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Abstract

Heterogeneous architectures have become prevalent due to their outstanding performance and

energy efficiency. However, programming these systems is far from trivial. Current heteroge-

neous programming models impose a host-device approach and favour task-parallelism. Ap-

plications developed following these kind of models are executed in the CPU and only certain

compute intensive parts are explicitly offloaded to accelerators. On the contrary, co-execution,

the cooperative operation of all the available devices computing for a single workload in a

data-parallel manner, is overlooked. If desired, the programmer will be in charge of manu-

ally managing the devices, the data distribution and the division of the workload, effectively

expressing co-execution in terms of task-parallelism and representing a significant amount of

work.

For co-execution to be useful it has to be effortless. This means that using every device in the

computation of a single kernel should represent the same work as using a single device. To

achieve this, the programmer needs to be abstracted from the underlying hardware and spared

load balancing decisions. The former enables a transparent use of the whole system that eases

programming and guarantees portability, as the programmer no longer has to worry about the

devices. The latter aids the programmer to obtain good performance from co-execution, as

these decisions are complex, depending on both the irregularity of the co-executed workload

and the heterogeneity of the system itself.

This dissertation makes several contributions towards effortless co-execution in heterogeneous

systems, tackling abstraction and load balancing from both the software and hardware angles.

HGuided and Sigmoid, two novel load balancing algorithms specially designed for co-execution,

are proposed and evaluated, achieving outstanding performance. Maat, a new OpenCL-based

load balancing library has been designed and implemented. It enables the abstract management

of the whole system by providing the illusion of a single device representing all the available

resources. Taking abstraction even further, co-execution and load balancing have also been

implemented in OmpSs, as an evaluation of the interest of co-execution in task-based program-

ming models. Lastly, a design for a dispatcher that enables hardware supported co-execution

in integrated heterogeneous systems is presented and evaluated. These contributions ease the

programming of heterogeneous systems and represent a significant improvement on both per-

formance and energy efficiency.
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Resumen

Gracias a su rendimiento y eficiencia energética, las arquitecturas heterogéneas se han con-

vertido en un elemento común en cualquier sistema de cómputo. Desde el supercomputador 

hasta los dispositivos móviles, todos los sistemas actuales integran CPUs tradicionales y acele-

radores especializados en ciertas cargas de trabajo. La aparición de este tipo de arquitecturas 

también supuso el desarrollo de nuevos modelos de programación que permitieran aprovechar 

sus capacidades. Estos modelos parten de que una aplicación heterogénea se ejecutará prin-

cipalmente en la CPU, mientras que ciertas funciones especialmente intensivas en cómputo y 

masivamente paralelas en datos, serán descargadas en los aceleradores. Esta descarga debe ser 

realizada expĺıcitamente por el programador, el cual es responsable de gestionar manualmente 

cada uno de los dispositivos disponibles, las tareas que ejecutarán y los datos que utilizarán. A 

esta forma de operar se le suele llamar modelo host-device y favorece el paralelismo de tareas, 

pero también desaprovecha la capacidad de cómputo y la enerǵıa de la CPU cuando se ejecuta 

sólo en la GPU. Sin embargo, otra forma de paralelismo también es posible: la co-ejecución.

La co-ejecución se define como la cooperación de todos los dispositivos disponibles en el sistema, 

ejecutando la carga de trabajo asociada a una sola tarea y aprovechando el paralelismo de 

datos. Esto quiere decir que todos los dispositivos ejecutarán el mismo código, pero producirán 

porciones de los resultados disjuntas. Esta aproximación al paralelismo, además, se ajusta a las 

caracteŕısticas de las aplicaciones que habitualmente se descargan en aceleradores, pues estos 

basan sus capacidades en el paralelismo de datos. Sin embargo, los modelos de programación 

actuales no tienen ningún soporte para co-ejecución. Si se desea que los dispositivos cooperen 

en la ejecución de una única tarea, el programador tendrá que repartirla manualmente entre 

los dispositivos, gestionándolos individualmente y transfiriendo los datos que necesiten. En 

definitiva, los modelos de programación obligan a expresar la co-ejecución utilizando paralelismo 

de tareas.

Para que la co-ejecución sea una opción verdaderamente útil, los modelos de programación 

tienen que ofrecer las capacidades necesarias para que los dispositivos cooperen sin precisar 

trabajo adicional por parte del programador. Una co-ejecución que no requiera esfuerzos se 

construye sobre dos pilares: la abstracción y el equilibrio de carga.

La abstracción se refiere a la interacción del programador con el sistema, que debe realizarse a
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través de interfaces de alto nivel, que eviten que el programador tenga que preocuparse de la

gestión individual de los dispositivos. Esto no sólo facilita la co-ejecución, sino que garantiza la

portabilidad de las aplicaciones, pues al abstraer la programación de los dispositivos subyacen-

tes, un código desarrollado en un sistema usará todos los dispositivos disponibles en cualquier

otro.

El equilibrio de carga está relacionado con la división de la carga de trabajo entre los dispositi-

vos disponibles, con lo cual es fundamental para obtener un buen rendimiento. En general, las

decisiones de equilibrio de carga son complejas, pues dependen tanto del comportamiento de la

carga a distribuir como de los propios dispositivos. La carga de trabajo puede tener un com-

portamiento variable o irregular a lo largo de su ejecución, con tiempos de ejecución diferentes

para porciones de trabajo con el mismo tamaño a priori. Este tipo de cargas requieren que los

algoritmos puedan adaptarse para obtener buenos rendimientos. Sin embargo, esta capacidad de

adaptación no representa más que una sobrecarga para las cargas regulares que no la requieren.

Por otro lado, los sistemas heterogéneos incluyen dispositivos con arquitecturas y capacidades

de cómputo muy diferentes. Por tanto, el balanceo de carga tendrá que tener en cuenta las

caracteŕısticas del dispositivo que recibirá cada porción de trabajo. En definitiva, este tipo de

decisiones deben facilitarse al programador lo más posible. Idealmente, la co-ejecución debe ir

acompañada de algoritmos de balanceo de carga que obtengan buen rendimiento sin requerir

ninguna información al programador. Estos son los algoritmos no informados, en contraposición

con los que śı que la requieren, llamados informados.

Esta tesis presenta una serie de contribuciones que posibilitan la co-ejecución eficiente y sin

esfuerzo en sistemas heterogéneos, abordando la abstracción y el equilibrio de carga, tanto desde

un punto de vista software como hardware. En otras palabras, el objetivo de la tesis es ofrecer

los medios necesarios para que ejecutar una tarea colaborativamente, aprovechando todos los

dispositivos del sistema, represente el mismo trabajo para el programador que utilizar uno

sólo de los dispositivos. Para desarrollar esta investigación, se ha recurrido tanto a ejecuciones

reales, como a simulaciones utilizando gem5, la herramienta de simulación estándar de facto

en la investigación en arquitectura de computadores. Para realizar las evaluaciones, se han

utilizado los sistemas de cómputo del grupo de investigación de Arquitectura y Tecnoloǵıa

de Computadores (ATC) de la Universidad de Cantabria, aśı como una máquina del grupo

TRASGO de la Universidad de Valladolid para realizar pruebas de escalabilidad.
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En primer lugar, se proponen HGuided y Sigmoid, dos nuevos algoritmos de balanceo de carga

especialmente diseñados para co-ejecución en sistemas heterogéneos. HGuided es un algoritmo

dinámico que utiliza tamaños de paquete decrecientes, de modo que se reducen las sobrecargas

sin perder capacidad de adaptación cerca del final de la ejecución, que es cuando realmente

es necesaria. Este algoritmo también considera la velocidad de cómputo de cada dispositivo,

de modo que no se asignen paquetes demasiado grandes a dispositivos lentos que generen

desequilibrios. De esta manera, HGuided consigue equilibrar satisfactoriamente la carga tanto

de aplicaciones regulares como irregulares, obteniendo un rendimiento y eficiencia energética

excelentes. Sin embargo, este algoritmo es informado, pues recibe la velocidad de cómputo y

el tamaño mı́nimo hasta el que menguarán los paquetes como parámetros. Esto requiere un

esfuerzo al programador, pues los valores óptimos para los parámetros vaŕıan entre sistemas y

aplicaciones. Por el contrario, Sigmoid es un algoritmo no informado, capaz de monitorizar la

co-ejecución y de adaptar sus parámetros internos al comportamiento de las cargas de trabajo.

Internamente, utiliza una función derivada de la sigmoide para controlar el tamaño de los

paquetes que genera, de modo que tengan tamaños menores si se necesita mayor adaptabilidad.

El resultado es un rendimiento y una eficiencia excelentes, sin requerir ningún esfuerzo por

parte del programador.

Respecto a la abstracción, esta tesis presenta Maat, una libreŕıa de co-ejecución en sistemas

heterogéneos basada en OpenCL. Maat simplifica la co-ejecución significativamente, creando la

ilusión de que el sistema dispone de un único dispositivo que representa la capacidad de cómpu-

to agregada de todos los recursos disponibles. Esta ilusión se construye a través de abstracciones

implementadas respetando la filosof́ıa de programación de OpenCL. De esta manera, se facilita

la adaptación de aplicaciones pre-existentes para que aprovechen la co-ejecución. Maat también

mejora la portabilidad de las aplicaciones, pues una gestión abstracta de los dispositivos per-

mite que una aplicación programada para un sistema funcione en cualquier otro sin necesidad

de modificaciones. Los resultados experimentales demuestran que Maat obtiene rendimientos

cercanos a los ideales y ahorros energéticos importantes para las aplicaciones evaluadas, siendo

Sigmoid el algoritmo de equilibrio de carga que mejores resultados obtiene, seguido de cerca

por HGuided.

Para llevar la abstracción un paso más allá, esta tesis también propone la extensión de modelos

de programación basados en tareas para soportar co-ejecución. Este tipo de modelos facilitan el
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desarrollo de aplicaciones ofreciendo abstracciones de alto nivel que ocultan detalles complejos

de la programación paralela. Sin embargo, tienen carencias importantes en lo que se refiere a

co-ejecución. Como ejemplo para evaluar su utilidad, se ha añadido un nuevo módulo a OmpSs,

pero las conclusiones extráıdas pueden hacerse extensibles a otros lenguajes. Este nuevo módu-

lo hace posible la co-ejecución de una sola tarea utilizando todos los recursos disponibles en

el sistema sin requerir ningún esfuerzo del programador. Además, esta extensión apenas tie-

ne impacto en la infraestructura original de OmpSs o en la forma de programar aplicaciones

utilizándolo. De forma similar, los algoritmos implementados en el módulo respetan las ideas

sobre equilibrio de carga propuestas por OpenMP, que es la base de OmpSs. Se proponen cua-

tro algoritmos. El algoritmo estático genera un único paquete por dispositivo, con un tamaño

proporcional a la velocidad de cómputo de este en relación con la de todo el sistema. El algo-

ritmo dinámico, por el contrario, divide la carga en gran cantidad de paquetes pequeños que se

planifican en tiempo de ejecución. HGuided funciona de manera similar, pero utiliza tamaños

de paquete decrecientes. Por último, Auto-Tune, es una evolución de HGuided capaz de moni-

torizar la co-ejecución, de modo que elimina la necesidad de parámetros, siendo un algoritmo

no informado. Los resultados corroboran que la co-ejecución es beneficiosa para los modelos de

programación basados en tareas, pues facilita el aprovechamiento de todos los recursos dispo-

nibles en el sistema. El algoritmo Auto-Tune consigue el mejor rendimiento medio, ya que es

capaz de adaptarse a las aplicaciones irregulares y de conseguir un rendimiento casi igual al de

Static en las regulares.

Esta tesis también presenta y evalúa un nuevo dispatcher para dar soporte hardware a la co-

ejecución en sistemas heterogéneos integrados. Este tipo de arquitecturas aúnan en un solo SoC

cores CPU y unidades de cómputo GPU, por lo que reducen las latencias y sobrecargas relativas

a la interacción entre los dispositivos. Sin embargo, a pesar de la integración, la CPU y la GPU

siguen tratándose como dispositivos individuales. Estos sistemas permitiŕıan considerar diseños

en los que el programador simplemente lanzara una tarea y fuera el hardware el que se encargara

de distribuirla entre los dispositivos de forma eficiente. Aśı es como opera el nuevo dispatcher:

reparte de forma autónoma work-groups OpenCL entre cores de la CPU y compute units de

la GPU indistintamente. Además, el dispatcher monitoriza el tiempo que tardan en ejecutarse

los work-groups en cada dispositivo. De esta manera, es capaz de desactivar temporalmente la

co-ejecución si predice que la asignación de un work-group a un dispositivo supondrá un retraso.

Esta propuesta ha sido evaluada utilizando el simulador gem5. Los resultados muestran que el
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nuevo dispatcher permite obtener mejoras de rendimiento importantes. Sin embargo, también

genera nuevos retos que pueden limitar la ganancia de rendimiento en ciertos casos, como

contención en el acceso a memoria.

Finalmente, una tesis no sólo representa una respuesta a una pregunta, sino también el co-

mienzo de nuevas ĺıneas de investigación que se construyen sobre el trabajo realizado a lo largo

del doctorado. En primer lugar, los algoritmos de equilibrio de carga constituyen un área de

investigación de gran interés. Los aqúı propuestos se centran en el rendimiento. Sin embargo,

aunque el rendimiento y el consumo energético estén muy relacionados, algunos resultados de

esta tesis muestran que una distribución de carga que maximiza el rendimiento no necesaria-

mente minimiza el consumo. Por este motivo, podŕıa pensarse en algoritmos que tuvieran por

objetivo minimizar la enerǵıa. Por otro lado, los algoritmos propuestos son agnósticos: operan

de forma idéntica para todas las cargas de trabajo. Seŕıa interesante investigar algoritmos que

fueran capaces de analizar el código de la carga a co-ejecutar, de modo que pudieran tomar

decisiones de equilibrio de carga más informadas. Podŕıan incluso decidir enviar toda la carga a

un único dispositivo, liberando al programador de la decisión de cuándo co-ejecutar. Finalmen-

te, desde el hardware, podŕıa investigarse en técnicas para reducir la contención en el acceso a

memoria producida por la co-ejecución, o en diseños de dispatchers más inteligentes, capaces

de identificar patrones de cómputo irregulares.
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Chapter 1

Introduction

Computing systems are the main driving force of science and technology. The need for greater

accuracy, more complex models and greater volumes of data, are the sources for ever growing

computing requirements. In order to match these needs, computer architects have to overcome

technology limitations that challenge the way in which systems are designed. First, it was

Dennard scaling, which gave rise to multicore architectures. Now it is Moore’s law, which has

led to dispute the notion of architectures formed by identical cores. As a result, systems now

accommodate devices specialized in accelerating certain workloads, such as GPUs, FPGAs or

TPUs, that achieve outstanding performance and energy efficiency. This excellent capabilities

have made heterogeneous systems prevalent in the computing world, ranging from supercom-

puting to mobile devices. However, managing the different devices of a heterogeneous system

also poses certain new challenges that need to be addressed. One such is the programming

itself, which is far from trivial, requiring significant expertise if all the potential computing

capabilities of the system are to be leveraged. Furthermore, these systems combine devices

with very different architectures and computing capabilities. This complicates the extraction

of their performance and its portability.

1
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1.1. Programming heterogeneous systems

The development of code for heterogeneous systems currently relies on host-device programming

models. Applications following this approach will run on the CPU, and only certain compute

intensive parts will be offloaded to the accelerators. Offloads have to be explicitly performed,

so the programmer has to decide what to offload and when to do it. Moreover, the management

of the data required by the accelerators has to be explicitly handled too, as devices often have

their own memory spaces. The result is that the programmer is responsible for managing the

whole heterogeneous system and extracting its potential performance, which is a complex task.

For this reason, heterogeneous applications are often tailored to a particular system, requiring

modifications to work on other systems and compromising portability.

Matters get even worse as systems grow. The more accelerators available, the more orches-

tration that is necessary, so fully using all the available computing capabilities is ever more

challenging and hardly portable. Furthermore, failing to use all the devices represents a waste

of energy, as idle devices still consume. So the question is: how can a programmer efficiently

use a modern system, such as the DGX SaturnV, which holds 8 GPUs per node? One answer is

offloading different workloads to each GPU. This is known as task parallelism, and it is limited

by the number of independent tasks that can be extracted from an application. The other

option is co-execution.

1.2. Co-execution

As opposed to task parallelism, co-execution is based on the cooperation of all the available

devices, working on the same problem in a data-parallel fashion. This means that, when

a task is launched, it is split, so each device computes for a portion of the total workload.

Consequently, each device will produce a disjoint portion of the results. This approach lends

itself specially well to heterogeneous environments, as accelerators often base their success on

data-parallelism. Co-execution enables the extraction of all the potential performance of the

system and also favours its efficient use, specially regarding energy consumption, as all the
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resources are contributing useful work instead of idling. Additionally, it does not force the

programmer to generate parallelism through tasks, which sometimes are not easy to extract,

but leverages the parallelism shown by data itself.

Nevertheless, there is an inconvenient. Current programming models favour task parallelism.

This means that if co-execution is desired, the programmer will have to handle it himself. The

management required includes manually splitting the task, handling the input and output data

for each device and explicitly performing the offloads. In short, the programming model requires

to express co-execution in terms of task-parallelism. This effectively turns heterogeneous co-

execution into a second class citizen, requiring a significant amount of work to implement it.

For heterogeneous co-execution to be a useful option, it needs to be effortless. This is, the

execution of a task using a single device should represent a similar effort to its efficient co-

execution using all of them. This is, for example, the operation of the OpenMP parallel

for clause, which enables the easy distribution of the iterations associated to a for loop to the

available threads in a CPU. Effortless co-execution is based on two pillars: abstraction and

load balancing.

1.2.1. Abstraction

To minimize the effort required for co-execution, the programmer should operate the same way

regardless of the system that will execute the application. In other words, he should not have

to be aware of the underlying architecture of the heterogeneous system. This is, all the tasks

that directly depend on the devices should be internally handled. As a result, the programmer

will no longer have to deal with manual offloads or data distribution to each of the individual

devices. This not only eases programming and makes co-execution more accessible, but also

favours portability, as an application programmed for a system will work in a different one

unmodified, regardless of the number and kind of devices it holds.
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1.2.2. Load balancing

The key to extracting all the performance a system has to offer through co-execution, is ad-

equately distributing the workload among all the available devices. In general, the goal is to

come up with a work partition that generates equal execution times in all the devices of the

system, so they all finish simultaneously and idle times are minimized. In a heterogeneous en-

vironment, two aspects must be considered to obtain a balanced distribution: irregularity and

heterogeneity. The former is related to the behavior of the workload, while the latter involves

the devices.

Irregularity refers to the behavior of the co-executed workload throughout its runtime. Certain

workloads, called regular, show equal execution times for equally sized portions of work. On

the contrary, irregular workloads have varying execution times for chunks of work of the same

size. For instance, a sparse matrix-vector product will be irregular, as each row may have a

different number of non-zero elements, while a dense matrix-vector product will be regular.

Consequently, irregular workloads are more challenging to balance, requiring a certain degree

of adaptiveness to react to their changing behavior. However, adaptiveness comes at the price

of overheads, which may harm the performance of regular workloads that do not require it.

Heterogeneity is related to the devices that take part in the co-execution. Heterogeneous

systems include devices with very different architectures and computing capabilities. These

should be taken into consideration to avoid scheduling too much work to a slow device, which

might delay the completion of the whole workload. Furthermore, certain architectures require

to be scheduled more work than others to fully use their resources, extracting all their potential

performance.

Due to these two factors, load balancing decisions are complex, as they depend on the workload

and the co-executing hardware. As a consequence, they should not be left to the programmer.

A useful co-execution scheme should aid the programmer by offering load balancing algorithms

capable of producing balanced work distributions. To make co-execution even easier, these al-

gorithms should also require no input from the programmer. These are uninformed algorithms,
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as opposed to informed ones, which require to be provided with certain parameters to operate.

1.3. Hypothesis

In light of the above, the aim of the work presented in this dissertation will be evaluating the

following hypothesis:

Co-execution can improve the performance and energy efficiency of heterogeneous systems.

However, to achieve this, it is necessary to solve two main problems: abstraction and load bal-

ancing. To prove this, both hardware and software techniques, including different programming

models, will be evaluated. The final goal is to ease the programming of heterogeneous systems,

providing support for effortless co-execution that extracts all the performance available. This

guarantees that the programming work required to efficiently execute a workload using all the

available devices is equivalent to that of using just one.

1.4. Major Dissertation Contributions

The most prominent contributions of the dissertation are listed next. Each of them will be

explained in detail in a separate chapter of this document.

Designing two novel load balancing algorithms: HGuided and Sigmoid are two new load

balancing algorithms that specially target heterogeneous systems. HGuided is an informed

algorithm that regards the computing speed of the devices and uses a diminishing package

size for greater adaptiveness near the end of the co-execution. Sigmoid is an uninformed

algorithm that monitors co-execution to adapt to the behavior of the workload. It uses

the well-known sigmoid function to control the size of the packages it generates. Both

algorithms obtain outstanding results regarding performance and energy efficiency.

Proposing a heterogeneous co-execution library: Maat is an OpenCL library that achieves

effortless co-execution by keeping all the management required by OpenCL under the hood
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and implementing HGuided and Sigmoid. It offers high level abstractions that provide the

illusion of dealing with a single OpenCL device that represents the aggregated computing

capabilities of all the devices of the system. This eases the adaptation of pre-existing

OpenCL applications to co-execution. Maat has been implemented with performance in

mind. It has low overheads and leverages communication-computation overlapping when

possible.

Extending a task-based programming model with co-execution: OmpSs has been extended

to support co-execution as a sample task-based programming model. This enables het-

erogeneous co-execution with an even higher level of abstraction, closer to sequential

programming and not requiring to manage the heterogeneous environment at all. The

new functionality has been implemented with minimum impact to OmpSs and preserving

its programming philosophy, with load balancing algorithms inspired by OpenMP.

Designing a dispatcher for hardware supported heterogeneous co-execution: A new hard-

ware dispatcher for integrated heterogeneous systems has been proposed. It considers

both CPU cores and GPU compute units in the scheduling of the OpenCL work-groups

associated to a kernel launch. Consequently, it enables the programmer to enqueue a

kernel to the heterogeneous system and let the hardware handle co-execution. The dis-

patcher is also capable of throttling co-execution to avoid delays if one of the devices is

found to be too slow. The evaluation of the proposed design has been performed using

the gem5 simulator.

1.5. Methodology

The results presented in this dissertation are based on experimental data obtained from real ex-

ecutions and simulation. This section introduces the platforms used throughout the evaluation,

the selected metrics and the tools used to measure the energy consumption. Apart from the

generic information provided in this section, later chapters may have their own methodology

sections, devoted to the particular details of their experimentation.
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1.5.1. Test platforms

Two different platforms have been used for the experimentation. A system called Batel, be-

longing to Universidad de Cantabria, has been used to carry out most of the performance and

energy evaluation. To analyze the scalability of the proposed load balancing algorithms, Hydra

has been used due to its greater device count, which belongs to Universidad de Valladolid.

Details on the specific configuration of each of the platforms are provided next.

Batel Batel has two CPUs, two GPUs and 16 GBs of DDR3 memory. The CPUs are In-

tel Xeon E5-2620, with six cores that can run two threads each at 2.0 GHz. The CPUs are

connected via QPI, which allows OpenCL to detect them as a single device. Therefore, through-

out the remainder of this document, any reference to the CPU includes both Xeon E5-2620

processors. The GPUs are NVIDIA Kepler K20m with 13 SIMD lanes (or SMs in NVIDIA

terminology) and 5 GBytes of VRAM each [NVI12]. These are connected to the system using

independent PCI 2.0 slots.

Hydra Hydra holds four NVIDIA GeForce GTX TITAN Black GPUs, each one having 15

SIMD lanes and 6GB of VRAM. Its greater number of devices will be leveraged to evaluate the

scalability of the proposed co-execution techniques.

1.5.2. Evaluated metrics

The contributions presented in this dissertation have been evaluated regarding their perfor-

mance and energy consumption. The metrics considered in each case are explained next.

Performance

Performance has been evaluated using the response time of the selected benchmarks. This

includes the time required by the communication between the host and the devices, comprising

input and output data transfers, as well as the execution time of the co-executed workload itself.
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The benchmarks are executed in two scenarios, the heterogeneous system, taking advantage of

the GPUs and CPU, and the baseline, that only uses one GPU.

Based on these response times, two metrics are analyzed. The first is the speedup for each

benchmark when comparing the baseline and the heterogeneous system response times. Note

that, for the employed benchmarks, the CPU is much slower than the GPUs. Then, the

maximum achievable speedup using n devices will not be n, but a fraction over the number

of available GPUs that depends on the computing speed of the CPU for the application. The

speedup for each application using a perfectly balanced distribution has also been used to give

an idea of advantage of using the complete system. They were derived from the response time

Ti of each device as shown in Equation 1.1.

Smax =
1

maxni=1{Ti}

n∑
i=1

Ti (1.1)

The second metric is the load balancing efficiency, obtained by dividing the obtained speedup

by the speedup for the perfectly balanced distribution. The obtained value ranges between 0

and 1, giving an idea of the usage of the heterogeneous system. Efficiencies close to 1 indicate

the best usage of the system is being made. The measured values do not reach this ideal because

of the communication overheads and host-device interactions.

Energy

Regarding energy, the same two scenarios are considered as in the performance evaluation.

However, in the baseline scenario the energy consumed by the idle devices is also taken into

account. This is a fair comparison, as idle devices still consume static energy. Moreover,

using an accelerator while the rest of the system is idle is a typical scenario favoured by host-

device programming. Apart form the total consumed energy, the Energy Delay Product (EDP)

[CCBB15] has also been used. It is a metric that combines performance and energy to evaluate

the efficiency of the system. The tool used to measure the energy of the devices will be

introduced next.
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1.5.3. Energy measurements

To measure the energy consumption of the system it is necessary to take into account the

power drawn by each device. Modern computing devices allow applications to monitor their

functionality and performance. However, the power measured is associated to the device and

not the kernel or process in execution. Together with the fact that it is impractical to add

measurement code to all the test applications, this led to the development of a power monitoring

tool named Sauna. It takes a program as its parameter, and is able to periodically query all

the devices for power measurements throughout the execution of the program.

A significant amount of thought went into the conception of Sauna; the fact that it had to

monitor several devices meant that it had to adapt to the particularities of each one while

giving consistent and homogeneous output data. This started with the different APIs provided

to perform these measurements. For the Intel CPUs, recent versions of the Linux kernel provide

access to the Running Average Power Limit (RAPL) registers [RNR+11], which provide accu-

mulative energy readings. On contrast, NVIDIA provides the NVIDIA Management Library

(NVML) [NVI18] that gives instant power measurements. Naturally, Sauna had to be able

to convert between the two magnitudes. A particularly interesting aspect of the development

process of Sauna was studying the impact of the sampling frequency. In order to keep the

program simple, it was necessary to use a single sampling period for all devices. Given that

the power variations would be similar across devices, the idea seemed feasible.

To find the best frequency, a series of experiments were made for each device in Batel (Section

1.5.1). It was observed that each device reacted differently to the sampling frequency. The

RAPL measurements grew with large frequencies. And more surprisingly, the NVIDIA devices

slowed down noticeably when the sampling frequency was above a given threshold. This actually

meant that the kernel running in the device took longer to complete. Figure 1.1 shows these

effects as the magnitude of the variation of the measured CPU power depending on the sampling

rate, together with the execution time of a Binomial kernel on a NVIDIA GPU. These graphs

suggest adopting a low frequency, however, if the sampling period is too long, fast power

spikes that may appear under irregular loads could be missed, leading to inexact results. As a
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Figure 1.1: Impact of sampling period on power measurement and kernel execution time.

consequence it was decided to use 45ms as the sampling period for all the remaining experiments,

as it balances overhead and accuracy.

1.6. Document Structure

This dissertation is organized as follows:

Immediately following this introduction, Chapter 2 provides some background on the pro-

gramming of heterogeneous systems, including OpenCL and OmpSs, and introduces the gem5

simulator. It also analyses the most notable related work on co-execution, heterogeneous system

abstraction and load balancing.

Chapter 3 defines the load balancing problem formally and presents two novel load balancing

algorithms designed for heterogeneous co-execution. HGuided stems from the need to reduce the

overheads of dynamic load balancing techniques while preserving adaptiveness. The algorithm

is first explained to then elaborate on its limitations. Sigmoid builds on the foundation of

HGuided. It is an uninformed algorithm that monitors co-execution at runtime. The reasoning

to obtain the workload division function of Sigmoid is first introduced to then detail how its

internal parameters are tuned.

Chapter 4 presents Maat, an OpenCL library for effortless heterogeneous co-execution that

provides the programmer with the illusion of handling a single device that represents the ag-

gregate computing power of the whole system. An overview of Maat is provided first, to then

dive into the design of the abstractions that it enables. These strive to preserve the OpenCL

approach to parallel programming to ease the use of the library. The implementation of Maat is
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explained next, to then evaluate the performance, energy and scalability of the load balancing

algorithms implemented in Maat, which are HGuided and Sigmoid.

Chapter 5 introduces an extension to OmpSs, as a sample task-based programming model,

to support heterogeneous co-execution. First, the chapter elaborates on the best design ap-

proach to include co-execution in the OmpSs infrastructure. Then, the proposed load balanc-

ing techniques for co-execution in task-based programming models are introduced which, to

accommodate to the philosophy of OmpSs, resemble the ones of OpenMP. How co-execution

was implemented with minimum impact to OmpSs is explained next to finally evaluate the

proposal in terms of performance and energy.

Chapter 6 proposes a new dispatcher design for co-execution in integrated heterogeneous sys-

tems. The chapter first discusses on the best way to support hardware aided co-execution

in integrated CPU-GPU architectures, both from software and hardware. It then proposes a

design with low impact on both OpenCL and the system architecture. How the dispatcher

throttles co-execution to prevent delays from slow devices is explained next, to then dive into

how the proposed design was implemented in the gem5 simulator. Finally, the proposed dis-

patcher is evaluated in terms of performance, as gem5 currently does not model the energy

consumption of the GPU.

Lastly, the dissertation ends with Chapter 7, which presents some conclusions and future lines

of work.



12 Chapter 1. Introduction



Chapter 2

Background and Related Work

Over the past few years, the development of heterogeneous platforms has been followed by

an effort, both from academia an industry, to produce the necessary tools to efficiently use

this kind of systems. This includes both the required software support to be able to program

heterogeneous devices and the simulation environments to model their architecture and evaluate

their capabilities. The purpose of this chapter is twofold: first, it introduces the key technologies

and tools that the thesis has been built upon, and second, it presents some works that are related

to the research field of co-execution.

2.1. Programming models

The main challenge of programming heterogeneous systems stems from their strength: the

collaboration of several architectures to solve a problem may be highly advantageous, but the

careful orchestration and management of very different devices is a problem to be solved in order

to reap the benefits of heterogeneity. A very common approach is to deem the CPU as the host,

while the rest of the devices are considered accelerators that will run certain offloaded parts

of the applications. This concept, often referred to as “Host-Device Programming Model”,

lies at the core of the two most prominent heterogeneous programming frameworks: CUDA

[KH10a] and OpenCL [GHK+11]. Both frameworks share many features and have a very similar

13
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approach to heterogeneous systems. However, the former is a NVIDIA proprietary technology,

so it is only supported by NVIDIA GPUs. Moreover, CUDA does not support the execution of

a kernel in other kinds of devices, such as CPUs, which forces to develop and maintain several

versions of the same program. For these reasons and considering that one of the goals of the

thesis is being able to adapt to different configurations and types of heterogeneous devices,

OpenCL has been used as a basis for the development and experimentation of this research.

Nevertheless, OpenCL has a caveat. It offers a low level of abstraction, leaving the programmer

alone with the responsibility of manually managing data and devices individually. To explore

a greater level of abstraction, the OmpSs extension to support OpenCL has also been used in

this work, precisely in the areas related to Chapter 5. The following subsections are devoted

to introducing the main features of OpenCL and OmpSs.

2.1.1. Heterogeneous programming in OpenCL

OpenCL [SGS10, KMSZ15], released by the Khronos Group in 2008, is a standard framework

for the development of applications that will run on heterogeneous systems. One of the main

advantages of OpenCL is its adaptiveness, as it is not limited to hardware of a certain type or

from a particular vendor. Given an adequate OpenCL driver, which should be supplied by the

hardware vendors, any application following the specification will run adequately on any device,

ranging from GPUs [KH10b] or Xeon Phi [Rah13] to FPGAs [DGNGT+19]. This allows for the

development of portable applications that can be accelerated regardless of the characteristics

of the underlying system.

OpenCL implements a Host-Device approach to heterogeneous programming, depicted in Figure

2.1. One device, known as the host, is in charge of the management of the heterogeneous system,

while the others act as accelerators, working on the more compute-intensive portions of the work

offloaded to them by the host. To achieve this, OpenCL is formed by two parts: a C application

programming interface (API) and a programming language. The API works as an abstraction

layer. It implements hardware independent functions to manage the heterogeneous devices,

offload work to them and perform data transfers. This works towards one of the main features
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Figure 2.1: The Host-Device programming model.

of OpenCL, which is portability. The offloaded work is expressed in the form of functions

implemented in OpenCL C, a subset of C99 with certain extensions for data-parallelism. The

abstractions offered by OpenCL through its API and the data parallel programming model it

follows will be explained next.

Device abstraction

To guarantee that an OpenCL application can run on any hardware configuration, devices are

treated abstractly. The abstraction is based on four main concepts: compute units, platforms,

contexts and command queues. Devices are defined as a combination of compute units, as

shown in Figure 2.1, which are functionally independent computation elements. For example,

a 4 core CPU is regarded as a combination of 4 compute units or a GPU with 13 stream

multiprocessor as comprised by 13 compute units. Devices are also grouped in platforms,

which are representations of the OpenCL implementations available in the system. These are

usually vendor specific. For instance, lets define system A and system B, depicted in Figure

2.2. System A comprises an Intel CPU and an AMD GPU whereas in system B both the CPU

and the GPU are AMD. Considering the definition of a platform, System A has two platforms,

one for the CPU and another one for the GPU. For System B, in turn, only one platform

would be available, comprising all the devices. The OpenCL specification then defines the

context as a representation of a combination of devices belonging to a platform, that will be
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Figure 2.2: Platform and context possibilities for two sample systems.

used in the computation. In our example systems, one context per platform would be available

in A, while 3 would be possible for B: one containing only the CPU, one containing only the

GPU and a third one containing both the CPU and the GPU. Note that there is no context

in system A comprising both the CPU and the GPU, as they belong to different platforms.

Lastly, the command queue is the abstraction used to communicate with a specific device by

performing data transfers, offloading work or waiting on certain events. The management of

these structures is performed through the API. Considering the above, the initial steps of an

OpenCL application would be:

1. Identifying the available platforms.

2. Selecting a context containing the devices that are to be used.

3. Creating the necessary command queues to communicate with the devices.

Execution abstraction

The OpenCL API offers functions to specify the work to be executed by the devices and perform

the offload operation. Kernels are defined as functions that will be executed by a device. These

represent the work to be performed by each launched thread or, as referred to in OpenCL

terminology, work-item. OpenCL also defines the notion of a work-group as a set of work-items
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that are able to progress in the presence of barriers and that can synchronize. This implies

that the work-items of a work-group need to be executed concurrently in a compute unit, to

guarantee that a switch is possible and relatively inexpensive provided a work-item has to block.

The OpenCL specification enforces this requirement, however the actual mapping of work-

groups to hardware components is both architecture and OpenCL implementation dependent.

Synchronization between work-items belonging to different work-groups is undefined. Kernels

are expressed in OpenCL C which, among other extensions, offers functions that enable the

work-items to identify themselves in their work-group and in the whole body of work-items

that have been launched.

On the host code side, kernels are represented in an abstract manner using a data structure

also known as kernel. These are context and device dependent structures, as the OpenCL C

code needs to be compiled for each of the architectures that will execute it. The API offers the

necessary function to create kernels (data structure), compile them, specify the arguments they

use and launch them. Each kernel offload operation has to be accompanied by a specification

of the number of work-items to be launched in the device and their distribution. This is defined

using two parameters of the kernel offload function: the global work size and the local work size.

The former specifies the total number of work-items to spawn and the latter the number of

work-items for each work-group, implicitly specifying the total number of work-groups. A third

parameter, the global work offset is also available, which acts as a displacement for the work-

item id calculation. These three parameters may have up to 3 dimensions to adapt to different

problems and algorithmic approaches.

Memory abstraction

Considering that the heterogeneous resources of a system are usually independent pieces of

hardware, the memory spaces of a device and that of its host have been traditionally considered

as separated. There are some examples of recent hardware that implements shared memory

between host and devices. However, in this kind of systems, memory sharing is often offered at

the cost of a highly degraded performance due to overheads. For this reason and considering
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that separate memory spaces are still the norm, they have been the focus of this work. Moreover,

the proposed techniques would also apply to shared memory systems if they become a viable

option for performance in the future.

To account for separate memory spaces, data transfers are necessary to both provide the accel-

erators with input data for the offloaded work and to retrieve the results. Furthermore, these

transfers need to be performed in an abstract fashion to preserve portability. The OpenCL

standard defines the buffer as a memory address that is valid in the memory of an OpenCL

device. The OpenCL API offers functions to create buffers on devices and to enqueue read and

write operations on the command queues associated to them. These operations have the host

as originator, so, for example, a read implies a data movement from a device memory to the

host memory. Transfers can also be blocking or non-blocking, to control whether the host has

to wait for the transfers to complete or can continue executing.

For flexibility, OpenCL also defines an abstract memory model. It defines four different memory

spaces as shown in Figure 2.3. Both the Global and Constant memory spaces are shared by

every work-item of a kernel launch, while every work-group has its own Local memory. This is

a programmer managed memory space, commonly used as a scratchpad for fast collaboration
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and data sharing at the work-group level. Each work-item has its own Private memory. The

mapping of memory spaces to actual hardware is implementation dependent.

2.1.2. Task-based programming languages

Writing parallel code is a challenging task, as it requires to orchestrate the execution of several

different devices. This includes managing the distribution of data to the devices as necessary,

and also deciding what parts of the application can be run in parallel and when to launch them.

The resulting applications are often complex and hard to maintain. Task-based programming

languages strive to make the programming of this kind of systems simpler, by keeping it closer

to traditional, sequential programming. Their take on parallelism is based on the task concept,

which is often a function that may be executed in parallel. The programmer is then in charge of

defining tasks and the data they use, leaving the management of their execution to a runtime,

and thus making programming easier.

OmpSs is a programming model, created and maintained by the Barcelona Supercomputing

Center, for the development of parallel applications. It was originally based on OpenMP [ope15]

and StarSs [PBL08] but supports heterogeneous systems, both using CUDA and OpenCL,

through an extension [DAB+11, F. 14].

OmpSs proposes a data-flow driven parallel programming model, in which tasks are asyn-

chronously executed in parallel. Tasks are declared using compiler directives in the code of

the application. The data dependencies between tasks are also declared through pragmas, so

OmpSs can build a dependence graph and automatically execute tasks when their input data

are ready. This is obtained thanks to the two main pieces that build OmpSs:

Mercurium, which is a source-to-source compiler that processes certain directives (prag-

mas) and generates the actual code of the parallel application that will be executed [Mer].

Nanos++ , which is a runtime library that provides the necessary functionality for the

application generated by Mercurium to be able to run. These include the creation of
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#pragma omp task in([n]a) out([n]b)

void task1(int n, int * a, int * b)

#pragma omp task in([n]c) out([n]d)

void task2(int n, int * c,int * d)

#pragma omp task in([n]e) out([n]f)

void task3(int n, int * e, int * f)

#pragma omp task in([n]g, [n]h)

int task4(int n, int * g, int * h)

Figure 2.4: Headers for the tasks.

tasks, the generation and management of the dependence graph, the management of data

and the launch of tasks when their data is available [Nan].

When a parallel program is executed, a thread pool is created with only one thread, the

master, set as active. This thread uses the capabilities of Nanos++ to create tasks as specified

in the pragmas and translated by Mercurium. Figure 2.4 shows the definition of four sample

OmpSs tasks. Tasks are internally identified by work descriptors and added to the dependence

graph, taking into account the information on data provided in the in and out clauses. In our

example, function task1 is defined as a task using a as input and b as output (task2-4 are

equivalently defined). Figure 2.5 shows an example launch of the tasks defined in Figure 2.4

and the dependence graph that it would generate. The master thread then schedules tasks to

the available threads as soon as their input data is ready or, in OmpSs terminology, when their

dependencies are satisfied. In the example, tasks 2 and 3 will be launched as soon as task 1

finishes, while task 4 will have to wait for the termination of tasks 2 and 3 to be executed.

2.2. Heterogeneous system simulation in gem5

Gem5 [BBB+11] is a modular simulation platform for computer-system architecture research,

encompassing system-level architecture as well as processor microarchitecture. It provides

several interchangeable CPU models, ranging from a simple processor to a detailed out-of-order

CPU model, and four different architectures: Alpha, ARM, SPARC and x86. For the memory
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// Initializations

task1(n, v1, v2);

task2(n, v2, v3);

task3(n, v2, v4);

task4(n, v3, v4);

#pragma omp taskwait

//Free resources

(a) Launch of the tasks.

1

4

2 3

(b) Generated DAG.

Figure 2.5: Code for the launch of the tasks and generated OmpSs dependence graph.

subsystem, gem5 features Ruby, an event-driven simulator that models caches, crossbars, snoop

filters and the DRAM. Gem5 supports two execution modes: syscall emulation, in which only

the binary of an application is executed in the simulated system, and full-system, in which the

complete OS is executed. All these capabilities make Gem5 the de facto standard architecture

simulation tool in academic research. Regarding heterogeneous systems, the stable version

of Gem5 includes a GPU model that represents an integrated SoC with support for shared

virtual memory with the host CPU. This feature and its OpenCL backend, which are specially

interesting for the study of integrated heterogeneous systems, will be explained next.

2.2.1. The GPU model

To simulate integrated heterogeneous systems, gem5 offers the GPU model. Proposed in

[BMB15, GBD+18], it is modelled after the architecture of GCN AMD GPUs [AMD12]. In

GCN, the GPU is formed by a set of compute units, an example of which is depicted in Figure

2.6. Each compute unit holds 4 SIMD units that can process 16 work-items in parallel and a

private L1 data cache. Each group of 4 compute units shares an L1 instruction cache, while

the L2 is distributed and shared among all the compute units. L1 caches are write-through, so

they are kept coherent with the L2 cache, which is write-back. Both are virtually addressed,

so the memory hierarchy is integrated with x86 microprocessors and the memory space shared.

Coherence with main memory is kept through a protocol called Viper. All the compute units

also share a front-end, which is in charge of storing the information of kernels and dispatching
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Figure 2.6: Representation of the GCN compute unit. Taken from: White Paper. AMD
GRAPHICS CORES NEXT (GCN) ARCHITECTURE [AMD12]. Copyright AMD

work-groups to compute units. Regarding the complete GCN heterogeneous system, the CPU

and GPU are two independent devices that can communicate and share the main memory.

2.2.2. OpenCL support

As explained in Section 2.1.1, OpenCL devices require a driver to communicate the runtime and

the hardware through the OS. Adequating the GPU model to the working of a real driver would

be very complex, as would be implementing a new, tailor-made driver. The implementation of

the gem5 GPU model chooses to avoid the OS altogether, by implementing its own OpenCL

backend and executing in syscall emulation mode. Consequently, OpenCL applications need to

be compiled using a modified library that calls the necessary specific functions of the backend.

Kernels also require a special treatment. They need to be compiled using CLOC, an offline

compiler that generates an HSA object, which is then interpreted by the gem5 GPU model.

Two important limitations are worth noting. First, the GPU Model does not implement the

complete GCN ISA. As a result, certain valid OpenCL kernels are rejected by the OpenCL

backend and generate an error when the application is executed. This has proven an issue when

running benchmarks on the simulator. Second, the backend and modified OpenCL library have

no support for the execution of OpenCL on CPUs. This limitation will be addressed in the
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implementation of hardware support for co-execution.

2.3. Related Work

Heterogeneous architectures have quickly permeated every computing system, ranging from

large scale supercomputing servers to portable devices. This proliferation has given rise to

an interest in how to adequately use the extra computing power and efficiency that these

architectures offer [KC18]. This is a multi-faceted problem, as it involves hiding both the

difficulties of handling several devices and the complexity of load balancing, which may be

deeply influenced by the available devices and the workload to co-execute itself.

2.3.1. System abstraction

To abstract the programmer from the management of the resources available in the hetero-

geneous system, a framework is usually offered. It acts as an intermediate layer, separating

the programmer from the underlying heterogeneous programming framework, such as OpenCL,

and providing access to a virtual device that represents the whole system. This is achieved by

using a combination of runtimes [LSPM15, YWTC15, PG14, HCY+14, APnBF16, DMSD16,

BBK17, GLMR13, LSM15, ZH13, KSL+12, LSPM13, CGS+15], compilers [KKLL11, KSL+12],

kernel code modifications [HCB16, LSM15, LSPM13, LSPM15], libraries [dlLTBR12] and hard-

ware support [CGS+15]. Out of these works, [LSPM15, PG14, KKLL11, HCB16, dlLTBR12,

LSPM13] target co-execution, whereas the rest focus on task-parallel approaches. These orches-

trate the execution of different tasks or kernels and manage data dependencies, in a similar man-

ner to OmpSs. On the contrary, co-execution poses the special challenge of keeping the memory

of the devices consistent, as they all collaborate on the computation of a single kernel. To do so,

these frameworks either keep track of data differences to merge the results in the GPU at the end

of the execution [PG14], or perform complex buffer access analysis to identify patterns and split

data accordingly among each of the available devices [KKLL11, LSPM15, HCB16, LSPM13].

These are often costly operations that represent a significant overhead.
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2.3.2. Load balancing

The key to efficiently using a heterogeneous system is an adequate distribution of the workload

among the available resources. Task-Parallel approaches often take load balancing decisions

based on the history of prior executions. Several works have followed this path, either by

building a regression model [YWTC15], using greedy algorithms [HCY+14], implementing a

kernel and device profiler [APnBF16] or identifying history-based energy efficient work schedules

[DMSD16]. Another common approach is the traditional technique of work-stealing [BBK17,

GLMR13]. To completely use the available resources, other works propose to concurrently

launch a second independent kernel to a device, if the first one is detected to not fully use the

hardware capabilities [LSM15, ZH13].

The problem of co-execution poses different challenges from those of task-parallelism, as the

potentially varying behavior of kernels and devices needs to be accounted for. Several publi-

cations have tackled co-execution via different kinds of static approaches [KKLL11, LSPM13,

dlLTBR12, KGCF13, ZRL15, LSPM15, HCB16]. These works are remarkable efforts towards

the efficient use of heterogeneous systems, but lack the necessary adaptiveness to represent

an all-around solution to the load balancing problem. Other authors propose training-based

load balancing schemes, either using previous execution information only [SMV10] or based on

calculating a performance model [LHK09]. These works lack adaptiveness too, as they only

perform well for known applications and do not address irregularity.

To be able to adapt to the singularities of every workload and device configuration, dynamic

approaches, that are capable of making decisions at runtime, are necessary. These usually

involve two steps: tracking the behavior of the kernel to identify the computing capabilities of

the devices at runtime and modifying package sizes accordingly, so imbalance and overheads are

avoided. To try to discover the ideal package size, some works monitor the observed throughput

by using increasing package sizes until no performance improvement is detected [PG14], while

others use throughput to tune CPU package sizes to avoid imbalance, while using a fixed size

for the GPU [NVCA14]. However, these works fail to properly address the importance of

irregularity. Others use the first portions of the workload as ”probes” to get information to
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schedule the rest of the workload statically [KBS+14, BSCJ13] using a predicted computing

speed. Another work found that, for regular applications, the GPU throughput follows a

logarithmic curve with respect to the package size. To address this behavior, [BBG13] replaces

the static distribution of [KBS+14, BSCJ13] with a weighted self-scheduling scheme. However,

these techniques do not sufficiently address applications with irregular behavior as they assume

that the probe packages launched in the initial phase are representative of the whole load.

The observation that GPU throughput follows a logarithmic curve has also been used to model

the behavior of irregular applications. The hypothesis is that irregular applications show dif-

ferent local logarithmic curves depending on the behavior of each execution region. This has

been used to create a mathematical model that predicts the throughput of the next package

based on a logarithmic approximation of the throughput of the previous packages [VAN+15].

Some authors propose load balancing techniques that take both performance and energy into

account. For instance, GreenGPU dynamically distributes work to GPU and CPU, minimiz-

ing the energy wasted on idling and waiting for the slower device [MLC+12]. To maximize

energy savings while allowing marginal performance degradation, it dynamically throttles the

frequencies of CPU, GPU and memory, based on their utilization. Frequency scaling and inter-

processor work distribution are also used in [WR10] to minimize energy consumption under a

given execution time constraint.

2.3.3. Integrated heterogeneous systems and hardware support

Architectures that integrate CPU cores and GPU compute units in a single chip are one of

the options to reach the exascale, as represented by the EHP design introduced in [VEL+17].

Nevertheless, the orchestration of CPU and GPU poses challenges of its own, as the effects of

sharing certain hardware elements is yet unknown. This is the reason why this kind of systems

are an active research field. One of the topics that has generated the most debate is the sharing

of the memory between CPU and GPU, which has been studied in [GGG+16, HKW14, HKW15].

Another hot topic in heterogeneous systems is maintaining the memories of the CPU and

the GPU coherent. A proposal to do so was presented in [PBG+13]. However, this kind
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of techniques may sometimes represent a significant performance degradation. That is why

[ANE+16] uses methods to selectively cache the data needed by the GPU to keep the coherence

protocol from generating inefficiencies. This technique was designed for discrete systems, but

it could also be interesting in integrated environments. Some authors propose to use the CPU

to guide the execution of the GPU. Such is the case of [YXMZ12], in which the CPU executes

a simplified version of the code of the GPU, which effectively acts as a prefetcher.

Parallel systems can also be more efficiently used by providing hardware support to capabili-

ties offered by the software. This sometimes results in significant performance increases with

small hardware changes. The work presented in [CMC+16] enables the hardware to reconfigure

itself through DVFS using task criticallity information. TDM [CAM+18] tracks task depen-

dence information in hardware, significantly reducing the overheads of task-based programming

models.



Chapter 3

Load balancing algorithms for

co-execution

One of the keys for the successful use of a parallel system is deciding how the workload is dis-

tributed. Consequently, load balancing is a classic computing problem, that has always caused

interest in the research community. Nowadays, systems have gone heterogeneous, integrating

more and more devices and adding more complexity to the task of efficiently using their capabil-

ities. This has opened up a new field of investigation on load balancing. A fair amount of effort

has been devoted to devising techniques to adequately distribute tasks among the devices of a

heterogeneous system, so it is efficiently used. However, the problem of splitting a single work-

load among all the devices has not been sufficiently addressed. Co-execution allows for a more

efficient use of the system, as its parallelism is not limited by the number of available tasks.

Moreover, it makes the programming of heterogeneous systems easier, offering an approach

closer to sequential programming, similar to OpenMP. This chapter presents HGuided and Sig-

moid two novel load balancing algorithms specially designed for heterogeneous co-execution.

For their adaptiveness, these algorithms succeed at adequately balancing both regular and ir-

regular workloads, and by eliminating the need for user parameters, they represent a significant

step towards effortless heterogeneous co-execution.

27
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3.1. Requirements for heterogeneous co-execution

As introduced in Section 1.2.2, an accurate load partition will minimize the time that the

devices spend idling, so both performance and energy efficiency are improved. This is a complex

decision, as it requires the behavior of the co-executed kernel, the computing capabilities of the

devices and the communication overheads to be taken into account. Regular kernels benefit

from dividing the workload in fewer portions, best results often being achieved when a single,

appropriately sized chunk, is generated per device, so communication overheads are minimized.

On the contrary, irregular kernels require finer grained load balancing, specially near the end

of the execution, to achieve the necessary adaptiveness to avoid imbalances. As a result, for

an algorithm to successfully balance both regular and irregular workloads, it has to preserve

enough adaptiveness without excessively penalizing regular workloads that do not require it.

This chapter proposes two new load balancing algorithms that address these requirements. The

Heterogeneous Guided (HGuided) algorithm does it by using decreasing package sizes, tuned

to the computing speed of the executing device. This algorithm achieves excellent results both

for regular and irregular kernels, but still does not represent a truly effortless option for co-

execution, as it is an informed algorithm, requiring certain parameters from the programmer.

Accurately setting the values for these parameters requires certain effort and expertise, and

failing to do so sometimes represents significant performance degradation. For this reason,

this dissertation proposes a second novel load balancing algorithm that does achieve effortless

co-execution: the Sigmoid, which not only is uninformed, but also delivers even slightly better

performance than HGuided. It does so by monitoring the kernel execution and making load

balancing decisions at runtime, to better adapt to the behavior of the kernel that is being

executed. The following sections are focused on providing a deeper insight on HGuided and

Sigmoid. The algorithms have been implemented as part of Maat, a load balancing and system

abstraction library presented in Chapter 4, which also evaluates them.
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3.2. Problem Definition

Before diving into the algorithms themselves, lets first define the load balancing problem in

terms of the information available to the algorithms, which will be used in their description.

Lets define a heterogeneous system H = {D,S}, where D is a set of N devices {d1, ..., dN} and

S = {s1, ..., sN} their corresponding computing speeds, expressed in work-groups per second,

and a kernel K that launches W work-items. The value for si depends on its associated device

di, but also on K, as devices do not show the same speed for every kernel. Work-items are

grouped in G work-groups, each of fixed size Ls = W
G

, and Gr is the number of work-groups

remaining to be scheduled. Since inter-work-group communication is undefined in OpenCL, it

makes sense to choose the work-group as the unit of distribution.

In general, the response time of di running Wi work-items will be Tdi = Wi

si
, and that of H

running K will depend on the last device to finish its work TH = maxNi Tdi . As a result,

a load balancing algorithm will strive to find a distribution of work to the devices so that

Tdi ≈ Tdi+1
∀i ∈ [1, N ]. This is, a balanced work partition. Also, since the whole system is

capable of executing W work-items in TH , it follows that its total computing speed for this

partition is sH = W
TH

. Note that it also can be computed as the sum of the individual speeds of

the devices.

sH =
W

TH
=

N∑
i=1

si

The goal of a load balancing algorithm is to determine the number of work-groups to assign to

each device, so that all the devices finish their work at the same time. This means finding a

tuple {α1, ...αn}, where αi is the number of work-groups assigned to the device i, such that:

TH = Tid1 = · · · = TdN ⇔
Lsα1

s1
= · · · = LsαN

sN

This set of equations can be generalized and solved as follows:
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TH =
Lsαi
si
⇔ αi =

THsi
Ls

=
THsiG

W
=

siG∑N
i=1 si

Since αi is the number of work-groups, its value must be an integer. For this reason:

αi =

⌊
siG∑N
i=1 si

⌋

If there is not an exact solution with integers then
∑N

i=1 αi < G. In this case, the remaining

work-groups are assigned to the fastest device.

To try to find the values for αi, load balancing algorithms often group work-groups into a

number np of packages, either equally or differently sized, that will be correspondingly offloaded

to the devices. However, achieving load balance is not the only figure of merit. A dynamic

work distribution of a regular workload that uses np = G is likely to achieve almost perfect

load balance, but also poor performance, due to inefficient device use and excessive overheads.

Therefore, a good load balancing algorithm will attempt to obtain very close execution times

for a balanced work distribution and a small np to avoid overheads and appropriately use the

devices.

3.3. The HGuided Algorithm

3.3.1. Overview

Considering that different applications show different behaviors, for a single load balancing algo-

rithm to successfully adapt to different computing patterns, it needs to be dynamic, distributing

the kernel at runtime. This is, it must split the workload into relatively small packages, whose

number is larger than the amount of devices in the system. Packages are then scheduled at

runtime on demand, achieving a certain degree of adaptiveness, determined by np, to avoid

imbalances near the end of the execution. Applied to a heterogeneous environment, following a
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host-device approach to parallelism, a thread running on the host will be in charge of assigning

packages to the different devices, following the strategy depicted in algorithm 1.

Algorithm 1: Sample dynamic algorithm

Input: The number of work-groups G, a set of N devices with sj default computing
speeds

Gr ← G (Number of work-groups)
for j ← 1 to N do

x← Gr
c← package size(dj, x)
Schedule c work-groups on device dj
Gr ← Gr − c

end
while Gr > 0 do

(dj, c, t)← Wait for any device
x← Gr

c← package size(dj, x)
Schedule c work-groups on device dj

end

The decision of what package size to use has been intentionally left out of the previous algorithm

outline. A common approach for a basic dynamic algorithm is to split the workload into small,

fixed size packages. Such an algorithm adapts to the irregular behaviour of some applications.

However, each completed package represents an interaction between the device and the host, in

which data is exchanged and a new package is launched. This overhead has a noticeable impact

on performance. Therefore, np needs to be kept as low as possible without compromising

adaptiveness. Moreover, when considering heterogeneous systems, in which devices usually

show significant computing speed differences, a fixed package size dynamic algorithm is not the

best choice. This is because big package sizes are likely to produce imbalances, by scheduling

the last package to the slowest device, while small ones will increase overheads and potentially

inefficiently use fast devices.

The Heterogeneous Guided algorithm (or HGuided) is a novel take on load balancing that strives

to better address the particularities of heterogeneous systems and irregular workloads. It follows

a dynamic scheme and uses diminishing package sizes, in a similar fashion to the OpenMP

Guided algorithm [ope15], to keep np under control, while fine grained adaptiveness is preserved

near the end of the execution. This is, when load balancing decisions may be determining.
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HGuided also considers the computing speed of the device that will receive the package, in

order to properly use the computing capabilities of all the devices and avoid imbalances. The

package size for device di is calculated as follows:

package sizei =

⌊
Gr

CN
· si∑N

j=1 sj

⌋

Note that the first term gives decreasing package sizes, as a function of the number of pending

work-groups Gr, the number of devices N and a constant C. Gr will vary throughout the exe-

cution of the kernel, starting at W and decreasing as packages are scheduled, until 0 is reached.

C is introduced to control the size of the first package, which will be the biggest generated

by the algorithm, so it does not represent excessive computation in irregular workloads. This

constant was empirically fixed to 2 in the experimental evaluation. This is a common value

often used in OpenMP [ope15]. The second term adjusts the package size with the ratio of the

computing speed of the device si to the total speed of the whole system. Therefore, the size of

a package depends on the device that will execute it. Consequently, np will vary according to

the order in which packages are launched to the devices. This can differ greatly between runs,

especially under irregular workloads.

This function produces steadily decreasing package sizes as shown in the top graph of Figure 3.2.

However, excessively small packages may generate overheads and inefficiently use the devices.

To prevent these issues that might have a negative impact on performance, a minimum package

size is defined. It acts as a lower bound for the size of the packages, which will not decrease

beyond its value. This, together with the computing speed of the devices, are parameters

required by the algorithm. The computing speed may be computed by performing a preliminary

run of the kernel on each of the available devices.

The HGuided algorithm strikes a balance between adaptiveness and overheads. It does so by

using large packages at the beginning of the execution, which reduces overheads, and decreasing

their size near the end of the execution, improving the accuracy of the load balancing. In

addition, this is done while keeping the utilization of the devices nearly constant throughout
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Figure 3.1: Computing speed comparison for Binomial.

the execution. This is because excessively small packages are avoided, which have a strong

impact on performance. HGuided is evaluated in detail in Section 4. This algorithm has been

used in other works such as EngineCL [GNT+19], in systems that hold FPGAs.

3.3.2. Limitations

HGuided generates fewer packages than a base dynamic approach, thus reducing overheads and

improving performance. Nevertheless, it still has certain weaknesses. For instance, HGuided

still does not fully leverage the capabilities of the devices. The top graph of Figure 3.1 shows

the evolution of the computing speed, expressed in work-groups per second, when a system

runs the Binomial kernel using the HGuided algorithm. Notice that, for a significant portion

of the execution, the devices are going slower than they could.

This is because HGuided produces linearly decreasing package sizes, as shown in Figure 3.2 for

the same benchmark. The result is a great deal of small packages near the end of the execution

that can’t exploit all of the computational resources of the most powerful devices. These may

be particularly impactful for regular kernels, which do not require adaptiveness and benefit

from lower amounts of packages.

The HGuided algorithm is also an informed algorithm, requiring the minimum package size and

the computing speeds to be set as parameters from the programmer, which strongly condition

the success of the load balancing. To be accurately set, they require costly, per-kernel and per

system sweeps, as the best values may vary widely between kernels. Moreover, some kernels are
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very sensitive to the parameters, delivering highly degraded performance when using slightly

off-key values. This results in dozens of tuning executions, which represent a waste of time,

resources and energy. Furthermore, this is unfeasible in dynamic environments, such as a

data center or cloud, where different applications may run on different systems, with an a

priori unknown matching. The Sigmoid algorithm, which is presented next, solves these issues

to constitute a truly effortless load balancing algorithm, requiring no intervention from the

programmer to achieve near-optimal performance under both regular and irregular workloads.

3.4. The Sigmoid Algorithm

The Sigmoid algorithm was conceived in an effort to fulfill the requirements for a truly effortless

uninformed load balancing scheme, which are listed below:

1. It should optimally divide a single massively data-parallel kernel between a set of hetero-

geneous devices.

2. It should evaluate the computational performance of the devices with a minimum over-

head.

3. It should deliver good results with any type of kernel; regular or irregular.

4. It should not require any configuration from the programmer.
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3.4.1. Overview

To accomplish these objectives, Sigmoid is a dynamic and heterogeneous algorithm, because it

is able to distribute the workload among devices at runtime, proportionally to their computing

power. By matching the package size to the computing speeds of the devices, excessively large

packages are not assigned to slower devices, and the use of more powerful ones is maximized. It

is also adaptive, since it is capable of modifying its operation to suit the type of kernel under co-

execution. It will divide regular kernels in larger packages to reduce overhead, and use smaller

ones for irregular kernels, as it is impossible to predict their execution time. To do this, it

continually measures the performance of the devices and tunes a number of internal parameters

accordingly. Unlike other proposals [BBG13, BSCJ13, NVCA14], this parameter tuning is

performed transparently to the programmer and without significant loss of performance. Thus,

Sigmoid behaves equally well with both regular and irregular applications. Finally, it is a guided

algorithm, since package size, which is initially proportional to the computing power of each

device, decreases towards the end of the kernel execution.

Since Sigmoid takes a dynamic approach to load balancing, it first launches an initial package

to each of the available devices and then waits until any of them completes their execution.

The packages are sized in accordance to an initial computing speed, based on the GFLOPs

reported by the specs of the devices. When one finishes the execution, if there is pending work,

a new package is generated and issued to the idle device. To improve the load balance, the size

and response time of completed packages are analyzed to tune the internal parameters of the

algorithm throughout the execution of the kernel.

How the package size evolves throughout the execution of a kernel is key to an efficient load

balancing. This is because package size poses a dilemma: smaller packages garner greater

adaptiveness, but also greater overhead. Moreover, computing speed is sometimes correlated

with the amount of work launched to a device, so small packages often lead to suboptimal

performance that is not representative of the actual capabilities of the hardware. The impor-

tance of this phenomenon has been already addressed in [BBG13]. Thus, a good load balancing

algorithm will attempt to keep computing speeds and, consequently, package sizes as high as
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possible, while not compromising adaptiveness.

To calculate successive package sizes, Sigmoid relies on a function that issues big packages

for most of the execution and, gradually, smaller ones at the end, which reduces overheads

while maintaining adaptiveness. The decrease rate of the package size is adjustable through an

internal parameter, which varies depending on the behaviour of the kernel.

To calculate successive package sizes, Sigmoid relies on a function that issues big packages for

most of the execution and, gradually, smaller ones at the end, which reduces overheads while

maintaining adaptiveness and keeping device utilization high. This is depicted in Figures 3.1

and 3.2, which compare the computing speed and package size evolution when executing the

Binomial benchmark with the HGuided and Sigmoid algorithms. Note how Sigmoid generates

fewer and bigger packages, maintaining computing speed high for longer. The decrease rate of

the package size is adjustable through an internal parameter, which varies depending on the

behaviour of the kernel.

Sigmoid uses the size and response time of executed packages to detect if the kernel is irregular,

and adjust the decrease rate to generate smaller packages, if more adaptiveness is required.

The algorithm also automatically identifies an adequate minimum package size that strikes

a balance between adaptiveness and performance, and calculates the computing speed of the

devices to avoid imbalances. The result is an algorithm that adapts to the behavior of kernels.

This is shown in Figure 3.3, which compares the package sizes generated by HGuided and

Sigmoid for an irregular kernel. Again, HGuided generates linearly decreasing package sizes,

although a certain distortion can be appreciated due to irregularity. Sigmoid, in turn, uses

variable package sizes to adapt to the kernel. This can be seen in the humps near the end of

the execution of GPU0 and GPU1, which account for computing speed variations associated to

package workload differences. An exhaustive package size evolution analysis has been carried

out for every evaluated application, however it has been left out due to space limitations.

Figures 3.2 and 3.3 have been found representative of the behavior of regular and irregular

kernels respectively. A high level description of the algorithm can be seen in Algorithm 2. The

following sections explain the different internal parameters and functions of the algorithm.
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Algorithm 2: Sigmoid algorithm

Input: The number of work-groups G, a set of N devices with sj default computing
speeds

Gr ← G (Number of work-groups) k ← kr for j ← 1 to N do
ocj ←Occupancy lower bound for device dj
x← Gr
c← package size(dj, x, k)
c← max(c, p · t · sj, ocj) Schedule c work-groups on device dj
Gr ← Gr − c

end
while Gr > 0 do

(dj, c, t)← Wait for any device
sj ← Average of the last 3 computing speeds ( c

t
)

σsj ← Standard deviation of last 3 computing speeds

if
σsj
sj
> 0.2 then

k ← ki
end
x← Gr c← package size(dj, x, k)
c← max(c, p · t · sj, ocj) Schedule c work-groups on device dj
Gr ← Gr − c

end

3.4.2. The logistic function and the load balancing problem

The logistic function is used to model processes that can be observed in many fields, ranging

from biology or medicine to machine learning [DOM02, Bis06]. This function, conveniently

transformed, is the foundation of the Sigmoid load balancing algorithm. It is defined by the

following equation and a graphical representation is shown in Figure 3.4.

logistic function(x) =
L

1 + e−k(x−x0)
(3.1)

To apply the function to the load balancing problem, variable x will represent the amount

of remaining work-groups. Consequently, it will be monotonically decreasing and take values

between G, the total number of work-groups that have to be processed, and 0. As x will always

be positive, parameter x0 is eliminated. The maximum value of the function, L, will represent
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the size of the largest package. It can be seen in the figure that for x = 6 the function yields

a value close to the asymptotic maximum. Since the scheduling unit is relatively coarse, this

is considered enough, and Sigmoid will only use the function in the [0, 6] interval. Variable k

is the slope of the curve. The following lines show in detail how the internal Sigmoid function,

represented in Figure 3.5, is derived from the logistic function.

Let Gr be the number of remaining work-groups. As the aim is to obtain a function f that

produces decreasing package sizes as the execution of the kernel progresses, Gr will be used as

the x in the logistic function. However it will be normalized to the total work-groups G and

scaled to 6 to map it to the [0, 6] interval.

f(Gr) =
L

1 + e−k
6(Gr)

G

(3.2)

So far, since 0 ≤ Gr ≤ G, then f(Gr) returns values between L
2

and L. It is necessary to

transform this to appropriate package size values, which should have their minimum at 0. First,

the range of the function is mapped to the [0, L] interval by multiplying by 2 and subtracting

L.

f(Gr) =
2L

1 + e−k
6(Gr)

G

− L (3.3)

And second, it is necessary to find L, which is the maximum value the function will take, and

will be used as the size of the first package scheduled by the algorithm. The chosen value is
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G
2N

, which is equivalent to the initial package size commonly used by both the OpenMP Guided

algorithm [ope15] or the HGuided using a C value of 2.

f(Gr) =
2 G
2N

1 + e−k
6(Gr)

G

− G

2N
(3.4)

To account for the heterogeneity of the system, a correction based on the computing speed of

the device is added. The speed si is defined as the number of work-groups that device di can

compute per second. Similarly, the aggregated computing speed of the system is represented

by sH . And given the number of remaining work-groups Gr, the size of the next package for

device di, using a slope k, is as follows.

Package size(i, Gr, k) = f(Gr)
si
sT

=

(
2 G
2N

1 + e−k(6
Gr
G

)
− G

2N

)
si
sT

=
1− e−k(6Gr

G
)

1 + e−k(6
Gr
G

)

G

2N

si
sT

(3.5)

This function is used to obtain the size of the packages, but to avoid excessive overheads the

size is not allowed to drop below two lower bounds. How Sigmoid automatically obtains these

two values and the slope of the function is explained next.

3.4.3. Automatic parameter tuning

The above expression requires a series of parameters. Some of them are known beforehand,

like the number of devices N , the total number of work-groups G or the number of remaining

work-groups Gr. Others must be computed and updated as the kernel execution progresses.

Such is the case of the computing speed of each device si or the slope of the Sigmoid curve.

Moreover, a minimum package size has to be selected in order to avoid a large number of

small packages at the end of the execution, as they would increase the host-device interaction
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overhead and reduce the computing speed of the devices due to their small size. The automatic

update of these parameters is what allows Sigmoid to autonomously adapt itself to different

kernel behaviours. In this section we will explain how these parameters are obtained.

The computing speed of the devices is used to tailor the amount of work to be distributed to the

capabilities of the receiving device. These values can be easily computed at runtime by moni-

toring the kernel execution. However, computing speeds are kernel dependent. Consequently,

for the first packages of a kernel, speed information will not be available, so an approximation

is necessary. As an estimation, the nominal GFLOP values reported by the hardware vendors

of the devices, are initially used to calculate the relative speed of the devices. These values may

not accurately represent the capabilities of the devices for the current kernel, but an approxi-

mate speed estimation at the beginning of the kernel execution does not have a large impact

on performance. It is at the end of the execution when accurate speeds are required, and by

then the algorithm will have refined these throughout the duration of the whole kernel. This

is done by measuring the time that each package takes to execute and calculating its speed in

work-groups per second. To reduce the influence of work bursts that may not be representative

of the behaviour of the whole workload, the average speed of the last three packages scheduled

to the device is used to update the speeds. Keeping track of a very long package history would

harm adaptiveness. It was experimentally found that three packages strike a balance between

adaptiveness and over-sensitivity.

The slope of the Sigmoid curve, represented by k, controls the rate at which the package size

decreases and, ultimately, the degree of adaptiveness of the algorithm. As shown in Figure

3.5 a greater k produces a steeper curve, with fewer and bigger package sizes, that limit adap-

tiveness at the end of the execution. Consequently, regular applications, which do not require

adaptiveness, will benefit from a bigger k, which will reduce overheads, while irregular ones will

not. Sigmoid manages this by defining two different values for k, one for regular and another

one for irregular kernels. To choose adequate values of k for each type of workload, a set of

executions of all the kernels used in the evaluation (Section 4.6) has been done using different

values. The results of this experiments showed that it is sufficient to use two different k values

to achieve good results in both regular and irregular kernels. The values thus selected have
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been, ki = 0.5 for irregular applications and kr = 2 for regular ones. The reason for this choice

is that these values deliver good overall performance and belong to stable intervals, in which

small k differences do not represent great performance variability. Figure 3.6 shows an example

of this behaviour for two representative kernels: Mandelbrot as regular, and Ray as irregular.

The chosen values for ki and kr are expected to provide good performance for other applica-

tions. These values were set using a subset of the selected benchmarks, and evaluated using all

of them, consequently proving their validity. Nevertheless, for strictly optimum performance,

a slight adjustment of these parameters might be necessary when executing other applications.

In order to apply the correct k value it is necessary to determine which type of kernel is being

executed. When a kernel is launched, it is regarded as regular until proven otherwise. This

avoids penalizing regular kernels and should not affect irregular ones, as adaptiveness is most

necessary near the end of the execution. Consequently, packages are initially distributed using

kr. Irregularity is defined by a variability in the time taken to execute two equally-sized chunks

of work. Therefore, to switch between kr and ki the variability of the computing speed for each

device is analyzed. To do so, Sigmoid considers the standard deviation of the speed of the last

three packages (σsi) on the current device i. If the ratio between this value and the average

speed si rises above a given threshold d, the kernel is deemed irregular and ki is used. Note that

once a kernel is considered irregular, ki will be used for the remainder of its execution. This

is due to the fact that some irregular kernels may have regions of regular behaviour, in which

the standard deviation ratio might drop below the threshold. However, there is no guarantee

that irregularity will not be present again near the end of the execution, with few opportunities

to react. Therefore using kr again in an irregular kernel would greatly harm performance.

Nevertheless, to verify this hypothesis, tests were carried out using a version of Sigmoid that

falls back to kr if regularity is detected. This version caused an average performance loss of

close to 10%.

To adequately set the value for the above mentioned threshold b, an analysis of performance

variability in regular and irregular kernels was necessary, as even regular kernels present certain

performance differences due to several factors, such as cache effects or contention. To decide

the threshold b, the value of σsi for each package executed on all the evaluated kernels has been
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studied. Figure 3.7 shows histograms of the standard deviation ratio
σsi
si

for regular and irregular

kernels. As can be seen, the packages obtained in the regular kernels present a maximum

performance variability of around 20%, while differences are much greater for irregular ones.

Considering this, b has been set to 0.2 to avoid misidentifying regular applications.

The purpose of applying lower limits to the size of the packages generated by the Sigmoid is

twofold. First, it strives to contain the excessive overhead that is inherent in small packages.

Second, it guarantees that package sizes do not decrease to a point in which the resources of

the devices are not fully used. However, these factors should not be at odds with adaptiveness

or induce imbalance in order to keep utilization high. The Sigmoid algorithm uses two lower

bounds for the package size, choosing the highest value among the two bounds and the result

of equation 3.5 as the size of the package.

Targeting the first mentioned purpose implies a risk: avoiding overheads by increasing package

size might generate imbalances, arising from the time difference among the terminations of

the last package scheduled to each device. In a worst case scenario, this imbalance might

represent the whole execution time associated to the last package. Accounting for this, a

maximum imbalance coefficient p is defined. This represents the maximum imbalance that will

be generated by the Sigmoid algorithm in the aforementioned worst case scenario. Then, p

is used in the following equation, together with the current execution time t and the average

device speed si, to obtain a minimum package size that limits overheads but does not generate

significant imbalance.
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Minimum package size = p · t · si

Guided by the benchmarks used in the evaluation of the algorithms, p = 0.05 has been chosen,

which does not cause excessive overheads and avoids imbalance. Conceptually, this means that,

at the current speed, the execution of a package launched to device i, with a size calculated

using the equation, will represent 5% of the current total execution time. Equivalently, in a

worst case scenario, at most 5% of the current runtime will be spent in an imbalanced execution,

with only one device computing and the rest idling.

The second lower bound for the package size guarantees that the devices are fully used. For

GPUs, the algorithm implements the equations of the CUDA Occupancy Calculator, which

is part of the CUDA Toolkit since version 4.1. These, take the number of registers and the

amount of shared memory required by a kernel, which are values that can be obtained from

the OpenCL compiler, and calculate its maximum occupancy and the number of work-groups

per multiprocessor required to reach it. The latter value multiplied by the number of multi-

processors in the GPU, which can also be queried from OpenCL, is the minimum number of

work-groups to achieve maximum occupancy. CPUs usually show a much more regular perfor-

mance on the number of work-groups than GPUs, so on CPUs this lower bound is set to one

work-group per CPU core. The Sigmoid algorithm is evaluated in detail in Section 4.
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Chapter 4

Co-Execution & system abstraction

The focus of this dissertation is on transparent heterogeneous co-execution of massively data-

parallel applications. That is, the orchestration of several computing devices, cooperatively

working on the same task, with minimum programming effort. As substantiated in Chapter 2,

the advent of heterogeneous architectures has been followed by the development of technologies

to adequately leverage the outstanding capabilities of these systems. However, these technolo-

gies also have certain limitations that turn co-execution into a complex endeavour, in which

programmers have to be aware of both the underlying architecture and the nuances of the ap-

plications. Most prominently, load balancing lies at the center of the efficient use of a parallel

system, and its support in current de facto standard heterogeneous programming frameworks

is almost non-existent. This chapter introduces these limitations to then present Maat, a new

system abstraction and load balancing library focused on co-execution, that provides high level

abstractions to manage a complete heterogeneous environment. Maat implements HGuided and

Sigmoid, the two novel load balancing algorithms proposed in Chapter 3, which will be shown

to deliver excellent performance and energy efficiency for both regular and irregular workloads.

45
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4.1. Motivation

A computing system is usually defined as heterogeneous if it comprises processing devices of

different types. In this dissertation, we will focus on heterogeneous systems comprising CPUs

and accelerators. Considering the breadth of this definition and the recent explosion of new

accelerators, a wide a array of different system configurations may be considered heterogeneous.

Consequently, for a heterogeneous co-execution scheme to be truly useful, it has to be portable,

so a change in the underlying system configuration does not represent major modifications

on the applications. Moreover, performance should also be portable. This means that an

application that delivers competitive performance on a system, should not require significant

tuning or modifications to achieve equivalent performance upon migration. This imposes certain

restrictions on the approach to the management of the heterogeneous environment:

Restriction 1 : All the devices need to execute the same code. Otherwise, several versions

of the same algorithm would have to be developed, which is hard to maintain, and new

versions would potentially be necessary if new devices were present.

Restriction 2 : Devices need to be transparently managed. This prevents the addition/e-

limination of devices or a system migration from implying changes to the application to

account for the new hardware.

Restriction 3 : Data has to be distributed among the devices in a transparent manner.

This is because memory spaces are very often considered as separated, and several rep-

resentations of the same data, one for each device, may be necessary. Such complexity

should be hidden from the programmer. This is specially true considering that most cur-

rent heterogeneous systems use discrete accelerators, and those that share memory often

incur significant performance degradation.

Restriction 4 : Kernels have to be distributed automatically, proportionally balancing

their load among all the available devices and minimizing idle times. This enables hard-

ware changes to be acknowledged and new work partitions to be accordingly chosen.

Moreover, different kernels have different behaviors, which might even be influenced by
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the executing hardware. Load balancing decisions must be abstracted from the program-

mer for greater portability and improved performance and efficiency.

The most commonly used heterogeneous programming frameworks, namely OpenCL [GHK+11]

and CUDA [KH10a], fail to correctly address some of these restrictions. CUDA, being propri-

etary software, only supports the execution of kernels on NVIDIA GPUs, so not even Restriction

1 is met. OpenCL was designed with a focus on portability, so kernels can be executed on any

device, assuming an adequate OpenCL driver is provided by the hardware vendor. Neverthe-

less, OpenCL does not meet restrictions 2 through 4. It is a powerful framework that offers all

the necessary tools to manage a heterogeneous system, but it does not provide the programmer

with any assistance to face the task. Devices are managed individually, so the programmer

needs to tailor the code of the application to the available hardware, and both data transfers

and kernel launches have to be explicitly specified for each of the available devices. Moreover,

the programmer is also held accountable for making load balancing decisions, choosing the

portions of the workload to be computed by each device and their size, which will ultimately

determine the success of co-execution.

OpenCL indeed offers the basic capabilities for co-execution, but it is certainly neither trans-

parent, nor effortless, producing hard to maintain applications and requiring a significant level

of expertise from the programmer. For this reason, this dissertation presents Maat, a library,

built upon OpenCL, that enables effortless co-execution. It lifts Restrictions 2 and 3 via higher

level abstractions, and Restriction 4 by providing two original load balancing algorithms de-

signed for heterogeneous co-execution. The latter will be introduced next, to then delve into

Maat and the abstractions that conform it.

4.2. Overview of Maat

Maat is a new OpenCL-based load balancing and system abstraction library, designed with co-

execution in mind. Its name comes from that of the Egyptian goddess of justice and balance,

as its main goal is enabling the transparent, efficient use of all the resources available in a
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Figure 4.1: High level description of the operation of Maat.

heterogeneous environment. A very high level outline of how Maat is used is shown in Figure

4.1. Maat acts as an intermediate layer between the programmer and the devices, providing an

abstract view of the complete system. As a result, the whole aggregated computing power of

all the available hardware can be accessed using a single interface, with similar complexity to

using a single device. To achieve it, Maat extends the definitions of OpenCL data structures

and functions, so the basic flow of an OpenCL program is preserved, but the hassle of dealing

with multiple, device-dependent, data structures is eliminated. The resulting code is completely

independent from the underlying system, as all the available resources are managed as if a single

all-encompassing device was available, making programming easier. This includes the most

important part of co-execution, which is load balancing. The launch of a kernel using Maat,

results in its transparent distribution among all the available devices, requiring no programmer

action and efficiently using the system. Workload partitioning is automatically performed using

one of the load balancing algorithms offered by Maat, which have been specially designed for

heterogeneous co-execution.

4.3. Design of Maat

The development of a library for the effortless management of a complete heterogeneous sys-

tem, using an OpenCL-like syntax, involves extending some of the basic concepts proposed by

OpenCL. This requires certain design principles to be followed in order to properly address the

needs of heterogeneous architectures.
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Ease of adoption. For an easier programming, the new library should adhere to the

structure and philosophy of an OpenCL program as much as possible. This is to ensure

that porting OpenCL applications to the new library does not represent important coding

efforts.

Transparency. The management of the system should be handled in a manner that

prevents the programmer from having to be aware of the underlying details of the archi-

tecture, which should be hidden by higher level abstractions.

Portability. Once transparency frees the programmer from the hardware, it also enables

applications to be portable, allowing for easy migration.

Performance, energy consumption and efficiency. The introduced abstractions should

not be at odds with excellent performance. This is achieved by adequately managing the

resources, accurately balancing the load and overlapping computation and communication

as much as possible. This allows devices to spend as much time as possible performing

useful work.

To fulfill these principles, Maat relies on three definitions that allow the resources of an entire

heterogeneous system to be collectively handled through a single interface, regardless of the

underlying hardware. This entails redefining how the programmer deals with the available

devices, how work is launched and how data transfers are performed. This Section will be

devoted to these three areas, introducing the new concepts that build Maat.

4.3.1. Device Abstraction

The most important concept that OpenCL hardware abstraction is built upon is the context

(please, refer to Section 2.1.1 for basic OpenCL concepts). It is the main tool to manage the

heterogeneous system, as the majority of the rest of data structures required to transfer data

to the devices or offload work to them, depend on the context. However, it is also a limiting

concept when co-execution comes into play. Contexts can only hold devices belonging to a
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single platform and, as introduced in Chapter 2.1.1, a system may have an arbitrary number

of platforms. To account for this limitation, we define the SuperContext.

Definition 4.1 A SuperContext is a combination of devices available in the system, either

belonging to a platform or to several.

Using this abstraction, the programmer can transparently manage any combination of devices,

improving portability, as no code change will be necessary to account for hardware changes.

Figure 4.2 shows a sample system, the contexts that OpenCL would provide and some of

those offered by Maat. The system comprises 3 devices, a CPU from a vendor and 2 GPUs

from another, 2 platforms being consequently available. In this example, OpenCL would not

be able to provide access to a context comprising the CPU and any of the GPUs. However,

SuperContexts offer a single means to handle any combination of the available devices. Please,

note that Maat can also provide SuperContexts holding devices from a single platform, such

as one holding just the two GPUs in the example, so they can benefit from the advantages of

transparent co-execution. This kind of SuperContexts have been omitted from the figure for

clarity.

OpenCL also defines command queues as the data structure used to communicate with inde-

pendent devices. However, the focus of Maat is on the transparent orchestration of several

devices, so the programmer does not need to worry about the underlying system. Conse-

quently, Maat internally manages the necessary command queues for good performance and

communication-computation overlapping, as required by the executing hardware configuration.

4.3.2. Execution Abstraction

The work that will be offloaded to the devices in OpenCL is expressed in the form of kernels,

which in turn are represented in the host by data structures also called kernels. However, these

need to be compiled for each device that will execute them. Thus, they are not independent,

as several instances of a kernel data structure, that ultimately stand for the same algorithm,

may be necessary for co-execution. To avoid this, Maat defines the SuperKernel.
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Figure 4.2: Possible contexts and SuperContexts in a sample system. Redundant SuperContexts
omitted.

Definition 4.2 A SuperKernel is a data structure representing the code of a kernel, that is

valid across all the devices encompassed in a SuperContext.

That is, valid across all the devices of a heterogeneous system if desired. To ease programming,

upon creation of a SuperKernel, the kernel code it represents is automatically compiled for all

the devices available in the SuperContext. This compilation is performed online, as the actual

underlying hardware needs to be known to perform it.

For a greater ease of adoption, SuperKernels are launched using functions that follow a similar

format to OpenCL kernel offload functions. They receive the number of work-items to be

launched, the size of each work-group and the offset as parameters. However, they transparently

use all the devices available in the associated SuperContext via co-execution, implementing

several different load balancing algorithms and internally managing the scheduling of work.

Chapter 3 presents a detailed description of the load balancing algorithms provided by Maat.
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4.3.3. Memory Abstraction

OpenCL buffers guarantee portability by abstracting the data management from actual devices.

Nevertheless, they just represent valid references on the memory of a certain device, offering

no support for co-execution. To truly enable the transparent management of a heterogeneous

system capable of co-execution, Maat offers the SuperBuffer.

Definition 4.3 A SuperBuffer is a reference to a piece of data that is valid across all the

devices belonging to the SuperContext.

The creation of a SuperBuffer represents the transparent creation of as may buffers as required

to operate with the available devices. To manage the distribution and gathering of results,

buffers can be defined as In or Out buffers.

To communicate data to the devices, Maat offers mechanisms to write and read SuperBuffers,

while the actual transfers to/from the individual underlying buffers are automatically performed

and overlapped with computation when possible. Writes can be performed using two functions.

Function clWriteSuperBuffer replicates the data of the SuperBuffer to all the devices. This

function can be used with every kernel, but may perform unnecessary transfers. On the contrary,

clDelayedWriteSuperBuffer avoids this by assuming that each device will only require a

certain part of data. This mechanism has smaller overheads, but cannot be used for every

kernel. It is the responsibility of the programmer to decide when it should be used. For example,

every work-item of an application such as NBody will require an undetermined amount of data

for its computation, because the number of neighbouring particles that will have an impact on

its computation is unknown. Consequently, NBody would require all the data to be replicated.

On the other hand, a blocking implementation of the matrix multiplication would allow for the

use of the clDelayedWriteSuperBuffer for one of the matrices.

Regarding data reads, they are also automatically managed by Maat, so Out buffers are kept

consistent at SuperKernel boundaries. The programmer just has to specify the location of the

data in the memory of the host and Maat will handle the gathering of the results correctly.
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To alleviate the overheads of data transfers and improve performance, these are automatically

performed asynchronously. As a consequence, transfers and computation are overlapped as

much as possible. This effectively hides communication times, so the devices are working on

the computation associated to kernels for a greater fraction of the execution time. Moreover,

Maat is also capable of handling the automatic redistribution of data for kernels that are called

iteratively. That is, results are not only transparently transferred to the Host, but also to the

other devices, so they are ready for the next kernel execution as soon as the current one finishes.

The implementation of this features is explained in detail in Section 4.4.2.

4.3.4. Summary

By means of the abstractions explained above, Maat hides the complexity of managing het-

erogeneous systems from the programmer and offers the necessary capabilities for effortless

co-execution. Table 4.1 shows the functions provided by Maat and their OpenCL equivalents.

There is a close correlation between Maat and OpenCL functions. This is to retain an OpenCL-

like approach to heterogeneous programming and increase the ease of adoption. By using Maat,

a complete heterogeneous system can be used for co-execution, without the hassle of managing

redundant, device-dependent, data structures. The result is a code that is portable easier to

maintain, not requiring modifications if the system configuration changes. This is shown in

Figure 4.3, which is a simplified representation of the data structures necessary to execute a

simple kernel that uses two arrays. The arrows represent the relations of belonging between

the different layers. That is, the OpenCL data structures managed by a Maat abstraction or

their correspondence to actual devices. Using Maat, a SuperContext (SC1) is enough to man-

age every device, a single SuperBuffer is necessary for each array (SB1 and SB2) and just one

SuperKernel (SK) is used to represent the implemented algorithm. On the contrary, OpenCL

requires two contexts (C1 and C2) and several, device-dependent buffers and kernels. Certain

OpenCL data structures, such as command queues and OpenCL programs have been omitted

for clarity. These are transparently managed through the abstractions provided by Maat. No

Maat data structure has been omitted. The simple co-execution shown in Figure 4.3, using
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Maat OpenCL

clCreateSuperContext clCreateDevice
clCreateSubDevices
clCreateCommandQueue
clCreateContext

clCreateSuperBufferIn clCreateBuffer
clCreateSuperBufferOut

clWriteSuperBuffer clEnqueueWriteBuffer
clDelayedWriteSuperBuffer

clReadSuperBuffer clEnqueueReadBuffer

clEnableResultAutoDistribution

clCreateSuperKernel clCreateProgram
clBuildProgram
clCreateKernel

clSetSuperKernelArg clSetKernelArg
clSetSuperKernelArgSuperBuffer

clEnqueueSuperKernelHeterogeneousGuidedBalancing clEnqueueNDRange
clEnqueueSuperKernelSigmoiddBalancing

clReleaseSuperContext clReleaseDevice
clReleaseCommandQueue
clReleaseContext

clReleaseSuperBuffer clReleaseBuffer

clReleaseSuperKernel clReleaseKernel

Table 4.1: Maat and OpenCL functions

OpenCL, would require around 800 lines of code. The same example using Maat requires only

500 lines, which, moreover, are independent from the underlying hardware configuration. This

is because, if programming pure OpenCL, the Maat layer would not be present, which would

leave the programmer alone with the responsibility of managing several representations of the

same elements of the program logic. Maat keeps all this complexity under the hood.

4.4. Implementation

OpenCL is a portable heterogeneous programming framework. For this reason, it has been used

as a basis for the abstractions introduced in Section 4.3. However, an operation in Maat usually

represents multiple OpenCL operations that are internally performed. This section explains

how Maat was implemented, focusing on how the different data structures are managed and

how work and data are automatically distributed among the available devices at runtime.



4.4. Implementation 55

GPU0 GPU1CPU

B1'' B2'' K'' B1''' B2''' K'''B1' B2' K'

Maat

OpenCL

Hardware

SB1 SB2 SK

SC1

C1 C1

Figure 4.3: Underlying OpenCL data structures transparently managed by Maat in a sample
system.

4.4.1. Data structure management

The SuperContext, SuperBuffer and SuperKernel are defined as abstractions that extend the

definitions of the basic OpenCL data structures, which they are built upon. For instance, the

creation of a SuperContext represents the internal creation of as many OpenCL contexts and

command queues as necessary to manage the specified combination of devices. Any operation

using a SuperContext will target the underlying contexts and command queues to enable co-

execution, keeping all the complexity under the hood. The creation of a SuperKernel will also

translate in the creation of the necessary kernels to account for the available devices. These

are individually targeted correspondingly when parameters are associated to the SuperKernel.

Likewise, when a SuperKernel is launched, it will generate as many kernel launches to their

individual devices as required by the selected load balancing algorithm, which are managed at

runtime, as explained in Chapter 3.

Lastly, the creation of a SuperBuffer triggers the creation of an individual buffer for each

device too. Theoretically, OpenCL supports buffer sharing among devices belonging to the

same platform. However, this was tested in a preliminary version of Maat and significant

performance degradation was detected when sharing buffers. Writing a SuperBuffer represents

buffer writes to the individual OpenCL buffers managed by Maat. The size of these writes
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will depend on the chosen write function. The clWriteSuperBuffer function will copy all

the data associated to a SuperBuffer to each of the internal buffers. On the contrary, the

clDelayedWriteSuperBuffer function will only write to each buffer the data required by its

owning device. To do so, the data is stored, and actual writes are performed when packages

are launched, assuming that each device will require the portions of data linearly identified by

the indices of the work-groups of the package. Consequently, this function should only be used

for kernels known to fit this computing pattern.

Buffer reads have been implemented as a dummy function. This is because Maat does not keep

track of the device that computes for each part of the work, but performs transfers as soon as

a device completes a portion of the results. Consequently, all the results are available once a

SuperKernel completes its execution, which also partially hides the overhead of data transfers.

The completion of a package will trigger a read operation to the corresponding device. Reads

assume that each work-group will produce the part of the results identified by its index, which

is, by far, the most common approach to heterogeneous programming. This accounts for the

fact that predicting the work performed by each work-group is an open research topic, with

known general solutions being costly and ultimately impractical due to their overheads. How

reads are automatically performed, hiding overheads, is explained in detail in Section 4.4.2.

4.4.2. Runtime capabilities

For the operation of its load balancing algorithms, Maat relies on the concept of a package,

which is a set of consecutive work-groups belonging to a kernel. To dynamically launch them

and orchestrate the co-execution of several different devices in general, Maat uses on OpenCL

callbacks. These are functions defined by the programmer that are executed on the occurrence

of a particular event, such as the termination of a kernel or the completion of a data transfer.

According to the OpenCL specification [Ope18], callback functions must return promptly, avoid

expensive functions or system routines and be thread-safe, as OpenCL uses a single thread for

management and the callback may be interrupted. Figure 4.4 depicts the threads and callback

functions used in Maat, which mainly handle the distribution of the load represented by a
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SuperKernel and the management of the data held in SuperBuffers.

When a super kernel is executed, a package is launched to each of the devices, and a special

management thread is spawned. This is depicted in the Launch super kernel portion of Figure

4.4. The thread will deal with the extra work related to the movement of data and the launching

of additional packages. A thread-safe Completion callback function is also registered to the event

signaling the completion of each of the packages. This function just stores the information of

the packages that were completed and notifies the management thread.

The Management thread is in charge of:

Updating the parameters of the load balancing algorithms if necessary.

Reading the results of the computation of the finished packages and updating the host

memory.

Launching new packages, if more work has to be done, and writing their input data if

needed. This step is necessary for dynamic load balancing schemes. A static one would

skip it.

Notifying super kernel completion.

Using a single thread is sufficient to perform these tasks, as only a small number of devices

will be managed (tens at most). Moreover, the implementation of the management thread uses

non-blocking operations exclusively, so the work that has to be done per completed package is

not time consuming.

Support for non-blocking communication

Non-blocking calls also allow for computation and data transfers to be performed in parallel,

which effectively hides the impact of communication and improves performance. This is possible

because of the approach to computing favored by OpenCL. This standard considers work-groups

as independent execution units, forbidding communication and synchronization between them.
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Figure 4.4: High level representation of the operation of Maat. Grey boxes represent optional
operations.

Therefore, the output data written by a work-group, will necessarily be independent from that

written by others. Consequently, once a package has finished executing, the results associated

to its work-groups can be safely read, as they will not be modified.

However, the definition of command queues in the OpenCL standard has to be considered in

order to take advantage of computation/communication overlapping. There are two types of

queues: in order and out of order. The former force commands to wait until all the previous ones

have completed, while commands do not necessarily have to wait for each other in the latter.

Consequently, overlapping is only possible when using an out of order queue. However, they are

not supported in every OpenCL implementation. To enable overlapping communication and

computation regardless of how the underlying drivers implement the standard, Maat internally

manages two independent in-order command queues per device: the general queue and the

result queue. The management thread enqueues result reads on the result queue, while new

package launches use the general queue. Thus, the overhead is hidden and communication does

not block the progress of computation. To guarantee that a device does not start working

until its input data is ready, input writes are enqueued to the general queue, so any later

kernel launch has to wait for its completion. An example of the operation of the queues is

shown in Figure 4.5, which shows the steps that are followed when the computation for package

X finishes. Note how reads do not block the progress of packages. As a result of this dual

queue implementation, the management thread has to check for three conditions to notify the

termination of a SuperKernel: that there are no more packages to launch and that both, the
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Figure 4.5: Representation of the dual queue operation of Maat.

general and result queues, are empty.

Support for iteratively launched kernels

Some common parallel programming algorithms use iterative methods. When applied to het-

erogeneous systems, this programming pattern often encapsulates a whole iteration into a single

kernel call, which is repeatedly enqueued. As a result, the outputs of the launch of a kernel

are also the inputs of a later execution. Such algorithms usually rely on the data already being

stored in the device memory, so transfers are not required between iterations. However, when

working with several devices, each of them will only produce a part of the output data, which

may be required by the rest in the next iteration. Considering that most current heterogeneous

systems have independent memory spaces, extra steps need to be taken to ensure that every

device has the input data it requires. This situation is shown in Figure 4.6, which depicts how

results may be split among several devices and need to be gathered before the next iteration

begins.

One approach would be to preserve locality and avoid copies by launching the packages cor-

responding to the data already held in the memory of each of the devices. However, this is

not possible for two reasons. First, the parts of the input data required by each work-group

cannot be predicted in general. And second, the irregularity of an application is defined by the

input data it uses, so the behaviour between different launches of the same kernel may differ
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Figure 4.6: Representation of the partial results produced by two devices at the completion of
a kernel.

greatly, rendering a work distribution based on the data obtained by each device in the previous

iteration unprofitable.

The overhead of distributing the results of a previous SuperKernel launch among the devices

is thus unavoidable. Nevertheless, to mitigate its impact and keep the illusion of a single,

all-encompassing heterogeneous device, Maat performs the distribution of data automatically.

When a package completes its execution, the management thread, apart from reading its results,

copies them to the memories of the rest of the devices. To keep the management thread running

and improve performance, these transfers are also non-blocking and performed using the data

command queues.

However, OpenCL only supports direct transfers between devices that belong to the same

platform. Considering that devices will often belong to different platforms, the transfer through

the host is unavoidable. Maat transparently handles these transfers in the management thread.

First, a non-blocking read from the producing device to the host is enqueued, followed by non-

blocking writes to the Result queues of the rest of the devices. To guarantee that the writes

do not start until the data is available in the host, these are controlled by OpenCL events as

shown in the portion Auto Distribute of Figure 4.4. These events will be triggered, enabling

the execution of the corresponding write, by the Read callback, which was associated to the

aforementioned read. Automatic result distribution is activated using a function offered by the

library. This whole process is overlapped with computation for every package but the last, so

minimum communication overhead is introduced.
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4.5. Methodology

The purpose of this section is introducing the aspects of the methodology particular to this

chapter that were not presented in Section 1.5. This includes load balancing algorithms imple-

mented for comparison with HGuided and Sigmoid and the applications used in the evaluation.

4.5.1. Reference algorithms

In order to evaluate the HGuided and Sigmoid algorithms, the two well-known load balancing

algorithms were considered in the experiments. An uninformed version of the HGuided, using

fixed parameters, was also implemented to proof the advantages of the Sigmoid algorithm at a

comparable effort level.

Static algorithm [PBB16] This classic algorithm divides the kernel in as many packages

as devices are available in the system. The size of each package is proportional to the relative

computing speed of the device that will execute it. This algorithm minimizes the overhead,

since only one package is sent to each device. For this reason, it is the a priori best choice for

regular kernels. However, it is an informed algorithm, that requires the computing speed of the

devices as input parameters, and it performs badly for irregular kernels.

Adaptive algorithm [BSCJ13] This algorithm was proposed for a two device scenario as

a dynamic technique that requires no training and responds automatically to performance vari-

ability. The implementation used in this dissertation is an extension of the original algorithm

for an arbitrary number of devices introduced in [PBB16]. The Adaptive algorithm proceeds

by first dynamically launching γ small probe packages to each device, starting with a size rep-

resenting β percent of the total workload and using a growth rate of δ, and then using the

obtained execution times and the following formula to predict an ideal static work partitioning

for the remaining work.
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Wi is the number of work-groups that will be scheduled to device i, Ωj is the execution time of

the last package completed by device j, divided by the number of work-groups in that package,

λi is an estimation of the remaining time before the package currently running in device i

finishes and Wr is the number of remaining work-groups. The estimation for λi is obtained by

using the size of the package and the value of Ωi. This is, it is estimated using the computing

speed of the previous packages. The amount of probe packages per device, their size and

growth rate are programmer defined parameters. Parameters γ, β and δ may be defined by

the programmer to better suit the workload to co-execute. However, the authors of [BSCJ13]

suggest β = 7%, γ = 2 and δ = 1.5x as default values that deliver good performance. The

implementation offered in Maat initially used these parameters. However, it was found that

the suggested size for the first probe package of each device (β) is excessive when more than

two devices are considered or when the devices show significant computing speed differences.

Consequently, a value of β = 2% has been used. Similar algorithms in the bibliography are

[NVCA14, VAN+15, BBG13].

Default HGuided algorithm [PBB16] This algorithm, labelled as DefHG represents the

effortless usage of the HGuided algorithm. It is used for reference, to evaluate two aspects

of the algorithms proposed in Section 3. First, the improvement that the HGuided algorithm

achieves when a careful parameter sweep is performed to set the parameter values. Second, to

illustrate the advantages of the Sigmoid algorithm at an equivalent effort level. To be fair, the

same parameters initially used by Sigmoid have been selected for DefHG: the nominal values

for the computing speeds, and the values reported by the CUDA occupancy calculator for the

minimum package size.
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Table 4.2: Parameters for each benchmark

Benchmark Type Problem size Local work size GPU Speed # of packages Min. size
Binomial Regular 2048000 256 7.28 30 380

Gaussian Regular
8000 × 8000
81× 81

128 13.77 30 1000

Mandelbrot Regular
20480 ×
20480

256 5.88 30 400

NBody Regular 51200 128 7.33 10 400
Taylor Regular 800× 800 128 2.06 35 280
Aho Irregular 1536000 64 8.2 80 200
BM3D Irregular 800× 800 64 2.28 35 150
Rap Irregular 1024× 1024 64 4.26 80 400

Ray Irregular
12000 ×
12000

64 7.7 125 380

4.5.2. Applications

Nine kernels have been chosen for the experiments, five of which exhibit regular behaviour.

Binomial generates binomial lattices, useful for option pricing in financial software. Mandelbrot

implements a blocked algorithm to compute a Mandelbrot set. NBody simulates a dynamic

system of particles, used in many physics applications. Gaussian calculates the Gaussian blur

of an image, commonly found in image and video processing software. The last regular kernel

is Taylor, which performs a bi-dimensional Taylor approximation for a set of points. The other

four kernels are irregular. Aho is an implementation of the Parallel Failureless Aho-Corasick

(PFAC) string matching algorithm, commonly used for protein sequencing [LLCC13]. BM3D

implements one of the filters of the BM3D image denoising algorithm [DFKE07]. Rap is an

implementation of the Resource Allocation Problem [ACBA10]. There is a certain pattern in

the irregularity of RAP, because each successive package represents a bigger amount of work

than the previous. Finally, Ray Tracing renders realistic images by calculating the light that

reaches each pixel by modeling light rays. Two different scenes of similar complexity but

with different object distribution, (Ray1 and Ray2), have been defined. It will be shown later

(Section 4.6) that changing the input data, the behaviour of the application varies wildly.

Each kernel has been run using a problem size big enough to justify its distribution among all

the available devices. The local work size has been set so the performance of the fastest device,

namely the GPU, is maximized. The reason for this is that almost no performance difference

was detected when varying the local work size for the CPU. The selected values for each kernel
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are shown in Table 4.2. This table also shows the parameters of the Static, Dynamic and

BestHG algorithms used in the experimentation.

4.6. Evaluation

This section presents the experimental results obtained on the test systems when running

the different benchmarks, as described in Section 4.5. These experiments aim to answer the

following questions:

How well does Sigmoid balance the workload across different heterogeneous devices?

What is the performance of Sigmoid for both regular and irregular kernels?

Is well-balanced co-execution capable of improving the energy consumption of a hetero-

geneous system?

How does Sigmoid scale when the number of devices increases?

Each of the following sections answer one of the aforementioned questions, comparing the results

achieved for Sigmoid with other load balancing algorithms.

4.6.1. Load Balance

The first metric considered in this analysis is the Load Balance which is shown in Figure 4.7,

for Batel. For a given execution, it is defined as the ratio of the response time of the first device

to conclude its work and that of the last. The ideal value for this metric is one, meaning that

all devices finished simultaneously and the maximum utilization of the system was reached.

Sigmoid reaches perfect load balance in six out of the ten benchmarks. Compared to the other

algorithms, it obtains the best load balance, except in Rap and NBody where it is slightly worse

than BestHG and DefHG. Looking at the geometric mean, the Sigmoid algorithm boasts almost

perfect load balance (0.97) closely followed by BestHG (0.94). Recall that the parameters of
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Figure 4.7: Load balance of each device for all algorithms and benchmarks in the heterogeneous
system.

BestHG are optimal, obtained from a time-consuming sweep. Regarding the other algorithms,

Static performs well in regular benchmarks but, as is expected, performs poorly in irregular

ones. This is a consequence of the nature of these kernels, that make it very difficult to devise

a fair load distribution before the actual execution. In the same way, Adaptive shows good

results for regular kernels (except NBody) but no so satisfactory for irregular ones.

4.6.2. Performance

To give an idea of performance, Figure 4.8 shows the speedups reached by the different bench-

marks in the Batel system, compared to the baseline scenario that only uses one GPU. The test

system is composed by N = 3 devices, but since they do not have the same computing power,

the speedup is never going to reach 3. Table 4.3 summarizes the maximum speedup Smax that

can be obtained with each benchmark. These values were derived from the response time Ti

of each device as shown in Equation 4.1, and are also represented in Figure 4.8 as a horizontal

lines above the bars of each benchmark.

Smax =
1

maxNi=1{Ti}

N∑
i=1

Ti (4.1)

Table 4.3: Maximum speedup for the different benchmarks

Benchmark Binomial Gaussian Mandelbrot Nbody Taylor Aho BM3D RAP RAY
Max. Speedup 2.14 2.07 2.17 2.13 2.48 2.12 2.44 2.23 2.13



66 Chapter 4. Co-Execution & system abstraction

 0

 0.5

 1

 1.5

 2

 2.5

Binomial Gaussian NBody Mandelbrot Taylor Aho BM3D Rap Ray1 Ray2 GeoMean

S
p

e
e
d

u
p

Regular Benchmarks                                    Irregular Benchmarks

Static BestHG DefHG Adaptive Sigmoid

Figure 4.8: Speedups of the benchmarks with the different algorithms in the heterogeneous
system.

Looking at the geometric mean of the speedups shown in Figure 4.8, it can be seen that the

Sigmoid algorithm gives the best performance. It is 22% better than Static and 3% better

than BestHG. Regarding the mean for regular and irregular kernels separately (not depicted),

Sigmoid obtains the same performance (99%) as the Static for regular benchmarks and is even

slightly better than BestHG for irregular. In short Sigmoid delivers the best overall performance

and also equals the performance of the best alternative for both regular and irregular workloads.

When compared to the speedup of the other effortless algorithms, Sigmoid also excels. It is

20% better than Adaptive and 7% better than DefHG.

Regarding each benchmark individually, Sigmoid gives the best performance in all except

NBody, Taylor and Rap. Despite that Sigmoid attains the best load balance results in NBody

and Taylor, using the optimal parameters with Static obtains a better speedup. Since these

benchmarks have a very low computation-communication ratio, the overhead increases when

the workload is subdivided in more packages than devices. With Rap, Sigmoid delivers the

second best performance. This is because the minimum package size that guarantees efficient

device use, generates a slight imbalance at the end of the execution. Regarding the effortless

algorithms, Sigmoid delivers the best performance in all the applications but Taylor, in which

it is only marginally surpassed by Adaptive.

The gap between the measured and the theoretical maximum values is a consequence of the

extra communication overhead that comes from having more than one device. This is more

notorious in applications in which the data can not be divided and must be replicated (NBody)

or when the ratio between the computation and communication times is small (Mandelbrot,
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RAP).

As discussed above, one of the advantages of Sigmoid is that it tries to minimize the number

of packages, as each implies interaction between the host and a device, while maintaining

adaptiveness. This can be seen in Table 4.4, which depicts the number of packages generated

by each algorithm excluding Static, which would always generate as many packages as devices.

Adaptive produces almost the same amount of packages for all benchmarks. This translates

into good results in very regular benchmarks, as overheads are reduced. However, it fails in

irregular ones, to which it cannot adapt. As for the HGuided algorithms, both versions generate

a huge amount of packages, many more than the rest, although slightly less in BestHG thanks

to the tuning of the parameters. This occurs even in regular benchmarks, like Binomial, which

do not take advantage of adaptiveness. This causes two damaging effects. On the one hand,

it notably increases overheads. On the other hand, a large number of packages are excessively

small and do not fully take advantage of the capacity of GPUs. Finally, it should be noted

that Sigmoid generates a much smaller number of packages, thus reducing the overhead with

respect to HGuided. At the same time, it maintains adaptiveness according to the needs of

each benchmark, surpassing Adaptive in this regard.

Table 4.4: Number of Packages generated by each load balancing algorithm and benchmark

Benchmark Binomial Gaussian Mandelbrot Nbody Taylor Aho BM3D RAP Ray1 Ray2 Average
Adaptive 15 19 13 15 15 11 13 15 14 13 14.30
DefHG 445 105 25 175 51 828 92 79 389 291 248
BestHG 307 84 14 119 31 707 47 46 288 185 182.80
Sigmoid 28 31 17 27 20 13 28 20 40 32 25.60

4.6.3. Energy consumption

Nowadays, performance is not the only figure of merit used to evaluate computing systems.

Their energy consumption and efficiency are also very important. Figure 5.10 gives an idea

of the energy saving obtained by taking full advantage of all the compute devices in the Batel

heterogeneous system. Contrasting with the baseline system that only uses one GPU, while the

other devices are idle but still consuming. Therefore, the figure shows, for each benchmark, the

energy consumption of each algorithm normalized to the baseline consumption. In this graph,
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Figure 4.9: Energy consumption of the benchmarks with the different algorithms normalized
to the baseline in the heterogeneous system.
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Figure 4.10: EDP of the benchmarks with the different algorithms normalized to the baseline
in the heterogeneous system.

less is better, and bars over one indicate that the whole heterogeneous system consumes more

energy than the baseline.

The energy measurements are strongly correlated to the performance of the algorithms. Observ-

ing the geometric mean, it can be seen that Sigmoid gives the best results, followed by BestHG,

presenting energy savings of 9% and 7% respectively. Looking closely at some benchmarks, the

other algorithms can consume significantly more energy than the baseline (Static and Adaptive

in irregular benchmarks). Even DefHG and BestHG do not reach any improvement in Binomial

and Gaussian. Interestingly, the only algorithm that always improves the baseline consumption

is Sigmoid. The use of more devices logically increases the instantaneous power at any time.

But, since the total execution time is reduced, the total energy consumption is also less. This

saving is further improved by the fact that idle devices still consume energy, so making all the

devices contribute work is beneficial. Notice that, of the effortless algorithms, Sigmoid attains

the lowest energy consumption while Adaptive presents and overall energy consumption greater

than the baseline.
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Figure 4.11: Efficiency of the different algorithms executing the benchmarks on a homogeneous
system.

Another interesting metric is the energy efficiency, which combines performance with energy

consumption. Figure 5.11 shows the Energy Delay Product (EDP) [CCBB15], of the algorithms

normalized to that of the baseline. Since this is a combination of the two above metrics, the

relative advantage of the different algorithms is maintained. The geometric mean shows that

with this metric all algorithms are advantageous, Sigmoid giving the best results with a 54%

improvement. BestHG also gives good results (52%) since its parameters have been optimized.

These two algorithms give good results in all the benchmarks, while the remaining algorithms

exhibit a strong variability, in some cases even with normalized EDP values over one.

In summary, these results prove that co-execution improves the energy consumption of hetero-

geneous systems, in addition to their performance, as shown in the previous section.

4.6.4. Scalability

The last experiment was developed in Hydra, a homogeneous system with four GPUs. This

experiment evaluates the strong scalability of the load balancing algorithms. Therefore, the

same problem size has been used for all the experiments, while the number of devices increases

from 2 to 4. For a better comparison, the metric used to evaluate scalability is the efficiency.

Perfect scalability means constant efficiency as the number of devices increases. This is usually

not the case and, as shown in Figure 4.11, efficiency drops in all cases. The smaller the drop,

the better the scalability of the algorithm.

These results show that Sigmoid is the only algorithm that scales well for both regular and
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Figure 4.12: Estimation of the weak Scalability of Sigmoid algorithm using Gustafson Law.

irregular benchmarks. Regarding the rest of the algorithms, Static scales very well in regular

algorithms, but it has serious problems in irregular ones, such as Aho and Ray1, where it scales

well between 2 and 3 devices, but drops strongly with 4 devices. Adaptive also scales well on

regular benchmarks, excluding NBody with 4 devices, but behaves very poorly on irregular

ones. Finally, both BestHG and DefHG, have an erratic behavior in regular benchmarks,

with good scalability for NBody, Mandelbrot and Taylor, but scaling badly for Binomial and

Gaussian. Both versions of HGuided also show the same behavior for irregular benchmarks:

good scalability for Aho, BM3D and RAP, but very poor for Ray1 and Ray2. In sum, out of

the evaluated algorithms, only Sigmoid delivers uniform scalability results, regardless of the

behavior of the workload: regular or irregular.

The number of devices available in future systems will surely grow beyond four. For this reason,

and based on the data obtained in these experiments, an estimate of the weak scalability of

Sigmoid has been made with up to 16 devices using Gustafson’s Law [Gus88]. Evaluating strong

scaling for such a high number of devices would require problem sizes that cannot be executed

on just four devices due to memory constraints. Figure 4.12 shows how efficiency evolves by

increasing both the number of devices and the size of the problem, so that the workload per

device is always constant. As depicted, weak scaling for Sigmoid is almost perfect, according

to Gustafson’s Law estimates.

In conclusion, Sigmoid achieves almost perfect load balancing, delivering excellent energy and

performance results. Moreover, it delivers better overall performance than the load balancing

algorithms that require parameters and it also equals the results of the best algorithms for

regular and irregular kernels individually. Finally, it is the only algorithm with good scalability

in both regular and irregular applications.
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4.7. Conclusions

OpenCL is a powerful tool that grants access to the enormous potential of heterogeneous sys-

tems. However, it leaves the programmer alone with the manual management of the available

resources, which can turn into a complex task, hindering development and difficulting main-

tainability. This is especially true for co-execution, when all the devices collaborate on the

computation of a single kernel. In such case, the programmer needs to manually initialize

each device, distribute the data and make important load balancing decisions, which require

significant expertise and effort.

Maat works as an abstraction layer that eases the co-execution of OpenCL kernels. It abstracts

the programmer from the hardware, enabling the management of the whole heterogeneous

system through a single interface, regardless of the available devices. By separating the man-

agement from the underlying resources, Maat makes the maintenance of the code easier, as

there is no need to perform changes to the applications to account for new hardware. The

abstraction layer deals with the data structures associated to the new devices, the required

data transfers and the work distribution.

Maat also assists the programmer with the most crucial part of co-execution: load balancing.

It implements HGuided and Sigmoid, two novel algorithms that are capable of adapting to

different kernel behaviors. Both obtain close to ideal performance under regular and irregular

workloads, but Sigmoid shines specially for being an uninformed algorithm, requiring no pa-

rameters from the user. By monitoring the execution of kernels and adequately tuning package

sizes using its internal function, Sigmoid represents an all-around option for excellent perfor-

mance and energy efficiency, equalling and, on occasion, surpassing, informed algorithms, and

scaling remarkably well. This, together with the abstraction layer offered by Maat, succeed at

the goal of attaining effortless, transparent co-execution. Maat has been extended to support

other kinds of accelerators such as Xeon Phi in [GNT+19].
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Chapter 5

Co-execution support in task-based

programming models

HPC systems become more powerful by the year. However, this growth in computing capabil-

ity has also been coupled with an increase in the complexity of the systems, turning parallel

programming into an ever harder endeavour. This has led to different attempts from both

academia and industry to aid the programmer, by offering high level interfaces that hide the

complexity of the actual system. Task-based data-flow programming models are an example

of such an effort. This kind of programming models internally handle much of the complexity

of dealing with parallel systems, while obtaining remarkable performance. Regarding hetero-

geneous computing, most task-based programming models added support for the traditional

Host-Device approach to heterogeneity, in which devices are treated as independent entities

to which kernels are offloaded. However, they lack when a single task is to be co-executed,

leaving the programming and the responsibility of data management and load balancing to the

programmer. This chapter presents and evaluates an extension to OmpSs, as an example of a

well-known task-based programming language, to enable an effortless and efficient co-execution.

This is achieved by automatically dividing a single task and distributing it among the avail-

able devices, so they cooperatively execute it. This new capability frees the programmer from

the burden of explicitly splitting a task if co-execution is desired, and achieves a degree of

73



74 Chapter 5. Co-execution support in task-based programming models

abstraction in tune with what this kind of programming models offer.

5.1. Motivation

A common strategy to easing the programming of parallel systems is increasing the degree

of abstraction, hiding low level details while still obtaining competitive performance. This is

obtained by expressing parallelism via higher level constructions, using a more comfortable

syntax, closer to that of sequential programming. Task-based programming models are an

example of this approach. They represent the execution of a parallel program as a set of tasks

that have dependencies among themselves (more details in Section 2.1.2). The programmer

is then in charge of writing sequential code with certain annotations that define tasks and

the data they require and produce. This information is used by a runtime to build a Task

Dependence Graph that controls when tasks are scheduled to the available resources. To

account for heterogeneity, extensions were added to this models, that enable the programmer to

specify that certain tasks are to be executed in a heterogeneous device [F. 14, TV14, MMG16].

An instance of this is the OmpSs target directive, shown in Figure 5.1. In the example, the

binomial options task will be executed in an OpenCL-capable device. The ndrange part of

the directive is used to define, in an OpenCL manner, the number of work-items that need

to be spawned. In the example, sample*(numSteps+1) work-items will be launched along 1

dimension, grouped in work-groups of numSteps+1 work-items each.

This is a very significant improvement over base OpenCL, as some of the complexity is kept

under the hood. However, heterogeneous devices are still treated as completely independent

entities, forcing the programmer to explicitly partition tasks between the available devices if

any degree of cooperation is desired. This is depicted in Figure 5.2, which shows the necessary

changes to co-execute the workload of the simple task of Figure 5.1 using two devices. First,

the task itself needs to be modified, adding arguments start and end. These serve to identify

the portion of the total workload to be performed in the execution of the task, and are used to

calculate the number of work-items to spawn, defined in the ndrange clause. Consequently, an
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#pragma omp target device(opencl) copy_deps \\

ndrange(1,samples *( numSteps +1), \\

numSteps +1)

#pragma omp task in([ samples]randArray) \\

out([ samples]output)

__kernel void binomial_options(int numSteps ,

int samples , const __global float4*

randArray , __global float4* output );

// Initializations

binomial_options(NUM_STEPS , SAMPLES ,randArray , output);

#pragma omp taskwait

//Free resources

Figure 5.1: Header file for a sample task using the heterogeneous system extension.

execution of binomial options split using start=0 and end=SAMPLES would be equivalent

to the execution shown in Figure 5.1. Second, the new task needs to be called twice using the

new arguments as corresponding. Note that not only the header of the task would need to

be modified, but also its body. This is because each of the two task launches are completely

independent, using work-item ids that start in 0. As a result, start and end need to be used

as offsets for each work-item to access the data it requires. This involves analyzing the access

pattern of the original task to adapt its data usage for co-execution. Also note that in this

example the task is divided into two a priori equally sized portions, completely disregarding

load balancing. As substantiated throughout this dissertation, load balancing decisions are

central to the success of co-execution and far from trivial, depending both on the task at

hand and the available hardware. For irregular workloads, dynamic load balancing techniques

are necessary to achieve proper performance, requiring the workload to be split into several

packages, sometimes with varying sizes. This would represent a significant amount of work for

the programmer, which would have to decide the number and size of the subtasks that have to

be launched, and manage their data accordingly. Once again, the programmer is effectively left

unaided regarding load balancing, which is central to efficiently using ao heterogeneous system.

The addition of support for effortless co-execution to an already high level parallel programming

framework represents another step towards bridging the gap between programmers and parallel

systems.
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#pragma omp target device(opencl) copy_deps \\

ndrange(1,end -start*( numSteps +1), \\

numSteps +1)

#pragma omp task in([ samples]randArray) \\

out([ samples]output)

__kernel void binomial_options_split(int numSteps ,

int samples , const __global float4*

randArray , __global float4* output ,

int start , int end);

// Initializations

binomial_options_split(NUM_STEPS , SAMPLES , randArray , output , 0,

SAMPLES /2);

binomial_options_split(NUM_STEPS , SAMPLES , randArray , output , SAMPLES

/2, SAMPLES);

#pragma omp taskwait

//Free resources

Figure 5.2: Header and code for the manual co-execution of a sample task .

5.2. Kernel co-execution in OmpSs

This chapter proposes to add native support for heterogeneous co-execution into task-based

programming models, so the cooperative execution of a single task, using all the resources

available in the system, does not represent any extra work. This involves automatically handling

the division and distribution of the workload represented by the task among all the available

devices, so no modifications to its code are required. Splitting the workload implies deciding

how much work is scheduled to each device. This is a complex choice, as it requires expertise

and determines the achieved performance and energy efficiency. For co-execution support to

be useful, the programmer should be spared workload distribution decisions, leaving them

to load balancing algorithms that specially target heterogeneous systems. Co-executing also

means moving data between the devices involved. This movement should also be kept from the

programmer, so he does not have to worry about the data that will be accessed by each work-

item or the results it will produce. Finally, all this should be achieved with minimum impact on

the programming model itself. This is to preserve its original approach to programming, and

ease the use of the new co-execution capabilities and the adaptation of pre-existing applications.

In short, the goal is to enable the programmer to co-execute a task using a code as similar as
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possible to the one shown in Figure 5.1, requiring no modification to the task itself. OmpSs has

been chosen as a sample task-based programming model, but this chapter and its conclusions

can be generalized to other programming models.

5.3. Load Balancing Algorithms

To account for the original philosophy of OmpSs, the classic OpenMP load balancing algorithms

have been adapted to a heterogeneous environment and implemented in the new scheduler.

These are the Static, Dynamic and Guided algorithms. The latter has been renamed to HGuided

as it is an implementation of the HGuided algorithm presented in Section 3.3. The overall

behavior of these algorithms is illustrated in Figure 5.3. It shows the ideal case in which in the

execution of a regular application all devices finish simultaneously, thus achieving perfect load

balance. An uninformed version of the HGuided algorithm, called Auto-Tune, has also been

implemented to offer an effortless co-execution algorithm that does not completely depart from

the traditional OpenMP approach to load balancing. The following Sections provide a deeper

insight on these algorithms.

5.3.1. The Static algorithm

Static algorithms operate before a task starts its execution, dividing the workload in as many

packages as devices are available in the system. OpenMP has traditionally targeted homo-

geneous systems, so coming up with a balanced work distribution is relatively simple. The

workload is just split in equal packages and, provided that it is regular, a balanced distribution

is likely to be found. Certain subtle effects may have an impact the success of the load balancing

though. One such is memory access time variability in NUMA systems. To control affinity, the

OpenMP Static algorithm provides a parameter to define a block size that determines how the

packages are built. Each device will be statically assigned a set of blocks of contiguous threads,

that are assigned in round-robin. For the next section that is distributed, if the same block size
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Static

CPU 1 2 3 4 5 6

GPU1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GPU2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Dynamic

CPU 1 2 19 20 37 38

GPU1 3 4 7 8 11 12 15 16 21 22 25 26 29 30 33 34 39 40 43 44 47 48 51 52

GPU2 5 6 9 10 13 14 17 18 23 24 27 28 31 32 35 36 41 42 45 46 49 50 53 54

HGuided/Auto-Tune

CPU 1 2 3 4 39 40

GPU1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 41 42 43 44 48 49 52 53

GPU2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 45 46 47 50 51 54

Time

Figure 5.3: Depiction of how the four algorithms perform the data division among three devices.
The work groups assigned to each device, identified by numbers, are joined in packages shown
as larger rounded boxes. Note that the execution time of work groups in the CPU is four times
larger than in the GPUs.

is used, the devices are guaranteed to receive the same set of block of threads, which favours

affinity.

However, heterogeneous systems are affected by a not so subtle effect that, if not adequately

addressed, can render a work distribution completely useless: the devices potentially have

different computing speeds. Consequently, a straightforward implementation of the OpenMP

Static algorithm, applied to heterogeneous systems, will be virtually useless. Scheduling equal

amounts of work to devices with different computing speeds is unreasonable, as execution times

will also differ and some devices will idle while waiting for others.

To account for this requirement, the Static algorithm proposed for heterogeneous co-execution in

OmpSs receives the computing speeds of the available devices si as parameters. The algorithm

performs an a priori division of the workload, so the computing speeds also need to be known a

priori. This can be easily computed by performing an execution of the kernel using each of the

available devices individually. The results presented in Section 5.7.1 will show that inaccurately

setting this parameter sometimes has a strong impact on performance. The Static algorithm
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then proceeds by splitting the workload into as many children work descriptors as devices, each

with a number of work-groups proportional to the computing speed of the receiving device in

relation to the aggregate computing speed of the heterogeneous system W ·si∑N
i=1 si

.

This behavior is depicted in Figure 5.3. Considering the significant overhead of transferring

data to accelerators, it might seem fitting to implement a scheme to preserve affinity in a similar

fashion to OpenMP. However, this cannot be easily translated to heterogeneous systems. This

is because computing speed depends not only on the devices, but also on the kernel to be

co-executed. Consequently, the small gains that can be achieved through affinity are likely to

be lost in an imbalanced work distribution.

The main advantage of the Static algorithm is that it minimizes the number of host-device

interactions. Each device computes for the workload of a single work descriptor, while the

host just waits for their completion to gather the data. Consequently, the Static algorithm

performs well when facing regular workloads, which do not require any degree of adaptiveness,

so the lesser the overhead, the better the obtained performance. However, the Static algorithm

does not adapt, so its performance is not as good for irregular loads, which require dynamic

techniques to be able to conform to their unpredictable behavior.

5.3.2. The Dynamic algorithm

Some applications are irregular, so they do not present a constant load during their executions.

To adapt to their irregularities, dynamic algorithms divide the workload into small packages of

equal size. The number of packages is well above the number of devices in the system. During

the execution of a task, the host will be in charge of assigning packages to the different devices

on demand. The OpenMP dynamic algorithm is an example of this approach to load balancing,

taking the desired size for the packages as a parameter.

This algorithm can be easily adapted to OmpSs heterogeneous co-execution. The runtime splits

the G work-groups in work descriptors, each with the package size specified by the user in an

environment variable. This number must be a multiple of the work-group size. If the number of
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work-items is not divisible by the package size, the last work descriptor will be smaller. Then,

the runtime assigns one work descriptor to each device and waits for the completion of any of

them. When device di completes the execution of the work represented by a work descriptor it

will get scheduled a new one.

This behaviour is illustrated in Figure 5.3. The workload is divided in small, fixed size packages

and the devices process them achieving equal execution time. As a consequence, this algorithm

adapts to the irregular behaviour of some applications. However, each completed package

represents an interaction between the host and a device. This overhead has a noticeable impact

on performance, specially in OmpSs as runtime operation is costly.

5.3.3. The HGuided algorithm

Accounting for the high overheads that pure dynamic approaches often produce, the OpenMP

Guided algorithm tries to reduce the number of packages generated while remaining adaptive. It

does so by using decreasing package sizes as the execution of a task progresses. The adaptation

of this algorithm for OmpSs heterogeneous co-execution is equivalent to the one for HGuided

presented in Section 3.3. The computing speed of the devices and the minimum package size

have to be specified specified by the programmer, and the package size is calculated as follows

package sizei =

⌊
Gr

CN
· si∑N

j=1 sj

⌋
. Note that unlike the previous algorithm, Guided does not

allow for all the children work descriptors to be created when a task is launched and later

scheduled. This is because package sizes depend on the actual execution and the device that

will compute for each package, so children work descriptors need to be created on demand.

The HGuided algorithm strikes a balance between adaptiveness and overheads, which makes it a

good all-around solution that adequately distributes the workload for both regular and irregular

applications. However, it is still an informed algorithm, requiring two parameters to be provided

by the programmer: the computing speed and the minimum package size. These have a key

impact on the success of co-execution and are dependent on both the executed application and

the devices themselves. Determining the best value for the minimum package size is specially

complicated, especially for GPUs, because it is essential to do a sweep to obtain a value that



5.3. Load Balancing Algorithms 81

 
 
 

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

S
p
e
e
d

Time(s)

GPU0
GPU1

CPU

Figure 5.4: Evolution of the computing speed per device.

gives good results. Moreover, HGuided is quite sensitive to these parameters, so choosing an

adequate value for them is sometimes a demanding task that requires a thorough experimental

analysis. For this, reason an uninformed version of the HGuided algorithm, called Auto-Tune,

has been implemented. It delivers similar performance and energy efficiency to HGuided, but

does not require any parameter from the programmer.

5.3.4. The Auto-Tune algorithm

Overview

For co-execution to be truly effortless, load balancing should not require any intervention from

the programmer. However, all the aforementioned algorithms require parameters that condition

the success of co-execution and require a significant effort to be set. To quantify the impact

of using inaccurate parameter values, the sensitivity of the Static, Dynamic and HGuided

algorithms to their parameters is evaluated in 5.7.1. The conclusion is that all the algorithms,

but especially HGuided, may deliver significantly degraded performance when using slightly

off-key parameter values.

The Auto-Tune algorithm is an evolution of HGuided that strives to eliminate the need for

parameters while retaining near optimal performance and efficiency, for both regular and ir-

regular loads. It uses the same formula as HGuided to calculate the package size, but initially

uses nominal parameter values that are then adjusted at runtime. Auto-Tune also handles the

minimum package size differently depending on the device type that each package will be sent

to.
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Computing speed

As explained in the previous section, this algorithm starts using default parameter values that

are later tuned throughout the execution. The use of default values at the beginning of the

execution has negligible impact on performance, as accurate values are only necessary near

the end of the execution, which is one imbalances may happen. By then, the algorithm will

already have calculated adequate values for the kernel. The computing speed for the first

package launched at each device is calculated using the theoretical GFLOPs of the hardware.

These can be obtained at the installation of OmpSs either by querying the available devices or

by running a simple compute intensive benchmark. For the successive packages, the speed is

updated taking into account the computing speed displayed by each device. This is calculated as

the average number of work-items processed per second for the last three packages launched to

each device. By using the average speed of the last packages, a gradual adaptiveness is attained

that keeps the algorithm resistant to bursts of irregularity that would not be representative of

the actual speed for the next packages. Three packages have been found to strike a balance

between adaptiveness and accounting for the history of the execution. Figure 5.4 depicts the

evolution of the computing speed during the execution of one of the applications used for

experimentation. The nominal computing speeds are used at the beginning of the execution

until all the devices have finished at least one package. Then, the computing speeds are updated

at runtime. In the figure, the nominal speed for the CPU was higher than the actual one for the

application. Note that the use of the nominal speeds for the initial packages does not disturb

the load balancing, as all the devices are kept busy and do not delay the completion of the

benchmark. This operation is similar to that of the Sigmoid algorithm presented in Section

3.4.

Minimum package size

Package size also has an influence on the computing speed of throughput based architectures,

such as GPUs. Consequently, package size must be kept relatively high to prevent an inefficient

use of the hardware and overheads. However, this is also a potential source for imbalance. If
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the computing speed of the devices differs greatly, a high minimum package size that reduces

overheads is likely to be too big for slow devices, namely, CPUs, which would cause delays. To

prevent this, the Auto-Tune HGuided algorithm uses different minimum values for CPUs and

GPUs.

The value selected for the CPU is one work-group per CPU core, so no hardware is left unused

and imbalance is avoided. This is because the CPU is not a throughput device, so its computing

speed is usually much less sensitive to package size than the GPUs. Moreover, CPUs are often

the slowest device of the system, so using a small minimum package size with them will improve

the load balancing. Moreover, considering that data is already held in main memory, using a

small package size for CPUs does not have an impact on communication overheads.

Two values are considered for the GPU minimum package size. First, the equations imple-

mented in the CUDA Occupancy Calculator are used to obtain the minimum number of work-

groups that will achieve maximum occupancy for the current kernel and GPU. The CUDA

Occupancy Calculator is part of the CUDA Toolkit since version 4.1. This value is a lower

bound for the minimum package size, but might be too low if the application launches a large

amount of work-items, producing too many packages and high overheads. To prevent this,

the number of work-items is also analyzed and the final minimum package size is set to the

maximum between the value obtained by the Occupancy Calculator and 5% of the work-items.

This percentage has been experimentally set to keep the number of packages low and avoid

performance degradation in the GPU.

These enhancements give forth an uninformed algorithm with improved adaptiveness, that de-

livers comparable performance to HGuided for a fraction of the effort. It completely eliminates

the need to provide any parameter and saves a great deal of pre-processing time per application

and system, as will be shown in Section 5.7.1.
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5.4. Design

OmpSs has evolved throughout the years to provide high level abstractions for parallelism at

an outstanding performance. It effectively does most of the work for the programmer while

hiding the complexity of managing parallel systems. However, a framework that makes hard

things easy will necessarily be complex underneath. For this reason, decisions on how to

implement new functionality need to be carefully made, as a mistake may compromise the ease

of implementation, maintainability or success of the solution.

The main design principle in the implementation of co-execution support, has been respecting

the approach to parallel programming of OmpSs. It offers well defined abstractions that favour

certain programming strategies, that should be preserved for co-execution to be seamlessly

integrated in the framework and become a useful solution, with equivalent effort to using just a

single device. For this reason, the already present target directive has been used to implement

co-execution.

As presented in Section 2.1.2 the features offered by OmpSs have their foundation in the

combination of two main building blocks: Mercurium, which is a source-to-source compiler, and

Nanos++, which is a runtime capable of managing tasks, their data and the Task Dependence

Graph (TDG) their dependencies generate. As a consequence, the first design decision when

incorporating new functionality into OmpSs is determining whether it will be implemented as

part of the compiler, of the runtime or arise from the cooperation of both. This decision has

an impact on the programming of the framework, its maintainability and even its performance

and functionality.

For an educated decision on where to implement co-execution, lets first go back to its definition

and correlate it with the OmpSs infrastructure. When we talk about co-execution, we refer to

the orchestration of several devices, cooperating on the computing associated to a single task, in

a data-parallel fashion. OmpSs extracts parallelism from the execution of tasks. Consequently,

the transparent co-execution of a task in OmpSs may be implemented as the automatic gener-

ation of several children tasks that collectively represent the same computation as their parent.
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This will be accordingly scheduled to the available devices. OmpSs tasks are defined as com-

mon functions, appropriately characterized using a directive. Any call to a function defined as

a task will be translated by Mercurium into code that uses the Nanos++ runtime to generate

and manage the required tasks. Considering the above, co-execution effectively lies at the bor-

der between runtime and compiler. However, a defining factor sets apart the runtime as the

most adequate element to implement it: adaptiveness. To achieve proper load balancing, it

is necessary to react to the varying behavior of both applications and heterogeneous systems.

For example, finer grained child tasks may be necessary if the parent task shows an irregular

behavior. This kind of decisions cannot be made beforehand, which definitely turns Mercurium

into a poor choice to implement co-execution.

The next design decision is how to integrate co-execution in the runtime. The main purpose

of Nanos++ is the research of parallel systems. Consequently, it follows a modular design,

that can be easily extended by means of plugins. These are selected for each execution using

runtime options, usually via environment variables. For instance, OmpSs offers several modules

as plugins, implementing different throttling policies, instrumentation schemes or schedulers.

The latter are in charge of implementing different policies to distribute tasks among the avail-

able computing elements. Therefore, it seems fitting to implement co-execution support as a

scheduler plugin that transparently distributes the workload associated to a single task among

all the available devices. Such an approach has negligible impact on programming, as the

code of a task or that associated to its execution require no modification. Only the proposed

scheduler and the desired load balancing algorithm, together with its parameters, if needed,

have to be specified via environment variables. Figure 5.5 compares the environment variables

necessary to use a single device to those used for co-execution. This is the only modification

necessary to use all the available hardware. Consequently, this design achieves truly effortless

co-execution, enabling code originally designed for a single device to make the most of all the

available hardware by just adequately setting certain environment variables.
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# Single device

NX_OPENCL_DEVICE_TYPE=GPU

NX_SCHEDULE=bf

# HGuided load balancing

NX_SCHEDULE=co-execute

NX_ALGORITHM=hguided

NX_GPU_SPEED =34.0

NX_MIN_PACKAGE_SIZE =115200

Figure 5.5: Comparison of the environment variables to use for single device execution and
co-execution.

5.5. Implementation

In OmpSs tasks are represented by Work Descriptors, which hold the information of the com-

putation that is to be performed. This includes the executable for the task, its input data

and the location where outputs should be written to, which are stored in a CopyData data

structure. Mercurium is in charge of translating a call to a function that has been defined as

a #pragma omp task into calls to the necessary runtime functions to create the corresponding

work descriptor. The scheduler in turn is responsible of managing tasks and how and when

they are executed. A simplified example of the launch of an OmpSs task and an excerpt of the

generated Mercurium code is shown in Figure 5.6a .

As substantiated in Section 5.4, co-execution has been implemented as a new scheduler. When

function nanos submit is called to enqueue the new work descriptor into the runtime, it is

stored in the scheduler, and new children work descriptors are created and added to the task

pool. These collectively represent the workload associated to their parent. This operation

is depicted in Figure 5.6b, which depicts the children work descriptors generated by the new

scheduler. The created children work descriptors are shown in grey, while the one expressed

in the code of Figure 5.6a is white. Children work descriptors are an OmpSs notion. They

are defined as work descriptors spawned by their parent, not considering the latter as finished

until all its children have completed their execution. This enables the implementation of co-

execution to preserve the logic of the original DAG. No task following the one in co-execution

will start until all the children work descriptors, and consequently their parent, have finished.

Each of the children work descriptors is identical to its parent except for two key differences.

First, they have different OpenCL parameters, namely global work size and offset, express-
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// Initializations

binomial_options(NUM_STEPS ,

SAMPLES , randArray , output)

;

#pragma omp taskwait

//Free resources

// Simplified Mercurium code

create_wd_compact_opencl (...);

nanos_submit (...);

(a) Sample code for the launch of a task and the
corresponding code generated by Mercurium.
Header of the task in Figure 5.1

i

1 

2 

3 

N-2 

N-1 

N 
(b) Depiction of the created children work de-
scriptors.

Figure 5.6: OmpSs code and depiction of the children work descriptors generated by the co-
execution extension.

ing the workload that the work descriptor represents. For example, lets imagine a task that

launches 1000 work-items. If it was evenly split into two children work descriptors, each one

would have a global work size of 500, but the first one would have an offset of 0, while the

second one would have 500. Second, their output data is just a portion of that of their parent,

which is conveniently offset so the results are written adequately. This is represented by an

independent CopyData object, holding the start address and size that the package will have to

work on. As a result, coherence problems are avoided in the OmpSs directory. Apart from the

aforementioned details, data transfer relies on the well tested and documented methods used by

standard OmpSs. To perform the correspondence between work descriptors and output data,

an assumption is made: each OpenCL work-item will produce the result for the position of the

output buffers indexed by its identifier. This may seem a strong requirement, but it is met by

most kernels widely used in the industry and research.

However, a limitation was found in the original implementation of OmpSs that required ad-

dressing. The information for the global work size is handled by Mercurium and hardcoded

into the function that ultimately launches kernels. This issue effectively makes runtime sup-

ported co-execution impossible. To solve it, a slight change to Mercurium was necessary to
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make OpenCL kernel configuration parameters available to Nanos++. Consequently, a new

Mercurium work descriptor creation function has been implemented, which behaves like the

original but includes these parameters in the data held by the work descriptor, so the runtime

can access and modify them. The creation of the children work descriptors is performed by a

modified version of the duplicateWD function that does this extra work. This function is also

responsible for making the OpenCL parameters of the divided work descriptors available to the

Mercurium code, which will trigger the actual kernel launches.

Once the submission of the parent work descriptor is completed, the done function is called.

This is a Nanos++ function that is used to signal the completion of a work descriptor. It

also waits for the completion of the children of the calling work descriptor. In this way, no

task dependent on the divided one will be run until all the children resulting from the work

distribution are completed, so the dependencies of the task graph are maintained.

The actual decisions on when to launch the children tasks, which involve detecting when devices

are idle, are performed by the original Nanos++ implementation, and required no modification.

This also holds true for the movement of data from and to the devices. This is because co-

execution has been implemented making the most of OmpSs strengths and striving to minimize

the impact on its original implementation.

5.6. Methodology

This section completes the information on methodology provided in Section 1.5 with the details

particular to the experimentation in OmpSs. It presents the applications chosen for evaluation

and their maximum achievable speedup considering the performance the available devices show

executing them. Experiments have been carried out using the Batel system, presented in

Section 1.5.1.

Six applications have been chosen for the experimentation. Three of them: NBody, Krist and

Perlin are part of the OmpSs examples offered by BSC, and the other three: Binomial, Sparse

Matrix and Vector product (SpMV) and Rap have been specifically adapted to OmpSs from
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Table 5.1: Parameters for each application

Benchmark Type Problem size Local work size GPU Speed Package size Min. size

NBody Regular 8192000 128 1.67 1024 8192
Krist Regular 800000, 2048000 128 4.47 4096 4608
Binomial Regular 8192000 256 34.00 1152000 11520000
Perlin Regular 32768 128 22.00 1024 1664
SpMV Irregular 1024000, 327680000 128 22.00 1024 8192
Rap Irregular 1024× 1024 64 6.14 16384 65536

existing OpenCL applications. The first four (NBody, Krist, Binomial and Perlin) are regular,

meaning that all the work-groups represent a similar amount of work. On the contrary, SpMV

and Rap are irregular, which implies that each work-group represents a different amount of

work. The parameters associated to each of the load balancing algorithms have been set to

maximize performance. The computing speed for a device/application pair has been obtained

as the relative performance of the device, with respect to that of the fastest device for the

application.

Perlin implements an algorithm that generates noise pixels to improve the realism of moving

graphics. Krist is used on crystallography to find the exact shape of a molecule using Röntgen

diffraction on single crystals or powders. Rap is an implementation of the Resource Allocation

Problem. It has a certain pattern in its irregularity, because each successive package represents

an amount of work larger than the previous. The parameters used for each of the applications

are shown in Table 5.1. Note that the computing speed represents how many times the GPU

is faster than the CPU.

To give an idea of how successful co-execution has been, the speedup over the baseline obtained

for each benchmark will be compared to the maximum achievable speedup. This is obtained

using Equation 1.1, presented in Section 1.5.2. Note that, for the employed benchmarks, the

CPU is much slower than the GPUs, and is in charge of running the OmpSs runtime, which is

quite heavy. Then, considering that Batel was used in the experiments, which holds 2 GPUs

and a CPU, the maximum achievable speedup using the three devices will not be 3, but a

fraction over 2 which depends on the computing speed of the CPU for the application. The

speedup for each application using a perfectly balanced work distribution is shown in Table

5.2. These values give an idea of the advantage of using the complete system.
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Table 5.2: Maximum achievable speedup per application.

Application NBody Krist Binomial Perlin SpMV RAP
Max. Speedup 2.61 2.2 2.03 2.04 2.05 2.16

5.7. Evaluation

This Section evaluates the proposed strategy for heterogeneous co-execution in task-based par-

allel programming languages as implemented in OmpSs. These experiments aim to answer the

following questions:

How sensitive are the proposed load balancing algorithms to their parameter values,

considering that OmpSs might generate greater overheads than other lighter weight het-

erogeneous programming frameworks?

Do the proposed load balancing algorithms adequately distribute the load?

Does Auto-Tune manage to successfully balance the workloads regardless of their behav-

ior?

Does heterogeneous co-execution make sense performance-wise and energy-wise, apart

from the increase it represents in abstraction and ease of programming?

5.7.1. Parameter sensitivity

As explained in Section 5.3, the Static, Dynamic and HGuided algorithms require different

parameters for their operation. These have to be provided by the programmer and are one

of the key factors for a successful load balancing. However, determining the most adequate

values for a workload is not trivial, as they may differ greatly between applications and device

configurations. Consequently, the selection of parameters is often a work intensive process,

usually based on experimentation.

The importance of adequately choosing the parameter values is illustrated in Figure 5.7, which

displays the execution time for the applications when varying the parameters for each of the
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the Static algorithm.
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for the Dynamic algorithm.
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(c) Execution time with different computing speeds for
the HGuided algorithm.
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Figure 5.7: Parameter sensitivity analysis

algorithms. Note that for the HGuided algorithm, when one of the parameters is modified,

the other is set to the identified optimal value. As shown in the figure, for every of the

parameters, the applications show very different behaviors, ranging from near insensitivity

to delivering greatly degraded performance, sometimes even lacking a clear relation with the

parameter value, as is for example the case of Rap for the minimum package size. Moreover,

the applications are not affected equally by the parameters. For example, Binomial is highly

sensitive to the computing speed in the Static algorithm and moderately sensitive to almost

insensitive to the rest of parameters, while Rap behaves just the opposite: it is insensitive to

the Static computing speed and tremendously sensitive to the other parameters.

Lets analyze each parameter separately. First, regarding the computing speed for the static,

the performance of Binomial, Krist and NBody improves as bigger values are used, until a

minimum is reached. Going beyond this value either has no effect or represents a slight loss

of performance. This can be seen in NBody. Binomial and Krist are specially affected by this

parameter, while Rap is almost insensitive and Perlin highly irregular. This parameter behaves
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very differently for the HGuided. In the case of this algorithm, regular kernels are almost

insensitive, excluding Binomial, in which the CPU is much slower than the GPU. In light of

this, it can be concluded that the use of an accurate minimum package size can compensate for

an inaccurate computing speed. However, the same cannot be said for irregular kernels. Due to

their very nature, their performance is highly variable when the computing speed is modified.

With respect to the number of packages generated by the dynamic algorithm, kernels behave

as expected. Increasing their amount of packages improves performance until an optimum is

reached. Beyond that point performance degrades due to overheads. This behavior is common

to all the benchmarks. Krist and NBody are shown to be specially sensitive to overheads. This

is because each of their work-items perform a small amount of work. The kernels show a similar

behavior when modifying the minimum package size. However the performance of Rap is very

variable when using big package sizes. This is because big minimum package sizes overheads

the capability to adapt to irregular workloads, generating an unpredictable behavior. Note

that certain applications, such as NBody, spawn fewer work-items than others. For these, only

smaller minimum package sizes could be tested.

Considering these results, it is obvious that, in order to achieve an accurate load balancing,

an experimental tuning of the algorithm parameters is often a must. This also shows the

importance of uninformed algorithms that free the programmer from the burden of having to

tune the parameters for each individual kernel and hardware configuration. The Auto-Tune

algorithm, by automatically adjusting the parameters, is such an algorithm. It does not require

any parameters while it matches and even surpasses the performance of HGuided in certain

cases.

5.7.2. Experimental results

The experiments presented in this section have been developed using the optimal values for the

parameters required by each algorithm, obtained in the previous section. This implies that the

results for the Static, Dynamic and HGuided algorithms are the best that can be achieved, but

require a great effort to tune the parameters.
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Figure 5.8: Speedup per application.

Performance

Figure 5.8 shows the speedup obtained for each application, calculated with respect to their

execution time using the baseline system, as explained in Section 1.5. The values for the

maximum achievable speedup are shown in the graph as horizontal lines above each benchmark.

Additionally, the geometric mean is shown, which includes both four regular benchmarks and

two irregular ones.

From the results of the geometric mean it can be seen that the best result is obtained by the

Auto-Tune algorithm, closely followed by the Static, the HGuided and finally the Dynamic.

However, it is worth noting that more regular than irregular kernels, which benefits Static.

With more irregular ones, Auto-Tune would be ahead by a greater margin. Furthermore, it

should be emphasized that the Auto-Tune algorithm is much easier to use, because it does not

require finding optimal values for any parameter.

A detailed analysis of the speedups reveals that the Static algorithm is the best option for

regular applications, with an average speedup for these four kernels of 2.08. This is because

they require no adaptiveness, so they benefit from the minimum overhead introduced by the

Static algorithm. However, the Auto-Tune algorithm achieves very similar results to Static with

less configuration effort in every benchmark but Perlin, which is very sensitive to overheads as

can be seen in the results for all the algorithms but Static. This is because it has a shorter

execution time and generates fewer work-items than the rest of applications. The result is a

greater impact of the overheads. The other two algorithms achieve good results, but suffer

from a problem that reduces performance. If one of the last packages is assigned to the slowest
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device it is likely to delay the execution of the whole application. This problem could be avoided

by increasing the number of packages, but in that case overheads come into play, which also

degrade performance.

For irregular applications, the best results are obtained by Auto-Tune and HGuided algo-

rithms, with an average speedup of 1.96 and 1.91 respectively for these kernels. Their adaptive

behaviour favours load balancing in these applications, where the workload of each work-group

is completely unknown and unpredictable. On the other hand, the reduction in host-device

interactions with respect to Dynamic reduces the runtime overhead, which is inherent to this

type of algorithms. This is the reason why the HGuided and Auto-Tune algorithms deliver

better performance than the simpler Dynamic algorithm. Finally, the Static algorithm fails to

balance the load because it cannot cope with the unpredictability of these applications.

Overall Auto-Tune achieves the best performance, followed by Static. However, this is decep-

tive, as there are more regular than irregular kernels in the evaluation. If addressed separately,

Static achieves an average speedup of 2.08 for the Static kernels and of 1.25. Regarding Auto-

Tune, it achieves speedups of 1.76 and 1.96. In light of this, Auto-Tune is the best option to

face a kernel with unknown behavior. Moreover, it does not require any parameters

Load balance gives an idea of the degree of utilization of the system and, consequently, of how

well a load is balanced. A value of one represents that all the devices have been working all the

time, thus achieving the maximum speedup. In Figure 5.9 the geometric mean efficiencies show

that the best result is achieved by Auto-Tune with an efficiency around 0.85. In addition, there

is at least one load balancing algorithm for every application that achieves an efficiency over

0.9 or even as high as 0.98, reached by Binomial and Perlin with the Static. This is true even

for the irregular applications, in which obtaining a balanced work distribution is significantly

harder.
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Figure 5.9: Load balance of the heterogeneous system.
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Figure 5.10: Normalized energy consumption per application.

Energy

Not only performance, but also energy consumption and efficiency are very important in the

evaluation of a computing system. Figure 5.10 shows, for each benchmark, the energy con-

sumption of each algorithm, normalized to the consumption of the baseline system, meaning

that less is better. The baseline only uses one GPU while the other devices are idle and still

consuming. This would be the case of a current HPC system, in which failing to use all the

available resources may represent an energy waste.

The values of the geometric mean indicate that the algorithms that consume less energy are

Static and Auto-Tune, with a saving of almost 20% compared to the baseline. Regarding the

individual benchmarks, it is always possible to find an algorithm where the normalized energy is

less than one. Moreover, all the algorithms reduce consumption, despite using the whole system.

The use of more devices necessarily increases the instantaneous power at any time. But, since

the total execution time is reduced, the total energy consumption is also less. Furthermore,

since idle devices still consume energy, making all devices contribute work is beneficial.
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Figure 5.11: Normalized EDP per application.

The analysis of the algorithms shows a strong correlation between performance and energy

saving. Consequently, the best algorithm for regular applications is also the Static, with an

average saving of 26.5%. However, for irregular applications, it wastes 7.4% of energy. On the

other hand, the Auto-Tune gives an average energy saving of 16%.

Regarding the results of individual benchmarks, it is interesting to comment Krist. The highest

energy saving in this benchmark is provided by Auto-Tune, although it is not the best in

performance. The reason for this is that the execution for Auto-Tune is less balanced that

that for Static. The result is that the GPUs, which are more energy efficient, execute more

work, so consumption is decreased even though the CPU is idle for a fraction of the time.

Consequently, for this particular application, best energy is likely to be obtained when using

the two GPUs exclusively. There are only two particular benchmarks where the use of the whole

system employs more energy than the baseline. These are Perlin with Dynamic, HGuided and

Auto-Tune, and SpMV with Static. This is because, in these cases, the gain in performance is

too small (around 18% and 12% respectively) and cannot compensate for the increased power

consumption involved in using the complete system.

Another interesting metric is the energy efficiency, which combines performance with consump-

tion. With the dual goal of low energy and fast execution in mind, the Energy Delay Product

(EDP) is the product of the consumed energy and the execution time of the application. Figure

5.11 shows the EDP of the algorithms normalized to the EDP of the baseline.

Since the EDP is a combination of the two above metrics, the previous results are further

corroborated. Therefore Auto-Tune also achieves the best energy efficiency results on geometric
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mean, followed by Static, HGuided and Dynamic. Attending to the individual algorithms, their

relative advantages is also maintained. Although the Static algorithm on regular applications

shows a significant reduction of the EDP of 65%, the same is not true on irregular ones, reducing

only 12.4%. In contrast, the Auto-Tune is more reliable, as it achieves a similar reduction on

both kinds of applications; 48% on regular and 57% on irregular. Moreover, HGuided and

Auto-Tune are the only algorithms that always achieve an improvement over the baseline in

terms of energy efficiency, with Dynamic representing a decrease in the efficiency of Perlin and

Static of SpMV.

5.8. Conclusions

High level programming frameworks have traditionally eased the obtaining of excellent per-

formance through abstractions that hide complex implementation details, which are internally

managed. However, heterogeneous systems are often still treated as second class citizens. This

is specially true regarding co-execution, which, if desired, usually has to be handled manually

by the programmer, including complex tasks such as load balancing.

This chapter presents an extension to OmpSs, as an example of a task-based programming

model, to support the effortless co-execution of massive data-parallel kernels on heterogeneous

systems. Co-execution is offered as an OmpSs plugin, which has been implemented with the

ease of use as a priority. Therefore, if the programmer desires a kernel to be co-executed, he

will only have to load the corresponding plugin and select the desired load balancing algorithm,

with no impact on the code of the application whatsoever. This is the result of a careful design

that has leveraged the strengths of OmpSs and embraced the original design of the framework.

Regarding load balancing, the extension implements the classic OpenMP algorithms, adapted

to heterogeneous co-execution. As expected, the Static algorithm is the best option for regular

loads, while HGuided excels for irregular ones, achieving remarkable performance for regular

ones too. The Dynamic algorithm has been found unable to adequately balance the load. This

is due to OmpSs introducing a significant overhead due to its very operation as a complex data-
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flow driven framework. This is an important conclusion, as for a load balancing algorithm to be

successful in an environment similar to OmpSs, it will have to consider its sensitivity to over-

heads, keeping the number of generated packages low as HGuided does. A fourth load balancing

algorithm is also presented, which is an uninformed version of HGuided called Auto-Tune. This

algorithm proves to be the best all-around solution for truly effortless co-execution, delivering

equal or better performance than HGuided, while requiring no action from the programmer.



Chapter 6

Hardware supported co-execution in

heterogeneous systems

Accelerators were initially complex pieces of hardware, implemented in discrete cards and com-

municated with the CPU through slow interconnections. Nevertheless, heterogeneous systems

are getting closer together. Now, thanks to miniaturization, a single SoC may hold CPU cores

and a capable GPU, sharing the same memory space. As a result, integrated architectures

have permeated computing systems, ranging from HPC to mobile devices. This is because they

offer promising features that have enabled higher levels of abstraction. However, the accel-

erator of the system is still treated as a second class citizen, in a classic host-device kind of

relationship. Despite the integration in a single chip, there is neither software nor hardware

support for low-level co-execution in this kind of devices. This chapter proposes to fully use

the potential capabilities of integrated systems to enable hardware supported co-execution, so

a kernel launched to a heterogeneous system fully uses all its resources with no programmer

effort. The new design has been evaluated through simulation using gem5, and focuses on

OpenCL workloads, but it could be extended to other programming models.

99
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6.1. Motivation

The history of computer architecture is a tale of integration, fuelled by an ever decreasing tran-

sistor feature size. This was known as Dennard scaling. However, since 2005 clock frequencies

improve much more slowly as devices become smaller. As a result, computer architects had to

devise more sophisticated ways to obtain performance using the extra transistors available. As

the capacity for integration grew over time, chip designers had to face a dilemma: adding more

cores or going heterogeneous, devoting part of the silicon to a GPU. The undeniable success of

accelerators convinced every manufacturer to choose to design products along the latter lines

[AMD12, Jun15, Dav16] in an effort to improve both the performance and energy efficiency of

certain applications.

The integration of new, formerly independent resources into the chip, enables a tighter relation

with the CPU, that allows for a different use of the hardware. This may enable both new

capabilities or a more convenient and efficient support for already available ones. An instance

of the latter would be, for example, how vector processors evolved into vector extensions which,

with the aid of the compiler, manage to extract excellent performance requiring few to no

programmer intervention.

Current SoCs hold both CPU and GPU cores that share the same memory [AMD12]. This

enables the use of a unified memory space between the CPU and GPU and adds the possibility

of system-wide atomics, among other important features that ease the programming of hetero-

geneous systems. Nevertheless, even though CPUs and GPUs are closer than ever, they are

not fully integrated yet. GPUs are still treated as accelerators by the programming models,

following a strict host-device philosophy. For a kernel to be run using all the available resources,

the programmer needs to manually partition the workload; all the challenges of co-execution

remaining unchanged.

Discrete systems require the intervention of drivers to communicate with the different devices,

but such requirement should not be necessary in integrated architectures. The software tools

presented in the previous chapters can be used for this kind of systems, but their integration
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in a single chip stands the chance of supporting co-execution in hardware, avoiding software

overheads. The programmer would only have to launch a kernel and leave the hardware in

charge of co-execution and load balancing, with no complex software in between, that will

generate an overhead no matter how optimized it is. This opens up new possibilities regarding

how problems are solved, but new limitations arise too.

Advantage: Hardware co-execution will have much smaller overheads, which enable a

finer grained work distribution.

Advantage: New information will be available that will enable to make more educated

load balancing decisions.

Advantage: Data management should be easier, as the memory space is shared, and all

the devices use the same virtual addresses.

Limitation: Simpler load balancing algorithms will be required, as their operation will be

implemented in hardware.

Limitation: The parallel operation of CPU and GPU cores using the same memory may

have negative effects on performance. This is due to the different way in which CPU

and GPU cores stress the memory subsystem and the interconnection network [BKA10,

ZAM+15]. Examples of this effects will be shown in Section 6.5.

By leveraging these advantages while considering the limitations, hardware co-execution rep-

resents an opportunity to better use the resources of integrated architectures and ease their

programming. It paves the way towards a more transparent use of the heterogeneous system,

more in line with traditional programming, in which the interaction of compiler and hardware

makes for excellent performance and efficiency, with almost no programming effort. Conse-

quently, this chapter proposes to extend the architecture of integrated CPU-GPU systems to

support hardware co-execution. This will be done by adding a new module, independent from

the CPU and the GPU, capable of scheduling work to both devices. The proposed design has

been implemented in the gem5 simulator for its evaluation.
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6.2. Design

The addition of hardware supported co-execution requires not only to devise an architecture

capable of transparently distributing work among heterogeneous resources. It also involves

rethinking how the integrated heterogeneous system will be programmed. This section elabo-

rates on the most adequate way to offer co-execution to the programmer, and the underlying

architecture modifications required to support it.

6.2.1. Programming support

The goal of hardware co-execution is adequately using all the resources of the heterogeneous

system, while minimizing programming effort. Therefore, compiler or software assisted tech-

niques to automatically identify what to co-execute would be the best option, as they would

require no programming. However, they are way beyond the scope of this dissertation. More-

over, it would be far-fetched to take such a disruptive path as a first approach to hardware

co-execution.

To keep programming effort as low as possible, the next logical step is for the programmer to

specify what will be co-executed. This would imply that the code to be co-executed can be

run on all the involved devices. Therefore, OpenCL represents an ideal choice, as a kernel can

be run on any kind of device provided an adequate driver. Then, to support co-execution, it

will be necessary to extend OpenCL to provide the programmer with a means to specify that a

kernel has to be co-executed. Having chosen OpenCL as the target language for co-execution,

OpenCL terminology will be used throughout the rest of this chapter. However, the proposed

design could be easily extended to other programming models with support for heterogeneous

systems.

As explained in Section 2.1.1, OpenCL command queues are used to launch a kernel to a specific

device. This kind of operation should be preserved to respect OpenCL philosophy and ease

the adaptation of code to co-execution. Therefore, it will be necessary for the OpenCL driver

to provide a data structure that represents all the available resources, so the programmer can
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use it for co-execution as if it represented a single device. Devices belong to contexts, which

are the main data structure to manage the heterogeneous system. These are representations

of available device configurations provided by the OpenCL library in collaboration with the

driver. To create a context, OpenCL provides functions that take the type of the devices to

be selected as an input parameter. For example, when CL DEVICE TYPE GPU is used, a context

holding all the available GPUs will be created. Such a context would provide individual access

to the GPU devices available in the system, but no co-execution capabilities, as explained in

Section 2.1.1.

Considering that the goal is to obtain a single device data structure that encompasses every

resource, a new device type CL DEVICE TYPE HETEROGENEOUS SYSTEM may be defined, to ex-

press that hardware co-execution is desired. If used, the resulting context will provide the

programmer with a single logical device, representing all the resources in the system. The later

use of this context and the device data structure it provides will be transparently handled for

hardware co-execution. As a result, the programmer will effectively deal with a single device

in a classic host-device manner, while all the complex details are managed by the library, the

driver and, ultimately, the hardware. This design enables effortless access to the co-execution

capabilities supported by the hardware.

6.2.2. Architecture and OS support

Nowadays, the most common integrated heterogeneous system holds a number of CPU cores

and GPU compute units in the same SoC. For its prevalence, this is the configuration that will

be considered in this chapter. The obtained conclusions may be extended to other kinds of

heterogeneous systems, but it would be necessary to evaluate if the design applies, regarding

the particularities of each architecture. The names of certain hardware structures have been in-

tentionally kept generic for the sake of clarity. This is because the names used by manufacturers

are often just marketing devices that change between brands or even hardware generations.

In order to devise a strategy to adequately distribute a kernel execution between cores and

compute units, lets first analyze how the OpenCL runtime handles each kind of device. This will
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provide useful information to come up with a low-impact design, that leverages the capabilities

already present in the hardware and OpenCL runtime.

For CPUs, the runtime spawns one thread per available core. These threads will operate

as a work pool to process kernels, receiving work in the form of work-groups, which will be

distributed by a thread devoted to management. Each thread will process the work-items of

a work-group sequentially before passing to the next work-group. Therefore, there will be

parallelism between work-groups, but not between work-items within the a work-group. This is

to reduce the cost of synchronization within the work-group and to avoid cache sharing issues

that may arise if a work-group was split among several cores. Note that all the threads will

execute exactly the same code, as the kernel function will be the same.

On the contrary, the OpenCL runtime operates very differently when dealing with GPUs. If

for CPUs the management is prominently software-base, hardware will play a very important

role for GPUs. When a kernel is launched, its information is stored in a hardware queue. This

includes, but is not limited to, the number of work-groups and work-items to be spawned, a

pointer to the first instruction to execute and a pointer to the input parameters. That is,

all the necessary information to manage the distribution of work. These registers are part

of a hardware dispatcher, which is in charge of the dynamic distribution of work-groups to

compute units. Each compute unit will initially get as many work-groups as made possible by

its resources. Then, when a compute unit completes a work-group, it will notify the dispatcher

and request a new one. A depiction of a sample kernel K1 and its later distribution to the

compute units is shown in Figure 6.1. This kind of operation has its origin in discrete GPUs.

However, it holds true for integrated ones, even though they are tightly knit to the CPU. The

interconnection communicating them will just be faster.

6.2.3. Proposed dispatcher design

To provide support for hardware co-execution in integrated systems, it is necessary to implement

a single means to manage the distribution of work among all the heterogeneous devices. The

GPU dispatcher seems like a fitting candidate for the task, as it already holds all the necessary
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Figure 6.1: Representation of the proposed design for the support of hardware co-execution.
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Figure 6.2: Representation of the proposed design for the support of hardware co-execution.

information for co-execution and load balancing. However, it has traditionally been part of the

GPU, regarding compute units only.

Considering that integrated systems have reduced latencies and overheads and that their design

is based on the sharing of certain hardware structures, it is not unreasonable to move the

dispatcher away from the GPU. This new shared dispatcher design enables the transparent

scheduling of work-groups to both CPU cores and compute units, while preserving the usual

operation of the devices individually. Its operation is outlined next and depicted in Figure 6.2.

1. At a kernel launch, the OpenCL runtime will create one thread per core, excluding the

one considered as host. This is similar to the default operation for CPUs, but no work

assignation will be performed now.

2. The information of the kernel execution will be written to the dispatcher, similarly to

how it is done for the GPU.
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3. The dispatcher will start distributing work-groups on demand:

a) For GPUs, work-groups are assigned to compute units until their resources are com-

pletely used. This is the default operation for the GPU.

b) For CPUs, each thread gets assigned one work-group. In this case a system call will

be necessary to specify the work-group scheduled to each core.

4. When a work-group is completed, the executing device will request more work. This will

be done in hardware by the GPU compute units and through the runtime for the CPU

cores.

This design strives to minimize the modifications necessary to support hardware co-execution,

leveraging the resources already present in the architecture. The only important change is

where the orchestration of the execution of a kernel is performed. This requires no new func-

tionality from the devices themselves. They just have to operate as they did before, executing

work-groups when required and requesting more work when idle. However, this design has an

important weakness. If a work-group gets scheduled to the slowest device near the end of the

execution, it will be likely to delay the completion of the whole kernel. To prevent this, a

certain degree of intelligence needs to be added to the dispatcher, so it can decide whether it

should schedule work-groups to a device or not. This will be explained next.

6.2.4. Automatic co-execution throttling

Depending on the co-executed kernel, the computing speed difference between the CPU and

the GPU may be significant. As a consequence, a careless work-group distribution may result

in the slowest device being assigned a work-group at the wrong time, effectively delaying the

completion of the whole kernel. To prevent this, the dispatcher needs a means to evaluate the

time that a device will take to execute a work-group, so it can make a decision on whether it is

sensible to perform the dispatch. In general, in a two device scenario, a work-group should only

be scheduled to a device if its execution time is smaller than that of running all the remaining

workload on the other device. This is, a work-group should be dispatched to device d1 if the
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following expression is satisfied, where T (di, x) represents the time to execute x work-groups in

device di and Gr is the number of remaining work-groups:

T (d1, 1) < T (d2, Gr) (6.1)

Considering that both the CPU and the GPU are parallel devices, T could be defined as the

number of batches of work-groups that will be executed sequentially, multiplied by the time to

execute a single work-group in device di. This can be expressed as:

T (di, x) = d x

pei ·MaxWgi
e · TWgi (6.2)

Where each of the parameters will be defined as follows:

1. pei is the number of processing elements of device di.

2. MaxWgi is the number of work-groups that a processing element of device di can compute

in parallel.

3. TWgi is the time to execute one work-group in device di.

Parameter pe is straightforward and known to the dispatcher. The CPU will have as many

processing elements as cores, and the GPU will have as many as compute units. MaxWg is

also known to the dispatcher. Each CPU core is capable of executing a single work-group. GPU

compute units, in turn, can execute a certain number of work-groups in parallel, which depends

on the amount of resources used by each particular kernel, such as registers or memory. This

value may be discovered by the dispatcher, as it initially schedules work-groups to the compute

units until they are filled. The execution time for a work-group and how it is handled by the

dispatcher require a detailed, step by step, explanation, which is provided next.

Device execution time per work-group



108 Chapter 6. Hardware supported co-execution in heterogeneous systems

The GPU dispatcher does not have the necessary resources to monitor the execution of work-

groups. Consequently, to be able to predict the execution time of a work-group in the CPU or

GPU, the dispatcher needs new hardware. This functionality will be implemented by extending

the dispatcher with two registers, the CPU Time per Work-group Register (CTWR) and the

GPU Time per Work-group Register (GTWR), which will hold the observed time to execute a

work-group in the CPU and GPU respectively.

To update the values of the CTWR and GTWR, two hardware tables will be used. The CPU

Work-group Log table (CWL) will have one entry per CPU core, which will hold the timestamp

for the last work-group dispatched to the core. The GPU Work-group Log table (GWL) will be

similarly defined, but it has to consider that GPUs may be executing more than one work-group

simultaneously. For this table to monitor all the work-groups running in the GPU, it would

need to have as many entries as the number of compute units, times the maximum amount of

work-groups supported by a compute unit. Note that this value is likely to be greater than

MaxWgs, as it is absolute maximum number of supported work-groups for a kernel that uses

minimum resources. Current architectures support a maximum of 16 work-groups per compute

unit, and contain total of 11 compute units. A table with 176 entries may be too big to be

efficiently implemented in hardware. For this reason, the GWL will only monitor one of the

compute units of the GPU. This does not represent a significant loss of information, as the

GPU is usually the fastest device, so by monitoring one of its compute units there is little risk

of scheduling excessive work to the rest. Moreover, work-groups are often scheduled in round-

robin, so those assigned to any compute unit should be equally representative of the behavior

of the whole kernel. As a result, the GWL will have 16 entries, each one holding a timestamp

and a work-group identification. These tables will be updated each time a work-group gets

dispatched.

When the dispatcher gets notified about the completion of a work-group it will use the CWL or

GWL to update the CTWR or GTWR as corresponding. To do so, it will subtract the current

timestamp from the one stored in the table entry corresponding to the device and work-group

that has been completed. To further clarify this, Figure 6.3 depicts the dispatcher for a simple

system with only two cores and compute units that can execute a maximum of four work-groups
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Figure 6.3: Example of the operation of the dispatcher in detail.

simultaneously. In the example, work-group 5 gets scheduled to compute unit 0, which is the

one monitored by the GWL, at timestamp 1000, so a GWL table entry is written with this data.

A while later, at timestamp 1200, the dispatcher is notified that work-group 5 has finished, so

it updates the GWTR value to 1200− 1000 = 200.

By using the values of CTWR and GTWR and Equations 6.1 and 6.2 the dispatcher can decide

whether it should schedule a work-group to a device or not. This keeps slow devices from

limiting the performance obtained from co-execution.

6.3. Implementation

The design proposed in Section 6.2 has been implemented in the gem5 simulator [BBB+11]

version 2.0 for its evaluation. This is a powerful event-driven simulation platform that can

model integrated CPU-GPU architectures, as introduced in Section 2.2. The implementation

of support for hardware co-execution required changes to the OpenCL library used by the

simulator and to the architecture itself, which will be introduced in this section.
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6.3.1. OpenCL library

The OpenCL implementation used by gem5 does not use a regular driver, but a backend

executed in syscall emulation as explained in Section 2.2. Therefore, the application to be

simulated has to be compiled using a special OpenCL library that accommodates to the needs of

the backend. In order to extend OpenCL with the scheme for hardware co-execution presented

in 6.2.1, it is necessary to study the library considering that every step in the outline of an

OpenCL program may require modifications. This includes:

The creation of contexts and command queues.

The management of data.

The compilation and launch of kernels.

However, these three items will be straightforward to adapt for co-execution. This is because

of the simplified OpenCL library required by the gem5 backend.

The gem5 simulator can model systems that integrate CPU cores and a GPU, but only considers

OpenCL execution on the GPU. Therefore, as the library is designed to strictly accommodate

to the needs of the simulator, the functions to query for platforms, contexts or devices have

a hardcoded return representing that only one GPU is available. The proposed design for

co-execution uses a single device to represent all the available devices. It is just necessary to

store that they are of type CL DEVICE TYPE HETEROGENEOUS SYSTEM for later use, when the

user specifies so in the functions to create them.

With respect to data, the library disregards the type of device to create, read or write buffers,

as it only targets the GPU. The simulated system has a shared address space between CPU

and GPU, so the data management originally performed by the library for the GPU will also

be valid for the CPU cores.

Lastly, the management of kernels does not require any device type dependent action from

the library. It is just necessary to pass the information of the device type to the simulator.
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To do so, the HSAQueueEntry data structure, has been extended to hold the device type.

HSAQueueEntries are the gem5 representation of a workload to be computed by the GPU,

including a pointer to its code, its arguments, number of work-groups and work-group size.

However, this ease of implementation is a double-edged sword. It comes from the library being

tailored to the needs of gem5, which only targets the execution of OpenCL kernels on GPUs.

This will prove a challenge regarding the participation of the CPU cores in co-execution, which

will be explained in the next section.

6.3.2. OpenCL workloads on CPU cores

Gem5 does not support the execution of OpenCL on CPU cores. However, to achieve co-

execution, the CPU has to be able to compute a portion of the kernel. Implementing full

OpenCL support for CPUs in gem5 would be the best option. However, it would represent an

effort way beyond the scope of this thesis. This is because gem5 x86 cores can only execute

x86 binaries, and there is no compiler that generates a standalone executable from the code of

a kernel. Consequently, for full OpenCL support, it would be necessary to devise a scheme to

enable the cores to execute one of the formats generated by CLOC, the offline kernel compiler

used with gem5. This is, either an HSA Object or hsail code, which is an assembly language for

heterogeneous systems. Any of the options represents a daunting amount of work, potentially

requiring to develop a new type of gem5 core from the ground up.

Therefore, it is necessary to find a workaround to enable heterogeneous co-execution in gem5.

The solution will be to use x86 binaries for the cores, representing an equivalent program to the

OpenCL kernel to co-execute. A program will be considered equivalent to a kernel if it meets

the following two requirements:

1. It receives the same arguments as the kernel, plus extra ones to determine the work-group

to execute.

2. The execution for a work-group produces the same output data that the kernel would

produce.
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To further clarify this concept, Figure 6.4a shows a simple kernel for the addition of two vectors

and an equivalent C program. Both the program and the kernel receive vectors a, b, c and the

number of elements of the vectors numElem as arguments. The C program also takes the id of

the OpenCL work-group to execute and the size of the work-groups, in order to identify the

part of the output vector that it has to compute for. For simplicity, the kernel of this example

uses a 1D kernel, but more dimensions would be equivalently handled. Similarly, other OpenCL

functionalities, such as local memory or barriers, can be easily addressed in the equivalent C

program. Note that, for a given work-group, both the kernel and the program would produce

exactly the same portion of the output vector c.

This approach enables the simulated CPU cores to emulate the execution of certain work-groups

of an OpenCL kernel, as required for co-execution. The simulator will receive an OpenCL

program, its associated kernel and the equivalent x86 binary, and transparently launch work-

groups to GPU compute units and CPU cores. This will be thanks to the changes to gem5

detailed in the next section.

6.3.3. Architecture

As explained in Section 6.2.2, the main architecture element for co-execution will be the work-

group dispatcher. Gem5 models it using the GpuDispatcher class, which holds a set of Shader

objects that are the gem5 representation of the GPU compute units. This class has an exec

function, which is executed every clock cycle of the simulated system and is in charge of dis-

tributing work-groups to those Shader objects that have free resources to accept them. The

work-groups are taken from HSAQueueEntry objects that are directly written by the OpenCL

library to an address known by the simulator.

In order to support co-execution, the GpuDispatcher class, now just named Dispatcher, needs

to be extended. First, it needs to hold a reference to the available CPU cores in the system,

which will get assigned work-groups, when idle, in a new exec function that considers not

only compute units but also CPU cores. The latter will be assigned work by using the new

addWorkload function implemented in the FullO3CPU class, which models an out of order
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__kernel void addVectors(__global float *a,

__global float *b,

__global float *c,

int numElem)

{

int gid = get_global_id (0);

if(gid <numElem)

{

int z=gid *2;

c[gid] = a[gid] + b[gid];

}

}

(a) OpenCL vector addition kernel.

int main(int argc , char * argv [])

{

if(argc ==7)

{

int wgSizeX=atoi(argv [1]);

int wgIdX=atoi(argv [2]);

float *a=(float *) atol(argv [3]);

float *b=(float *) atol(argv [4]);

float *c=(float *) atol(argv [5]);

int numElem =(int) atoi(argv [6]);

int start=wgIdX*wgSizeX;

int end=start+wgSizeX;

if(end >numElem)

{

end=numElem;

}

int i;

for(i=ini;i<fin;i++)

{

int gid=i;

c[gid]=a[gid] + b[gid];

}

}

else

{

printf("Wrong number of arguments\n")

}

}

(b) Equivalent C program for the vector addition.

Figure 6.4: Code for a vector addition OpenCL kernel and equivalent C program.
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CPU core. The dispatcher will use this function to specify the arguments that will be passed

to the equivalent x86 binary and trigger its execution. Note that HSAQueueEntry objects

hold all the necessary arguments, including the information on work-groups and the kernel

arguments. Also note that gem5 models a shared address space between CPU and GPU, so

the memory addresses used by the kernel can be directly passed to the equivalent x86 binary

as arguments. The dispatcher can still choose between co-execution or regular GPU operation

using the HSAQueueEntry object too, which was extended in Section 6.3.1 to contain the device

type of the queue in which the kernel was launched.

Regarding CPU cores, one will operate as usual, executing the OpenCL application and not

taking part in the distribution of work made by the dispatcher. The rest will be created with

no associated workload. This is because assigning a workload to a core implies that it will start

running immediately, which is not the desired behavior for the cores that will receive OpenCL

work-groups. This implies that these cores will only be partially initialized, as the initialization

of certain structures requires information on the workload. When the addWorkload function

is called, the core will receive a workload and the remaining initialization steps will be per-

formed. Then, the equivalent x86 binary will start executing using the arguments specified

by the dispatcher. When it finishes, a new notifyWgComplCPU function, implemented in the

dispatcher, will be called, to inform that the work-group has been completed. Subsequent calls

to the addWorkload function for a core, result in the selective re-initialization of the structures

that require so to execute a new work-group. This includes the reset of certain pipeline stages,

free register lists and rename maps and the update of the page table for the binary.

The resulting structure for the simulator is outlined at a very high level in Figure 6.5, showing

only the structures and functions relevant to co-execution. These changes to gem5 provide

support for hardware heterogeneous co-execution, autonomously managing the distribution of

the workload of a single OpenCL kernel among all the available devices of the simulated system.
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Figure 6.5: Simplified class diagram of the parts of gem5 directly involved in co-execution.

6.4. Methodology

The aim of this section is introducing the aspects of the methodology particular to this chapter

that were not presented in Section 1.5. This includes a description of the system modelled in

the simulator, the kernels used in the evaluation and the selected metrics.

6.4.1. Modelled architecture

To evaluate the proposed dispatcher, gem5 has been configured to model an architecture similar

to that of the AMD Ryzen 5 2400G. This is an integrated SoC released in 2018 that holds 4

CPU cores and 11 GPU compute units. Each core runs at 3.6 GHz and is capable of executing

up to 2 threads via SMT. Considering that gem5 does not support multithreading, 8 cores

have been used for the evaluation to emulate having 8 threads in total. Compute units run

at 1250 MHz. Regarding the memory hierarchy, cores and compute units only share the main

memory. The cores have a private L1 Cache and shared L2 and L3 caches. Compute units have

a private L1 cache and a shared L2 cache. The CPU and the GPU share the same memory

space. Note that 1 of the 8 CPU cores will be kept busy executing the OpenCL application, so

the dispatcher will distribute work-groups to the remaining 7 cores.
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Table 6.1: Parameters for each benchmark

Benchmark Type Problem size Local work size

Binomial Regular 7500 128
Mandelbrot Regular 2048× 2048 128
Gaussian Regular 1000× 1000, 21× 21 128
LavaMD Regular 8 128
Rap Irregular 182× 182 64
SpMV Irregular 256000, 512000 64

6.4.2. Selected applications

Six kernels have been chosen for the experiments, 3 of which exhibit regular behaviour. Bi-

nomial generates binomial lattices, useful for option pricing in financial software. Mandelbrot

implements a blocked algorithm to compute a Mandelbrot set. Gaussian calculates the Gaus-

sian blur of an image, commonly found in image and video processing software. The other

three kernels are irregular. LavaMD calculates particle potential and relocation due to mutual

forces between particles within a large 3D space. Rap is an implementation of the Resource

Allocation Problem [ACBA10]. There is a certain pattern in the irregularity of RAP, because

each successive package represents a bigger amount of work than the previous. Finally, SpMV

performs a sparse matrix vector multiplication. Table 6.1 shows the parameters used for each of

the applications. Note that, in general, smaller problem sizes have been used for this evaluation

than in the previous chapters. This is to keep simulation times within reasonable margins. For

each kernel, an equivalent C program was developed that is executed by the CPU cores.

6.4.3. Evaluated metrics

The selected metrics to study performance are based on the execution time of the kernels.

Communication times have not been considered in this case because they should not change

whether co-executing or using a single device. This is because the CPU and GPU share the

same memory, so there is no need to perform any extra data transfer to the devices. Two

metrics that use execution times have been evaluated: speedup and co-execution rate.

The speedup has been calculated considering an execution that only uses the GPU as the
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baseline. This represents the most common use of OpenCL. The baseline is compared to the

effortless use of the GPU compute units and CPU cores using hardware supported co-execution.

Note that CPU cores are significantly slower than GPU compute units for the evaluated kernels,

so speedups will just be as high as a fraction over one, even though seven new cores will be

part of the co-execution.

The co-execution rate is defined as the ratio of the response time of the first device to conclude

its work and that of the last. This metric does not consider the individual cores or compute

units, but the CPU and GPU as a whole. This is because, due to co-execution throttling, some

processing elements may stop getting scheduled work-groups earlier than others to avoid delays.

However, as long as one core and one compute unit are computing simultaneously, co-execution

is being used. The ideal value for this metric is one, meaning that co-execution was used for the

whole duration of the kernel. Deviations from this value may be due to performance differences

between CPU and GPU or kernel irregularity.

Additionally, current integrated systems are based on the sharing of certain computing re-

sources. In the proposed architecture, the CPU and the GPU share the main memory. Con-

sequently, three extra metrics have been used to try to better understand the impact of co-

execution on this critical element: the variation of the average GPU latency to access the main

memory, the variation of the GPU L2 miss rate and the variation of the total GPU L2 misses.

6.5. Evaluation

This section evaluates the proposed design for hardware supported heterogeneous co-execution

in integrated systems. The aim of the experiments is to answer the following questions:

Does the proposed design achieve co-execution?

Does co-execution have a potential for performance gains in integrated systems?

Do any undesired effects appear as a result of co-execution and the sharing of hardware

structures?
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Co-execution rate

To evaluate whether the proposed dispatcher achieves co-execution, Figure 6.6 depicts the co-

execution rate of the evaluated benchmarks. These results show that co-execution is indeed

achieved, with an average of 95% of the duration the kernels spent in co-execution. This is a

very good result considering the computing speed difference between CPU and GPU. Values

go as high as 99.5% for Mandelbrot and Gaussian, achieving a near perfect co-execution rate.

SpMV achieves the lowest value, but co-execution is still leveraged for 82% of the duration of

the kernel. This result is due to the irregularity of this application.

Performance

Performance has been evaluated by using the speedups obtained thanks to co-execution with

respect to using only the GPU, which is the fastest device. They are displayed in Figure 6.7. The

results show that co-execution is beneficial in 4 of the 6 evaluated benchmarks. Binomial and

Gaussian obtain a speedup of roughly 1.02 and 1.05 respectively. Considering the co-execution

rates for this benchmarks, shown in Figure 6.6, this means that the speedup obtained is close to

the maximum achievable, as CPUs are contributing most of the time. However, the performance

difference between CPU and GPU for these two kernels is significant. The speedups obtained for

LavaMD and Rap are 1.14 and 1.23 respectively, as the CPU has a higher computing speed for

these benchmarks, so it can contribute more work. This excellent performance is achieved even
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though the co-execution rates are slightly lower, due to the irregularity of these applications.

The dispatcher correctly identifies that CPU cores would represent a delay for the last part of

the benchmark, so co-execution gets throttled.

Of the benchmarks in which co-execution represents a performance loss, Mandelbrot is a very

interesting case, as it achieves the best co-execution rate, but performs slightly worse than

the baseline, with a speedup of 0.99. Regarding SpMV, its poor performance can be traced

to two factors. First, its irregularity results in an inaccurate estimation of the work-group

execution time. Co-execution is not throttled and the CPU, which is the slowest device, finishes

last, causing a delay. The second factor and the reason for the performance of Mandelbrot,

are related to how these kernels access memory, which will be explained in the next section.

Overall, co-execution represents an average speedup of 1.03.

Memory access analysis

Co-execution is based on the collaboration of several devices computing for the same workload.

This implies that, in the proposed integrated architecture, more devices will be simultaneously

stressing the memory system. This could lead to contention in the access to the main memory.

To evaluate this, Figure 6.8 shows the variation of the GPU latency to main memory when

co-executing, with respect to a GPU-only execution. Consequently, if co-execution generated

no contention, a variation of 0 would be obtained. Results show that this is not the case.

All the benchmarks but LavaMD show an increase in the GPU memory access latency, with

an average of 29% and going as high as 120% for Gaussian. Regarding LavaMD, its latency

reduction is due to a significant decrease in the total number of GPU L2 misses. This metric is

depicted in Figure 6.9. Note that the two greatest miss reductions are obtained in LavaMD and

Rap, which are also the two applications with the best results regarding speedup and memory

access latency. This leads to the conclusion that the kernels that best co-execute are those that

reduce the GPU L2 misses the most. However, performance gains are still achieved through

the co-execution of applications, such as Gaussian, with small total miss variation and memory

latency growths. This is because certain applications hide latencies better than others.
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Figure 6.10: L2 miss rate variation for the
GPU when co-executing.

To evaluate this, Figure 6.10 shows the GPU L2 miss rate variation when comparing co-

execution to a GPU-only execution. This shows that co-execution has a variable impact on the

L2 miss rate. The miss rate for Gaussian is reduced by 7.4%, which indicates that data reuse

has improved. On the contrary, Rap, which achieves the greatest speedup, also shows a miss

rate increase of 6.5%. In these two cases, memory latency is hidden through multi-threading,

which is the foundation of GPU computing. Regarding SpMV and Mandelbrot, they show no

miss rate variation. However, this is because they never hit in L2, not even in a GPU-only

execution. This is because these kernels have limited data reuse, which is fully exploited in

the L1. This, together with the low compute to memory access ratio of this kernels, is the

reason why they do not benefit from co-execution: they are highly impacted by main memory

latencies, which are not properly reduced by the L2. Lastly, the case of Binomial is very special.

It shows a small increase in the L2 miss rate but, looking at the total misses in Figure 6.9,

also an increase in the total misses with respect to a GPU-only execution. In other words,
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when co-executing, the GPU is doing less work, but generating more misses overall. These

extra misses can only be attributed to the interaction of the CPU and the GPU. Consequently,

considering that they only share the main memory and that work-groups produce independent

results, this behavior can only be caused by one factor: false-sharing. This is an effect caused

by the coherence protocol when two pieces of data belonging to the same memory block are

written by two different devices. Even though the data is not actually shared, the block is, so

the writes generate invalidations and, ultimately, misses.

6.6. Conclusions

This chapter presents a novel design to provide hardware support for co-execution in integrated

heterogeneous systems. It is based on a new dispatcher, independent from both the CPU

and GPU, that is implemented in the SoC and distributes OpenCL work-groups to cores and

compute units indistinctly. By tracking the execution of work-groups, the dispatcher is capable

of throttling co-execution to keep a device from generating delays if it is deemed too slow.

The new design was implemented for its evaluation in the gem5 simulator. Experimental results

show that the proposed design achieves co-execution. Significant performance gains, as high

as 23%, are possible. However, the sharing of the memory between CPU and GPU also may

produce undesired effects such as contention, which harm performance. Consequently, to benefit

from co-execution, the workloads need to adequately hide the increased memory contention that

may arise, either through multithreading or cache. Coherence protocol related issues such as

false-sharing were observed. These results open up a new line of research to alleviate the

pressure on memory associated to co-execution. A possibility would be to evaluate memory

latencies at runtime, to throttle co-execution if they get excessively high. Other schemes could

also be devised to improve memory usage and avoid this throttling.
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Chapter 7

Conclusions and Future Work

7.1. Conclusions

The ever-growing need for parallelism and the boom of workloads that manage high volumes

of data, such as deep learning, has made heterogeneous architectures prevalent due to their

outstanding performance and energy consumption. However, while systems have grown, inte-

grating more and more CPUs and accelerators, programming models have continued to consider

devices as isolated entities, favouring host-device approaches and task parallelism. This has

turned heterogeneous co-execution into a a second class citizen, forcing the programmer to

manually handle it if desired. Nevertheless, accelerators base their success on data-parallelism,

so the workloads they execute lend themselves to co-execution. For this reason, it represents

a viable option to extract all the potential capabilities of the devices available in the system.

However, to be useful, heterogeneous co-execution needs to be effortless, representing equivalent

work to using a single device.

This dissertation proposes several techniques to enable effortless co-execution in heterogeneous

systems. Two main concepts need to be addressed in order to achieve co-execution: abstraction

and load balancing. The former refers to the relation of the programmer to the management

of the heterogeneous system. For effortless co-execution, ways to manage the whole system

through a single interface should be provided, disregarding the specific details of the concrete

123
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underlying system. This eases programming and guarantees portability. The latter involves

how the workload is split among the available devices. To achieve a successful co-execution,

the response time of the devices should be equalized, so they all contribute useful work for

the whole duration of the workload and idle times are minimized. This is a complex task that

should not be left to the programmer, as it entails considering the behavior of the co-executed

workload and the computing speed of the available devices. This dissertation tackles these two

concepts in several ways, both from the hardware and the software point of view.

First, it introduces HGuided and Sigmoid, two novel load balancing algorithms specially de-

signed for heterogeneous co-execution. Through its use of decreasing package sizes and its

attention to computing speeds, HGuided manages to successfully balance both regular and ir-

regular workloads, obtaining excellent performance and energy efficiency. However, it requires

certain parameters from the user to operate. In an effort to make load balancing easier, Sig-

moid is an uninformed algorithm that eliminates the need for user parameters by monitoring

co-execution. It uses a function derived from the sigmoid to calculate package sizes and it

tunes its internal parameters to adapt to the behavior of the kernels. The result is outstanding

performance and efficiency requiring no action from the user.

Maat, an OpenCL-based co-execution library was presented in this dissertation. This library

makes co-execution significantly simpler by providing the illusion of a single device that repre-

sents the aggregate computing power of all the available resources. This is achieved through

abstractions built on OpenCL data structures, while their approach to parallel programming

is preserved. This eases the adaptation of pre-existing OpenCL applications for co-execution.

Maat also improves the portability of applications, as its abstractions guarantee that an appli-

cation that uses all the devices in a system will also use them in a different one. Evaluation

showed that Maat achieves close to ideal performance and significant energy savings for the

evaluated benchmarks, best results being obtained using the Sigmoid algorithm, closely followed

by HGuided.

Support for heterogeneous co-execution was added to a task-based programming model. This

kind of programming models ease the development of applications by offering high level ab-
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stractions that hide the complex details of parallel programming. However, they lack regarding

co-execution. A module was added to OmpSs to support co-execution. This was done with

low impact on the original OmpSs infrastructure and while preserving its approach to parallel

programming. In the same vein, regarding load balancing, the implemented algorithms respect

the approach of OpenMP, which lies at the heart of OmpSs. Static produces a single package

per device, with a size proportional to its computing speed in relation to that of the whole

heterogeneous system. Dynamic, on the contrary, generates many equally sized packages that

are scheduled at runtime. HGuided works similarly, but uses decreasing package sizes to reduce

overheads. Lastly, Auto-Tune is an evolution of HGuided that monitors execution and elim-

inates the need for programmer parameters. Evaluation shows that Auto-Tune achieves the

best overall performance, almost equalling Static for regular workloads and successfully bal-

ancing irregular ones. Moreover it requires no parameters from the programmer. Co-execution

proved to be beneficial for task-based programming, as it helps to effortlessly leverage all the

computing power of the system through collaboration.

A new dispatcher was designed to provide hardware support for co-execution in integrated

heterogeneous systems. After elaborating on the most adequate way to leverage hardware

supported co-execution from the programming, the new dispatcher was presented. It operates

by scheduling OpenCL work-groups to CPU cores and GPU compute units indistinctly and

monitoring the time per work-group for each device. This enables the dispatcher to throttle

co-execution if a device is likely to cause a delay. The evaluation, performed using the gem5

simulator, shows that the dispatcher achieves co-execution and that significant performance

gains can be obtained. However certain challenges also arise, such as contention produced by

the increased pressure on memory produced by co-execution.

7.2. Future Work

A dissertation not only represents an answer to a question, but also the opening of new research

lines that build upon the work carried out for the duration of the PhD. Some interesting lines



126 Chapter 7. Conclusions and Future Work

of work are outlined next.

Extending Maat to work with multiple kernels: Maat targets heterogeneous co-execution

and data parallelism, completely disregarding task parallelism. It would be interesting to

extend it to combine co-execution with the scheduling of other independent kernels. This

would require new load balancing algorithms to consider the behavior of the different

workloads in execution.

Load balancing for energy consumption: Performance and energy consumption are often

related. However, in certain instances, the work partition that maximizes performance

does not minimize the energy consumed. All the load balancing techniques presented

in this dissertation target performance. Algorithms that focus on energy would also be

enriching, as it is currently one the limiting factors in the design of computing systems,

ranging from supercomputers to mobile devices.

Preprocessing-based load balancing: HGuided and Sigmoid are agnostic algorithms. They

operate the same regardless of the co-executed workload. Better load balancing could be

achieved by analyzing the workload to co-execute and taking different decisions based on

its complexity or the kind of operations it uses. Machine learning based techniques could

also be used to help in the decision making process.

A priori co-execution throttling: The techniques proposed in this dissertation operate

after a kernel is launched. However, if one of the devices is too slow for the workload,

it will already have been scheduled work that will produce a delay. Methods to a priori

decide not to use slow devices in co-execution would avoid this issue. These techniques

could be implemented either as part of new load balancing algorithms or in hardware.

Extending the hardware dispatcher to better handle irregularity: The proposed dispatcher

uses co-execution throttling to prevent delays. However, kernels with varying work-group

execution times may produce inaccurate throttles. A dispatcher capable of detecting

irregularity and acting accordingly would improve the support for hardware co-execution.
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Optimizations to reduce memory contention: Hardware supported co-execution has shown

to increase the average memory access latency. CPU cores and GPU compute units should

be better orchestrated to prevent this effect, as it may significantly harm performance.

This may include modifications to the operation of the dispatcher or to the memory

hierarchy itself.
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E. Ayguadé. Extending ompss for opencl kernel co-execution in heterogeneous systems.

In 2017 29th International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD), pages 1–8, Oct 2017.
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