by a particular 80 W LHP application. It
was concluded that the faster the ascent of the fluid, the better the wick performance. With regard to
capillary action, the SLM wick (scaffold) presented a 23% faster response than the sintered powder,
although the stainless-steel mesh offered the fastest response.

Regarding permeability, scaffold samples presented values of two orders of magnitude higher
than that of the sintered powder, showing its lower resistance to fluid flow. In this study, the hydraulic
behavior of the scaffold design was superior to the behavior of sintering copper, suggesting that it is
more suitable for implementation in the 80 W LHP application.

Finally, it has been concluded that SLM technology can easily and precisely create the wick structure
that best fits the heat pipe requirements in terms of fluid pumping, capillary action, and permeability.
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Nomenclature

A1, A2 Constants of the fluid for Equations (3) and (4) and Tables 3–5, respectively
AM Additive manufacturing
CAD Computer aided design
d Diameter (mm)
D Average pore size (µm)
EDS Energy dispersive spectroscopy
H Maximum height of capillary (m)
hfv Vaporization latent heat (kJ/kg)
IR Infra Red
L Permeability length (mm)
LHP Loop heat pipe
PC Personal Computer
PM Porous media
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.
mC Liquid evaporation rate at the liquid-vapor interface (kg/s)
.

m Wick capillary pumping capacity or liquid velocity through the wick (kg/s)
∆P Pressure drop
.

Q Heat transport capacity (W)
Re Reynolds number (dimensionless)
S Powder size (µm)
SEI Secondary electron imaging
SEM Scanning electron microscope
SILG Silica gel
SIS Stream imaging system
SLM Selective laser melting
T Temperature (◦C)
t Time (s)
t1, t2 Constants of the wick for Equations (3) and (4) and Tables 3–5 respectively
W Pitch (mm)
y Liquid height (mm)
Symbols
α Advance speed of liquid front (mm/s)
ρ Density (kg/m3)
µ Dynamic viscosity (kg s/m2).
σlv Fluid’s surface tension coefficient (N/m)
τ Tortuosity
κ Porous media permeability (m2)
ε Wick porosity (0/1)
ϕ Contact angle
reff Capillary radius
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