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1 Introduction

This paper is dedicated to the study of the optimal control problem

(P) min
u∈BV (ω)

J(u) =
1

2

∫
Ω
|y−yd|2 dx+α

∫
ω
|∇u|+ β

2

(∫
ω
u(x) dx

)2

+
γ

2

∫
ω
u2(x) dx,

where y is the unique solution to the Dirichlet problem{
−∆y + f(x, y) = uχω in Ω,

y = 0 on Γ.
(1.1)
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The control domain ω is an open subset of Ω with a Lipschitz boundary. We assume
that α > 0, β ≥ 0, γ ≥ 0, yd ∈ L2(Ω), and Ω is a bounded domain in Rn, n = 2 or
3, with Lipschitz boundary Γ . Additionally we make the following hypothesis:

if n = 3, then γ > 0 is assumed. (1.2)

Here, BV (ω) denotes the space of functions of bounded variation in ω and∫
ω |∇u| stands for the total variation of u. The assumptions on the nonlinear term
f(x, y) in the state equation will be formulated later. By introducing the penalty
term involving the mean of u when β > 0 we realize the fact that constants
functions constitute the kernel of the BV-seminorm. If γ = 0, in dependence on
the order of the nonlinearity f it can be necessary to choose β > 0 to guarantee
that (P) admits a solution.

The use of the BV-seminorm in (P) enhances that the optimal controls are
piecewise constant in space. Thus the cost functional in (P) models the objec-
tive of simultaneously determining a control of simple structure and resulting in
a state y = y(u) which is as close to yd as possible. Comparing with the common
formulation of using L2(ω) or Lp(ω) control-cost functionals, with p > 2 to match
the nonlinearity f , these later functionals will produce smooth optimal controls
which may be more intricate to realize in practice than controls which result from
the BV−formulation. Piecewise constant behavior of the optimal controls can also
be obtained by introducing bilateral bounds a ≤ u(x) ≤ b̄ together with only the
tracking term in (P). In this case we can expect optimal controls which exhibit
bang-bang structure. If an L1(ω) control cost term is added then the optimal con-
trol will be of the form bang-zero-bang. But this type of behavior is distinctly
different from that which is allowed in (P), since the value of the piecewise con-
stants plateaus is not prescribed. This is distinctly different from the bilaterally
constraint case where the optimal control typically assumes one of the extreme
values a or b̄. This in turn can lead to unnecessarily high control costs.

Possibly one of the first papers where this was pointed out, but not system-
atically investigated is [15]. In [9] semilinear parabolic equations with temporally
dependent BV-functions as controls were investigated. Thus we were focusing on
controls which are optimally switching in time. The analysis for this case is sim-
pler and exploits specific properties of BV-functions in dimension one. Numerically
the simple structure of the controls which is obtained for BV-constrained control
problems was already demonstrated in [5,9] and a recent master thesis [19]. BV-
seminorm control costs are also employed in [8], where the control appears as
coefficient in the p-Laplace equation. Beyond these papers the choice of the con-
trol costs related to BV-norms or BV-seminorms has not received much attention
in the optimal control literature yet.

In mathematical image analysis, to the contrary, the BV-seminorm has received
a tremendous amount of attention. The beginning of this activity is frequently
dated to [22]. Let us also mention the recent paper [2] which gives interesting in-
sight into the structure of the subdifferential of the BV-seminorm. Fine properties
of BV-functions, in the context of image reconstruction problems, in particular
the stair casing effect were, analyzed for the one-dimensional case in [21], and in
higher dimensions in [20,14], for example. In [11] the authors provided a conver-
gence analysis for BV-regularized mathematical imaging problems by finite ele-
ments, paying special attention to the choice of the vector norm in the definition
of the BV-seminorm.
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Let us also compare the use of the BV-term in (P) with the efforts that have
been made for studying optimal control problems with sparsity constraints. These
formulations involve either measure-valued norms of the control or L1-functionals
combined with pointwise constraints on the control. We cite [5,7] from among the
many results which are now already available. The BV-seminorm therefore can
also be understood as a sparsity constraint for the first derivative.

Let us briefly describe the structure of the paper. Section 2 contains an analysis
of the state equation and the smooth part of the cost-functional. The non-smooth
part of the cost-functional is investigated in Section 3. Special attention is given
to the consequences which arise from the specific choice which is made for the
vector norm in the variational definition of the BV-seminorm. In particular, we
consider the Euclidean and the infinity norms, which at times are also referred to
as the isotropic and anisotropic cases. Existence of optimal solutions and first order
optimality conditions are obtained in Section 4. Second order sufficient optimality
conditions are provided in Section 5. Finally in Section 6 we consider (P) with an
additional H1(ω) regularisation term and investigate the asymptotic behavior as
the weight of the H1(ω) regularisation tends to 0.

2 Analysis of the state equation and the cost functional

We recall that a function u ∈ L1(ω) is a function of bounded variation if its
distributional derivatives ∂xiu, 1 ≤ i ≤ n, belong to the Banach space of real and
regular Borel measures M(ω). Given a measure µ ∈M(ω), its norm is given by

‖µ‖M(ω) = sup{
∫
ω
z dµ : z ∈ C0(ω) and ‖z‖C0(ω) ≤ 1} = |µ|(ω),

where C0(ω) denotes the Banach space of continuous functions z : ω̄ −→ R such
that z = 0 on ∂ω, and |µ| is the total variation measure associated with µ. On the
product space M(ω)n we define the norm

‖µ‖M(ω)n = sup{
∫
ω
z dµ : z ∈ C0(ω)n and |z(x)| ≤ 1 ∀x ∈ ω}, (2.1)

where | · | is a norm in Rn.
On BV (ω) we consider the usual norm

‖u‖BV (ω) = ‖u‖L1(ω) + ‖∇u‖M(ω)n ,

that makes BV (ω) a Banach space; see [1, Chapter 3] or [18, Chapter 1] for details.
We recall that the total variation of u is given by

‖∇u‖M(ω)n = sup{
∫
ω

divz u dx : z ∈ C∞0 (ω)n and |z(x)| ≤ 1 ∀x ∈ ω}.

We also use the notation ∫
ω
|∇u| = ‖∇u‖M(ω)n ,

as already employed in (P). For these topologies ∇ : BV (ω) −→M(ω)n is a linear
continuous mapping.
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In the sequel we will denote

au =
1

|ω|

∫
ω
u(x) dx and û = u− au for every u ∈ BV (ω).

Using [1, Theorem 3.44], it is easy to deduce the existence of a constant Cω such
that

‖u‖ := |au|+ ‖∇u‖M(ω)n ≤ max
(
1,

1

|ω|
)
‖u‖BV (ω) ≤ Cω‖u‖. (2.2)

In addition, we mention that BV (ω) is the dual space of a separable Banach space;
see [1, Remark 3.12] for a description of this space. Therefore every bounded
sequence {uk}∞k=1 in BV (ω) has a subsequence converging weakly∗ to some u ∈
BV (ω). The weak∗ convergence uk

∗
⇀ u implies that uk → u strongly in L1(ω)

and ∇uk
∗
⇀ ∇u in M(ω)n; see [1, pages 124-125]. Recall that ω has a Lipschitz

boundary and, hence, it is an extension domain [1, pp. 130–131]. We will also use
that BV (ω) is continuously embedded in Lp(ω) with 1 ≤ p ≤ n

n−1 , and compactly
embedded in Lp(ω) for every p < n

n−1 ; see [1, Corollary 3.49]. From this property

we deduce that the convergence uk
∗
⇀ u in BV (ω) implies that uk → u strongly in

every Lp(ω) for all p < n
n−1 .

We make the following assumption on the nonlinear term of the state equation.
We assume that f : Ω × R −→ R is a Borel function, of class C2 with respect to
the last variable, and satisfies

f(·, 0) ∈ Lp̂(Ω) with p̂ >
n

2
, (2.3)

∂f

∂y
(x, y) ≥ 0 ∀y ∈ R, (2.4)

∀M > 0 ∃CM :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣+ ∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ CM ∀|y| ≤M, (2.5)
∀M > 0 and ∀ρ > 0∃ε > 0 such that∣∣∣∣∂2f

∂y2
(x, y2)− ∂2f

∂y2
(x, y1)

∣∣∣∣ ≤ ρ if |y2 − y1| < ε and |y1|, |y2| ≤M,
(2.6)

for almost all x ∈ Ω.
Let us observe that if f is an affine function, f(x, y) = c0(x)y + d0(x), then

(2.3)-(2.6) hold if c0 ≥ 0 in Ω, c0 ∈ L∞(Ω), and d0 ∈ Lp̂(Ω).
By using these assumptions, the following theorem can be proved in a standard

way; see, for instance, [26, §4.2.4]. For the Hölder continuity result, the reader is
referred to [17, Theorem 8.29].

Proposition 1 For every u ∈ Lp̂(ω) the state equation (1.1) has a unique solution

yu ∈ Cσ(Ω̄) ∩H1
0 (Ω) for some σ ∈ (0, 1). In addition, for every M > 0 there exists a

constant KM such that

‖yu‖Cσ(Ω̄) + ‖yu‖H1
0 (Ω) ≤ KM ∀u ∈ Lp̂(ω) : ‖u‖Lp̂(ω) ≤M. (2.7)

In the sequel we will denote Y = C(Ω̄) ∩ H1
0 (Ω) and S : Lp̂(ω) −→ Y the

mapping associating to each control u the corresponding state S(u) = yu. We have
the following differentiability property of S.
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Proposition 2 The mapping S : Lp̂(ω) −→ Y is of class C2. For all elements u, v

and w of Lp̂(ω), the functions zv = S′(u)v and zvw = S′′(u)(v, w) are the solutions

of the problems −∆z +
∂f

∂y
(x, yu)z = vχω in Ω,

z = 0 on Γ,

(2.8)

and −∆z +
∂f

∂y
(x, yu)z +

∂2f

∂y2
(x, yu)zvzw = 0 in Ω,

z = 0 on Γ,

(2.9)

respectively.

The proof is a consequence of the implicit function theorem. Let us give a
sketch. We define the space

V = {y ∈ Y : ∆y ∈ Lp̂(Ω)}

endowed with the norm

‖y‖V = ‖y‖C(Ω̄)) + ‖y‖H1
0 (Ω) + ‖∆y‖Lp̂(Ω).

Thus, V is a Banach space. Now we introduce the mapping F : V × Lp̂(Ω) −→
Lp̂(Ω) by

F(y, u) = −∆y + f(x, y)− u.

From (2.5) we deduce that F is of class C2 and

∂F
∂y

(y, u)z = −∆z +
∂f

∂y
(x, y)z.

From the monotonicity condition (2.4), we obtain that ∂F
∂y (y, u) : V −→ Lp̂(Ω)

is an isomorphism. Hence, the implicit function theorem and Proposition 1 with
ω = Ω imply the existence of a C2 mapping Ŝ : Lp̂(Ω) −→ Y associating to every
element u its corresponding state Ŝ(u) = yu. When ω  Ω, we use that S = Ŝ ◦Sω,
where Sω : Lp̂(ω) −→ Lp̂(Ω) is defined by Sωu = uχω. Hence the chain rule leads
to the result.

Next, we separate the smooth and the non smooth parts in J : J(u) = F (u) +
αG(u) with

F (u) =
1

2

∫
Ω
|yu − yd|2 dx+

β

2

( ∫
ω
u(x) dx

)2
+
γ

2

∫
ω
u2(x) dx and G(u) = g(∇u),

where g : M(ω)n −→ R is given by g(µ) = ‖µ‖M(ω)n . In the rest of this section
we study the differentiability of F . From Proposition 2 and the chain rule the
following proposition can be obtained.

Proposition 3 The functional F : L2(ω) −→ R is of class C2. The derivatives of F

are given by

F ′(u)v =

∫
ω

[
ϕu(x) + γu(x) + β

( ∫
ω
u(s) ds

)]
v(x) dx, (2.10)
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and

F ′′(u)(v, w) =

∫
Ω

(
1− ϕu

∂2f

∂y2
(x, yu)

)
zvzw dx+ γ

∫
ω
vw dx+ β

(∫
ω
v dx

)(∫
ω
w dx

)
(2.11)

with zv = S′(u)v, zw = S′(u)w, and ϕu ∈ Y the adjoint state which satisfies−∆ϕu +
∂f

∂y
(x, yu)ϕu = yu − yd in Ω,

ϕu = 0 on Γ.

(2.12)

The C(Ω̄) regularity of ϕu follows from the assumptions on yd ∈ L2(Ω) and
the fact that yu ∈ L∞(Ω).

Remark 1 If n = 2, since BV (ω) is embedded in L2(ω), then the functional F :
BV (ω) −→ R is well defined and it is of class C2 with derivatives given by (2.10)
and (2.11). However, if n = 3, then BV (ω) is only embedded in L3/2(ω). Hence, for
elements u ∈ BV (ω) Proposition 1 is not applicable and, therefore, the functional F
is not defined in BV (ω). To deal with the case n = 3 we introduced the assumption
(1.2), i.e. γ > 0. Hence, the functional F : BV (ω)∩L2(ω) −→ R is well defined and
of class C2.

The assumption (1.2) can be avoided if we suppose that the nonlinearity f(x, y)
has only polynomial growth of arbitrary order in y. In this case, Propositions 1 and
2 hold if we change Y to Yq = Lq(Ω)∩H1

0 (Ω) with q <∞ arbitrarily big. We recall
that for a right hand side of the state equation belonging to L3/2(Ω) the solution of
the state equation does not belong to L∞(Ω), in general, even for linear equations.
However, since L3/2(Ω) ⊂W−1,3(Ω), we can use [25, Theorem 4.2] to deduce that
yu ∈ Lq(Ω) ∀q < ∞. To analyze the semilinear case one can follow the classical
approach of truncation of the nonlinear term, Schauder’s fix point theorem, and
Lq-estimates from the linear case combined with the monotonicity of the nonlinear
term. Finally, since γ = 0, we have that the functional F : BV (ω) −→ R is of class
C2.

Remark 2 In the state equation, the Laplace operator −∆ can be replaced by a
more general linear elliptic operator with bounded coefficients. All the results
proved in this paper hold for these general operators.

3 Analysis of the functional G

Now, we analyze the functional G. We already expressed G as the composition
G = g ◦ ∇. Concerning the functional g, we note that it is Lipschitz continuous
and convex. Hence, it has a subdifferential and a directional derivative, which
are denoted by ∂g(µ) and g′(µ; ν), respectively. Before giving an expression for
∂g(µ) and g′(µ; ν), we have to specify the norm that we use in Rn. Indeed, in the
definition of the norm ‖µ‖M(ω)n we have considered a generic norm | · | in Rn.
The choice of the specific norm strongly influences the structure of the optimal
controls. In this paper, we focus on the Euclidean and the | · |∞ norms, which
lead to different properties for g, that we consider separately in the following two
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subsections. To illustrate one aspect, let us observe that the use of the | · |∞ norm
on Rn in the definition of ‖ · ‖M(ω)n implies that

‖µ‖M(ω)n =
n∑
j=1

‖µj‖M(ω) ∀µ ∈M(ω)n. (3.1)

In particular, it holds that∫
ω
|∇u| =

n∑
j=1

‖∂xju‖M(ω) ∀u ∈ BV (ω).

However, if in (2.1) we take the Euclidean norm for the constraint |z(x)| ≤ 1, then,
in general,

‖µ‖M(ω)n 6=
( n∑
j=1

‖µj‖2M(ω)

)1/2
. (3.2)

Indeed, the identity (3.1) is an immediate consequence of the definitions of the
norms ‖ · ‖M(ω) and ‖ · ‖M(ω)n . To verify (3.2) we give an example. Let us fix

n different points {ξi}ni=1 in ω and take ε > 0 small enough such that the balls
Bε(ξ

i) are disjoint. Now, applying Urysohn’s lemma, cf. [23, Lemma 2.12], we get
functions zi ∈ C0(ω) such that 0 ≤ zi(x) ≤ 1 ∀x ∈ ω, zi(ξ

i) = 1 and supp(zi) ⊂
Bε(ξ

i). We set z = (z1, . . . , zn) and µ = (δξ1 , . . . , δξn). Then, since |z(x)|2 ≤ 1
∀x ∈ ω, we have

‖µ‖M(ω)n =
n∑
i=1

∫
ω
zi(x) dµi(x) =

n∑
i=1

zi(ξ
i) = n.

On the other hand, we get ( n∑
j=1

‖µj‖2M(ω)

)1/2
=
√
n.

3.1 The use of the Euclidean norm | · |2

In order to give an expression for ∂g(µ) and g′(µ; ν), let us introduce some notation.
We recall that if µ ∈M(ω)n, its associated total variation measure is defined as a
positive scalar measure as follows

|µ|(A) = sup
{ ∞∑
k=1

|µ(Ek)|2 : {Ek}k ⊂ B are pairwise disjoint and A =
∞⋃
k=1

Ek

}
,

where B is the σ-algebra of Borel sets in ω, and |µ(Ek)|2 denotes the Euclidean
norm in Rn of the vector µ(Ek). Let us denote by hµ the Radon-Nikodym derivative
of µ with respect to |µ|. Thus we have

hµ ∈ L1(ω, |µ|)n, |hµ(x)|2 = 1 for |µ|−a.e.x ∈ ω andµ(A) =

∫
A
hµ(x) d|µ|(x) ∀A ∈ B.

Given a second vector measure ν ∈M(ω)n, the following Lebesgue decomposi-
tion holds: ν = νa+νs, dνa = hνd|µ|, where νa and νs are the absolutely continuous
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and singular parts of ν with respect to |µ|, and hν is the Radon-Nikodym derivative
of ν with respect to |µ|. Then, the following identity is fulfilled

‖ν‖M(ω)n = ‖νa‖M(ω)n + ‖νs‖M(ω)n =

∫
ω
|hν(x)|2 d|µ|(x) + ‖νs‖M(ω)n .

The reader is referred to [1, Chapter 1].
Now, we analyze the subdifferential ∂g(µ). It is well known that an element

λ ∈ ∂g(µ) if
〈λ, ν − µ〉+ ‖µ‖M(ω)n ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n. (3.3)

This is equivalent to the next two relations

〈λ, µ〉 = ‖µ‖M(ω)n , (3.4)

〈λ, ν〉 ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n. (3.5)

Observe that λ belongs to the dual ofM(ω)n, which is not a space of distributions.
However, due to (3.5), the restriction of the functional λ to L1(ω)n ⊂M(ω)n can
be identified with a function of L∞(ω)n with ‖λ‖L∞(ω)n ≤ 1. However, we observe

that much information on λ can be lost when it is restricted to L1(ω)n. Indeed,
let us consider the following example. Let {Aj}nj=1 a family of pairwise disjoint
compact subsets of ω with zero Lebesgue measure. Set µ = (µ1, . . . , µn) ∈ M(ω)n

with supp(µj) ⊂ Aj and µj being a positive measure for all j = 1, . . . , n. Now, we
define λ ∈ [M(ω)n]∗ by

〈λ, ν〉 =
n∑
j=1

νj(Aj) ∀ν ∈M(ω)n.

It is easy to check that (3.4) and (3.5) hold, hence λ ∈ ∂g(µ). If we consider the
restriction of λ to L1(ω)n, due to the fact that every Aj has a zero Lebesgue
measure, we have

〈λ, v〉[M(ω)n]∗,M(ω)n =
n∑
j=1

∫
Aj

vj(x) dx = 0 ∀v ∈ L1(ω)n.

Therefore, the restriction of λ is zero.
In the special case where λ is weakly∗ continuous, then λ is identified with a

function of C0(ω)n. Thus, the action of the functional λ is given by the integral

〈λ, ν〉[M(ω)n]∗,M(ω)n =
n∑
j=1

∫
ω
λj(x) dνj(x) ∀ν ∈M(ω)n,

and we can establish some precise relations between λ and µ. Before proving these
relations, let us mention that here we have

‖z‖C0(ω)n = sup{|z(x)|2 : x ∈ ω} ∀z ∈ C0(ω)n.

Proposition 4 If λ ∈ C0(ω)n ∩ ∂g(µ), then ‖λ‖C0(ω)n ≤ 1. Moreover, if µ 6= 0, then

the following properties hold

1. ‖λ‖C0(ω)n = 1, and

2. supp(µ) ⊂ {x ∈ ω : |λ(x)|2 = 1}.
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Proof The inequality ‖λ‖C0(ω)n ≤ 1 follows from (3.5). Additionally, if µ 6= 0, then
(3.4) implies 1. To prove 2. we use (3.4) as follows∫

ω
d|µ|(x) = ‖µ‖M(ω)n = 〈λ, µ〉 =

∫
ω
λ(x) dµ(x) =

∫
ω
λ(x) · hµ(x) d|µ|(x).

Then, using that |λ(x)|2 ≤ 1 ∀x ∈ ω and |hµ(x)|2 = 1 |µ|-a.e. in ω we deduce from
the identity ∫

ω
d|µ|(x) =

∫
ω
λ(x) · hµ(x) d|µ|(x)

that λ(x) · hµ(x) = 1 |µ|-a.e. in ω. Using again that |hµ(x)|2 = 1, |µ|-a.e., we
conclude that λ(x) = hµ(x), |µ|-a.e. Therefore, we have that

|µ|
(
{x ∈ ω : |λ(x)|2 < 1}

)
= 0,

which implies 2.

Next we study the directional derivatives of g.

Proposition 5 Let µ, ν ∈M(ω)n, then

g′(µ; ν) =

∫
ω
hν dµ+ ‖νs‖M(ω)n , (3.6)

where ν = νa + νs = hνd|µ|+ νs is the Lebesgue decomposition of ν respect to |µ|.

Proof As above, let us write dµ = hµd|µ|. Then we have

g′(µ; ν) = lim
ρ↘0

‖µ+ ρν‖M(ω)n − ‖µ‖M(ω)n

ρ

= lim
ρ↘0

‖µ+ ρνa‖M(ω)n + ‖ρνs‖M(ω)n − ‖µ‖M(ω)n

ρ

= lim
ρ↘0

1

ρ

(∫
ω
|hµ(x) + ρhν(x)|2 d|µ|(x)−

∫
ω
|hµ(x)|2 d|µ|(x)

)
+ ‖νs‖M(ω)n

=

∫
ω

lim
ρ↘0

|hµ(x) + ρhν(x)|2 − |hµ(x)|2
ρ

d|µ|(x) + ‖νs‖M(ω)n

=

∫
ω

hµ(x) · hν(x)

|hµ(x)|2
d|µ|(x) + ‖νs‖M(ω)n =

∫
ω
hν dµ+ ‖νs‖M(ω)n .

Since the quotients are dominated by |hν |2, we applied Lebesgue’s dominated
convergence theorem above. Moreover, we use that |hµ(x)|2 = 1 |µ|-a.e. in ω in
the last equality and also to justify the differentiability of the norm | · |2 at every
hµ(x) with x in the support of |µ|.

Now, we come back to the mapping G. To this end, let us recall that the adjoint
operator ∇∗ is defined by

∇∗ : [M(ω)n]∗ −→ BV (ω)∗, 〈∇∗λ, u〉BV (ω)∗,BV (ω) = 〈λ,∇u〉[M(ω)n]∗,M(ω)n .
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Proposition 6 The following identities hold for all u ∈ BV (ω):

∂G(u) = ∂(g ◦ ∇)(u) = ∇∗∂g(∇u), (3.7)

G′(u; v) = (g ◦ ∇)′(u; v) =

∫
ω
hv d(∇u) + ‖(∇v)s‖M(ω)n , (3.8)

where ∇v = hvd|∇u|+(∇v)s is the Lebesgue decomposition of ∇v with respect to |∇u|.

Proof Since ∇ : BV (ω) −→ M(ω)n is a linear and continuous mapping and g :
M(ω)n −→ R is convex and continuous, we can apply the chain rule [16, Chapter I,
Proposition 5.7] to deduce that ∂(g ◦∇)(u) = ∇∗∂g(∇u), which immediately leads
to (3.7).

To verify (3.8) it is enough to observe that

(g ◦ ∇)′(u; v) = g′(∇u;∇v)

and to apply (3.6).

3.2 The use of the | · |∞ norm

The use of | · |∞ norm implies that

‖z‖C0(ω)n = sup{|z(x)|∞ : x ∈ ω} ∀z ∈ C0(ω)n.

We recall that every scalar real measure µ ∈M(ω) admits a Jordan decomposi-
tion µ = µ+ − µ−, where µ+ and µ− are positive measures with disjoint supports.
Further, if hµ is the Radon-Nikodym derivative of µ with respect to |µ|, then
µ+ = h+d|µ| and µ− = h−d|µ|, where h = h+ − h− is the decomposition of h in
positive and negative parts.

Proposition 7 If λ ∈ C0(ω)n ∩ ∂g(µ), then ‖λj‖C0(ω) ≤ 1 for all j = 1, . . . , n.

Moreover, if µj 6= 0, then the following properties hold

1. ‖λj‖C0(ω) = 1, and

2. supp(µ+
j ) ⊂ {x ∈ ω : λj(x) = +1} and supp(µ−j ) ⊂ {x ∈ ω : λj(x) = −1}.

Proof Inserting (3.1) in (3.4) and (3.5) we get

n∑
i=1

〈µi, λi〉 =
n∑
i=1

‖µi‖M(ω), (3.9)

n∑
i=1

〈νi, λi〉 ≤
n∑
i=1

‖νi‖M(ω) ∀ν ∈M(ω)n. (3.10)

Let us fix 1 ≤ j ≤ n and take in (3.10) νi = 0 for every i 6= j and νj = ±δx with
x ∈ ω arbitrary. Then, we obtain

±λj(x) = 〈νj , λj〉 ≤ ‖νj‖M(ω) = 1.
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This proves that |λj(x)| ≤ 1 ∀x ∈ ω for every j. Then, from (3.9) we infer

n∑
i=1

‖µi‖M(ω) =
n∑
i=1

〈µi, λi〉 ≤
n∑
i=1

‖µi‖M(ω)‖λi‖C0(ω) ≤
n∑
i=1

‖µi‖M(ω).

This implies that ‖λi‖C0(ω) = 1 and 〈µi, λi〉 = ‖µi‖M(ω) for every i such that
µi 6= 0. Hence, 1. holds. The second part was proved in [6, Lemma 3.4].

Now, we compute the directional derivatives of g′(µ; ν). Then, we have the
following expression which is similar but different from the one obtained in Propo-
sition 5.

Proposition 8 Let µ, ν ∈M(ω)n, then

g′(µ; ν) =

∫
ω
hν dµ+ ‖νs‖M(ω)n =

n∑
j=1

{∫
ω
hνj dµj + ‖(νj)s‖M(ω)

}
, (3.11)

where νj = (νj)a + (νj)s = hνjd|µj |+ (νj)s is the Lebesgue decomposition of νj with

respect to |µj | for 1 ≤ j ≤ n.

Proof For the proof it is enough use (3.1) to obtain

g′(µ; ν) = lim
ρ↘0

‖µ+ ρν‖M(ω)n − ‖µ‖M(ω)n

ρ
=

n∑
i=1

lim
ρ↘0

‖µi + ρνi‖M(ω)n − ‖µi‖M(ω)n

ρ
.

Then, we proceed as in the proof of [10, Proposition 3.3].

With the same proof we infer that Proposition 6 is also true for the | · |∞ norm
with (3.8) being interpreted as follows

G′(u; v) = (g ◦ ∇)′(u; v) =

∫
ω
hv d(∇u) + ‖(∇v)s‖M(ω)n

=
n∑
j=1

{∫
ω
hv,j d(∂xju) + ‖(∂xjv)s‖M(ω)

}
, (3.12)

where ∂xjv = hv,j |∂xju| + (∂xjv)s is the Lebesgue decomposition of ∂xjv with
respect to |∂xju|.

Remark 3 For the well-posedness analysis of (P) we could equally well use the norm
(
∑n
j=1 ‖∂xju‖

2
M(ω))

1/2 instead of
∑n
j=1 ‖∂xju‖M(ω), which was mentioned in (3.2)

above. For the sake of interest, we specify the changes which become necessary for
this norm when compared to the assertions made in Proposition 7:

1.
(∑n

j=1 ‖λj‖
2
C0(ω)

)1/2
≤ 1.

2. If µ 6= 0, then
(∑n

j=1 ‖λj‖
2
C0(ω)

)1/2
= 1.

3. If µj 6= 0, then supp(µ+
j ) ⊂ {x ∈ ω : λj(x) = +‖λj‖C0(ω)} and supp(µ−j ) ⊂ {x ∈

ω : λj(x) = −‖λj‖C0(ω)}.

Since, for our purposes, we see no advantages of this norm over the norms defined
by the duality in (2.1) we shall not follow it up.
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4 Existence of an optimal control and first order optimality conditions

The proof of the existence of an optimal control follows the lines of [9, Theorem
3.1] with the obvious modifications.

Theorem 1 Let us assume that one of the following assumptions hold.

1. β + γ > 0.

2. There exist q ∈ [1, 2) and C > 0 such that

∂f

∂y
(x, y) ≤ C(1 + |y|q) for a.a. x ∈ Ω and ∀y ∈ R.

Then, problem (P) has at least one solution. Moreover, if f is affine with respect to y,

the solution is unique.

Now, we prove the first order optimality conditions satisfied by any local min-
imum of (P).

Theorem 2 Let ū be a local solution of (P). Then, there exists λ̄ ∈ ∂g(∇ū) such that

α〈λ̄,∇v〉[M(ω)n]∗,M(ω)n +

∫
ω

(
ϕ̄+ γū+ β

∫
ω
ū dz

)
v dx = 0 ∀v ∈ BV (ω) ∩ L2(ω),

(4.1)
where ϕ̄ ∈ H1

0 (Ω) ∩ C(Ω̄) is the adjoint state corresponding to ū.

Proof Let us denote by ϕ̄ ∈ C(Ω̄) ∩H1
0 (Ω) the adjoint state corresponding to the

local solution ū. Given v ∈ BV (ω) ∩ L2(ω), from the local optimality of ū and the
convexity of G we deduce for every 0 < ρ < 1 small enough

0 ≤ J(ū+ ρv)− J(ū)

ρ
=
F (ū+ ρv)− F (ū)

ρ
+ α

G(ū+ ρv)−G(ū)

ρ

≤ F (ū+ ρv)− F (ū)

ρ
+ α[G(ū+ v)−G(ū)].

Passing to the limit as ρ → 0 in the above inequality and using (2.10) we obtain
for every v ∈ BV (ω)

0 ≤
∫
ω

(
ϕ̄(x) + γū(x) + β

∫
ω
ū ds

)
v(x) dx+ α[G(ū+ v)−G(ū)].

Replacing v by u− ū, this inequality can be written

− 1

α

∫
ω

(
ϕ̄+ γū+ β

∫
ω
ū ds

)
(u− ū) dx+G(ū) ≤ G(u) ∀u ∈ BV (ω) ∩ L2(ω).

This along with (3.7) implies

− 1

α

(
ϕ̄+ γū+ β

∫
ω
ū ds

)
∈ ∂G(ū) = ∇∗∂g(∇ū).

Hence, there exists λ̄ ∈ ∂g(∇ū) ⊂ [M(ω)n]∗ such that

〈λ̄,∇v〉[M(ω)n]∗,M(ω)n =
−1

α

∫
ω

[
ϕ̄+ β

∫
ω
ū ds

]
v dx ∀v ∈ BV (ω) ∩ L2(ω),

which implies (4.1).
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Remark 4 As mentioned after inequality (3.5), the restriction of λ̄ to L1(ω)n, de-
noted by λ̄|L1 , can be identified with a function in L∞(ω)n. Then, if we take
v ∈ C∞0 (ω)n in (4.1), we deduce that the identity

divλ̄|L1 = ϕ̄+ γū+ β

∫
ω
ū dx

holds in the distribution sense, and hence divλ̄|L1 ∈ BV (ω) ⊂ Lp(ω) for p =
n/(n − 1). Then, it is well known that λ̄|L1 · ν is defined in a trace sense on ∂ω,
where ν is the outward unit normal vector to ∂ω. Moreover, taking v ∈ C∞(ω̄)n

in (4.1) and using Green’s formula, we infer that λ̄|L1 · ν = 0 on ∂ω. Hence,
we conclude that λ̄|L1 belongs to L∞(ω) ∩W p

0 (div;ω) ∩ BV (ω). Here we use the
standard notation

W p
0 (div;ω) = {v ∈ Lp(ω)n : div v ∈ Lp(ω) and v · ν = 0 on ∂ω}.

See Proposition 7 of [2] for a related result.

Since λ̄ ∈ [M(ω)n]∗ and [M(ω)n]∗ is not a space of distributions, sometimes
it can be more convenient to handle a different optimality system involving dis-
tributional spaces, mainly if we think of the numerical analysis. To this end, we
present the following equivalent optimality conditions.

Theorem 3 Let us assume that n = 2. Given ū ∈ BV (ω), let ȳ and ϕ̄ be the associated

state and adjoint state. Then, there exists λ̄ ∈ ∂g(∇ū) satisfying (4.1) if and only if

there exists Φ̄ ∈ C0(ω)n such that

α〈∇v, Φ̄〉M(ω)n,C0(ω)n +

∫
ω

[
ϕ̄+ γū+ β

∫
ω
ū ds

]
v dx = 0 ∀v ∈ BV (ω), (4.2)

〈∇v, Φ̄〉M(ω)n,C0(ω)n ≤ ‖∇v‖M(ω)n ∀v ∈ BV (ω), (4.3)

〈∇ū, Φ̄〉M(ω)n,C0(ω)n = ‖∇ū‖M(ω)n . (4.4)

Proof Assume that λ̄ ∈ ∂g(∇ū) satisfies (4.1). We define a linear form T0 inM(ω)n

as follows

D(T0) = {∇v : v ∈ BV (ω)} and T0(µ) = 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n if µ = ∇v.

From (3.4) and (3.5) we have

T0(∇ū) = ‖∇ū‖M(ω)n , (4.5)

T0(µ) ≤ ‖µ‖M(ω)n ∀µ ∈ D(T0). (4.6)

Let us prove that T0 is weakly∗ continuous on its domain. First, we prove that
T−1

0 (0) is sequentially weakly∗ closed in M(ω)n. Indeed, let {µk}k ⊂ T−1
0 (0) and

µ ∈ M(ω)n be such that µk
∗
⇀ µ in M(ω)n. By definition of D(T0) there exist

elements {vk}k ⊂ BV (ω) such that µk = ∇vk. Without loss of generality we
assume that the integrals of each vk in ω are zero. Then, using (2.2), we know
that {vk}k is bounded in BV (ω). Therefore, there exist a subsequence, denoted

in the same form, and an element v ∈ BV (ω) such that vk
∗
⇀ v in BV (ω). This

implies that µk = ∇vk
∗
⇀ ∇v in M(ω)n. Hence, the identity ∇v = µ holds and,
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consequently, µ ∈ D(T0). We have to prove that T0(µ) = 0. From the continuity

of the embedding BV (ω) ⊂ L2(ω) due to n = 2 and the convergence vk
∗
⇀ v in

BV (ω), we obtain that vk ⇀ v in L2(ω). Therefore, we get with (4.1)

0 = lim
k→∞

T0(µk) = lim
k→∞

〈λ̄,∇vk〉[M(ω)n]∗,M(ω)n

= lim
k→∞

−1

α

∫
ω

[
ϕ̄+ γū+ β

∫
ω
ū ds

]
vk dx (4.7)

=
−1

α

∫
ω

[
ϕ̄+ γū+ β

∫
ω
ū ds

]
v dx = 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n = T0(µ).

Thus µ ∈ T−1
0 (0) holds and, hence, T−1

0 (0) is sequentially weakly∗ closed inM(ω)n.
As a consequence, we also have that T−1

0 (0)∩ B̄r(0) is sequentially weakly∗ closed
in M(ω)n for every closed ball B̄r(0) of M(ω)n centered at 0 and arbitrary radius
r > 0. Due to the fact that C0(ω)n is a separable Banach space, we have that
B̄r(0) is metrizable in the weak∗ topology of M(ω)n. Hence, T−1

0 (0) ∩ B̄r(0) is
sequentially weakly∗ closed in M(ω)n if and only if it is weak∗ closed. Finally,
from the Krein-Šmulian Theorem [3, Theorem 3.33], we infer that T−1

0 (0) is weak∗

closed in M(ω)n, which implies the weak∗ continuity of T0.

Hence, there exists a weakly∗ continuous linear form T :M(ω)n −→ R extend-
ing T0; [24, Theorem 3.6]. In this case, we know that T can be identified with an
element Φ̄ ∈ C0(ω)n, i.e.

T (µ) = 〈µ, Φ̄〉M(ω)n,C0(ω)n =

∫
ω
Φ̄ dµ ∀µ ∈M(ω)n;

see [3, Proposition 3.14]. The function Φ̄ fulfills (4.2)–(4.4). Indeed, (4.2) follows
from the definition of T0 and (4.1), and (4.3)-(4.4) are the same as (4.5)-(4.6).

Reciprocally, assume that Φ̄ ∈ C0(ω)n satisfies (4.2)–(4.4). This time we define
the linear operator

D(T0) = {∇v : v ∈ BV (ω)} and T0(µ) = 〈∇v, Φ̄〉M(ω)n,C0(ω)n if µ = ∇v.

From (4.3) we know that T0 is a continuous operator in D(T0) for the strong topol-
ogy ofM(ω)n, and ‖T0‖[M(ω)n]∗ ≤ 1. Hence, the Hahn-Banach theorem implies the
existence of an operator λ̄ ∈ [M(ω)n]∗ extending T0 and such that ‖λ̄‖[M(ω)n]∗ ≤ 1.
This along with (4.3) implies that

〈λ̄,∇ū〉 = ‖∇ū‖M(ω)n ,

〈λ̄, ν〉 ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n.

Hence, we have λ̄ ∈ ∂g(∇ū); see (3.3)–(3.5). Finally, (4.1) follows from (4.2) and
the definition of T0. This concludes the proof.

Remark 5 Theorem 3 is still valid in dimension n = 3 if we take γ = 0 and we
assume that the nonlinearity of f(x, y) has a polynomial growth of arbitrary order
with respect to the variable y; see Remark 1. Indeed, let us observe that the limit
(4.7) is still valid because vk ⇀ v in L3/2(Ω) and ϕ̄ + β

∫
ω ū ds is a continuous

function in Ω̄.
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Remark 6 It would be interesting to prove the existence of a function Φ̄ ∈ C0(ω)n∩
∂g(∇ū) satisfying (4.3)–(4.5). Indeed, Theorem 3 does not guarantee that ‖Φ‖C0(ω)n ≤
1. In this hypothetic case, we could deduce from Propositions 4 and 7 the following
sparsity structure of ∇ū.

1. For the | · |2 norm, if ∇ū 6= 0 we have ‖Φ̄‖C0(ω)n = 1 and

supp(∇ū) ⊂ {x ∈ ω : |Φ̄(x)|2 = 1}.

2. For the | · |∞ norm, for any 1 ≤ j ≤ n such that if ∂xj ū 6= 0 we have ‖Φ̄j‖C0(ω) =
1, and

supp([∂xju]+) ⊂ {x ∈ ω : Φ̄j(x) = +1},

supp([∂xj ū]−) ⊂ {x ∈ ω : Φ̄j(x) = −1}.

5 Second order optimality conditions

The goal of this section is to prove necessary and sufficient second order optimality
conditions for problem (P). In the whole section, ū will denote a fixed element of
BV (ω) ∩ L2(ω) satisfying the optimality conditions given in Theorem 2. As in
Section 3, we will distinguish the cases where the norms | · |2 and | · |∞ in Rn
are used in the definition of the measure ‖∇u‖M(ω)n . First, we analyze the case
corresponding to the norm | · |∞. For this case, the gap between the necessary
and sufficient second order optimality conditions is smaller than the ones that we
provide for the case of the norm | · |2.

5.1 The use of the | · |∞ norm

As pointed out in (3.1), the use of the | · |∞ norm in Rn leads to the identity

‖∇v‖M(ω)n =
n∑
j=1

‖∂xjv‖M(ω) =
n∑
j=1

{∫
ω
|hv,j | d|∂xj ū|+ ‖(∂xjv)s‖M(ω)

}
(5.1)

∀v ∈ BV (ω), where ∂xjv = hv,j |∂xj ū|+ (∂xjv)s is the Lebesgue decomposition of
∂xjv with respect to the measure |∂xj ū|, 1 ≤ j ≤ n. Moreover, for every 1 ≤ j ≤ n

there exists a Borel function h̄j such that

|h̄j(x)| = 1, |∂xj ū|−a.e., and ∂xj ū = h̄j |∂xj ū|. (5.2)

In the sequel, we will denote hv = (hv,1, . . . , hv,n) and h̄ = (h̄1, . . . , h̄n).
First, we state the second order necessary optimality conditions. To this end

we define the cone of critical directions Cū as the closure in L2(ω) of the cone

Cū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) = 0

and hv,j ∈ L2(|∂xj ū|), 1 ≤ j ≤ n}. (5.3)

Then, we have the following result.

Theorem 4 If ū is a local minimum of (P), then F ′′(ū)v2 ≥ 0 ∀v ∈ Cū.
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Proof We will prove the result for every v ∈ Eū. Then, the theorem follows by
using the continuity of quadratic form v ∈ L2(ω) → F ′′(ū)v2 ∈ R. Given v ∈ Eū
and ρ > 0 we set

ωρ,j = {x ∈ ω : ρ|hv,j(x)| ≤ 1

2
} 1 ≤ j ≤ n.

We have with Schwarz inequality

|∂xj ū|(ω \ ωρ,j) ≤ 2ρ

∫
ω\ωρ,j

|hv,j(x)| d|∂xj ū|

≤ 2ρ
√
|∂xj ū|(ω \ ωρ,j)

(∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)1/2

,

which implies

√
|∂xj ū|(ω \ ωρ,j) ≤ 2ρ

(∫
ω\ωρ,j

|hv.j(x)|2 d|∂xj ū|
)1/2

1 ≤ j ≤ n. (5.4)

Taking into account (5.2) we get for 1 ≤ j ≤ n

|h̄j(x) + ρhv,j(x)| − |h̄j(x)|
ρ

= hv,j(x)h̄j(x) [|∂xj ū|]−a.e. x ∈ ωρ,j .

Using this identity and (5.1) we get

G(ū+ ρv)−G(ū)

ρ

=
n∑
j=1

{∫
ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū|+ ‖(∂xjv)s‖M(ω)n

}

+
n∑
j=1

∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄|
ρ

d|∂xj ū|

=
n∑
j=1

{∫
ωρ,j

(hv,j h̄j) d|∂xj ū|+ ‖(∂xjv)s‖M(ω)n

}

+
n∑
j=1

∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū|

=
n∑
j=1

{∫
ω
hv,j d∂xj ū+ ‖(∂xjv)s‖M(ω)n

}

+
n∑
j=1

{∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū| −
∫
ω\ωρ,j

(hv,j h̄j) d|∂xj ū|
}
.
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Now, from (3.12), (5.2), Schwarz inequality, and (5.4) we infer

G(ū+ ρv)−G(ū)

ρ
≤ G′(ū; v) + 2

n∑
j=1

∫
ω\ωρ,j

|hv,j |d|∂xj ū|

≤ G′(ū; v) + 2
n∑
j=1

√
|∂xj ū|(ω \ ωρ,j)

(∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)1/2

≤ G′(ū; v) + 4ρ
n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|.

Next we use the local optimality of ū. By a Taylor expansion of F around ū

and using that v ∈ Eū, we get for ρ > 0 small enough

0 ≤ J(ū+ ρv)− J(ū) = ρ[F ′(ū)v + αG′(ū; v)]

+
ρ2

2

(
F ′′(ū+ θρv)v

2 + 8α
n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)

=
ρ2

2

(
F ′′(ū+ θρv)v

2 + 8α
n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)

with 0 ≤ θρ ≤ 1. Dividing the above expression by ρ2/2, passing to the limit as
ρ→ 0, and taking into account that hv.j ∈ L2(|∂xj ū|) and |∂xj ū|(ω \ ωρ,j)→ 0, we
conclude that F ′′(ū)v2 ≥ 0.

For the sufficient second order conditions we introduce the critical cones

Cτū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) ≤ τ‖zv‖L2(Ω)}, (5.5)

where τ > 0 and zv = S′(ū)v. The reader is referred to [4] for some second order
conditions based on these cones; see also [12] and [13]. Let us observe that (4.1)
and the inequality G′(ū; v) ≥ 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n imply that ∀v ∈ BV (ω)∩L2(ω)

F ′(ū)v + αG′(ū; v) ≥ F ′(ū)v + α〈λ̄,∇v〉[M(ω)n]∗,M(ω)n = 0. (5.6)

Theorem 5 Let ū ∈ BV (ω)∩L2(ω) satisfy the first order optimality conditions stated

in Theorem 2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ C
τ
ū . (5.7)

Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε, (5.8)

where yu = S(u) and ȳ = S(ū).

Proof We follow the proof of [4, Theorem 3.6] with some changes. First, from [4,
Lemma 2.7] we deduce the existence of ε0 > 0 such that

|[F ′′(u)− F ′′(ū)]v2| ≤ δ

2
‖zv‖2L2(Ω) ∀v ∈ L

2(ω) and all ‖u− ū‖L2(ω) ≤ ε0. (5.9)
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Moreover, from Proposition 2 we deduce the existence of a constant C1 > 0 such
that

‖zv‖L2(Ω) = ‖S′(ū)v‖L2(Ω) ≤ C1‖v‖L2(ω) ∀v ∈ L
2(ω). (5.10)

Now, from (2.7) we have that there exists a constant K such that ‖yu‖C(Ω̄) ≤ K

if ‖u − ū‖L2(ω) ≤ ε0. From the adjoint state equation (2.12) and (2.4) we deduce
that ‖ϕu‖C(Ω̄) ≤ K′ for every ‖u − ū‖L2(ω) ≤ ε0 and some constant K′. Finally,
using these estimates, (2.5) and the expression (2.11) we infer the existence of a
constant C2 > 0 such that

F ′′(u)v2 ≥ γ‖v‖2L2(ω) − C2‖zv‖2L2(Ω) for all ‖u− ū‖L2(ω) ≤ ε0 and ∀v ∈ L2(ω).
(5.11)

Now, we set

ε = min
{
ε0,

2τ

(δ + C2)C1

}
with τ and δ given in (5.7). Let u ∈ BV (ω)∩L2(ω) such that ‖u− ū‖L2(ω) ≤ ε. We
distinguish two cases.

Case I: u − ū ∈ Cτū . Making a Taylor expansion of F around ū, using the
convexity of G and (5.6), (5.7) and (5.9), we get for some 0 ≤ θ ≤ 1

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ 1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū+ θ(u− ū))− F ′′(ū)](u− ū)2

≥ δ

2
‖zu−ū‖2L2(Ω) −

δ

4
‖zu−ū‖2L2(Ω) =

δ

4
‖zu−ū‖2L2(Ω). (5.12)

Case II: u− ū 6∈ Cτū . This implies that

F ′(ū)(u− ū) + αG′(ū;u− ū) > τ‖zu−ū‖L2(Ω). (5.13)

Moreover, from (5.10) and the definition of ε we infer

‖zu−ū‖L2(Ω) ≤ C1‖u− ū‖L2(Ω) ≤
2τ

δ + C2
,

and therefore
δ + C2

2τ
‖zu−ū‖L2(Ω) ≤ 1. (5.14)

Using again the convexity of G, (5.11), (5.13) and (5.14) we infer

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ τ‖zu−ū‖L2(Ω) − C2‖zu−ū‖2L2(Ω)

≥ δ + C2

2
‖zu−ū‖2L2(Ω) −

C2

2
‖zu−ū‖2L2(Ω) =

δ

2
‖zu−ū‖2L2(Ω). (5.15)

From (5.12) and (5.15) we deduce that [4, page 2364]

J(u)− J(ū) ≥ δ

4
‖zu−ū‖2L2(Ω) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε.

Finally, choosing ε still smaller, if necessary, we have that [4, page 2364]

1

2
‖yu − ȳ‖L2(Ω) ≤ ‖zu−ū‖L2(Ω) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε.

The last two inequalities imply (5.8) with κ = δ
8 .
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We observe that (5.7) is a sufficient second order condition for strict local
optimality of ū in the L2(ω) sense. Moreover, by using (5.8) we can prove stability
of the optimal states with respect to perturbations in the data of the control
problem. However, it does not provide information on the optimal controls. If γ > 0
we can change (5.7) by a stronger assumption leading to a quadratic growth of the
controls instead of the states; i.e. ‖yu − ȳ‖2L2(Ω) can be replaced by ‖u − ū‖2L2(ω)

in (5.8). However, if γ = 0, then this is not possible; see [4].

Theorem 6 Suppose that γ > 0 and let ū ∈ BV (ω) ∩ L2(ω) satisfy the first order

optimality conditions stated in Theorem 2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖v‖2L2(ω) ∀v ∈ C
τ
ū . (5.16)

Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖u− ū‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε. (5.17)

Proof Using again [4, Lemma 2.7] along with (5.10) we infer the existence of ε > 0
such that

|[F ′′(u)− F ′′(ū)]v2| ≤ δ

2
‖v‖2L2(Ω) ∀v ∈ L

2(ω) and all ‖u− ū‖L2(ω) ≤ ε. (5.18)

Arguing similarly to (5.12), but using (5.16) and (5.18) we obtain for every u ∈
BV (ω) ∩ L2(ω) such that ‖u− ū‖L2(ω) ≤ ε and u− ū ∈ Cτū

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ 1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū+ θ(u− ū))− F ′′(ū)](u− ū)2

≥ δ

2
‖u− ū‖2L2(ω) −

δ

4
‖u− ū‖2L2(ω) =

δ

4
‖u− ū‖2L2(ω). (5.19)

Thus, (5.17) holds with κ = δ
2 assuming that u − ū ∈ Cτū . Now, we argue by

contradiction, and we assume that there do not exist κ > 0 and ε > 0 such that
(5.17) holds for all the elements u ∈ BV (ω) ∩ L2(ω) with ‖u − ū‖L2(ω) ≤ ε. This

implies that for every integer k > 0, there exists an element uk ∈ BV (ω) ∩ L2(ω)
with

‖uk − ū‖L2(ω) ≤
1

k
and J(ū) +

1

2k
‖uk − ū‖2L2(ω) > J(uk). (5.20)

From (5.19) we know that uk − ū 6∈ Cτū , hence with (5.14)

F ′(ū)(uk − ū) + αG′(ū;uk − ū) > τ‖zuk−ū‖L2(Ω) ≥
δ + C2

2
‖zuk−ū‖

2
L2(Ω) (5.21)

for every k large enough. Using (5.11), (5.20) and (5.21) we obtain

1

2k
‖uk − ū‖2L2(ω) > J(uk)− J(ū)

≥ [F ′(ū)(uk − ū) + αG′(ū;uk − ū)] +
1

2
F ′′(ū+ θk(uk − ū))(uk − ū)2

≥ δ + C2

2
‖zu−ū‖2L2(Ω) +

γ

2
‖uk − ū‖2L2(ω) −

C2

2
‖zuk−ū‖

2
L2(Ω) ≥

γ

2
‖uk − ū‖2L2(ω),

which is a contradiction because γ > 0.
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5.2 The use of the | · |2 norm

Given an element v ∈ BV (ω), we consider the Lebesgue decomposition of ∇v with
respect to the positive measure |∇ū|: ∇v = hvd|∇ū|+ (∇v)s. Hence, we have

‖∇v‖M(ω)n =

∫
ω
|hv(x)|2 d|∇ū|+ ‖(∇v)s‖M(ω). (5.22)

We also set ∇ū = h̄|∇ū|, where |h̄(x)|2 = 1 |∇ū|-a.e. in ω. Then, we have with (3.8)

G′(ū; v) =

∫
ω

(h̄ · hv) d|∇ū|+ ‖(∇v)s‖M(ω)n . (5.23)

Now, we define the cone of critical directions

Cū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) = 0 and |hv|2 ∈ L2(|∇ū|)}. (5.24)

Then, we have the following second order necessary optimality conditions.

Theorem 7 If ū is a local minimum of (P), then

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ 0 ∀v ∈ Cū. (5.25)

Proof For fixed v ∈ Cū and given ρ > 0, we define

ωρ = {x ∈ ω : ρ|hv(x)|2 ≤
1

2
}.

Arguing as in the proof of Theorem 4 we get the following inequality analogous to
(5.4) √

|∇ū|(ω \ ωρ) ≤ 2ρ
(∫

ω\ωρ
|hv(x)|22 d|∇ū|

)1/2
. (5.26)

Using the differentiability of the | · |2-norm x ∈ Rn → |x|2 for every x 6= 0, the fact
that |h̄(x)|2 = 1 |∇ū|-a.e., (5.23), the Schwarz inequality, and (5.26), we get for
0 ≤ θρ(x) ≤ 1

G(ū+ ρv)−G(ū)

ρ

=

∫
ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|+ ‖(∇v)s‖M(ω)n +

∫
ω\ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|

=

∫
ωρ

[
h̄ · hv +

ρ

2

( |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

)]
d|∇ū|

+ ‖(∇v)s‖M(ω)n +

∫
ω\ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|

≤
∫
ω

(h̄ · hv) d|∇ū|+ ρ

2

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|

+ ‖(∇v)s‖M(ω)n + 2

∫
ω\ωρ

|hv|2 d|∇ū|

≤ G′(ū; v) +
ρ

2

{∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+ 8

∫
ω\ωρ

|hv|22 d|∇ū|
}
.
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Using this inequality and the local optimality of ū, we infer with uρ = ū + θρρv,
0 ≤ θρ ≤ 1,

0 ≤ J(ū+ ρv)− J(ū) = ρ
[
F ′(ū)v + α

G(ū+ ρv)−G(ū)

ρ

]
+
ρ2

2
F ′′(uρ)v

2

≤ ρ[F ′(ū)v + αG′(ū; v)] +
ρ2

2

{
F ′′(uρ)v

2

+ α

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+ 8α

∫
ω\ωρ

|hv|22 d|∇ū|
}
.

Now, taking into account that v ∈ Cū and dividing the above inequality by ρ2/2
we get

0 ≤ F ′′(uρ)v2 +α

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+8α

∫
ω\ωρ

|hv|22 d|∇ū|.

Finally, using that |∇ū|(ω \ ωρ)→ 0 as ρ→ 0, |h̄(x)|2 = 1, and

1

2
≤ 1− ρ|hv(x)|2 ≤ |h̄+ θρρhv|2 ≤ 1 + ρ|hv(x)|2 ≤

3

2
|∇ū|-a.e. in ωρ,

we pass to the limit as ρ→ 0 in the above inequality with the aid of the Lebesgue
dominated convergence theorem and we obtain (5.25).

The proofs of Theorems 5 and 6 can be used without changes to prove the
following analogous results.

Theorem 8 Let ū ∈ BV (ω)∩L2(ω) satisfy the first order optimality conditions stated

in Theorem 2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ C
τ
ū , (5.27)

where Cτū is defined by (5.5). Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε, (5.28)

where yu = S(u) and ȳ = S(ū).

Theorem 9 Suppose that γ > 0 and let ū ∈ BV (ω) ∩ L2(ω) satisfy the first order

optimality conditions stated in Theorem 2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖v‖2L2(ω) ∀v ∈ C
τ
ū . (5.29)

Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖u− ū‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε. (5.30)

Remark 7 To reduce the gap between the necessary and sufficient conditions for
optimality, we should prove that the conditions

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ δ‖zv‖2L2(Ω) ∀v ∈ C

τ
ū

and

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ δ‖v‖2L2(ω) ∀v ∈ C

τ
ū

imply (5.28) and (5.30), respectively. This, however, remains as a challenge.
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6 A regularization of problem (P)

Here we briefly discuss the effect of introducing an H1(ω)-regularization term.
Throughout this section we assume that assumptions 1. and 2. of Theorem 1 hold.
We discuss the optimality conditions of the regularized problems and investigate
their asymptotic behavior as ε → ∞. We also compare the optimality conditions
which arise from the asymptotics of the regularized optimality conditions with
those obtained in Section 4. For ε > 0 we thus consider

(Pε) min
u∈H1(ω)

Jε(u) = J(u) +
ε

2

∫
ω
|∇u(x)|2 dx,

subject to (1.1), and denote a solution by uε. Let us set

Jε(u) = Fε(u) +G(u),

where Fε(u) = F (u) + ε
2

∫
ω |∇u|

2 dx for u ∈ H1(ω). We have

F ′ε(u)v = F ′(u)v + ε

∫
ω
∇u · ∇v dx, and ∂G(u) = ∇∗∂g(∇u) for u ∈ H1(ω),

where now G(·) = (g ◦ ∇)(·), ∇ : H1(ω)→ L2(ω)n, and g : L2(ω)n → R is given by
g(v) = ‖v‖L1(ω)n . We have the analog of Theorem 2, i.e. for every local solution
uε of (Pε) there exists λε ∈ ∂g(∇uε) such that

α(λε,∇v)L2(ω)n + F ′ε(uε)v = 0, for all v ∈ H1(ω). (6.1)

Let us focus on λε ∈ ∂g(∇uε) next. It is equivalent to

(λε,∇uε) = ‖∇uε‖L1(ω)n , and (λε, v) ≤ ‖v‖L1(ω)n for all v ∈ L1(ω)n. (6.2)

The use of the Euclidean norm | · |2: Here (6.2) results in

n∑
i=1

(λε,i, ∂xiuε) =

∫
ω

(
n∑
i=1

|∂xiuε|
2)

1
2 dx, and

n∑
i=1

(λε,i, vi) ≤
∫
ω

(
n∑
i=1

|vi|2)
1
2 dx,

(6.3)
for all v ∈ L1(ω)n. The second expression in (6.3) implies that ‖λε‖L∞(ω,Rn) ≤ 1.
Moreover, if ∇uε 6= 0,

‖λε‖L∞(ω,Rn) = 1 and supp∇uε ⊂ {x ∈ ω : |λε(x)|2 = 1}. (6.4)

The first claim follows from the equality in (6.3). This equality can also be ex-
pressed as

∫
ω |∇uε|2 dx =

∫
ω(∇uε ·λε) dx, which, together with |λε(x)|2 ≤ 1 implies

the second assertion in (6.4).
The use of the | · |∞-norm: In this case (6.2) results in

n∑
i=1

(λε,i, ∂xiuε) =
n∑
i=1

‖∂xiuε‖L1(ω) and
n∑
i=1

(λε,i, vi) ≤
n∑
i=1

‖vi‖L1(ω), (6.5)

for all v ∈ L1(ω)n. This implies that ‖λε,j‖L∞(ω) ≤ 1 for all j = 1, . . . , n and if
∂xjuε 6= 0

‖λε,j‖L∞(ω) = 1, and supp (∂xjuε)
± ⊂ {x ∈ ω : λε,j = ±1}. (6.6)



Optimal Control by BV-Functions 23

In fact, for any 1 ≤ j ≤ n, let νi = 0 for all i 6= j and νj = λε,j on S+
j = {x : λε,j >

1}, and equal to 0 otherwise. Then
∫
S+
j

(λ2
ε,j − λε,j)(x) dx ≤ 0, while the integrand

is strictly positive a.e. Hence meas(S+
j ) = 0. In an analogous form we exclude the

case λε,j < −1, and hence ‖λε,j‖L∞(ω) ≤ 1, for all j. Using the first expression in
(6.5) we have

n∑
i=1

‖∂xiuε‖L1(ω) =
n∑
i=1

(λε,i, ∂xiuε) ≤
n∑
i=1

‖∂xiuε‖L1(ω),

which implies (6.6).
Asymptotic behavior: Finally we consider the asymptotic behavior of (6.1), (6.2)
as ε → 0+. From the inequality Jε(uε) ≤ J(0) for all ε > 0, we deduce with (1.2)
the boundedness of {uε}ε in BV (ω) ∩ L2(ω). Moreover, (6.4) and (6.6) imply the
boundedness of {λε}ε in L∞(ω)n. Hence there exists (ū, λ̂) ∈ (BV (ω) ∩ L2(ω)) ×
L∞(ω)n such that on a subsequence (uε, λε)

∗
⇀ (ū, λ̂) weakly∗ in (BV (ω)∩L2(ω))×

L∞(ω). In particular λε
∗
⇀ λ̂ in L∞(ω). Moreover yuε → yū in L2(Ω).

Now, given an arbitrary element u ∈ H1(ω), the optimality of uε and the
structure of J implies

J(ū) ≤ lim inf
ε→0

J(uε) ≤ lim sup
ε→0

J(uε) ≤ lim sup
ε→0

Jε(uε) ≤ lim sup
ε→0

Jε(u) = J(u).

Since H1(Ω) is dense in BV (ω) ∩ L2(ω), the above inequality implies that ū is a
solution of (P) and

J(ū) = lim
ε→0

J(uε) = lim sup
ε→0

Jε(uε) = inf (P) = J(ū). (6.7)

This implies that J(uε) → J(ū) and ε
2

∫
ω |∇uε|

2 dx → 0. Moreover, from the con-
vergence properties of {uε}ε and {yε}ε we deduce that

lim
ε→0

[
1

2
‖yuε − yd‖

2
L2(Ω) +

β

2

(∫
ω
uε dx

)2
]

=
1

2
‖yū − yd‖2L2(Ω) +

β

2

(∫
ω
ū dx

)2

,

(6.8)∫
ω
|∇ū| ≤ lim inf

ε→0

∫
ω
|∇ūε|. (6.9)

Combining (6.8) with the convergence J(uε)→ J(ū) we infer

lim
ε→0

(
γ

2
‖uε‖2L2(ω) + α

∫
ω
|∇uε|

)
=
γ

2
‖ū‖2L2(ω) + α

∫
ω
|∇ū|. (6.10)

If γ = 0 then this identity is reduced to
∫
ω |∇uε| →

∫
ω |∇ū|. Let us prove

that this convergence property also holds for γ > 0. Using (6.10), the convergence
uε ⇀ ū in L2(ω), and (6.9) we obtain

γ

2
‖ū‖2L2(ω) ≤ lim inf

ε→0

γ

2
‖uε‖2L2(ω) ≤ lim sup

ε→0

γ

2
‖uε‖2L2(ω)

≤ lim sup
ε→0

(
γ

2
‖uε‖2L2(ω) + α

∫
ω
|∇uε|

)
− α lim inf

ε→0

∫
ω
|∇ūε|

≤
(
γ

2
‖ū‖2L2(ω) + α

∫
ω
|∇ū|

)
− α

∫
ω
|∇ū| = γ

2
‖ū‖2L2(ω).
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Therefore, ‖uε‖L2(ω) → ‖ū‖L2(ω) holds. Combining this fact with the weak conver-

gence we conclude that uε → ū strongly in L2(ω). Inserting this in (6.10) it follows
that

∫
ω |∇uε| →

∫
ω |∇ū|.

From (6.1) we have that

α(λε,∇v) +

∫
ω

(
ϕ(uε) + γuε + β

∫
ω
uε dz

)
v dx− ε

∫
ω
uε∆v dx = 0, ∀v ∈ C∞0 (ω).

Taking the limit ε→ 0 we obtain

α(λ̂,∇v) +

∫
ω

(
ϕ(ū) + γū+ β

∫
ω
ū dz

)
v dx = 0, ∀v ∈ C∞0 (ω),

which corresponds to (4.1). Moreover, since C∞0 (ω) is dense in L2(ω) the above
relation implies that λ̂ ∈ Hdiv(ω), and

−αdivλ̂+ ϕ(ū) + γū+ β

∫
ω
ū dz = 0 in L2(ω). (6.11)

From (6.1), the above identity, and the established convergence ε
∫
ω |∇uε|

2 dx→
0 we find

lim
ε→0

(λε,∇uε) = − lim
ε→0

1

α
F ′ε(uε)uε = − lim

ε→0

1

α

(
F ′(uε)uε − ε

∫
ω
|∇uε|2 dx

)
= − 1

α
F ′(ū)ū = −(div λ̂, ū).

Now, from (6.2) and the convergence
∫
ω |∇uε| →

∫
ω |∇ū| we infer

lim
ε→0

(λε,∇uε) = ‖∇ū‖M(ω)n .

From the last two identities, and using again (6.2) along with the convergence

λε
∗
⇀ λ̂ in L∞(ω) we obtain

(−div λ̂, ū)L2(ω) = ‖∇ū‖M(ω)n , and 〈λ̂, v〉L∞,L1 ≤ |v|L1(ω)n for all v ∈ L1(ω)n.
(6.12)

We now summarize the important issues of the above developments as a the-
orem.

Theorem 10 Let assumptions 1. and 2. of Theorem 1 hold, and let {uε}ε>0 denote

a family of solutions to (Pε). Then for each ε there exists λε ∈ L∞(ω) such that

α(λε,∇v)L2(ω)n + F ′ε(uε)v = 0, for all v ∈ H1(ω), and

(λε,∇uε) = ‖∇uε‖L1(ω)n , and (λε, v) ≤ ‖v‖L1(ω)n for all v ∈ L1(ω)n.

For each weakly∗ convergent subsequence of {(uε, λε)}ε ⊂ (BV (ω) ∩ L2(ω))× L∞(ω)
with limit (ū, λ̂), of which there exists at least one, the following properties hold: λ̂ ∈
Hdiv(ω), and (ū, λ̂) satisfy the necessary optimality conditions (6.11), (6.12).
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Remark 8 Here we compare λ̄ from Section 4 to λ̂ obtained by the regularisation
approach. Since L1(ω)n ⊂M(ω)n we can conclude from λ̄ ∈ ∂g(∇ū) and (3.5) that
λ̄ restricted to L1(ω)n can be identified with an L∞(ω)n function that we denote
by λ̄|L1 . Restricting (4.1) to v ∈ C∞0 (ω) and using density of C∞0 (ω) in L2(ω) we
conclude that λ̄|L1 ∈ Hdiv(ω), and we have

−αdivλ̄|L1 + ϕ(ū) + γū+ β

∫
ω
ū dz = 0 in L2(ω).

Thus div λ̄|L1 from Section 4 coincides with div λ̂ obtained by regularization and
it is uniquely defined by (6.11). We cannot assert, however, that λ̂ = λ̄|L1 .

But we can compare (6.12) and λ̄ ∈ ∂g(∇ū) ⊂ [M(ω)n]∗ which was obtained
in Theorem 2. By (3.4) and (3.5) the latter implies that 〈∇∗λ̄, ū〉BV (ω)∗,BV (ω) =
‖∇ū‖M(ω)n and 〈λ̄, ν〉 ≤ ‖ν‖M(ω)n for all ν ∈M(ω)n, which coincides with (6.12),

when restricted to ν ∈ L1(ω)n. Summarizing, the regularisation approach recovers
λ̄ when restricted to L1(ω)n.

7 Conclusions

An analysis for BV-regularised optimal control problems associated to semilinear
elliptic equations was provided. Existence, first order necessary and second order
sufficient optimality conditions were investigated. Special attention was given to
the different cases which arise due to the choice of a particular vector norm in
the definition of the BV-seminorm. If (P) is additionally regularised by an H1(ω)-
seminorm, then the set where the gradient of the optimal solution vanishes, can
be characterised conveniently by an adjoint variable, see (6.4) and (6.6). For the
original problem (P) without H1(ω)-seminorm regularisation, such a transparent
description of the set where the measure |∇ū| vanishes is not available, rather it
was replaced by the properties specified in Theorem 3.
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