
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

1

Advancing Experimentation-as-a-Service
Through Urban IoT Experiments

Dimitrios Amaxilatis, Dennis Boldt, Johnny Choque, Luis Diez, Etienne Gandrille, Sokratis Kartakis, Georgios
Mylonas, and Lasse Steenbock Vestergaard

Abstract—Smart cities are becoming a vibrant application
domain for a number of science fields. As such, service providers
and stakeholders are beginning to integrate co-creation aspects
into current implementations to shape the future smart city
solutions. In this context, holistic solutions are required to test
such aspects in real city-scale IoT deployments, considering the
complex city ecosystems. In this work, we discuss OrganiCity’s
implementation of an Experimentation-as-a-Service framework,
presenting a toolset that allows developing, deploying and eval-
uating smart city solutions in a one-stop shop manner. This is
the first time such an integrated toolset is offered in the context
of a large-scale IoT infrastructure, which spans across multiple
European cities. We discuss the design and implementation
of the toolset, presenting our view on what Experimentation-
as-a-Service should provide, and how it is implemented. We
present initial feedback from 25 experimenter teams that have
utilized this toolset in the OrganiCity project, along with a
discussion on two detailed actual use cases to validate our
approach. Learnings from all experiments are discussed as well as
architectural considerations for platform scaling. Our feedback
from experimenters indicates that Experimentation-as-a-Service
is a viable and useful approach.

Index Terms—Smart cities, Experimentation, IoT, real-world
deployment, evaluation

I. INTRODUCTION

Information and Communication Technologies (ICT) are
being adopted as a catalyst in the smart city domain, on top
of which novel services are developed and legacy ones are
evolved. In addition, the pervasive presence of ICT allows
service providers and stakeholders to directly interact with
citizens to continuously improve services in a co-creative man-
ner. This co-creation approach permits the rapid deployment
and adoption of innovative solutions for urban challenges [1].
A central part of instrumenting a smart-city with an IoT
infrastructure is to be able to sense and monitor how the city
performs, and to understand the dynamics of the city as a
system. As examples, it becomes possible to examine how
people make use of urban environments, and parameters like
pollution, can be visualized and tracked throughout the city.

The authors are listed in alphabetical order.
D. Amaxilatis and G. Mylonas are with Computer Technology Institute and

Press Diophantus, Greece. E-mail: {amaxilat, mylonasg}@cti.gr
D. Boldt is with University of Lübeck, Germany. E-mail: boldt@itm.uni-

luebeck.de
J. Choque and L. Diez are with University of Cantabria, Spain. E-mail:

{jchoque, ldiez}@tlmat.unican.es
E. Gandrille is with Commissariat à l’énergie atomique et aux énergies

alternatives, France. E-mail: etienne.gandrille@cea.fr
S. Kartakis is with Intel Labs Europe, United Kingdom (E-mail:

sokratis.kartakis@intel.com)
L. S. Vestergaard is with Alexandra Instituttet, Denmark. E-mail:

lasse.vestergaard@alexandra.dk

Site Tier Platform Tier Experimentation Tier

Super-simple version (updated)

Site 1

Local
Orion

Site 2

Local
Orion

Site N

Local
Orion

…

U
rb

an
Da

ta
 S

to
ra

ge

Fe
de

ra
tio

n 
AP

I

Pl
at

fo
rm

 D
at

a 
St

or
ag

e DB 1

DB 2

DB N
Service N

Service 2

Service 1
… …

Tool or
portal 1

Tool or
portal 2

Tool or
portal N

…Ea
aS

 A
PI

AAA

Fig. 1: Overall OrganiCity platform architecture

Recently, co-creation has been exploited in different
ways by various Experimentation-as-a-Service (EaaS) frame-
works [2]. By “co-creation”, we refer to the process of in-
volving citizens and other stakeholders in designing as well as
developing smart city solutions, and using local know-how to
respond to existing challenges in modern cities and their com-
munities. For instance, Pallot and Pawar investigate co-creation
to improve QoS [3], while gamification techniques are used by
Pokri et al. [4]. Participation and interaction with stakeholders
are used to attract people to the co-creation process [5], [6],
[7]. Finally, other work, such as Schaffers et al. [8], focuses
on technical aspects, in particular IoT or machine-to-machine
communications, leaving aside user/citizen interaction. In this
sense, the scope of existing EaaS frameworks is limited to
specific services or challenges. However, we believe that end-
to-end solutions are necessary for harnessing the potential of
complex city ecosystems. At the same time, the diversity in
potential smart city applications makes it hard for a monolithic
solution to satisfy their varied requirements.

In this context, the OrganiCity1 EU project (OC) developed
a customizable EaaS framework, called the OC platform. The
OC platform provides a common playground where different
stakeholders can co-create urban services [9], and adopt the
functionalities offered by the platform that better serve their
needs. As depicted in Figure 1, its design follows a three-tier
approach [10], addressing data provisioning, platform man-
agement, and experimentation support. It has been developed
following an experimentally-driven approach, supported by
open calls during two periods (first open call in 2016–2017 and
second open call in 2017–2018). Open calls have had a twofold
objective: first to help maturing the platform by gathering
feedback from external users; and secondly to analyze the
platform sustainability for the future. Throughout this paper,
accepted open call projects are termed experiments, and the

1OrganiCity H2020 project, http://organicity.eu



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

2

actual people conducting these are referred to as experimenters
and experiment team interchangeably. In addition, the term
experimentation refers to the process of conducting an actual
experiment.

The first version of the OC platform [9] was designed
and validated within the OrganiCity consortium. This initial
version was exploited during the first open call, which served
to gather information and feedback from experimenters. Af-
terwards, the platform was tweaked according to the feedback
and the new version was released in the second open call,
which was devoted to developing a co-creation methodol-
ogy for establishing cross-collaboration between stakeholders,
communities, sectors and countries in a smart city context.
In this paper we focus on the technical evolution, so that the
work presented hereinafter spans from the period from which
the OC platform was first deployed (initiation of first open call)
to shortly before the second open call. In the first open call, a
number of experiments have been selected and implemented,
over a period of six months. Thanks to this key part of the
OC project, experimenters have played an active role in the
design and validation of our platform.

In the following, we present a toolset to foster the develop-
ment of urban services in a co-creative way. These novel ser-
vices have been identified based on the feedback provided by
25 experiments conducted in five European cities (being from
United Kingdom, Denmark, Spain, Greece, and Belgium),
which have resulted in creating pilot services for more than 10
different urban application areas. In addition, the experiment
teams involved different types of stakeholders, ranging from
individual citizens to Small and Medium-sized Enterprises
(SMEs), or public authorities. To our best knowledge, this is
the first time that an EaaS framework is adopted in such a
large scale manner, spanning over multiple cities.

The rest of this work is structured as follows. First, Sec-
tion II provides a discussion of related work, highlighting
differences between existing approaches and ours. Then, In
Section III, the most relevant feedback obtained during OC
platform exploitation, as well as possible modifications are
explained. In Section IV we describe the services developed
after the first experimentation period, highlighting their func-
tionalities and benefits. Finally, Section V concludes the paper.

II. RELATED WORK

In terms of experimentation testbeds, SmartSantander [11]
built one of the largest city-scale IoT research infrastruc-
tures, pioneering the experimentation of novel smart city
architectures, services, and applications in real-world urban
environments. It emphasized managing experiments at an IoT
device level, while allowing data-acquiring tasks facilitating
urban services on top of the captured data flows. Smart-
Santander built interfaces with FIWARE and FI-Lab2, to
support interconnectivity with the IoT/Future Internet com-
munity. WISEBED [12] pioneered discrete IoT device testbed
federation.

Additionally, projects like IoT-Lab3 investigate crowdsourc-
ing and IoT services for supporting multidisciplinary research

2https://lab.fiware.org
3http://www.iotlab.eu

tasks. Their approach differs from ours, since their services
are not tightly coupled with a smart city testbed. Festival [13]
is another example of existing federating experimentation
testbeds from Europe and Japan, in order to provide a unified
infrastructure to the research community. However, its focus
is not exclusively on the smart city domain, and it does not
offer the scale or the toolset provided by OC as a platform
overall. CPaaS.io [14] is an ongoing project with similar goals
to OC. Synchronicity4 features open calls for developing new
services, similar to OC, but places a much larger focus on
open data markets in the context of a smart city, leaving aside
the co-creative approach.

In light of these advancements, OC aims to combine the
aforementioned approaches and co-create new smart city so-
lutions with citizens, researchers and city authorities. Crowd-
sensing (i.e., tasking groups of volunteers to gather various
kinds of data using IoT devices and/or smartphones) is one
of the directions taken to address this challenge, helping to
build a smart city data repository. Regarding the OC platform,
a more general discussion is provided in [9], describing its
architecture and overall software stack, with potential co-
creation capabilities showcased in [15] in detail. Apart from
aiming to provide a pragmatic solution to the crowdsensing
problem, the toolset discussed in this work allows end-users to
benefit from this interoperability in various ways (data storage,
visualization, interfacing to other systems, community man-
agement, knowledge extraction and urban service creation),
and not just basic management of crowdsensing activities.

As an example of this approach, OC’s crowdsensing tool
allows for a broad set of opportunities for integrating smart-
phones in a smart city experimentation context, allowing
the use of such devices to produce experimental data as an
extension of an existing IoT infrastructure. The mobile crowd-
sensing paradigm and the associated features and challenges
are further discussed in [16]. With respect to incentives and
crowdsensing task assignment, which are also part of our
work, in [17], [18] such aspects are discussed in detail. In
addition, [19], [20] provides a discussion related to several
research questions we are trying to answer in OC as well.
Finally, as discussed in Section I, OC has managed to appeal
to a large number of research teams so far, and has already
produced a large number of urban experiments, far surpassing
the respective numbers kick-started by other similar projects.

III. LEARNINGS

In this section, we discuss learnings from the initial de-
ployment of the OC platform during the first open call.
We shortly present two implemented experiments, and the
experimentation teams’ experiences from utilizing the OC
platform. In continuation, we discuss the most common issues
and comments experimenters have provided regarding their ex-
periments. Finally, we discuss architectural considerations on
how to robustly scale the OC platform in future deployments.

4http://synchronicity-iot.eu



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

3

A. Experimenter Experiences

As mentioned in the introduction, 25 experiments were
conducted in five different European cities during the first
open call. All experiments used the OC platform, and each
experiment team was required to report on their learnings with
the OC platform. These reports were conducted twice: first
through an interim standardized questionnaire, and then again
at the end of the experiment. In this paper, we put emphasis
on those inputs provided in the final questionnaires, since they
bring richer descriptions of experiences with the technical part
of the OC platform, than the interim questionnaires. In the
following subsections, we present two specific experiments in
order to show practical examples of how the OC platform has
been utilized. We then discuss the most prevalent learnings
reported by all experimenters.

1) Spend Network: This experiment5 aimed to develop a
user-friendly, online based insight analysis tool for govern-
ment, citizens and SMEs in London. The objective was to
improve procurement efficiency and competition. The experi-
menters wanted to combine their own existing data with the
OC platform in order to cross-reference with new data, and to
perform enhanced spending and tendering categorizations. In
order to make government spendings and tendering processes
visible and easily understandable, the experiment used the
TinkerSpace tool6, the Asset Federation API7 and the OC’s
Urban Data Observatory (UDO) [9]. TinkerSpace is one of
the tools provided by the OC platform to simplify experiment
development. This tool was used for the development of an
interactive smartphone application where users are provided
with an intuitive overview of the categorized data. The Asset
Federation API was used for adding data to the OC platform
in order to enable third party developers to use such data.
Furthermore, adding data to the platform made it easier to
connect them to TinkerSpace, thereby reducing development
complexity. Finally, UDO was used for validating that assets
were actually pushed to the OC platform, and for presenting
them to third-party developers.

In general, the experimenters were satisfied with the OC
platform, and managed to use the services, although not
always as expected. They even developed new functionalities
for the TinkerSpace tool, which they made publicly available
for anyone to use. Despite of the good impression, they
experienced several inconveniences with the OC platform.
They reported that documentation was lacking or needed to
be significantly improved for external developers to properly
grasp and utilize the OC platform. Understanding the services,
the documentation and getting support from the OC technical
team required considerable waiting periods which they deemed
inefficient resource usage. In addition to documentation, they
reported that access to historical data was paramount for their
experiment, and it was inconvenient that the OC platform did
not provide such a feature at that time. They managed to solve
the issue by providing a custom persistence feature. On top of
these issues, the experiment team suggested that authentication

5https://organicity.eu/experiment/spend-network-2
6https://docs.organicity.eu/tools/tinkerspace
7https://docs.organicity.eu/api/Federation.html

on the OC platform should be more consistent, since they
had to confirm their log in every time they navigated between
different portals of OC.

Final comments from this experiment team revolved around
maturity level of the platform in general. They reported that the
UDO needed to further develop customization, TinkerSpace
needed to significantly improve the usability, and the OC plat-
form APIs were being re-factored during the experimentation
period.

2) WearAQ: This experiment8 utilized IoT, machine learn-
ing (ML), wearable technologies, and citizen participation for
investigating human perception of air quality in cities. This
was done through developing gesture recognition gloves, worn
by pupils during a walk around the city. The children were
taught simple hand gestures that would signify whether they
felt the air was polluted or not. In parallel, the experiment
team did simultaneous air quality measurements with high-
quality pollution monitoring equipment. The collected data
was combined with data from the OC platform, and London
air quality data assets. By applying ML techniques on the
generated dataset, the experimenters identified that there was
a correlation between the children’s perception of air quality,
and the measurements of the pollution monitoring equipment.

In order to conduct the experiment, WearAQ utilized the
Asset Federation API, Asset Discovery API, Scenario Tool
and the UDO. The Scenario Tool was initially used, to get
inspiration on how to shape their experiment. The UDO
was used for searching environmental and traffic data within
confined geographical areas. The Asset Discovery API was
used for extracting real-time data for their ML models. Finally,
they wanted to use the Asset Federation API for inserting
their refined datasets into the OC platform, so that future
experimenters can work with their findings.

Even though the experiment was successful, the team re-
ported several issues with the OC platform. In their own words,
“there was a lot of documentation”, but they reported that
parts of it were missing. There were inconsistencies between
different documentation pages, some cross-referencing links
were broken, and it could be hard to decipher the docu-
mentation from a non-technical perspective. They mentioned
that it was difficult to grasp how to format parameters when
using the RESTful APIs. They suggested that it might have
been easier to comprehend if more usage examples were
provided in the documentation. They also reported that error
messages, returned from the APIs, were unclear. Apart from
documentation issues, they reported that access to historical
data was a lacking feature they had expected to be part
of the OC platform, and they assumed that it was possible
to manually upload assets directly through the Experimenter
Portal. These missing features made the experiment more
cumbersome, but they did mention that support from the OC
technical team was good and swift, allowing the experiment
to progress. As a general comment, they stated that the OC
platform felt a little shaky due to multiple platform updates
during the experimentation period (in order to provide new
features and bug fixing).

8https://organicity.eu/experiment/wear-aq-2



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

4

3) Overall Experimenter Learnings: As mentioned previ-
ously, 25 experiments were conducted during OC’s first open
call. Through a grounded theory coding approach [21], we
conducted two iterations of analyzing the evaluation question-
naires. First, we performed an initial coding by annotating
relevant passages with summative descriptions. In the second
iteration, we conducted focused coding thereby abstracting
the descriptions into nine overarching categories [21]. We
have provided the categories in Table I (in alphabetic order),
and further discuss these in the remainder of this section. A
detailed usability assessment is available online in [22].

From Table I, we see that the first deployment of the OC
platform did not run smoothly, and this had consequences
regarding how experimenters were able to use it in their
experiments. Even though several issues and inconveniences
occurred during the first experimentation period, the goal never
was to have a fully fledged OC platform up and running
from day one. Instead, we applied an experimentally-driven
approach, where we wanted to collaboratively develop the OC
platform with the experimenters.

As a result, the first deployment of the OC platform should
be perceived as a prototype of how an EaaS framework could
be composed. This also means that the OC platform, as a
whole, was not user-tested until it was made available to
experimenters. The experimenters were aware of that the OC
platform was not fully functional, and they were consequently
prepared for experiencing issues. Knowing that experimenters
would encounter problems, we set up several communication
pipelines (e.g., email, Slack or phone) so that experimenters
could easily get in contact, and thereby progress their own
developments. When issues and bugs were reported, we did
our best to fix them immediately, but we had to prioritize
which were most critical. As a result, some bugs were not
corrected during the first experimentation period, and we
suggested workarounds instead. We made sure to plan the
implementation of the reported features so they would be
implemented after the first experimentation period (i.e., his-
torical data storage). According to Table I, it seems that the
provided support pipelines have been satisfactory. From an
internal OC perspective, support took up significantly more
time than initially expected.

After the first open call ended, we significantly improved
the OC platform by adding new functionalities. We have
provided API access to historical data, and documentation has
been significantly re-factored with updated examples, step-by-
step guides and tutorials. Dead links, due to the continuous
updates in the platform’s documentation, have been fixed and
coherency between different documentation locations has been
improved.

In relation to documentation, experimenters reported this
to be the culprit of most of their technical frustrations. De-
spite this, an interesting finding is that several experimenters
reported that reading documentation and debugging took too

9https://github.com
10https://docs.organicity.eu/
11http://slack.com
12https://docs.organicity.eu/
13http://www.question2answer.org/

much time, which they felt was both wasted and insufficient.
We do not have specific figures on how much time experi-
menters actually spent on these activities, but empirical studies
and our own experiences show that professional developers
usually spend around 70% of their development time do-
ing nothing but reading documentation and debugging [23].
The expressed frustration was therefore a result of the non-
technical nature of the experimenters participating in the open
call. Since we do not have metrics for comparing time spent on
actual programming, it is not possible to measure the efficiency
of the OC platform’s documentation, but according to the
experimenters, this part took up a significant amount of their
development time. In hindsight, this indicates that high quality
documentation is of utter importance when exposing an EaaS
platform to third-party developers.

B. Architectural Considerations for Platform Scaling

As we have commented in Section I, OC followed a
centralized data architecture for both, storing and search.
However, this approach may have scalability constraints, and
hinder its adoption. In this sense, the ETSI14 has created
the Context Information Management (CIM) group, which is
actively working on evolving the current definition of OMA-
NGSI [24] and Orion Context Broker [25] implementation
(referred to as Orion in the remainder of this paper), developed
by the FIWARE EU Initiative15. The preliminary technical
specification of the so called NGSI-LD has recently been
published [26], and it proposes different options to deploy
centralized and distributed architectures. In the following, we
describe the different options that can be adopted and how
they fit with the existing OC platform.

Since we have followed a centralized approach, the dif-
ferent OC services access the central Orion for any data
related action. As mentioned, this yields scalability limitations,
and enforces to having a centralized architecture. In order
to overcome such limitations, we are studying how to use
NGSI-LD functionalities to enable hierarchical and distributed
context information storage. Figure 2 provides an overview of
federation with distributed storage.

Similar to the current OC architecture presented in Figure 1,
the future approach will consider that different sites (i.e.,
cities) produce data that can be federated with a central OC
instance. Cities will host local instances of Orion, that will be
fed by context producers. Typically, the producers are services
run by city service providers, that generate information which
the city stores. Then, the site brokers notify the context registry
about the locally stored data. Different to the current OC
implementation, the registry does not store the data, but only
where the data can be found. Finally, a distribution broker acts
as proxy to access the data, by checking the data location in
the registry. As can be observed, in this approach no data
duplicates are generated, thus solving scalability issues. In
addition, it is possible to replicate the same architecture at
different scales, as depicted in Figure 2. This way, a site broker
can internally act as a distribution broker. Furthermore, this

14http://www.etsi.org
15https://www.fiware.org



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

5

TABLE I: Experimenter Experiences

Category Summarized experiences Improvements
Bugs Reported bugs ranged from being inconsistencies in documentation (i.e., dead

links) to not being able to create data assets through the Experimenter Portal, and
experiencing that private assets where publicly available for third parties. Bugs could
be small and insignificant to resulting in complete lock-down of developing an
experiment. This means that bugs were present in all parts of the OC platform,
and most experimenters experienced those at some point.

Cleaning up documentation, fixing bugs, alter-
ing existing functionality and defining new ser-
vices. User and Experiment management were
services heavily refactored in order to fix bugs
and provide a higher degree of management
granularity (see Section IV).

Data
Availability

Data within the OC platform were outdated or not available when experimenters
wanted to use them. The volume of data was too small, and it was challenging to
find relevant data.

Improved data search through an Annotations
service and a Reputation service (see Sec-
tion IV).

Documentation This category has been heavily commented throughout all evaluations, and seems
to be the pivot point for most of the frustrations during the experiments. We have
divided this category into seven sub-categories (ordered alphabetically):

• Ambiguity: Ambiguous API naming conventions, abbreviations and contradic-
tory documentation has been a hindrance.

• Error messages: Vague, confusing, unhelpful and generic error messages
were difficult to comprehend, and no documentation, on how to interpret the
messages, was provided.

• Examples: More and better usage and coding examples, as well as step-by-step
tutorials are desired.

• Improvements: Updating documentation more often, providing high-light ex-
amples, and use the Github9 platform features even more would be of great
value.

• Inconsistencies: Parts of documentation was deprecated, had dead links, and
errors like references to localhost was not corrected. Documentation could
suddenly change and there was inconsistencies between different documenta-
tion.

• Readability: Documentation was not easy to comprehend for a non-technical
person.

• Unclear descriptions: Documentation was not sufficiently elaborated and hard
to follow, it was not clear how to format API parameters and it could be hard
to understand how the OC services should be used and interact.

Recognizing that documentation was the main
source of frustration, this part has been totally
refurbished. The new documentation10 first pro-
vides a general OC platform description for
experimenters to become familiar with the mod-
ules and terminology. From such description,
links are provided to different parts where tech-
nical information is provided. In addition, step-
by-step tutorials have been elaborated cover-
ing the most relevant and recurring procedures.
Finally, the APIs documentation has been re-
viewed to avoid inconsistencies.

Lack
of functionality

Two features were lacking, which experimenters had expected to be available. This
is API access to historical data, and the ability to provide filtering options when
searching for data.

Historical REST-based data API introduced dur-
ing first experimentation phase, and data filter-
ing added to the UDO. WebSocket-based ser-
vice developed for providing push notifications
on asset updates (see Section IV).

Positive
feedback

The OC platform was well designed and the available tools were both relevant and
usable. Especially the graphical data searching (the UDO) was great for getting an
overview of what data was accessible through the OC platform. One experiment
team reported, that the authentication and authorization functionality enabled them
to have a clear division between their own custom developed software and the OC
services.

Annotations and Reputation services added to
the UDO. Improved ability to interface directly
with the OC platform APIs. Particularly evident
in the User management and Annotations ser-
vices.

Suggested new
functionalities

Data visualization is quite simple in the OC platform, and is reduced to showing
assets on a map in a browser. Experimenters would have liked more comprehensive
data visualization features in order for them to play around with the data, and it could
have simplified their custom developments. It was also reported that visualizations
of historical data would have been beneficial. Finally, one experiment team reported
that they wanted to have more fine grained authorization configurations in the APIs
in order to control who could upload data to the OC platform.

The UDO was continuously expanded, and a
historical data graph was added at the very
end of the first experimentation phase. Fine-
grained user and experiment configuration have
been added through the User and Experiment
management services.

Support Level of support was satisfactory, and direct communication via phone, email or
Slack11 was fast and helpful. A few experimenters reported that Slack could be
confusing due to multiple channels, and occasionally response times were slow.

Slack has been replaced by an open forum12,
based on the Q2A13 platform, in order to reduce
confusion and optimize support efforts.

Technical
breakdowns

The Experimenter Portal produced error messages, changes could not be saved and
invitations to participants would not be sent. The OC platform crashed regularly
initially, functionality was often refactored, and experimenters had to adapt their
existing codebase. When adding new assets to the platform, errors would arise when
API attributes contained special characters.

Errors and issues were captured and major revi-
sions carried out including: better functionality
consistency, lower coupling between platform
components, updating server infrastructure and
architectural considerations.

Usability From a usability perspective, experimenters were divided. Half of the experimenters
found the OC platform easy to understand and use, while the other half found it
cumbersome and unnecessary complex. The latter consisted primarily of experiment
teams with a non-technical background. Regarding the UDO, most experimenters
found it easy to use and helpful for understanding the concept of the OC platform.
On the other hand, most experimenters had difficulties understanding and using
the authentication and authorization functionality. Parts of the issues came down to
understanding OAuth2.

A large part of the platform revisions have been
pivoting around improving usability through
step-by-step examples, expanding the graphical
representation of User and Experiment manage-
ment, reducing the steps needed to authorize
against Keycloak, only expose relevant API
functionalities etc.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

6

Fe
de

ra
tio

n 
AP

I

Context Registry

Distribution
Broker

Site broker

Context Producer

Context Producer

…
OC Site

Data Source

Site broker

Context Producer

Context Producer

…
OC Site

Data Source

Core Platform

Site broker

Context Registry

Context Producer

Context Producer

…

OC Site

Distribution Data 
Source

Data Source

Site Storage

Fig. 2: Distributed federation architecture

approach will also enable cities to deploy local instances of
OC with the required micro-services, while still being part of
a larger deployment.

IV. ADVANCED EAAS SERVICES

As depicted in Figure 1, the OC platform design follows
a three-tier approach, addressing data provisioning, platform
management, and experimentation support. The Site Tier
accounts for the data sources (e.g., cities) federated in the
OC platform (named OC site). The Platform Tier holds the
platform services, which are exposed for experimentation in
the Experimentation Tier. The persistence within the Platform
Tier relies on Orion, which is built around the NGSI 9/10 pro-
tocols. It manages entries, called assets, which can represent
devices, places, buildings and any other context information
entities (including virtual objects). Each asset holds a set of
typed attributes which can be updated on the fly [9]. The
Platform Tier has been designed using loosely coupled and
distributed components following the micro-service architec-
ture pattern [27]. This allows tailored deployments involving
only the mandatory, or baseline services, so that others (i.e.,
APIs, tools and portals) can be optionally deployed.

The rest of this section covers improvements performed in
the Platform and Experimentation Tiers. This tier makes use
of the EaaS APIs (see Figure 1), and it embraces tools and
Web-based user interfaces (web portals). Each EaaS service
(i.e., API, tool and portal) is implemented as a micro-service.
In this sense, some of them are standalone applications, while
others rely on baseline services, such as the Orion or the User
Management. For a more detailed description of the platform,
the reader may refer to [9], which covers the EaaS services,
which were used in the first open call. Based on feedback
from experimenters in the first open call, we re-factored and
extended the OC services, and present these in the following
sub-sections.

A. User Management

Within OC, we cater to different stakeholder “roles”, e.g.,
administrators, site managers, experimenters and participants.
An administrator is the technical administrator of the OC
platform and, therefore, has access to information of all

 

Fig. 3: User Management APIs

experiments at platform level. A site manager manages an OC
site, which is a set of assets under a common administrative
domain available for experimentation, e.g., the assets of a
city. Each role is allowed to access different systems, which
consists of an API and a portal. To handle this, we developed
a User Management system to handle authentication and
authorization.

The User Management API is based on OAuth2’s API [28],
with a single sign-on service, a Users API, and a Permissions
API (see Figure 3). They are used to manage accounts for
users and clients (e.g., OC services). We use KeyCloak16 as
an OAuth2 server. To allow other OC services to manage
accounts, we created the Permissions API, which acts as a
configuration proxy for a more fine-grained access to the roles
and permissions of accounts. Users must register at the server
and verify their account by email. Afterwards, a user can log
into all OC services by using a single account.

The Users Portal allows users to manage their data, such
as user and real names, nationality, email, age, etc. The Users
API allows a quick and efficient user search for other OC
services, since it uses MongoDB17. Some information like the
username, email and password is synced between the Users
API and the KeyCloak server. Authentication and authorization
are still handled by the OAuth2 API, the other OC services
can use the Users API to manage accounts.

B. Experiment Management

One of the key aspects of the OC platform is the definition
of an experimentation management system, able to fulfill
the requirements of potentially heterogeneous experiments.
This system has been implemented as a set of APIs exposed
through three web portals. First, the Experimenter Portal
allows experimenters to manage all aspects related to ex-
periment management and exploitation. Closely related, the
Communities Portal enables the grouping of users, based on
their interests and preferences, into the so called communities.
Finally, the Participant Portal permits potential participants to
manage the experiments in which they are enrolled. We briefly
describe the functionalities of each of the web portals in the
following.

16https://www.keycloak.org
17https://www.mongodb.com



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

7

1) Participant Portal: This portal is used by users regis-
tered in OC, who have stated their willingness to participate
in experiments, and it offers three main functionalities:

• Experiment search: All public experiments are visible to
the participants, they can proactively select those taking
place close to them or that are considered interesting,
according to the experiment information.

• Notifications: Participants can be notified about any event
happening in the experiments they are involved in, and
they can be invited to new experiments. It is worth noting
that all interactions happen in an anonymous way. Exper-
imenters are not aware of the identity of participants.

• Enrolling management: Participants can decide to leave
an experiment at any point. It is applied to both exper-
iments, which they proactively joined, and those which
they were invited in.

2) Communities Portal: Once users register in OC, they can
complete their profile by providing more information about
their interests and preferences. Through the Communities
Portal, administrators and experimenters can filter users and
create communities. A community is a virtual group linked
to an experimenter or administrator, in a way that users and
participants are not aware of the communities they belong to.
Moreover, experimenters and administrators are not aware of
the actual identity of the user in their communities, but they see
simple indicators on the characteristics of their community’s
audience.

3) Experimenter Portal: This portal is the entry point of
experimenters to the OC platform, and serves as a hub for the
experimentation services. Following the micro-service design
of the entire OC platform, the Experimenter Portal incorpo-
rates new services as independent views which may eventually
be deactivated depending on the actual requirements. By
using the Experimenter Portal, experimenters can perform the
following tasks:

• Creation and management of experiments: This
functionality utilizes the User Management API.
Following the dominant concept in IoT experimentation,
each experiment instance is seen as a virtual testbed, and
uniquely identified throughout the whole platform. This
way experiment datasets and management information
can be isolated. In addition, at any moment experiments
can be stopped/restarted and edited (e.g., name,
description, etc.).

• Creation and management of assets: Leveraging the
public platform APIs, the Experimenter Portal provides
a graphical UI to create and edit assets, in order for
experimenters to become familiar with the data format. In
particular, the graphical UI is a JSON editor able to check
that the data follows the OrganiCity format, providing
useful warning messages otherwise.

• Experiment team management: Since co-creative exper-
iments usually involve development teams rather than
a single person, the Experimenter Portal also permits
editing such teams. In this regard, at any moment the
creator of the experiment can edit the team by adding or
removing their members.

Apart from the aforementioned functionalities, the Exper-
imenter Portal also provides views closely related to other
services, and that can be used by the experimenters.

a) Annotations: The Experimenter Portal offers a UI to
manage tags that can be applied on the assets created under
each experiment. Experimenters can both select tags provided
by the OC platform itself, or define new ones, available only
for their own experiment. Tags are explained in more detail in
Section IV-D.

b) Participants Management and Engagement Monitor-
ing: By using the communities created with the Communities
Portal, experimenters can invite people to their experiments,
and check whether or not invitations have been accepted. In
addition, experimenters can define engagement metrics as a
function taking into account different parameters. Then, during
the execution of the experiment that function grows differently
for the different participants according to the engagement
level. For instance, a function can be defined as the amount of
created data, number of readings or the number of annotations
added by a participant. Finally, using the notification function-
alities provided by the platform, experiments can reward or
incentivize participants.

C. Real-Time Notifications

The requirement for real-time data is crucial for under-
standing and enhancing the smart city [29], which is why
the OC project has chosen to emphasize the need for real-
time data streams when performing experiments through the
OC platform. This is both relevant for city administrators
needing to optimize and predict city infrastructures but also
for ordinary citizens who want to understand and affect the
city [29]. Real-time access to city data can even become a
collaboration interface between city administrators and regular
citizens in developing the city. A specific example of such a
collaboration is the application Bus Santander18 that shows
real-time estimates on when a bus arrives at a bus stop.
The application was developed by ordinary Santander citizens
leveraging open real-time data provided by the municipality.
The application has become an augmented service for the pub-
lic transportation, thereby making transport more seamless and
essentially advancing the city through smart city technologies.

In the first instantiation of the OC platform, we did not
provide a bi-directional, notification-based, real-time access
to data but chose to provide access through a request and
response approach leveraging the RESTful architecture of
OC. This approach was sufficient for conducting experiments,
but several experimenters requested the ability to have a bi-
directional real-time connection to data. They wanted a way to
get notifications when an asset changed instead of performing
a continuous RESTful-based polling. Orion provides a sub-
scription mechanism that is built as a WebHook19. An end-user
needs to set up their own web server, to which Orion can then
send notifications. Even though this is a standard approach,
many of our users were not programmers, and we therefore
did not find this solution appropriate and easy to comprehend.

18http://bussantander.truebaj.com
19https://fiware-orion.readthedocs.io



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

8

Fig. 4: Asset Annotation Interface in the Urban Data Obser-
vatory. Asset’s annotation (left) and user feedback (right)

Additionally, some experimenters wanted to use state of
the art web technologies in their experiments. As a result,
we chose to investigate WebSockets since this technology
fulfilled these requirements. FIWARE has even been testing
WebSockets in relation to Orion, but development has ceased,
due to other parts of Orion being more critical20. Knowing
that WebSockets was put on hold for Orion, we chose to
develop our own, so that end-users can get notifications on
asset updates. We developed a thin WebSocket layer on top
of the WebHooks subscription feature. As a result, our Web-
Sockets tool exposes the same features as Orion’s subscription
feature, meaning that we can only get notification on asset
changes, and not on asset creation and deletion. Despite this
shortcoming, the WebSockets tool still adds the ability to
subscribe to asset updates in the OC platform.

D. Annotations Service

One of our main goals, after having provided experimenters
with an initial set of urban data, was to increase the knowledge
that can be assigned to such data by adding extra information
on top. Information like that should be easy to spot, use and
add, as our users are not experts in fields like semantics or
ontologies. Therefore, we based our design on the simple
and well-established concept, used in social media over the
past years, with which users can assign tags to assets and
then search for information based on those. The Annotation
API was built as a micro-service that maintains a tag-based
taxonomy, as it is created by the users of the platform and
allows for the addition, updating and removal of tags to each
asset of the OC platform.

We provide this functionality through OC’s UDO, and users
can answer simple questions on the presented data, by visually
inspecting the data reported. Such an interface is presented in
Figure 4, where users provide feedback on a traffic monitoring
sensor in Santander, based on data about vehicles passing by
hourly. The responses of all users are displayed in the in left
hand side of the figure.

To further increase the value of the information offered to
users, we developed a set of services that operate on top
of the generated annotations. Specifically, we developed a
service that automatically adds annotations to the assets of an
experiment using Machine Learning (ML), based on provided
training datasets. This service allows experimenters to setup
and run cloud-based ML jobs to classify the streaming data
of the platform in real-time. The process requires a set of
initial training data for each of the classifications defined, and
the result of the classification is stored as an annotation in the

20https://github.com/telefonicaid/fiware-orion/issues/1181

Annotation Service. For each job, the user needs to select a set
of tags from the Annotation Service and submit the respective
training data. The ML substrate of the system is implemented
using JavaML [30], but is modular in design, i.e., other ML
algorithms, e.g., Google TensorFlow [31], can be added in the
future. In its implementation, we use the same principles of
the WebSocket Tool and Orion’s subscription mechanism to
receive real-time updates on the data and trigger the analysis.
It creates a subscription for a set of assets the user selects
based on URIs and data types to receive updates. Additionally,
this service provides a RESTful API so that users can submit
external data for classification. If the asset submitted in both
cases is available in OC, then the resulting classification is
stored in the Annotation Service and propagated to the Orion.
If the asset is not available in OC, the classification is simply
returned as a response to the API request. More information
on the mechanism used to generate the annotations is available
in [32].

During the experimentation and the operation of the plat-
form in the past months, users of OC have produced more
than 42000 annotations, using over 100 different tags provided
either by OC or the experimenters involved.

E. Reputation

The Reputation Service uses direct and indirect information
from the OC platform users, to make it easier to navigate
inside the assets available on the OC platform. It calculates
a reputation for each asset as a single rating that captures
its popularity and usefulness to the end-users. Reputation can
also be perceived as trust, by modeling the degree of trust end-
users assign to each specific asset. We focus on the generic
notion of reputation, that is public and combined, and not a
personal/subjective one.

The Reputation Service is embedded in the UDO and uses
statistical data from the Annotation Service. The reputation
score is first calculated after a user has interacted with the
assets for the first time. To generate a reputation score, a user
has to either create an annotation for the specific asset, or
to manually rate it. The rating information is submitted from
the UDO to the Annotation Service and triggers an update to
the reputation of the asset. When a user selects an asset, the
UDO retrieves non-zero reputation statistics from Annotation
Service and calculates the reputation score based on a weight-
based model. This architecture is more efficient than a stand-
alone reputation service, as it removes the requirement for
an additional service, and allows for more dynamic values
for reputation as they are calculated on request on the user’s
end. Furthermore, the overhead due to the update and retrieval
of the statistics is negligible, as the UDO communicates
internally with the Annotation Service with minimal network
delays.

For modeling the reputation of assets, we employ a statis-
tical based model due to its simplicity, lightweight computa-
tional requirements and the extendibility by easily integrating
new parameters when necessary. The reputation model is based
on both subjective and objective parameters of the assets:

• Opinion represented as a 5-star rating.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

9

Fig. 5: Asset Reputation interface in the Urban Data Obser-
vatory (user input and calculated value)

• Usage of statistics/popularity: How many times an Asset
has been annotated by users? How many times has an
Asset been rated by different users?

• Time of the most recent action: What was the last time
that an Asset has been annotated?

The final trust value is calculated as the average of all
the parameters. The interface through which users can add
their rating of an asset or view its reputation is presented in
Figure 5.

V. CONCLUSIONS AND FUTURE WORK

In this work, we discussed the implementation of an EaaS
framework within OrganiCity, and have presented our position
regarding EaaS, i.e., to use existing IoT deployments in
multiple cities in a federated manner to implement smart city
prototype solutions. In this context, we presented our toolset,
which enables EaaS in this application domain, in a scaled and
integrated manner that has not been implemented previously.
We have presented our design and implementation, discussed
how OrganiCity and its toolset fit into the current smart city
landscape, and presented several core components.

In order to validate this approach, we discussed learnings
from deploying an EaaS framework in the wild, by running
25 experiments from independent experimenter teams. We also
presented two specific experiments utilizing the OC platform
as well as elaborated and discussed specific experimenter
learnings, produced by using the first version of our platform.
Our first findings indicate that this toolset has been utilized by
the community and can be impactful. We discussed the ways
in which the platform was used, where it fell short and how it
has evolved through experimenter feedback. We additionally
discussed results concerning the utilized architecture and scal-
ability concerns, having used a more centralized architecture.
From an architectural perspective, we can conclude that feder-
ation alternatives exist to handle potential scalability issues. In
addition, following these approaches, any modification would
be transparent to the systems implemented within the OC
platform. We believe that this feedback, produced by such a
scale of experimentation, will be very useful to the community
currently working on similar aspects in the smart city domain.

OC is currently nearing its completion. The OC platform has
been significantly re-factored taking experimenter learnings
into account, and the updated OC platform has been put to
the test in a second open call following the same approach as
in the first one. Results concerning this round of experiments
are not included in this article, but will be presented in our
future work.

ACKNOWLEDGMENT

This work was partially supported by the OrganiCity re-
search project funded by the European Union, under grant
agreement No. 645198 of the Horizon 2020 research and inno-
vation program. We would also like to thank the experimenter
teams and volunteers who participated in OrganiCity.

REFERENCES

[1] S. Al-Nasrawi, A. El-Zaart, and C. Adams, “The anatomy of smartness
of smart sustainable cities: An inclusive approach,” in 2017 Int. Conf.
on Computer and Applications (ICCA), Sept 2017, pp. 348–353.

[2] O. Vermesan and P. Friess, Building the hyperconnected society: Internet
of things research and innovation value chains, ecosystems and markets.
River Publishers, 2015, vol. 43.

[3] M. Pallot and K. Pawar, “A holistic model of user experience for living
lab experiential design,” in 2012 18th International ICE Conference on
Engineering, Technology and Innovation, June 2012, pp. 1–15.

[4] B. Pokri, S. Kro, M. Pokri, P. Kneevi, and D. Jovanovi, “Engaging
citizen communities in smart cities using iot, serious gaming and fast
markerless augmented reality,” in 2015 International Conference on
Recent Advances in Internet of Things (RIoT), April 2015, pp. 1–6.

[5] L. Phuluwa and M. Hattingh, “Understanding how the city of johannes-
burg metropolitan municipality’s social media platforms are perceived
by young citizens,” in IST-Africa Week Conference, May 2017, pp. 1–10.

[6] I. Celino, G. R. Calegari, and A. Fiano, “Towards talkin’piazza: En-
gaging citizens through playful interaction with urban objects,” in 2016
IEEE International Smart Cities Conference (ISC2), Sept 2016, pp. 1–5.

[7] G. Marinic and W. Vanobberghen, “ECIM: european cloud marketplace
for intelligent mobility,” in Joint Proceedings of the Doctoral Symposium
and Projects Showcase Held as Part of STAF 2016 co-located with
Software Technologies: Applications and Foundations (STAF 2016),
Vienna, Austria, July 4-7, 2016., 2016, pp. 72–79.

[8] H. Schaffers, A. Sllstrm, M. Pallot, J. M. H.-M. noz, R. Santoro, and
B. Trousse, “Integrating living labs with future internet experimental
platforms for co-creating services within smart cities,” in 17th Interna-
tional Conference on Concurrent Enterprising, June 2011, pp. 1–11.

[9] V. Gutiérrez, E. Theodoridis, G. Mylonas, F. Shi, U. Adeel, L. Diez,
D. Amaxilatis, J. Choque, G. Camprodom, J. McCann, and L. Muñoz,
“Co-creating the cities of the future,” Sensors, vol. 16, no. 11, 2016.
[Online]. Available: http://www.mdpi.com/1424-8220/16/11/1971

[10] H. Schuldt, Multi-Tier Architecture. Boston, MA: Springer US,
2009, pp. 1862–1865. [Online]. Available: https://doi.org/10.1007/
978-0-387-39940-9 652

[11] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis et al., “Smart-
santander: Iot experimentation over a smart city testbed,” Computer
Networks, vol. 61, pp. 217–238, 2014.

[12] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer,
D. Pfisterer, D. Bimschas, T. Braun, P. Hurni, M. Anwander,
G. Wagenknecht, S. P. Fekete, A. Kröller, and T. Baumgartner,
“Flexible experimentation in wireless sensor networks,” Commun.
ACM, vol. 55, no. 1, pp. 82–90, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2063176.2063198

[13] T. Akiyama, S. Murata, K. Tsuchiya, T. Yokoyama, M. Maggio,
G. Ciulla, J. R. Santana, M. Zhao, J. B. D. Nascimento, and L. Grgen,
“Festival: Design and implementation of federated interoperable smart
ict services development and testing platform,” Journal of Information
Processing, vol. 25, pp. 278–287, 2017.

[14] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Ki-
tazawa, “Fogflow: Easy programming of iot services over cloud and
edges for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 696–707, April 2018.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2871766, IEEE Internet of
Things Journal

10

[15] V. Gutiérrez, D. Amaxilatis, G. Mylonas, and L. M. noz, “Empowering
citizens towards the co-creation of sustainable cities,” IEEE Internet of
Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[16] B. Guo, C. Chen, D. Zhang, Z. Yu, and A. Chin, “Mobile crowd sensing
and computing: when participatory sensing meets participatory social
media,” IEEE Comm. Magazine, vol. 54, no. 2, pp. 131–137, 2016.

[17] M. Talasila, R. Curtmola, and C. Borcea, “Crowdsensing in the wild
with aliens and micropayments,” IEEE Pervasive Computing, vol. 15,
no. 1, pp. 68–77, Jan 2016.

[18] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive
techniques for mobile crowd sensing,” IEEE Internet of Things Journal,
vol. 2, no. 5, pp. 370–380, Oct 2015.

[19] M. Balestrini, T. Ladera, P. Marshall, A. Gluhak, and Y. Rogers,
“Iot community technologies: Leaving users to their own devices or
orchestration of engagement?” vol. 1, p. 150601, 10 2015.

[20] C. A. Le Dantec, M. Asad, A. Misra, and K. E. Watkins, “Planning
with crowdsourced data: Rhetoric and representation in transportation
planning,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. New York, NY,
USA: ACM, 2015, pp. 1717–1727.

[21] K. Charmaz, Coding the Grounded Theory Practice. Sage Publications,
01 2006, pp. 42–60.

[22] A. Heijnen, B. Palacios, L. Diez, M. Bach, J. Echevarria, J. Johansson,
K. Kalugina, A. Rizk, K. Schaaf, and P. Lau, “D5.5 usability
assessment of organicitys first open call.” [Online]. Available:
http://organicity.eu/resources-news/resources/

[23] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer -
an investigation of how developers spend their time,” in 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, 2015.

[24] “NGSI Context Management,” Open Mobile
Alliance, Tech. Rep., 2012. [Online]. Available:
http://www.openmobilealliance.org/release/NGSI/V1 0-20120529-A/
OMA-TS-NGSI Context Management-V1 0-20120529-A.pdf

[25] FIWARE Foundation, “Publish/Subscribe Context Bro-
ker - Orion Context Broker,” retrieved: June 2018.
[Online]. Available: https://catalogue-server.fiware.org/enablers/
publishsubscribe-context-broker-orion-context-broker

[26] “Context Information Management (CIM); Application Programming
Interface (API) ,” European Telecommunications Standards Institute
(ETSI), TS, 2018. [Online]. Available: http://www.etsi.org/deliver/etsi
gs/CIM/001 099/004/01.01.01 60/gs cim004v010101p.pdf

[27] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 02 2015, vol. 1.

[28] D. Hardt, “The OAuth 2.0 authorization framework,” Internet Requests
for Comment, RFC Editor, RFC 6749, Oct. 2012.

[29] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 2, pp. 112–121, 2014.

[30] T. Abeel, Y. V. d. Peer, and Y. Saeys, “Java-ml: A machine learning
library,” Journal of Machine Learning Research, vol. 10, no. Apr, pp.
931–934, 2009.

[31] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[32] A. Deligiannidou, D. Amaxilatis, G. Mylonas, and E. Theodoridis,
“Knowledge co-creation in the organicity: Data annotation with ja-
maica,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT),
Dec 2016, pp. 717–722.

Dimitrios Amaxilatis received his MSc degree in
Computer Science from the University of Patras,
Greece, in 2013, where he is currently pursuing the
PhD degree. From 2010, he has been with the Com-
puter Technology Institute in Patras, Greece partici-
pating in several international research projects. He
was also member of the founding teams of two tech-
nological startups (codebender.cc and Sensorflare).
His research interests include distributed algorithms,
wireless sensor networks, home and building au-
tomation, smart city and participatory sensing.

Dennis Boldt received his MSc in Computer Science
from the University of Lübeck. Since 2012 he works
as a research assistant at the same University and
currently pursues his PhD. He has been involved in
several national and international research projects
including SPITFIRE (FP7) and OrganiCity (H2020).
His research interests are peer-to-peer networks, full
stack web-based technologies and network security.

Johnny Choque Johnny Choque received the elec-
tronic engineering degree from the National Univer-
sity of Engineering, Peru, in 1995 and PhD degree
(cum laude) in communications engineering from
the University of Cantabria, Spain, in 2014. Since
2000, he has been employed as researcher at the
University of Cantabria, working in several projects
of Framework Programme and Horizon 2020 of
EU. His current research interests include LPWAN,
Smart Cities, IoT and Blockchain.

Luis Diez received his MSc and PhD from Univer-
sity of Cantabria, Spain, in 2013 and 2018 respec-
tively. He has been involved in different international
and industrial research projects. He is currently a
Senior Researcher at the Network Planning and
Mobile Communications Laboratory, University of
Cantabria. His research interests are resource man-
agement in wireless heterogeneous networks, and
IoT service provisioning.

Etienne Gandrille received his PhD from Uni-
versity of Grenoble. As a researcher at Commis-
sariat l’Énergie atomique et aux Énergies alter-
natives (CEA), his research interests focus on In-
ternet of Things, Smart Cities and Open Data. He
has been involved in several international research
and innovation projects including SocIoTal (FP7),
OrganiCity (H2020), BigClouT (H2020) and Brain-
IoT (H2020).

Sokratis Kartakis received the B.Sc. degree (Hons.)
and the M.Sc. degree in computer science from the
University of Crete, Heraklion, Greece, in 2006 and
2008, respectively, and the Ph.D. degree in computer
science from the Department of Computing, Imperial
College London, London, U.K. in 2017. He has been
involved in several international research projects
collaborating with Yale University, NEC Japan, and
ICS-Forth Greece. Since 2017, he has been an IoT
Research Scientist with Intel Labs Europe, London,
U.K. His current research interests include edge

signal processing and machine learning, and communication optimization for
IoT.

Georgios Mylonas is a researcher at Com-
puter Technology Institute and Press ”Diophantus”,
Greece. He received his PhD from the University of
Patras, Greece. His research interests lie in the areas
of wireless sensor networks and distributed systems,
IoT and pervasive games. He has been involved in
the AEOLUS, WISEBED, Smartsantander, AUDIS
and OrganiCity projects. He is the coordinator of the
Green Awareness in Action (GAIA) H2020 project.

Lasse Steenbock Vestergaard received his MSc
in Information Science from University of Aarhus,
Denmark, and is currently pursuing a PhD focusing
on IoT prototyping within Smart Cities at Alexandra
Institute. He has been involved in national and inter-
national research and innovation projects including
OUTSMART (FP7), SmartSantander (FP7), City-
Pulse (FP7), OrganiCity (H2020) and Synchronicity
(H2020). His research interests are creative coding,
API usability and IoT prototyping.


