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12 Abstract

13 The evaluation of the content of metals and metalloids in particulate matter (PM) and in 
14 atmospheric deposition in areas impacted by local industries is essential from an 
15 environmental and health risk perspective. In this study, the PM10 levels and atmospheric 
16 deposition fluxes of potentially toxic metals and metalloids were quantified at three urban 
17 sites of the Cantabrian region (northern Spain), located at different distances downwind 
18 of a Mn alloy plant. The content of Mn, V, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb and Pb in 
19 PM10 and in the water-soluble and insoluble fractions of the deposition was determined 
20 by ICP-MS. Among the studied elements, the highest concentrations in PM10 and 
21 deposition rates were found for Mn, Fe, Zn and Pb, associated with the Mn alloy industry, 
22 and for Cu, related to non-exhaust traffic emissions. The levels of Mn, Fe, Zn and Pb in 
23 PM10 were higher in autumn, when the most frequent winds blow from the S-SW, whereas 
24 their highest deposition rates were found in winter and autumn, which are characterized 
25 by high monthly average precipitations. The water-soluble fraction of the atmospheric 
26 deposition of most metals increased with distance from the Mn alloy plant. The highest 
27 water-soluble fractions were found for Ni (72%), Zn (62%), Cu (60%) and Mn (49%). 
28 These results will be useful for the health risk assessment of the metal exposure associated 
29 with Mn alloy plants, as well as for the evaluation of the metal burden to soil, water and 
30 ecosystems related to this industrial activity.

31
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35 1. Introduction

36 Atmospheric pollution is a significant cause of concern worldwide. Particulate matter 

37 (PM) exposure is associated with an extensive number of cardiovascular, respiratory and 

38 neurological diseases (Davidson et al., 2005; Fiordelisi et al., 2017; Hoek et al., 2013; 

39 Raaschou-Nielsen et al., 2013; Wang et al., 2017); PM is also considered as carcinogenic 

40 to humans (Group 1) by the International Agency for Research on Cancer (IARC) (IARC, 

41 2016). 

42 The aerosol toxicity is strongly linked to the physico-chemical characteristics of particles 

43 (i.e. size, morphology and chemical composition), which vary according to the different 

44 emission sources (Kelly and Fussell, 2012). In this regard, the metal and metalloid content 

45 of PM is of special interest in urban and industrial areas, where non-exhaust traffic 

46 emissions (Amato et al., 2014; Thorpe and Harrison, 2008), oil/fuel combustion (Bourliva 

47 et al., 2018; Fomba et al., 2018) and industrial activities such as the steel or the ferroalloy 

48 production (Lucas et al., 2015; Mbengue et al., 2017; Sylvestre et al., 2017) are 

49 considered the main metal and metalloid sources (e.g. iron (Fe), zinc (Zn), lead (Pb), 

50 manganese (Mn)). Metal-bearing particles can be transported long distances from the 

51 emission source depending on the height of the point sources, the meteorological 

52 conditions and the physicochemical characteristics of the particles (Connan et al., 2013; 

53 Omrani et al., 2017). Studies related to the levels of metals and metalloids in PM in urban 

54 and industrial areas, in combination with some physico-chemical characteristics (e.g. 

55 segregation by particle size or solubility) are commonly found in the literature (Coufalík 

56 et al., 2016; Fomba et al., 2018; Hernández-Pellón et al., 2017; Mbengue et al., 2017). 

57 The airborne levels of such elements are not only dependent on their emission rates and 

58 atmospheric dispersion mechanisms, but also on their removal rate from the atmosphere.

59 The main mechanisms for the removal of PM and its components are scavenging (wet 

60 deposition) and dry deposition (Connan et al., 2013). Although wet deposition is 

61 considered an important process for PM removal, in regions with low precipitation, such 

62 as the Mediterranean climate area, dry deposition is more important than wet deposition 

63 on an annual basis (Pan and Wang, 2015). However, since the relative contribution of 

64 both mechanisms highly depends on the local meteorological conditions, a suitable 

65 assessment of the atmospheric deposition should include both dry and wet deposition. 
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66 Despite the cleaning effect of both mechanisms in the atmosphere, deposition is also 

67 implicated in the transfer of metals and metalloids from air to aquatic (Child et al., 2018; 

68 Engels et al., 2018; Lintern et al., 2016) and terrestrial ecosystems (Borgese et al., 2013; 

69 Carter et al., 2015; Hovmand et al., 2008; Pavilonis et al., 2016), and, subsequently, to 

70 the food chain (Antisari et al., 2015; Bermudez et al., 2012; Folens et al., 2017). In 

71 addition, deposited PM also contributes to air pollution through the mechanism of 

72 resuspension (Castillo et al., 2013a; Pant and Harrison, 2013). Therefore, the study of the 

73 atmospheric deposition is important not only as a mechanism for pollutant removal and 

74 transport, and as a measure of the pollutant burden to soil, water and ecosystems, but also 

75 from a health risk perspective (Taylor, 2015).

76 The dry and wet deposition of metals and metalloids may be estimated by using bulk 

77 (funnel/bottle) or Bergerhoff (bucket) collectors, whereas wet deposition is usually 

78 determined by wet-only collectors (funnel/bottle) (Amodio et al., 2014). The use of 

79 Bergerhoff and bulk collectors is recommended at industrial and very dry urban and rural 

80 areas (Aas et al., 2009). Additionally, several authors have reported the limitations in 

81 relation with the measurement of dry deposition in urban areas, without taking into 

82 account the variety of urban surfaces (i.e. glass, tile, grass, etc.) (Omrani et al., 2017; 

83 Percot et al., 2016; Roupsard et al., 2013).

84 Numerous research studies have determined the levels of metals and metalloids in 

85 atmospheric deposition in rural (Connan et al., 2013; Hovmand et al., 2008; Tositti et al., 

86 2018) and urban areas (Davis and Birch, 2011; Guo et al., 2017; Liang et al., 2016; 

87 Norouzi et al., 2017; Omrani et al., 2017) around the world. Other studies focused on the 

88 assessment of metal and metalloid deposition in areas located close to specific 

89 anthropogenic activities, such as road traffic (Al Ali et al., 2017; Aljazzar and Kocher, 

90 2016), port operations (Castillo et al., 2013b; Taylor, 2015), and industrial activities such 

91 as the steel-making industry (Amodio et al., 2014), copper (Cu) smelters (Fedorová et al., 

92 2015), Pb smelters (Qiu et al., 2016), Fe ore works (Hančuľák et al., 2011), mining 

93 (Castillo et al., 2013a; Marrugo-Negrete et al., 2014), glass making plants (Rossini et al., 

94 2010) or municipal solid waste incinerators (MSWI) (Venturini et al., 2013).  Only a few 

95 studies deal with the metal and metalloid deposition in the vicinity of Mn alloy plants, 

96 mainly focused on the assessment of the Mn content in soils or cultivated vegetables 

97 (Boudissa et al., 2006; Ferri et al., 2015), household dust (Lucas et al., 2015), or on the 

98 estimation of Mn deposition by dispersion modeling and its relation with its content in 

https://www.sciencedirect.com/science/article/pii/S1878522015003963#!
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99 local soils (Carter et al., 2015). Only Menezes-Filho et al. (2016) deal with the Mn and 

100 Pb accumulation in dust fall in exterior environments at different distances from a Mn 

101 alloy plant. 

102 This study aims to deepen into the impacts of Mn alloy plants on the levels of nine metals 

103 (i.e. Mn, Fe, Cu, Zn, Pb, vanadium (V), nickel (Ni), molybdenum (Mo) and cadmium 

104 (Cd)) and two metalloids (i.e. arsenic (As) and antimony (Sb)) in air, as well as on the 

105 potential transfer of these pollutants to aquatic or terrestrial ecosystems by atmospheric 

106 deposition. The PM10 levels and the deposition fluxes (water-soluble and insoluble 

107 fraction) of these metals and metalloids were quantified at three different distances 

108 downwind of a Mn alloy plant, which correspond to three urban sites of the Cantabrian 

109 region (northern Spain). This area is of special interest due to the fact that more than 

110 250,000 people live at less than 10 km from the Mn alloy plant. The comparison between 

111 the sampling sites, the seasonal variability of the content of metals and metalloids in PM10 

112 and in atmospheric deposition, as well as the variability of the metal and metalloid water-

113 soluble fractions with distance from the Mn alloy plant were investigated.

114

115 2. Materials and methods

116 2.1 Area of study

117 The area of study of this work is located in the north of Spain, in the region of Cantabria 

118 (580,140 inhabitants, 2017), specifically along the Santander Bay. This study has been 

119 conducted in the following locations:

120 1) Santander (171,951 inhabitants, 2017), which is placed in the northern part of the 

121 Santander Bay, is the most populated city of the region and is mainly focused on 

122 residential and commercial activities. The ETSIIT site (UTM, 30T, X=435450, 

123 Y=4813651, 7 m a.s.l.) is situated on the campus of the University of Cantabria, 

124 on the rooftop of the “E.T.S de Ingenieros Industriales y de Telecomunicaciones

125 ”building (30 m above ground) and represents an urban background site. 

126 2) Maliaño (9492 inhabitants, 2017), is a town located in the southern part of the 

127 Santander Bay. This urban area, where a Mn alloy plant is located, is characterized 

128 by high concentrations of Mn in air, according to the WHO criteria (Hernández-

129 Pellón et al., 2017). A sampling site was selected in the town center: the CROS 
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130 site (UTM, 30T, X=431916, Y=4807982, 6 m a.s.l.), which is an official 

131 monitoring station that belongs to the Cantabrian Regional Government. This site 

132 is located 850 m from the Mn alloy plant and represents an urban/industrial mixed 

133 area. Additionally, a second sampling point was selected in the urban area located 

134 closest to the Mn alloy plant, the CCV site (UTM, 30T, X=431899, Y=4807290, 

135 5 m a.s.l.); the sampler was placed on the rooftop of the “Cultural Center of La 

136 Vidriera”. This site is located only 350 m from the Mn alloy plant.

137

138 The location of the sampling sites and the main metal and metalloid sources is shown in 

139 Figure 1. In addition, Figure 2 shows the wind roses for the sampling periods at the three 

140 sampling sites. As can be seen, the most frequent winds came from the S-SW during the 

141 PM10 and atmospheric deposition sampling campaigns (see below section), in agreement 

142 with the prevailing wind directions of the region. A lower contribution of NNE winds is 

143 also observed in Figure 2; this wind sector is only characteristic of the warm period in the 

144 Santander Bay (Moreno et al., 2011). So, according to the wind roses shown in Figure 2, 

145 the three sampling sites are located downwind of the Mn alloy plant most of the sampling 

146 period, and therefore this allows us to study the influence of the distance from the main 

147 sources on the concentration and deposition of the studied metals and metalloids.

148 2.2 PM10 and bulk deposition sampling

149 A simultaneous PM10 and bulk atmospheric deposition sampling campaign was 

150 conducted from January 2015 to January 2016 at the CROS and the ETSIIT sites. PM10 

151 samples were collected weekly by a high volume sampler device (30 m3/h, MCV) on 150 

152 mm quartz fiber filters (Sartorious). Overall, 52 and 55 daily samples were taken at the 

153 CROS and the ETSIIT sites, respectively. Bulk atmospheric deposition was collected 

154 using a bulk bottle/funnel sampler based on the European standard UNE-EN 15841:2010, 

155 “Standard method for determination of As, Cd, Pb and Ni in atmospheric deposition”. 

156 The collector consisted of a polyethylene bottle connected to a funnel with a 0.078 m2 

157 collection area. The funnel was at 1.7 m above the ground to avoid the collection of re-

158 suspended dust and the collector was placed on a steel chassis with a protective ring to 

159 avoid bird nesting. Bulk deposition sampling periods were 30±3 days. A total of 12 

160 samples were collected at each monitoring site during the whole campaign. At the end of 

161 each sampling period, the inner surface of the funnel was washed with 250 ml of Milli-Q 

162 water and the funnel and plastic bottle were replaced by a clean one.
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163 As indicated in section 2.1, an additional bulk atmospheric deposition sampling campaign 

164 was performed later at the CCV site; the sampling period was from September 2015 to 

165 December 2016. A total of 12 monthly samples were collected during this campaign. Due 

166 to operational limitations at the CCV site, PM10 samples were only taken in September 

167 2015. A total of 28 daily samples were collected on 47 mm quartz fiber filters (Sartorius) 

168 using a low volume sampler device (2.3 m3·h-1). 

169 2.3 Sample preparation and metal analysis

170 Upon bulk deposition sampling, a gravimetric determination of the total precipitation was 

171 performed by a top loading balance (Sartorius, M-pact AX4202). Acidity was measured 

172 in 50 ml of the unfiltered sample using a portable pH meter (Crison, pH-25). Then, the 

173 water-soluble and insoluble fractions were separated by filtering the samples through 0.45 

174 µm nitrocellulose filters (47 mm, Merck). An aliquot of the water-soluble fraction (50 

175 ml) was acidified with HNO3 and stored refrigerated (4ºC) until future use.

176 The total content of metals and metalloids in PM10 and in the water-insoluble fraction of 

177 the atmospheric deposition was determined based on the European standard method EN-

178 UNE 14902:2006 “Standard method for the measurements of Pb, Cd, As and Ni in the 

179 PM10 fraction of suspended particulate matter”. The acid digestion of the filters (i.e. the 

180 PM10 samples and the water-insoluble deposition samples) was performed in a microwave 

181 digestion system (Milestone, Ethos One, Italy) using closed Teflon vessels (HNO3:H2O2 

182 8:2, up to 220 ºC). The reagents used were of high purity (Suprapur®, Merck). The content 

183 of V, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb and Pb in the extracts of the insoluble fraction 

184 of bulk atmospheric deposition and PM10 samples as well as in the water-soluble fraction 

185 of the deposition samples was analyzed by inductively coupled plasma mass spectrometry 

186 (ICP-MS, Agilent 7500 CE). The operating conditions are shown in Table 1. Quality 

187 control of the analytical procedure included the determination of the recovery values of 

188 the analyzed metals and metalloids from a standard reference material (NIST SRM 1648a, 

189 “Urban particulate matter”), as well as the evaluation of the blank contribution from the 

190 filters and reagents and subsequent subtraction from the results. Recovery values and 

191 method detection limits (MDL) of the mentioned metals and metalloids are shown in 

192 Table 2. Concentrations were reported as ng·m-3 for PM10 samples, whereas bulk 

193 atmospheric deposition fluxes were expressed as µg·m-2·d-1

194 2.4 Data analysis
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195 Statistical analysis of the data was performed using R statistical software version 3.3.0. 

196 All data distributions were checked for normality using the Shapiro-Wilks test. This test 

197 was selected due to the small size of the datasets. Since most distributions deviated from 

198 the normality, the relationship between total metal and metalloid concentrations in PM10 

199 and also in bulk atmospheric deposition at each studied site was evaluated by determining 

200 the Spearman correlation coefficients. As the pairwise correlation involves multiple 

201 comparisons, the “Holm test” (Holm, 1979) was used to adjust the p-values to count for 

202 type I error. 

203 In addition, the interdependence between the metal and metalloid content in simultaneous 

204 PM10 and bulk atmospheric deposition samples was also evaluated at the ETSIIT and 

205 CROS sites. The metal and metalloid content in each deposition sample was compared 

206 with the monthly mean concentration in the PM10 samples calculated from the daily 

207 values corresponding to the same sampling period. This comparison was not performed 

208 at the CCV site, due to the short time span of the PM10 sampling campaign.

209

210 3. Results and discussion

211 3.1 Metal and metalloid concentrations in PM10.

212 Table 3 summarizes the mean, median, standard deviation, minimum and maximum 

213 values of metal and metalloid concentrations in the PM10 samples collected at the ETSIIT, 

214 CROS and CCV sites. At the ETSIIT and CROS sites, annual mean values of Ni, Cd, As 

215 and Pb were well below the established annual target/limit values (20, 5, 6 and 500 ng·m-

216 3, respectively), regulated by Directive 2004/107/EC and Directive 2008/50/EC. At the 

217 CCV site, despite that the time span was relatively short (28 consecutive days), Ni, As 

218 and Pb concentrations in PM10 were low with respect to the annual target/limit values. On 

219 the contrary, a mean value of 3.47 ng·m-3 was obtained for Cd at the CCV site, finding 

220 that almost 30% of the samples were above 5 ng·m-3 (i.e the annual target value 

221 established in Directive 2004/107/EC) during the sampling period. In this regard, further 

222 sampling campaigns with a higher time coverage should be developed at the CCV site in 

223 order to verify that annual mean concentrations of Cd are below the annual target value 

224 established in Directive 2004/107/EC (i.e. 5 ng·m-3) and therefore, Cd exposure does not 

225 pose a potential health risk for the population living in this area.

226 With respect to the non-regulated metals and metalloids evaluated in this study, the 

227 highest concentrations were found for Mn, Fe and Zn, which are commonly related to the 
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228 Mn alloy industry (Marris et al., 2012; Mbengue et al., 2015). The concentration of these 

229 metals was higher at the CCV site, in agreement with the greater proximity of this location 

230 to the Mn alloy plant.

231 Although Mn is not included in the European air quality Directives, the World Health 

232 Organization (WHO) establishes an annual mean value of 150 ng·m-3 as a guideline. As 

233 Table 3 shows, whereas annual Mn level at the ETSIIT site (i.e. 60.8 ng·m-3) was below 

234 the WHO guideline, the annual Mn concentration at the CROS site (i.e. 231.8 ng·m-3) 

235 exceeded this recommendation, reaching daily values up to 1279.4 ng·m-3. At the CCV 

236 site, the maximum Mn daily value was 2061.6 ng·m-3 and the monthly mean value 

237 reached 721.9 ng·m-3 (i.e. more than 4 times the WHO guideline). However, these results 

238 should be treated with caution due to the short time span of the sampling campaign carried 

239 out at the CCV site. On the other hand, increased Mn concentrations (i.e. mean value of 

240 901.1 ng·m-3, maximum daily concentration of 2688.3 ng·m-3) were also reported for 

241 CCV site during a short campaign conducted in February 2017 (Hernández-Pellón et al., 

242 2018). In this regard, and due to the potential health effects of Mn exposure, mainly linked 

243 to neurotoxic disorders and cognitive deficits (Chen et al., 2016; Lucchini et al., 2012), 

244 Mn is considered as a metal of special concern in the studied area, mainly in the sites 

245 located NNW from the Mn alloy plant, which are directly impacted by the plume 

246 emanating from the plant when the prevailing winds of the region are blowing (see Figure 

247 2).

248 3.2 Metal and metalloid deposition fluxes.

249 Table 4 shows the sum of the deposition rates of the studied metals and metalloids (µg·m-

250 2·d-1) at the ETSIIT, CROS and CCV sites. The highest deposition fluxes (water-soluble 

251 and insoluble fractions) were found at the CCV and CROS sites (i.e. 11998.9 µg·m-2·d-1 

252 and 4574.8 µg·m-2·d-1, respectively) in agreement with the greater proximity of these 

253 locations to the main industrial sources (see Figure 1). At the three studied sites, the bulk 

254 deposition was dominated by the insoluble fraction, reaching the 76%, 82% and 87% of 

255 the total deposition at the ETSIIT, CROS and CCV sites, respectively. Mean pH values 

256 at the studied sites ranged from 6.4 to 7.1, these values being comparable to others 

257 observed in the Mediterranean area  (Pieri et al., 2010).

258 The metal and metalloid content in the bulk atmospheric deposition samples are presented 

259 in Table 5. At the CROS and CCV sites the metal and metalloid fluxes followed a similar 

260 order: Mn>>Fe>>Zn>>Cu>Pb>V≈Ni>>Cd>As≈Mo≈Sb. The deposition fluxes for all 
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261 metals commonly related to the Mn alloy industry (i.e. Mn, Fe, Zn, Cd and Pb) were 

262 significantly higher at the CCV site, which is located only 350 m from the Mn alloy plant. 

263 For instance, average Mn and Fe fluxes reached 2745.3 µg·m-2·d-1and 1600.4 µg·m-2·d-1, 

264 respectively, at the CROS site, and 8881.6 µg·m-2·d-1 and 2545.4 µg·m-2·d-1, respectively, 

265 at the CCV site. At the ETSIIT site the fluxes followed the order 

266 Fe>>Zn>Mn>Cu>Pb>Ni>V>As≈Mo>Cd≈Sb. The mean Mn and Fe deposition fluxes at 

267 the ETSIIT site were much lower than those found at the CROS and CCV sites, whereas 

268 the mean Zn value was slightly higher than that found at the CROS site (211.4 ng·m-3  

269 and 173.3 ng·m-3, respectively). This can be explained by the presence of other industrial 

270 source of Zn, a non-integrated steel plant, which is located 5 km upwind of the ETSIIT 

271 site (see Figure 1). Most of the metal and metalloid deposition fluxes presented in Table 

272 5 are comparable to those obtained in other urban/industrial areas (Amodio et al., 2014; 

273 Brown et al., 2006; Castillo et al., 2013b; Huston et al., 2012; Motelay-Massei et al., 

274 2005; Sharma et al., 2008). However, Mn deposition rates are in general much higher in 

275 comparison with these studies. In this regard, only Menezes-Filho et al. (2016) reported 

276 Mn deposition rates measured in the vicinity of a Mn alloy plant in Simões Filho (Brazil) 

277 in the same order of magnitude than those found in the present work.

278

279 3.3 Metal and metalloid correlations in PM10 and deposition

280 The Spearman correlation coefficients between the measured metals and metalloids in 

281 PM10 and also in the atmospheric deposition (bulk and water-soluble and insoluble 

282 fractions) were evaluated. As Table 6 shows, strong or moderate correlation coefficients 

283 were found in PM10 samples between all metals frequently related to the Mn alloy 

284 industry (i.e. Mn, Fe, Zn, Cd and Pb) (Marris et al., 2012). This interdependence was, in 

285 general, higher for the PM10 samples collected at the CROS and CCV sites, located closer 

286 to the Mn alloy plant, with the exception of Fe-Zn, which presented the highest correlation 

287 coefficient at the ETSIIT site. This could be attributed to the major influence in this site 

288 of a non-integrated steel plant (see Figure 1), known as an important source of Zn and Fe 

289 (Sylvestre et al., 2017), with respect to the greater number of Fe and Zn sources impacting 

290 the CROS and CCV sites (i.e. Mn alloy plant and non-exhaust traffic) (Hernández-Pellón 

291 and Fernández-Olmo, 2019). 

292 On the other hand, as can be seen in Table 6, only a few significant correlations between 

293 specific metals were found for the bulk, water-soluble and insoluble fractions of the 
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294 deposition samples. The interdependence between Mn, Fe, Zn, Cd and Pb increased at 

295 the CCV site, in the proximity of the Mn alloy plant.

296 In addition, as indicated in section 2.4, the relationship between the metal and metalloid  

297 content in deposition samples and the monthly mean metal and metalloid concentration 

298 in PM10 samples corresponding to the same sampling period was evaluated at the ETSIIT 

299 and CROS sites. In this regard, at the CROS site only the content of both Mn and Cd in 

300 PM10 and bulk atmospheric deposition samples presented strong and significant 

301 correlation coefficients (r=0.684, p<0.01 and r=0.680, p<0.01, respectively). These 

302 metals have been previously identified as the main tracers of the Mn alloy plant emissions 

303 (Hernández-Pellón and Fernández-Olmo, 2019). On the other hand, at the ETSIIT site, 

304 located further from the Mn alloy plant, metals and metalloids did not show any 

305 significant correlation between their content in PM10 and deposition samples.

306 3.4. Seasonal variability of metal and metalloid PM10 concentrations and bulk deposition 
307 fluxes

308 The seasonal variability of the monthly average precipitation and the metal and metalloid 

309 concentrations in PM10 samples at the ETSIIT and CROS sites are presented in Figure 3. 

310 At the ETSIIT site, the levels of Fe, Zn, Cd, Pb and to a minor extent Mn, were higher in 

311 autumn, whereas Mo and Cu presented higher concentrations in summer. The levels of 

312 Sb were higher during the cold seasons (i.e. winter and autumn). Nickel and V did not 

313 show any remarkable seasonal variability at this site, with their lowest levels in spring 

314 and winter, respectively. At the CROS site, the highest concentrations were found in 

315 autumn for Mn, Fe, Zn, Cd and Pb. No remarkable seasonal variability was identified for 

316 Ni, Cu and Mo. Although V and As concentrations in PM10 at the ETSIIT and CROS sites 

317 were quite homogeneous throughout the year, the lowest levels were identified in winter 

318 and autumn, respectively. 

319 The major metal and metalloid sources in the Santander Bay are related to the emissions 

320 from the Mn alloy plant and to non-exhaust traffic emissions (Arruti et al., 2011), the 

321 former being the major source of metals and metalloids in the southern part of the Bay 

322 (e.g. CROS and CCV sites) (Hernández-Pellón and Fernández-Olmo, 2019). In addition, 

323 other sources such as a steel-making plant and combustion processes were previously 

324 identified, especially impacting the northern part of the Bay (e.g. ETSIIT site) (Arruti et 

325 al., 2011). Although the emissions from the Mn alloy plant are expected to be quite 
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326 homogeneous throughout the year, the highest concentrations in PM10 samples of all 

327 metals related to the Mn alloy plant emissions (i.e. Mn, Fe, Zn, Cd and Pb) were found in 

328 autumn at both ETSIIT and CROS sites, as can be observed in Figure 3. In this period of 

329 the year, the winds originate mainly from the S-SW direction. Under this scenario, the 

330 plume emanating from the Mn alloy plant is directed towards the sampling sites (see 

331 Figure 1). Despite the fact that the wind pattern in this region is similar in winter and 

332 autumn, the lower metal and metalloid concentrations found in PM10 samples collected 

333 in winter can be explained due to the greater scavenging effect associated with the higher 

334 precipitations registered during this period. In addition, the higher Cu and Mo levels in 

335 summer at the ETSIIT site could be attributed to the greater influence of road traffic as a 

336 result of increased tourism during this period of the year. Also, the concentrations of V 

337 and Ni are quite constant throughout the year, therefore it is likely that ship emissions 

338 from the Santander Bay is the major source of these metals instead of residential 

339 combustion (Arruti et al., 2011; Hernández-Pellón and Fernández-Olmo, 2019).

340 Figure 4 shows the seasonal variability of the bulk atmospheric deposition of metals and 

341 metalloids (µg·m-2·d-1) and the monthly average precipitation at the ETSIIT, CROS and 

342 CCV sites. Less clear seasonal trends were observed for the deposition of most metals 

343 and metalloids, in comparison with the seasonal trends identified for their concentrations 

344 in PM10 samples. The highest bulk deposition fluxes were found in autumn for Mn and 

345 Cd at the three studied locations. The rest of the metals and metalloids showed a different 

346 trend between sites. At the ETSIIT site, the deposition fluxes of most metals and 

347 metalloids were quite homogeneous throughout the year, only Ni presented higher 

348 deposition rates in winter. At the CROS site, the deposition fluxes of V and Ni were 

349 higher in winter, whereas Mo presented higher deposition rates in summer. The 

350 deposition fluxes of Fe, As, Cu, Zn, Sb and Pb were similar throughout the year. At the 

351 CCV site, the highest deposition fluxes were found in autumn for Fe, Ni and Zn and in 

352 spring for V, As, Mo and Sb. In addition, the deposition of Cu was similar throughout the 

353 year, whereas Pb only presented lower deposition rates in winter. 

354 Overall, the highest deposition rates of the metals associated with the Mn alloy plant (i.e. 

355 Mn, Fe, Zn, Cd and Pb) were found during the cold seasons (i.e. winter and autumn), 

356 when the monthly mean precipitations are high and the most frequent winds came from 

357 the S-SW direction.
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358 3.5. Spatial variability of the water-soluble metal and metalloid fraction of the 
359 atmospheric deposition

360 Boxplots of the water-soluble fraction of the measured metals in the deposition samples 

361 collected at the ETSIIT, CROS and CCV sites are presented in Figure 5. At the ETSIIT 

362 site the average water-soluble fractions of the measured metals followed the order Ni 

363 (72%) > Zn (62%) > Cu (60%) > Mn (49%) > V (43%) > Pb (24%) > Fe (10%). In 

364 addition, the order was Zn (51%) > Sb (50%) > Cd=Ni (47%) > Mo (42%) > V (34%) > 

365 As (30%) > Mn (22%) > Cu (21%) > Pb=Fe (7%) at the CROS site and Ni (34%) > Cd 

366 (29%) > Zn (26%) > Mn (23%) > Sb (22%) > V (16%) > Cu (11%) > Pb (9%) > Fe (7%) 

367 at the CCV site. The water-soluble fraction of Cd, Mo and Sb in the deposition samples 

368 collected at the ETSIIT site and of As and Mo in the deposition samples collected at the 

369 CCV site was below the MDL.

370 As can be observed in Figure 5, the water-soluble fraction of most metals increased with 

371 distance from the Mn alloy plant. Only Fe presented similar average water-soluble 

372 fractions at the three studied sites, with a higher variability between samples at the ETSIIT 

373 and CCV sites. A previous study carried out by this research group reported that 

374 deposition samples collected at the CCV site were mostly composed of coarse particles 

375 (between 19.9 and 24.8 µm of diameter), containing SiMn slags, Mn alloys and Mn ores, 

376 attributed to fugitive emissions from the Mn alloy plant (Hernández-Pellón et al., 2017). 

377 According to the literature, the solubility of the metals associated with SiMn slags and 

378 Mn alloys is expected to be low (Thomassen et al., 2001). In addition, fugitive emissions 

379 of coarse particles have low buoyancy (Fulk et al., 2016) and therefore these less soluble 

380 particles will be deposited at the closest receptor sites downwind of the source (i.e. the 

381 CCV and CROS sites), whereas more soluble particles coming from point sources (i.e. 

382 chimneys) will be deposited at longer distances, which can explain the decrease in the 

383 water-soluble fraction of most metals in the atmospheric deposition in the proximity of 

384 the Mn alloy plant.

385 In contrast to these results, a general increase in the solubility in simulated lung fluids 

386 (SLF)s of Fe, Mn, Cu, Zn, Cd, and Pb was previously found in PM10 samples collected at 

387 the CCV site, close to the main industrial sources, with respect to the ETSIIT site 

388 (Hernández-Pellón et al., 2018). Mbengue et al. (2015) also reported the decrease of the 

389 solubility in SLFs of Cd, Mn, Pb, Zn and Cu with distance from the industrial sources in 
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390 PM1 samples impacted by metallurgical activities. In this regard, a previous study showed 

391 that most of the particles identified in PM10 samples collected at the CCV site were 

392 attributed to condensation processes at the smelting unit of the Mn alloy plant. These 

393 particles were characterized by spherical shapes and small sizes and expected to be highly 

394 soluble (Hernández-Pellón et al., 2017). However, as Marris et al. (2012) reported, fine 

395 particles emitted by industrial processes may quickly undergo various physicochemical 

396 transformations that change particle composition, size and structure, forming 

397 agglomerates of metal-bearing particles and other supplementary mixed particles not 

398 primarily presented inside the chimneys.

399 The potential hazard to human health of metal-bearing PM10 exposure is expected to be 

400 higher in the proximity of the Mn alloy plant, where both the metal concentrations in 

401 PM10 and the metal solubility in SLFs are higher. However, although the bulk deposition 

402 fluxes of the metals related to the Mn alloy plant decrease with distance from the 

403 industrial source, the water-soluble fraction of these metals tends to increase. Therefore, 

404 the transfer of metals from air to aquatic and terrestrial ecosystems, as well the potential 

405 hazard to human health due to metal exposure through dust resuspension mechanisms 

406 should be also considered at longer distances from the plant and not only in the vicinity 

407 of the industrial activity. 

408 4. Conclusions

409 A study of the PM10 levels and deposition fluxes of eleven potentially toxic metals and 

410 metalloids was conducted in three urban sites of the Cantabrian region (northern Spain), 

411 located at different distances downwind from a Mn alloy plant. The water-soluble and 

412 insoluble fractions of V, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb and Pb were determined in 

413 the deposition samples. 

414 Among the studied metals and metalloids, the highest levels in PM10 and deposition 

415 samples were found for Mn, Fe, Zn, Cu and Pb. The levels in PM10 samples of those 

416 metals related to the Mn alloy plant (i.e. Mn, Fe, Zn and Pb) were higher in autumn, when 

417 the most frequent winds came from the S-SW direction and the plume emanating from 

418 the Mn alloy plant is directed towards the studied urban sites. Most metals associated with 

419 the Mn alloy industry presented higher deposition rates during the cold seasons (i.e. 

420 autumn or winter), which were characterized by high monthly average precipitations. The 

421 highest bulk deposition fluxes (water-soluble and insoluble fractions) were found in the 
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422 proximity of the Mn alloy plant; however, the water-soluble fraction of most metals 

423 increased with distance from this plant. The highest water-soluble fractions were found 

424 at the site located further from the Mn alloy plant: Ni (72%), Zn (62%), Cu (60%) and 

425 Mn (49%). In this regard, the transfer of metals from air to aquatic and terrestrial 

426 ecosystems, as well as the potential hazard to human health due to metal exposure through 

427 dust resuspension mechanisms, should be considered not only in the vicinity of this 

428 industrial activity, but also at longer distances. 

429 These results will be useful for the health risk assessment of the metal exposure associated 

430 with Mn alloy plants, as well as for the evaluation of the metal burden to soil, water and 

431 ecosystems related to this industry.
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698 Table 1. Operating conditions of the ICP-MS instrument

699

700

701

ICP-MS Agilent 7500

Plasma power 1500 W

RF Matching 1.92 V

Sample depth 7.5 mm

Torch horizontal -1 mm

Torch vertical 0 mm

Carrier gas 0.9 L min-1

Makeup gas 0.1 L min-1

S/C Temperature 2 ºC

Nebulizer pump 0.1 rps

He gas flow rate 4  L min-1

Oxide ratio (156/140) <2%

Doubly charged (70/140) <2%

Measured isotopes in reaction mode 51V, 55Mn, 56Fe, 60Ni, 63Cu, 75As, 66Zn, 95Mo, 
111Cd, 121Sb, 207Pb

Internal standards 89Y, 103Rh, 185Re
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702 Table 2. Metal and metalloid recovery (%) obtained for SRM 1648a and detection limits (ng·m-3) calculated for the determination of the total 
703 metal and metalloid content in PM10 and bulk atmospheric deposition samples.

Element Recovery (%) Detection limit (ng·m-3) Detection limit (ng·m-3) Detection limit (µg·m-2·d-1)
SRM 1648a Quartz fiber filters 150 mm Quartz fiber filters 47 mm Nitrocellulose filters

V 82±3 0.04 0.03 0.01
Mn 90±4 0.51 2.2 0.17
Fe 87±4 35.4 43.7 0.35
Ni 91±7 1.1 2.1 0.06
Cu 90±4 0.73 0.48 0.02
Zn 82±7 19.5 51.6 0.41
As 86±7 0.25 0.01 0.001
Mo n.a. 0.15 0.4 0.003
Cd 91±4 0.02 0.01 0.0004
Sb 72±8 0.20 0.08 0.01
Pb 92±6 0.44 0.26 0.22

704 n.a.: certificated value not available for the reference material (SRM 1648a)

705
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706 Table 3. Metal and metalloid levels (ng·m-3) in PM10 samples: ETSIIT, CROS and CCV sites.

ETSIIT sitea CROS siteb CCV sitec
Element Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max
V 1.82 1.59 1.34 0.21 6.20 1.12 0.97 0.83 0.24 4.27 1.69 1.47 0.95 0.61 4.41
Mn 60.8 24.8 89.3 1.79 398.6 231.8 82.2 308.7 5.86 1279.4 721.9 559.4 654.1 11.3 2061.6
Fe 242.9 149.8 336.1 41.3 2078.8 279.4 216.7 225.5 46.2 1017.7 322.0 290.4 192.8 46.8 714.0
Ni 0.96 1.6 0.70 <l.d. 2.94 1.11 1.96 1.33 1.13 7.12 1.39 2.83 0.77 <l.d. 3.65
Cu 15.7 11.3 22.8 1.70 169.3 14.4 19.6 9.24 8.86 27.6 8.83 7.51 3.83 2.72 16.1
Zn 103.8 78.3 97.0 19.7 500.7 127.9 103.9 104.5 27.6 621.4 198.6 178.7 145.0 <l.d. 602.3
As 0.51 1.25 0.57 <l.d. 1.88 0.44 0.14 0.57 <l.d. 1.83 0.38 0.35 0.18 0.14 0.73
Mo 0.78 0.58 0.98 0.17 6.38 1.03 0.97 0.49 0.27 2.38 0.83 0.84 2.05 <l.d. 11.1
Cd 0.45 0.20 0.77 <l.d. 3.77 1.16 0.28 1.99 <l.d. 8.96 3.47 2.11 3.51 0.11 13.1
Sb 0.27 0.33 0.26 <l.d. 1.34 0.41 0.57 0.33 <l.d. 1.20 0.68 0.72 0.37 0.14 1.32
Pb 15.6 8.14 27.2 0.86 177.6 6.91 7.10 6.88 0.53 23.15 44.8 30.1 38.6 0.35 125.9

707 a January 2015 – January 2016. 56 daily samples.
708 b January 2015 – January 2016. 52 daily samples.
709 c September 2015. 28 daily samples.
710
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711 Table 4. Mean bulk deposition fluxes (µg·m-2·d-1) and accumulated precipitation (mm) at the ETSIIT, CROS and CCV sites.

Site Precipitation (mm) pH Total (µg·m-2·d-1) Soluble (µg·m-2·d-1) Insoluble (µg·m-2·d-1)
ETSIIT 986.0 6.5±0.7 1099.3 273.1 826.2
CROS 1108.0 7.1±0.6 4574.8 836.3 3738.5
CCV 1079.7 6.4±1.2 11998.9 1576.8 10422.1

712

713
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714 Table 5. Bulk deposition fluxes (µg·m-2·d-1) of metals and metalloids, both in the water-soluble and insoluble fractions. ETSIIT, CROS and CCV 
715 sites.

ETSIIT sitea CROS siteb CCV sitec
Element Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max
V 1.3 1.2 0.4 0.7 2.1 5.1 4.3 2.9 1.7 12.1 6.3 6.6 2.7 0.8 11.3
Mn 174.0 149.1 107.0 60.5 416.4 2745.3 2853.8 975.2 930.2 4140.1 8881.6 10439.5 5620.3 525.3 16626.7
Fe 697.7 711.7 227.1 373.4 1077.8 1600.4 1565.2 541.6 479.2 2508.8 2545.4 2075.9 2067.2 192.5 6855.5
Ni 3.2 2.0 4.0 1.0 15.4 4.6 3.5 3.5 1.9 14.4 6.2 5.6 4.1 1.3 15.7
Cu 7.5 7.1 2.0 4.7 12.2 27.7 26.2 6.4 20.4 42.6 39.8 45.7 13.1 6.9 53.3
Zn 211.4 161.8 120.2 111.1 543.3 173.3 154.2 58.1 110.2 316.4 475.5 497.4 197.7 60.5 770.2
As 0.2 0.1 0.1 0.1 0.3 0.5 0.5 0.2 0.2 0.9 0.5 0.4 0.4 0.04 1.3
Mo 0.1 0.1 0.02 0.1 0.2 0.6 0.5 0.5 0.3 2.0 0.4 0.5 0.2 0.03 0.8
Cd 0.03 0.01 0.1 <l.d. 0.3 0.9 0.7 0.6 0.3 1.9 3.8 3.7 1.6 0.7 6.5
Sb 0.03 0.02 0.03 <l.d. 0.08 0.4 0.4 0.2 0.3 0.8 0.3 0.4 0.2 0.1 0.7
Pb 3.9 3.3 1.7 2.0 7.8 16.0 13.5 7.6 6.5 36.6 35.4 40.7 17.0 5.4 54.2

716 a January 2015 – January 2016. 12 monthly samples.
717 b January 2015 – January 2016. 12 monthly samples.
718 c September 2015-December 2016. 12 monthly samples.
719
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720 Table 6. Spearman correlation coefficients between the content of metals associated with the manganese alloy plant in PM10 and deposition (bulk, 
721 water-soluble and water-insoluble) samples at the ETSIIT, the CROS and the CCV sites.

722

723 Bulk: Bulk deposition; W-ins: Water-insoluble fraction; W-sol: Water-soluble fraction; 

ETSIIT site CROS site CCV site

PM10 Deposition PM10 Deposition PM10 Deposition

Bulk W-ins W-sol Bulk W-ins W-sol Bulk W-ins W-sol

N samples 56 12 12 12 52 12 12 12 28 12 12 12

Mn-Fe 0.55 0.11 0.23 0.41 0.61 0.42 0.22 0.73 0.74 0.73 0.75 -0.05

Mn-Zn 0.55 0.53 0.18 0.68 0.76 0.08 0.32 0.63 0.72 0.55 0.66 0.71

Mn-Cd 0.87 0.48 0.24 n.a. 0.90 0.27 0.62 0.45 0.86 0.38 0.47 0.70

Mn-Pb 0.62 0.76 0.66 0.52 0.84 0.49 -0.12 0.66 0.83 0.57 0.60 0.88

Fe-Zn 0.76 0.76 0.41 0.41 0.57 0.08 0.28 0.89 0.53 0.61 0.62 0.42

Fe-Cd 0.65 0.04 -0.16 n.a. 0.59 0.53 0.16 -0.06 0.54 0.41 0.41 0.22

Fe-Pb 0.62 0.53 0.68 0.87 0.54 0.34 0.20 0.74 0.59 0.32 0.34 0.35

Zn-Cd 0.63 0.39 0.18 n.a. 0.80 0.01 -0.38 -0.06 0.84 0.65 0.68 0.74

Zn-Pb 0.68 0.80 0.21 0.53 0.71 0.62 0.11 0.82 0.87 0.44 0.65 0.78

Cd-Pb 0.70 0.48 0.09 n.a. 0.91 0.01 0.34 0.20 0.93 0.81 0.87 0.85
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724 In bold caracter correlation is significant at the 0.05 level
725 n.a.: not available
726

727
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728 Figure captions

729 Figure 1. Sampling sites and main metal and metalloid industrial sources

730 Figure 2. Wind roses during the sampling period at the ETSIIT, CROS and CCV sites. 
731 (a) PM10 and deposition sampling campaigns at the ETSIIT and CROS sites; (b) PM10 
732 sampling campaign at the CCV site; (c) Bulk atmospheric deposition sampling campaign 
733 at the CCV site.

734 Figure 3. Seasonal variability of the metal and metalloid levels in PM10 (ng·m-3) and the 
735 average monthly precipitation (mm).

736 Figure 4. Seasonal variability of the bulk atmospheric deposition of metals and metalloids 
737 (µg·m-2·d-1) and the average monthly precipitation (mm).

738 Figure 5. Spatial variability of the water-soluble fractions of the metal deposition (%) at 
739 the ETSIIT, CROS and the CCV sites 

740
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741

742 Figure 1. Sampling sites and main metal and metalloid industrial sources

743
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744  

745

746 Figure 2. Wind roses during the sampling period at the ETSIIT, CROS and CCV sites. 
747 (a) PM10 and deposition sampling campaigns at the ETSIIT and CROS sites; (b) PM10 
748 sampling campaign at the CCV site; (c) Bulk atmospheric deposition sampling campaign 
749 at the CCV site.

750
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751  

752
753 *As levels in PM10 in summer were below the MDL at the ETSIIT and CROS sites

754 Figure 3. Seasonal variability of the metal and metalloid levels in PM10 (ng·m-3) and the 
755 average monthly precipitation (mm).

756
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757
758
759
760 * Mean Cd levels in the bulk atmospheric deposition were below 0.01 µg/m2day in winter, spring and summer at the 
761 ETSIIT site
762
763 Figure 4. Seasonal variability of the bulk atmospheric deposition of metals and metalloids 
764 (µg·m-2·d-1) and the average monthly precipitation (mm).

765
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766
767 *The water-soluble fraction of Cd in the deposition samples collected at the ETSIIT site was below the MDL.
768
769 Figure 5. Spatial variability of the water-soluble fractions of the metal deposition (%) at 
770 the ETSIIT, CROS and the CCV sites 
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Highlights

 Metal and metalloid PM10 levels and deposition fluxes were assessed near a Mn alloy plant
 The highest levels in PM10 and deposition samples were found for Mn, Fe, Zn, Pb and Cu
 Metal levels in PM10 and deposition were higher in autumn and winter
 Metal water-soluble fractions increased with distance from the Mn alloy plant
 Ni (72%), Zn (62%), Cu (60%) and Mn (49%) showed the highest water-soluble fractions
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