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Abstract: We address homogenization problems of variational inequalities for the p-Laplace

operator in a domain of Rn (n ≥ 3, p ∈ [2, n)) periodically perforated by balls of radius O(εα)

where α > 1 and ε is the size of the period. The perforations are distributed along a (n − 1)-

dimensional manifold γ, and we impose constraints for solutions and their fluxes (associated

with the p-Laplacian) on the boundary of the perforations. These constraints imply that the

solution is positive and that the flux is bounded from above by a negative, nonlinear monotonic

function of the solution multiplied by a parameter ε−κ, κ ∈ R and ε is a small parameter that

we shall make to go to zero. We analyze different relations between the parameters p, n, ε, α

and κ, and obtain homogenized problems which are completely new in the literature even for

the case p = 2.

AMS Mathematics Subject Classification: 35B27, 35J60, 35J87, 35B25.

1 Introduction

In this paper, we study the asymptotic behavior of the solution uε of a variational in-

equality for the p-Laplace operator posed in a domain Ωε which is obtained by removing

small balls Gε of diameter O(εα) from a fixed domain Ω of Rn; here n ≥ 3, p ∈ [2, n) and

α > 1. These balls, the cavities, are periodically distributed along a (n− 1)-dimensional

manifold γ at a distance O(ε) between them, ε being a small parameter that we shall make

to go to 0 (see Figure 1). On the boundary of the cavities Sε, we consider the nonlinear
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restrictions uε ≥ 0, ∂νpuε ≥ −ε−κσ(x, uε), and uε

(
∂νpuε + ε−κσ(x, uε)

)
= 0 which involve

the so-called adsorption parameter ε−κ with κ ∈ R and the function σ. Here σ = σ(x, u)

is a continuously differentiable function defined in Ω × R, strictly monotone increasing

with respect to u, and ∂νpu denotes |∇u|p−2(∇u, ν) where ν is the unit outward normal

vector to the boundary of Ωε. Also uε satisfies a Dirichlet condition on ∂Ω.

Figure 1: The geometrical configuration of Ωε and the periodicity cell.

The aim of this paper is to describe all the possible homogenized models depending

on the parameters of the problem, p, n, ε, α and κ, and more precisely to characterize the

possible relations between the parameters which give rise to a new term in the homog-

enized problem, the so-called strange term in the literature of homogenization problems

(cf. [2, 14, 15, 8] for terminology, related problems and further references). In fact, when

computing the homogenized problem, we obtain critical sizes of the perforations and crit-

ical relations for the adsorption in such a way that, depending on whether these relations

are satisfied, the strange term can change its character or it may disappear. In any case,

since we deal with a boundary homogenization problem, the strange term only appears

in the conditions on the manifold γ.

The classical critical size of the perforations is given by α = (n − 1)/(n − p) while

κ = (α−1)(n−1) is referred to as critical relation for the adsorption parameter. It should

be noted that this last critical relation implies that the total area of the perforations

multiplied by the adsorption parameter is of order O(1) (cf. Figure 2). In addition,

depending on the value of the parameters α and κ, the homogenized problem can change

strongly its character ranging from boundary value problems (cf. (11)–(12), (50) and (51))

to unilateral problems (cf. (47)–(48)). See Figure 2 for a sketch of all the homogenized

problems. We emphasize that most of these homogenized problems appear for the first

time in the literature. Even when p is equal to 2, models (11) and (47) are not considered

in the literature for the nonlinear functions g and h given by (12b), (12c) and (48).

2



Figure 2: Sketch of homogenized problems depending on the relations between α and κ

(n and p fixed).

Taking into account the general idea of this paper for the p-Laplacian, the constraints

and the technique, the closest paper in the literature is [5]. In spite of this, [5] deals

with different geometrical configuration since the cavities are distributed over the whole

domain: cf. also [2, 3, 13, 14, 15, 20, 22, 24] for perforated domains over the whole volume.

However, we observe that most of the references are related with cavities over manifolds

as we consider here. In fact, similar geometrical configurations for linear and nonlinear

boundary value problems, as well as for variational inequalities, have been considered in

many previous papers for operators different from the p-Laplacian (cf. [1, 6, 7, 8, 9, 16,

17, 23] for further references). Comparing with the present paper, [23] studies variational

inequalities for the biharmonic operator; [1, 8, 9, 16, 17] consider the Laplace operator and

linear problems; [1] contains an extra advection term related with the flow velocity; [6, 7]

consider variational inequalities for the Laplace operator for certain relations between κ

and α. [17] considers a boundary value problem for the p-Laplacian for the particular

relation α = (n − 1)/(n − p) and κ = (p − 1)(n − 1)/(n − p). Here, we complete

the results in [6, 7] when p = 2 and extend them for the p-Laplacian and for all the

possible relations between parameters. We refer to [5, 7] for an extensive bibliography on

variational inequalities in homogenization problems and to [4, 5] for that on applications

of the p-Laplacian to different models arising, e.g., in Newtonian fluids, glaciology and
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flows through porous media.

The problem under consideration (4) can arise in the framework of the modelling of

the diffusion of substances in porous media, and more specifically, in nonlinear diffusion

models in which an adsorption phenomenon can occur on the boundary of the perfora-

tions Sε. Here we assume a strongly nonlinear adsorption law with a large parameter:

see Remark 1 in this connection. The solution uε represents, e.g., the concentration of

polluting substance in a fluid, in a stationary regime, where also we have assumed that

there is no influence of the fluid. See [1, 10, 11, 12, 18, 19, 21] and references therein for

more realistic models: time dependent models, models with an advection term linking

the velocity of the fluid and the concentration, or models with additional unknowns or

reactive terms arising in the partial differential equation and on the boundary conditions.

However, we obtain strong convergence results (cf. Theorems 1–4) which will likely be

weakened when dealing with more complex models. See [1, 8, 9] for different models with

the geometrical configuration here considered (cf. Figure 1) and p = 2.

As regards the structure of the paper: Section 2 contains the setting of the ε-dependent

problem. Section 3 provides the convergence results and their proofs for the critical size

of the perforations (cf. the vertical line α = (n − 1)/(n − p) in Figure 2). To avoid

repetitions, we gather these results in the statement of Theorem 1. Section 4 addresses

the rest of the cases: see Theorems 2, 3 and 4. For the sake of brevity, we sketch out their

proofs here: we refer to [5, 7, 8] for further details. Finally, for the sake of completeness,

in the Appendix we introduce some auxiliary results useful for proofs.

2 Statement of the problem

Let Ω be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω. Assume that

γ = Ω ∩ {x1 = 0} 6= ∅ is a domain on the hyperplane {x1 = 0}. Let ε be a small positive

parameter that we shall make converge towards zero. We set Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) >

2ε } where ρ denotes the distance.

We denote by G0 the ball of radius 1 centered at the origin of coordinates. Let ωn be

the area of the unit sphere in Rn, that is, ωn = |∂G0|. For a domain B and for δ > 0, we

define the sets δB = {x : δ−1x ∈ B }. We set

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gj
ε,

where Υε = {j ∈ Z′ : (aεG0 + εj) ∩ Ω̃ε 6= ∅}, Z′ is the set of vectors of the form

z = (0, z2, . . . , zn) with integer components zj, j = 2, . . . , n, aε = C0ε
α, C0 > 0 and α > 1

(see Figure 1). Obviously, we have |Υε| = O(ε1−n). Now, we can define

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.
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We consider the space W 1,p(Ωε, ∂Ω) (W 1,p(Ω, ∂Ω), respectively) to be the comple-

tion with respect to W 1,p(Ωε)-norm (W 1,p(Ω)-norm, respectively) of the set of infinitely

differentiable functions in Ωε (Ω, respectively), vanishing in a neighborhood of ∂Ω.

Let us consider σ(x, u) a continuously differentiable function of variables (x, u) ∈ Ω×R
satisfying:

σ(x, 0) = 0, (1)

(σ(x, u)− σ(x, v))(u− v) ≥ k1|u− v|p (2)

and

|σ(x, u)| ≤ k2|u|p−1 (3)

for all x ∈ Ω, u, v ∈ R, and certain constants k1 > 0, k2 > 0.

For f ∈ Lq(Ω) with q = p/(p− 1), we consider the following problem{
−∆puε = f in Ωε, uε = 0 on ∂Ω,

uε ≥ 0, ∂νpuε ≥ −ε−κσ(x, uε), uε(∂νpuε + ε−κσ(x, uε)) = 0 for x ∈ Sε,
(4)

where ∆pu ≡ div(|∇u|p−2∇u), ∂νpu ≡ |∇u|p−2(∇u, ν), ν denotes the unit outward normal

to Ωε on Sε and κ ∈ R.

The variational formulation of problem (4) is: find uε ∈ Kε satisfying∫
Ωε

|∇uε|p−2∇uε∇(ψ−uε) dx+ε−κ
∫
Sε

σ(x, uε)(ψ−uε) ds ≥
∫
Ωε

f(ψ−uε) dx, ∀ψ ∈ Kε, (5)

where the set Kε is defined by

Kε = {g ∈ W 1,p(Ωε, ∂Ω) : g ≥ 0 a.e. on Sε}. (6)

The existence and uniqueness of the solution uε ∈ Kε of problem (5)–(6) follows from the

monotonicity of the functions |u|p−2u and σ(x, u) with respect to u (cf. (2)). In addition,

uε ∈ Kε also satisfies the inequality∫
Ωε

|∇ψ|p−2∇ψ∇(ψ−uε) dx+ε−κ
∫
Sε

σ(x, ψ)(ψ−uε) ds ≥
∫
Ωε

f(ψ−uε) dx, ∀ψ ∈ Kε : (7)

see, e.g., [4] or [5] for the technique.

Let us denote by Pεuε an extension of uε to Ω, Pεuε ∈ W 1,p(Ω, ∂Ω), satisfying:

‖Pεuε‖W 1,p(Ω) ≤ K‖uε‖W 1,p(Ωε), ‖∇Pεuε‖Lp(Ω) ≤ K‖∇uε‖Lp(Ωε). (8)

The construction of such an extension can be done with the technique in Theorem 2 of

[22]. Taking into account (8) and the properties of the function σ(x, u), we set in (5)

ψ ≡ 0 and we obtain the following estimate for the solution uε:

‖Pεuε‖pW 1,p(Ω) + ε−κ‖uε‖pLp(Sε) ≤ K‖f‖qLq(Ωε). (9)
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Thus, for each sequence, there is a subsequence (still denoted by ε) such that, as ε→ 0,

Pεuε ⇀ u in W 1,p(Ω, ∂Ω)− weak and Pεuε → u in Lp(Ω), (10)

for a certain function u which, once identified, provides the convergences (10) for the

whole sequence of ε.

Throughout the rest of the paper, we show that this limit function u is the unique

solution of a homogenized problem which depends on the relation between the parameters

n, p, α and κ. That is, depending on the dimension of the space, the value of p, and the

different relations between the ε-dependent parameters (the radius of the cavities O(εα)

and the adsorption parameter O(ε−κ)), we have very different limit behaviors for the

solution of problem (4). As a matter of fact, among all the relations, we highlight two

critical relations: the critical size of the perforations given by α = (n − 1)/(n − p) and

the critical relation for the adsorption parameter given by κ = (α − 1)(n − 1). The

first relation leads us to three different strange terms in the transmission condition on

γ for the homogenized problem: see Section 3. The second relation, namely the case

where |Sε|ε−κ = O(1), can also provide a strange term: see Section 4. The relation

α = (n − 1)/(n − p) and κ = (α − 1)(n − 1) = (n − 1)(p − 1)/(n − p) is referred to

as the most critical case (cf. problem (11),(12a)). We consider the nine possibilities for

the couple of parameters α and κ which can be larger than, equal to or smaller than the

critical sizes, and we obtain seven possible different limit behaviors of Pεuε (see Figure 2).

The results obtained are in good agreement with those found in the literature for the

Laplace operator (see [6] and [7]).

In what follows, we denote by Ω− and Ω+ the domains Ω− = Ω ∩ {x1 < 0} and

Ω+ = Ω ∩ {x1 > 0} respectively. Also, the brackets mean [g]
∣∣∣
P∈γ

= lim
p→P, p∈Ω+

g(p) −

lim
p→P,p∈Ω−

g(p) for any point P ∈ γ. Moreover, for a function u in W 1,p(Ω), u+ and u−

denote u+ = sup(u(x), 0) and u− = u− u+ respectively.

3 Critical size for perforations

In this section, we consider the critical size for perforations, that is, α = (n− 1)/(n− p).
The homogenized problem is the boundary value problem (11) where g is the function

defined by (12), which depends on the value of the parameter κ. In the most critical

case, κ = (n− 1)(p− 1)/(n− p), the strange term is the sum of two terms related to the

contribution of both restrictions uε ≥ 0 and ∂νpuε ≥ −ε−κσ(x, uε) on the boundary of the

perforations; one of the terms includes a function defined implicitly from the functional

equation (13) and the other one is of the type |u−|p−2u− (cf. (12a)). Also, an averaged

constant appears multiplying these terms. When α = (n − 1)/(n − p) and κ 6= (n −
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1)(p− 1)/(n− p), the homogenized problem does not depend on the function σ and the

reaction term is of the type |u−|p−2u− or |u|p−2u, multiplied by an averaged constant,

depending on whether the adsorption is small or large, respectively (conform to (12b) or

(12c), respectively).

Theorem 1. Let α = (n − 1)/(n − p) with n ≥ 3, p ∈ [2, n), and let uε be the weak

solution of (4). Then, the limit of Pεuε in (10), u, is the weak solution of problem{
−∆pu = f in Ω+ ∪ Ω−, u = 0 on ∂Ω,

[u] = 0,
[
|∇u|p−2∂x1u

]
= g on γ,

(11)

where the function g is given by

g(x, u) = An,p
(
|H(x, u+)|p−2H(x, u+) + |u−|p−2u−

)
if κ =

(n− 1)(p− 1)

n− p
, (12a)

g(x, u) = An,p|u−|p−2u− if κ <
(n− 1)(p− 1)

n− p
, (12b)

g(x, u) = An,p|u|p−2u if κ >
(n− 1)(p− 1)

n− p
, (12c)

An,p =
(
n−p
p−1

)p−1

Cn−p
0 ωn and, for every (x, τ) ∈ Ω × R, H(x, τ) is the solution of the

functional equation

Dn,p|H|p−2H = σ(x, τ −H), (13)

with Dn,p =
(
n−p
p−1

)p−1

C1−p
0 .

Proof. We divide the proof in three parts. In the first one, we show the result for κ =

(n− 1)(p− 1)/(n− p). In the second one and the third one, we do it for κ less or greater

than (n− 1)(p− 1)/(n− p), respectively.

First step: κ = (n− 1)(p− 1)/(n− p)
The variational formulation of (11) reads: find u ∈ W 1,p(Ω, ∂Ω) such that∫

Ω

|∇u|p−2∇u∇φ dx+

∫
γ

g(x, u)φ dx̂ =

∫
Ω

fφ dx, ∀φ ∈ W 1,p(Ω, ∂Ω), (14)

where x̂ = (x2, . . . , xn). Let us note that on account of Lemma 1, the function H(x, u)

arising in (12a) is a well defined function satisfying H(x, 0) = 0, (52) and (53). From the

monotonicity of the functions |z|p−2z and |H(x, z)|p−2H(x, z) with respect to z (see (52)),

p ≥ 2, the existence and uniqueness of solution of (14) holds for the function g given by

(12a): see, e.g., [7] and [8] for related problems.

Below, we construct the test functions (19) which allow us to pass to the limit in (7),

as ε → 0. Let us denote by P j
ε the center of the ball Gj

ε, j ∈ Υε. We denote by T jε/4 the

ball of radius ε/4 with center P j
ε . Let wjε be the solution of the following problem

∆pw
j
ε = 0 in T jε/4 \G

j
ε, wjε = 1 on ∂Gj

ε, wjε = 0 on ∂T jε/4.
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It can easily be verified that for p ∈ [2, n) we have

wjε(x) =
|x− P j

ε |(p−n)/(p−1) −
(
ε
4

)(p−n)/(p−1)

a
(p−n)/(p−1)
ε −

(
ε
4

)(p−n)/(p−1)
.

We define the function Wε ∈ W 1,p(Ω, ∂Ω) by setting

Wε(x) = wjε(x), x ∈ T jε/4 \G
j
ε, j ∈ Υε, (15)

extended by 1 inside Gj
ε, j ∈ Υε, and by 0 in Rn \

⋃
j∈Υε

T jε/4. Thus, we compute

‖Wε‖mLm(Ω) ≤ K(ε1+(α−1)n + ε1+m(α−1)(n−p)/(p−1)), and (16)

‖∇Wε‖mLm(Ω) ≤ Kεα(n−m)−n+1, for m ∈ [1, p], (17)

where K denotes a constant independent of ε. Consequently, we conclude that

Wε ⇀ 0 in W 1,p(Ω)− weak as ε→ 0, if α = (n− 1)/(n− p). (18)

Let us consider the functions

ψε = v −Wε(H(x, v+) + v−), (19)

where v ∈ C∞0 (Ω), Wε is the function defined by (15) and H(x, τ) is the solution of the

functional equation (13). Note that, from (53), ψε ≥ 0 on Sε, and thus it belongs to Kε.

We now take ψ = ψε defined by (19) as a test function in (7) and pass to the limit

when ε→ 0. On account of (10), (18) and the fact that |Gε| → 0 as ε→ 0, we deduce

lim
ε→0

∫
Ωε

f(ψε − uε) dx =

∫
Ω

f(v − u) dx. (20)

Let us show that

lim
ε→0

(∫
Ωε

|∇ψε|p−2∇ψε∇(ψε − uε) dx+ ε−κ
∫
Sε

σ(x, ψε)(ψε − uε) ds
)

≤
∫
Ω

|∇v|p−2∇v∇(v − u) dx+

∫
γ

g(x, v)(v − u) dx̂,

(21)

where the function g is given by (12a). In order to do that, we take into account (9), (10)

and (18), and apply Lemma 2 with ηε ≡ −WεĤ and ϕ = ϕε ≡ v −WεĤ − Pεuε, Pεuε
being the extension defined by (10) and Ĥ ≡ H(x, v+) + v−. Thus, we obtain

lim
ε→0

∫
Ωε

|∇ψε|p−2∇ψε∇(ψε − uε) dx = lim
ε→0

(L1
ε − L2

ε) (22)
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where

L1
ε ≡
∫
Ωε

|∇v|p−2∇v∇(v −WεĤ − uε) dx (23)

and

L2
ε ≡
∫
Ωε

|∇(WεĤ)|p−2∇(WεĤ)∇(v −WεĤ − uε) dx. (24)

On account of (10), (18) and the fact that |Gε| → 0 as ε→ 0, we have

lim
ε→0

L1
ε =

∫
Ω

|∇v|p−2∇v∇(v − u) dx. (25)

On the other hand, from (16), (17), (9), and cumbersome computations, it follows that

lim
ε→0

L2
ε = lim

ε→0

∫
Ωε

|Ĥ|p−2|∇Wε|p−2∇(WεĤ)∇ϕεdx = lim
ε→0

∫
Ωε

|∇Wε|p−2∇Wε∇
(
|Ĥ|p−2Ĥ ϕε

)
dx.

(26)

Indeed, in the integral arising in L2
ε in (24), we decompose the term |∇(WεĤ)|p−2 in terms

of powers of |∇WεĤ| and |Wε∇Ĥ|. Then, on account of (16), (17), (9), and the Hölder

inequality for the suitable indices, we show that all the integrals in which the term |Wε|r

appears, for some r ∈ (0, p], converge towards zero as ε→ 0. Thus, the first inequality in

(26) holds. To prove the second equality in (26), we consider∫
Ωε

|∇Wε|p−2∇Wε∇
(
|Ĥ|p−2Ĥ ϕε

)
dx =

∫
Ωε

|Ĥ|p−2|∇Wε|p−2∇(WεĤ)∇ϕεdx+ Iε

where Iε denotes a sum of integrals that converge towards zero because either it appears

the term |Wε|r as above or because the imbedding W 1,p(Ω) ⊂ Lnp/(n−p)(Ω).

Moreover, by the properties of H(x, z), |Ĥ|p−2Ĥ = |H(x, v+)|p−2H(x, v+)+ |v−|p−2v−.

Thus, using the definition of Wε and the Green formula, we get

lim
ε→0

L2
ε = lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gj

ε

|∇wjε|p−2∂νw
j
ε (|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)ϕε ds. (27)

In order to compute (27), we use the explicit form of the normal derivatives of the

auxiliary functions wjε given by

|∇wjε|p−2∂νw
j
ε

∣∣∣
∂Gj

ε

= ε−
(n−1)(p−1)

n−p
Dn,p

(1− αε)p−1
, and

|∇wjε|p−2∂νw
j
ε

∣∣∣
∂T j

ε/4

= − 22n−2An,p
ωn(1− αε)p−1

,

(28)
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where αε → 0 as ε→ 0. Thus, on account of the definitions of ϕε and Wε, (28), (18) and

(10), we apply Lemma 3 and have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε (|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)ϕε ds

=−An,p
∫
γ

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v − u) dx̂.

(29)

On the other hand, using again the definitions of ϕε and Wε and the fact that v−(v+ −
H(x, v+)) = 0, uε ≥ 0 on ∂Gj

ε and (28), we obtain

lim
ε→0

∑
j∈Υε

∫
∂Gj

ε

|∇wjε|p−2∂νw
j
ε (|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)ϕε ds

≥ lim
ε→0

ε−κDn,p
(1− αε)p−1

∫
Sε

|H(x, v+)|p−2H(x, v+)(v+−H(x, v+)−uε) ds.
(30)

Now, taking into account that H is the solution of the equation (13) and using (19), (15),

the Hölder inequality, (9), and the size of Sε we get∣∣∣ε−κ∫
Sε

σ(x, ψε)(ψε − uε) ds−
ε−κDn,p

(1− αε)p−1

∫
Sε

|H(x, v+)|p−2H(x, v+)(v+−H(x, v+)−uε) ds
∣∣∣

≤ Kαεε
−κ
∫
Sε

|v+−H(x, v+)−uε| ds ≤ Kαεε
−κ[|Sε|+ |Sε|(p−1)/p‖uε‖Lp(Sε)]→ 0 as ε→ 0.

(31)

Therefore, gathering (22), (25), (27), (29), (30) and (31), where L1
ε and L2

ε are defined by

(23) and (24) respectively, yields (21).

Finally, we use (20) and (21) to pass to the limit in (7), as ε→ 0, with ψ = ψε defined

by (19), and obtain that the limit function u satisfies the following inequality∫
Ω

|∇v|p−2∇v∇(v−u) dx+

∫
γ

g(x, v)(v−u) dx̂ ≥
∫
Ω

f(v−u) dx, ∀v ∈ W 1,p(Ω, ∂Ω). (32)

As usual, taking v = u ± λφ in (32) where φ ∈ W 1,p(Ω, ∂Ω) and passing to the limit as

λ → +0, we obtain that u satisfies the integral identity (14), which concludes the proof

for κ = (n− 1)(p− 1)/(n− p).
For the cases κ < (n − 1)(p − 1)/(n − p) and κ > (n − 1)(p − 1)/(n − p), we rewrite

the proof of κ = (n− 1)(p− 1)/(n− p) with suitable modifications; we briefly outline the

main differences here.

Second step: κ < (n− 1)(p− 1)/(n− p)

10



We now take in (7) the test function ψ = ψε = v −Wεv
− ∈ Kε, where v ∈ C∞0 (Ω) and

Wε is the function defined by (15), and pass to the limit when ε→ 0. Using (15), (3) and

(9) and computing |Sε|, it follows that∣∣∣ε−κ ∫
Sε

σ(x, ψε)(ψε − uε) ds
∣∣∣ =

∣∣∣ε−κ ∫
Sε

σ(x, v+)(v+ − uε) ds
∣∣∣

≤Kε−κ[|Sε|+ |Sε|(p−1)/p‖uε‖Lp(Sε)] ≤ K[ε(α−1)(n−1)−κ + ε((α−1)(n−1)−κ)(p−1)/p],

(33)

which converges towards zero as ε→ 0. Moreover, (20) also holds. Let us show that

lim
ε→0

∫
Ωε

|∇ψε|p−2∇ψε∇(ψε−uε) dx ≤
∫
Ω

|∇v|p−2∇v∇(v−u) dx+An,p
∫
γ

|v−|p−2v−(v−u) dx̂.

(34)

On account of (17) and (10), we apply Lemma 2 with ηε ≡ −Wεv
− and ϕ = ϕε ≡

v −Wεv
− − Pεuε. Thus, we obtain (22) where L1

ε and L2
ε are now replaced by

L1
ε ≡

∫
Ωε

|∇v|p−2∇v∇(v −Wεv
− − uε) dx (35)

and

L2
ε ≡

∫
Ωε

|∇(Wεv
−)|p−2∇(Wεv

−)∇(v −Wεv
− − uε) dx. (36)

By (18), (10) and the fact that |Gε| → 0, (25) also holds. Moreover, using (17), (9), the

definition of Wε, the fact that v−v+ = 0 and the Green formula, we get

lim
ε→0

L2
ε = lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gj

ε

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds. (37)

Then, from (28), Lemma 3, (18) and (10), we have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds = −An,p
∫
γ

|v−|p−2v−(v − u) dx̂.

(38)

Besides, by the definition of Wε (cf. (15)) and the fact that v−v+ = 0, uε ≥ 0 on ∂Gj
ε and

(28), we obtain ∑
j∈Υε

∫
∂Gj

ε

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds ≥ 0. (39)

Gathering (22), (25), (37), (38) and (39), where L1
ε and L2

ε are now defined by (35) and

(36) respectively, yields (34).

Thus, using (20), (33) and (34), we pass to the limit in (7), as ε → 0 with ψ = ψε =

v − Wεv
−, and obtain that the limit function u satisfies inequality (32) where g(x, u)

11



is now given by (12b). From here, the argument at the end of the proof of the case

κ = (n − 1)(p − 1)/(n − p) leads us to state that u satisfies the integral identity (14),

which concludes the proof for κ < (n− 1)(p− 1)/(n− p).

Third step: κ > (n− 1)(p− 1)/(n− p)
We now take in (7) the test function ψ = ψε = v −Wεv ∈ Kε, where v ∈ C∞0 (Ω) and

Wε is the function defined by (15), and pass to the limit when ε→ 0. On account of the

properties of Wε and σ,

σ(x, ψε) = 0 on Sε. (40)

Moreover, (20) also holds. Let us show that

lim
ε→0

∫
Ωε

|∇ψε|p−2∇ψε∇(ψε− uε) dx =

∫
Ω

|∇v|p−2∇v∇(v− u) dx+An,p
∫
γ

|v|p−2v(v− u) dx̂.

(41)

On account of (17) and (10), we apply Lemma 2 with ηε ≡ −Wεv and ϕ = ϕε ≡
v −Wεv − Pεuε. Thus, we obtain (22) where L1

ε and L2
ε are now replaced by

L1
ε ≡

∫
Ωε

|∇v|p−2∇v∇(v −Wεv − uε) dx (42)

and

L2
ε ≡

∫
Ωε

|∇(Wεv)|p−2∇(Wεv)∇(v −Wεv − uε) dx. (43)

By (18), (10) and the fact that |Gε| → 0, (25) also holds. Moreover, using (17), (9), the

definition of Wε and the Green formula, we get

lim
ε→0

L2
ε = lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gj

ε

|∇wjε|p−2∂νw
j
ε |v|p−2v(v −Wεv − uε) ds. (44)

Now, from (28), Lemma 3 and (10), we have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε|v|p−2v(v −Wεv − uε) ds = −An,p

∫
γ

|v|p−2v(v − u) dx̂. (45)

Besides, by (15), (28) and (9), and the fact that |Sε| ≤ Kε(α−1)(n−1), it follows that∣∣∣ ∑
j∈Υε

∫
∂Gj

ε

|∇wjε|p−2∂νw
j
ε |v|p−2v(v −Wεv − uε) ds

∣∣∣ =
∣∣∣ε−α(p−1)Dn,p

(1− αε)p−1

∫
Sε

|v|p−2vuε ds
∣∣∣

≤Kε−α(p−1)|Sε|(p−1)/p‖uε‖Lp(Sε) ≤ Kε[κ−α(p−1)]/p → 0 as ε→ 0.

(46)

Gathering (22), (25), (44), (45) and (46), where L1
ε and L2

ε are now defined by (42) and

(43) respectively, yields (41).

12



Thus, using (20), (40) and (41), we pass to the limit in (7), as ε → 0 with ψ =

ψε = v−Wεv, and obtain that the limit function u satisfies inequality (32) where g(x, u)

is now given by (12c). From here, the argument at the end of the proof of the case

κ = (n − 1)(p − 1)/(n − p) leads us to state that u satisfies the integral identity (14),

which concludes the proof for κ > (n− 1)(p− 1)/(n− p).

4 Other sizes for perforations

In this section, we deal with sizes of cavities larger or smaller than the critical size.

For the case of big cavities and critical relations for the adsorption parameter, that is

α ∈ (1, (n− 1)/(n− p)) and κ = (α− 1)(n− 1), the homogenized problem is a unilateral

problem with a strange term dependent on σ (cf. (47) and (48a)). For the case of big

cavities and small adsorption, that is α ∈ (1, (n− 1)/(n− p)) and κ < (α− 1)(n− 1), the

homogenized problem is a unilateral problem which ignores the adsorption parameter (cf.

(47) and (48b)). For the case of large sizes of cavities and adsorption, the solution of (4)

vanishes asymptotically on the manifold γ and the homogenized problem is the Dirichlet

problem in Ω+ ∪ Ω− for the p-Laplace operator (cf. (50)). Finally, for the case of very

small cavities, the solution ignores the perforations and the adsorption parameter; now

the homogenized problem is the Dirichlet problem in Ω (cf. (51)).

Theorem 2. Let α ∈ (1, (n − 1)/(n − p)) with n ≥ 3, p ∈ [2, n), and let uε be the weak

solution of (4). Then, the limit of Pεuε in (10), u, is the weak solution of problem −∆pu = f in Ω+∪Ω−, u = 0 on ∂Ω,

[u]=0, u ≥ 0, h− [|∇u|p−2∂x1u] ≥ 0, u
(
h−

[
|∇u|p−2∂x1u

] )
= 0 on γ,

(47)

where the function h is given by

h(x, u) = Cn−1
0 ωnσ(x, u) if κ = (α− 1)(n− 1), (48a)

h(x, u) = 0 if κ < (α− 1)(n− 1). (48b)

Sketch of the proof. The variational formulation of (47) reads: find u ∈ K0 such that∫
Ω

|∇u|p−2∇u∇φ dx+

∫
γ

h(x, u)φ dx̂ ≥
∫
Ω

fφ dx, ∀φ ∈ K0, (49)

where K0 = {φ ∈ W 1,p(Ω, ∂Ω) : φ ≥ 0 a.e. on γ}. Using Lemma 5, (9) and the fact that

u−ε = 0 on Sε, we deduce that

1

ε
‖Pεu−ε ‖rLr(Πε) → 0 when ε→ 0, for r ∈ [2, p],

13



where Πε = Ω ∩ {−ε/2 < x1 < ε/2}. Now, since Pεu−ε converge towards u− in L2(γ), by

Lemma 4 and (9), we conclude that u− vanishes on γ and u ∈ K0.

To prove that u satisfies (49), we pass to the limit in (7) with ψ = v ∈ Hγ, where

Hγ = {φ ∈ W 1,p(Ω, ∂Ω) : φ ≥ 0 in some neighbourhood of γ}. From (10) we obtain (20)

and (41) with ψε ≡ v ∈ Hγ and An,p ≡ 0. Besides, following the technique in Theorem 4.1

in [7] and Theorems 5.1 and 6.1 in [5] with the suitable modifications, we prove

lim
ε→0

ε−κ
∫
Sε

σ(x, v)(v − uε)ds =

∫
γ

h(x, v)(v − u)dx̂,

where the function h is defined by (48); cf. also (33) when h = 0. Thus, since Hγ is dense

in K0, u satisfies (49), which concludes the proof.

Theorem 3. Let α ∈ (1, (n− 1)/(n− p)), κ > (α− 1)(n− 1) with n ≥ 3, p ∈ [2, n), and

let uε be the weak solution of (4). Then, the limit of Pεuε in (10), u, is the weak solution

of the Dirichlet problem in Ω+∪Ω−

−∆pu = f in Ω+∪Ω−, u = 0 on ∂Ω ∪ γ. (50)

Sketch of the proof. Let us take the test function ψ = v in (7), where v ∈ C∞0 (Ω±) to

obtain that −∆pu = f in D′(Ω±). Besides, using Lemma 5 and (9), we deduce that

1

ε
‖Pεuε‖rLr(Πε) → 0 when ε→ 0, for r ∈ [2, p].

Then, since Pεuε converge towards u in L2(γ), by Lemma 4 and (9), we conclude that u

vanishes on γ and the theorem holds.

Theorem 4. Let α > (n−1)/(n−p), κ ∈ R with n ≥ 3, p ∈ [2, n), and let uε be the weak

solution of (4). Then, the limit of Pεuε in (10), u, is the weak solution of the Dirichlet

problem

−∆pu = f in Ω, u = 0 on ∂Ω. (51)

Sketch of the proof. We take in (7) the test function ψ = ψε = v −Wεv ∈ Kε, where

v ∈ C∞0 (Ω) and Wε is the function defined by (15), and pass to the limit when ε → 0.

Considering (40) and the fact that now Wε converges towards zero in W 1,p(Ω) (cf. (17)),

we have (20) and (41) with An,p ≡ 0. Now, we proceed as in the proof of Theorem 1 to

show that u satisfies the weak formulation of the Dirichlet problem (51).

Remark 1. The nonlinear function σ considered, cf. (1)–(3), allows us to provide a

general framework for results and proofs. Actually, the strong monotonicity outlined in

(2) can be changed by the weaker hypothesis of strict monotonicity or only monotonicity

depending on the relations for parameters. This can be seen in a simple way when verifying

proofs.
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Also, it should be noticed that the nonlinear adsorption isotherms often used in the

literature (cf., e.g., [10] and [19]) are of the form σ(x, u) = g(u) with g a positive strictly

increasing function in [0,∞). In this connection, we also note that certain proofs can be

adapted for functions σ both with less smoothness or increasing requirements. We refer

to [1] for explicit definitions of σ arising in models from ecology, hydrogeology or chemical

reactions, for comments on possible extensions when u ≤ 0, and for further references.

5 Appendix

In this section, we introduce some results useful for proofs. The first result provides

the existence and uniqueness of the solution of the functional equation (13) arising in

the homogenized problem (11)–(12a) while the second one simplifies the computations

throughout the paper. The proofs of both results can be found in [5] (cf. Propositions 2.2

and 2.3, respectively).

Lemma 1. Let p ≥ 2. Let % be a strictly positive constant and let σ be the function σ(x, u)

defined from Ω × R into R which is assumed to be a continuously differentiable function

in Ω× R satisfying (1)–(2). Then, the equation

|H|p−2H = % σ(x, τ −H)

has a unique solution H(x, τ) which is a continuously differentiable function in Ω×(R\{0})
and continuous in Ω× R, and satisfies H(x, 0) = 0 and

(|H(x, u)|p−2H(x, u)− |H(x, v)|p−2H(x, v))(u− v) ≥ k̃1|u− v|p, (52)

|H(x, u)| ≤ |u|, (53)

for all x ∈ Ω, u, v ∈ R and a certain constant k̃1 > 0.

Lemma 2. Let p ≥ 2. Let v ∈ W 1,∞(Ω), ϕ ∈ W 1,p(Ω, ∂Ω) and ηε ∈ W 1,p(Ω, ∂Ω) such

that ‖∇ηε‖Lm(Ω) → 0, as ε→ 0, for m ∈ [1, p). Then,

lim
ε→0

∫
Ωε

(
|∇(v+ηε)|p−2∇(v+ηε)−|∇v|p−2∇v

)
∇ϕdx = lim

ε→0

∫
Ωε

|∇ηε|p−2∇ηε∇ϕdx. (54)

In addition, (54) also holds in the case where ϕ depends on ε, namely ϕ ≡ ϕε, with

‖∇ϕε‖Lp(Ω) bounded independently of ε.

Finally, we introduce the following auxiliary estimates where the constant K does not

depend on ε nor on the functions w:
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Lemma 3. Let P j
ε be the center of the ball Gj

ε and let T jε/4 denote the ball of radius ε/4

with center P j
ε , j ∈ Υε. Then,∣∣∣∑
j∈Υε

∫
∂T j

ε/4

w ds− 22−2nωn

∫
γ

w dx̂
∣∣∣≤ Kε1/2‖w‖H1(Ω), w ∈ H1

0 (Ω).

See Lemma 1 in [16] for the proof.

Lemma 4. Let Πε = Ω ∩ {−ε/2 < x1 < ε/2}. Then,∣∣∣1
ε

∫
Πε

w2 dx−
∫
γ

w2 dx̂
∣∣∣ ≤ Kε1/2‖∇w‖2

L2(Ω), w ∈ H1
0 (Ω).

See Lemma 2.6 in [8] for precise references for the proof.

Lemma 5. Let Πε = Ω ∩ {−ε/2 < x1 < ε/2}. Let w ∈ W 1,p(Ω), 2 ≤ p < n. Then,

‖w‖pLp(Gε) ≤ K(aε‖w‖pLp(Sε) + apε‖∇w‖
p
Lp(Gε)), and

‖w‖pLp(Πε\Gε) ≤ K(a1−n
ε εn‖w‖pLp(Sε) + ap−nε εn‖∇w‖pLp(Ω)).

See Theorem 5.1 in [8] and Lemma 2.6 in [5] related to the proofs of the first and the

second inequality respectively.
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