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A B S T R A C T
The preparation of perturbed initial conditions to initialize an ensemble of numerical weather forecasts is a crucial task
in current ensemble prediction systems (EPSs). Perturbations are added in the places where they are expected to grow
faster, in order to provide an envelope of uncertainty along with the deterministic forecast. This work analyses the
influence of large-scale spatial patterns on the growth of small perturbations. Therefore, we compare Lyapunov vector
(LV) definitions, used in the initialization of state-of-the-art EPSs, with the so-called characteristic LVs. We test the
dynamical behaviour of these LVs in the two-scale Lorenz’96 system. We find that the commonly used definitions of
LVs include non-intrinsic and spurious effects due to their mutual orthogonality. We also find that the spatial locations
where the small-scale perturbations are growing are ‘quantized’ by the large-scale pattern. This ‘quantization’ enhances
the artificial disposition of the LVs, which is only avoided using the characteristic LVs, an unambiguous basis which
may also be of great use in realistic models for assessing or initializing EPSs.

1. Introduction

The general circulation of the atmosphere leads to the devel-
opment of a patterned (non-random) spatial structure in me-
teorological fields at large scales. Smaller-scale features de-
velop within the large-scale flow and their ability to grow—or
even exist—depends on the large-scale environment. Moreover,
small-scale features may amplify and contribute to the develop-
ment of the large-scale patterns observed at a given time. As an
example, upper-level geopotential height in mid-latitudes shows
a large-scale wavy pattern associated with the meandering of
the jet stream. Smaller-scale pressure systems can only develop
where the large-scale troughs and ridges allow. In this sense,
the weather forecast error growth at the small scales is affected
by the large-scale spatial patterns. This work analyses the ef-
fect of the large-scale spatial patterns on the spatio-temporal
growth of perturbations at small scales and the consequences for
state-of-the-art probabilistic forecasting techniques.

In recent decades, modern forecasting techniques included
some measure of uncertainty allowing for a probabilistic fore-
cast that improves the deterministic results. In particular, the en-
semble prediction system (EPS; Epstein, 1969; Toth and Kalnay,
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1993; Palmer et al., 1993) is the most used method to achieve this
probabilistic forecast. EPSs involve the evolution of an ensemble
of suitable initial conditions with one or more numerical weather
prediction models. The spread of the different members of the
ensemble provides a measure of the uncertainty associated with
the initial conditions or the model used. An appealing view of the
EPS is also that the ensemble mean usually performs better than
any of the ensemble members (Leith, 1974), since many of the
smaller-scale low-predictable features of the flow are smoothed
away by averaging. Differences between the members of the
ensemble evolved with the same model and considered at the
same time are, in general, finite fluctuations reflecting the am-
plification of small initial errors in chaotic models. The study of
these fluctuations is important, not only to analyse the chaotic
behaviour of the system, which can be of academic interest, but
also to prepare optimal initial conditions for the ensemble, which
has practical applications.

A basic study of fluctuations comprises the computation of
the Lyapunov exponents (LEs). A further step is the charac-
terization of the associated Lyapunov vectors (LVs) including
the analysis of their dynamical behaviour. Previous studies of
this type are scarce, especially with realistic models. The main
problem in using realistic models for this kind of analysis is
the difficulty in dealing with the associated linearized version
of the model, which is necessary to compute LEs and vec-
tors. A realistic model of the atmosphere includes small-scale
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dynamical and microphysical phenomena in parametric form,
often including conditional terms which are non-differentiable
and non-invertible. Simple dynamical models, referred to as ‘toy
models’, are customarily used in place of realistic meteorologi-
cal models when one requires the linearized model, the adjoint
model, or a large number of ensemble members (Lorenz and
Emanuel, 1998; Annan, 2004; Orrell, 2005; Baek et al., 2006;
Fertig et al, 2007). Toy models retain certain aspects of the be-
haviour of the atmosphere (Lorenz, 1996) while being much
more tractable than operational models. Basic aspects of the
amplification of small errors in toy models resemble those of the
real atmosphere (Orrell, 2002; Gutiérrez et al., 2008). However,
even with toy models, only recently Lyapunov-like vectors have
been systematically compared (Pazó et al., 2010).

Toy models with several time scales are good candidates to
fill the gap between the most simplistic toy models and realis-
tic models. In this work, we consider a toy model put forward
by Lorenz (1996) that exhibits a patterned large-scale variable
and a small-scale variable interacting with the large scale. The
two-scale Lorenz’96 model has been extensively used in the lit-
erature to study the influence of multiple spatio-temporal scales
on the predictability of atmospheric flows. For instance, Wilks
(2005) studied stochastic parametrization, Lorenz and Emanuel
(1998) analysed targeted observations, and there are also studies
testing model error growth at different scales (Orrell, 2003) and
applying newly developed methodologies to reduce it (Danforth
and Kalnay, 2008). The two-scale Lorenz’96 model possesses
two sets of coupled variables (see Section 2) which have been
used to represent a generic large-scale variable along a latitude
circle in mid-latitudes and a small-scale variable coupled to it
(Wilks, 2005). The model mimics some crucial aspects of the
atmosphere as a conservative advection, internal dissipation and
constant forcing. However, it does not arise from any simplifi-
cation of the governing equations and, thus, the variables repre-
sent unspecified meteorological variables. In the literature, these
variables have been said to represent large-scale static stability
and small-scale convection (Lorenz, 2006), 500 hPa geopotential
height and surface high-resolution variables such as temperature
or wind (Orrell, 2002), and several others. For our purposes, the
specific meteorological quantity is irrelevant since all of them
show some spatially organized structure as does the large-scale
variable of the Lorenz’96 system.

LVs identify the locations (directions in phase space) where a
perturbation experiences a maximal growth. While the direction
of maximal growth can be easily identified, the determination
of other important directions leads to the definition of different
kinds of LVs: backward, forward and characteristic (Legras and
Vautard, 1996). Some of these LVs are related to modern tech-
niques to build initial conditions for EPS: Backward LVs are
related to ‘bred vectors’ (Toth and Kalnay, 1993) and ‘singular
vectors’ are a finite-time version of forward LVs. In a recent
work, Pazó et al. (2010) characterized the spatio-temporal dy-
namics of backward, forward and characteristic LVs, along with

bred and singular vectors in a one-scale version of the Lorenz’96
model. They concluded that characteristic LVs provide the most
adequate properties for EPS initialization, since (1) they are dy-
namically adapted to the system (i.e. they lay on the attractor) and
capture the spatial locations where the perturbation is growing;
(2) they contain information about the future trajectory, so they
capture the locations where the perturbation will grow; (3) their
spatial structure (degree of localization) remains stable in time,
thus keeping diversity, and (4) they do not have an imposed or-
thogonality constraint, which may lead to artificial diversity and
localization along sub-optimal directions. It is worth remarking
that all the dynamic vectors used (including bred vectors) are
dependent on the norm type, and only the characteristic LVs,
computed by combination of the backward and forward dynam-
ics, are independent of the scalar product definition used in their
construction. Hence, the calculation of characteristic LVs is es-
sential to know the effect of the scalar product chosen on the
computation of the other dynamic vectors.

A recent work (Herrera et al., 2010) analyses initial fluctu-
ations in a two-scale Lorenz’96 model from a spatio-temporal
point of view using the mean variance of the logarithms (MVL;
Gutiérrez et al., 2008) diagram. Taking the spatial localization
as a simple quantifier of chaos, Herrera et al. (2010) report on a
complicated behaviour of fluctuations when the effect of the two
scales is well resolved. The authors also show that the effect is
dependent on the strength of the coupling between the large and
small scales. Another important effect, not studied by Herrera
et al. (2010), concerns the interplay between the spatial patterns
exhibited by the model and the spatio-temporal amplification of
perturbations. The study of this effect is one of the main goals
of this paper, which can be summarized as follows:

(1) Study the interplay between the large-scale spatial pat-
terns and the amplification of perturbations in a two-scale
Lorenz’96 system, focusing on the spatial component, thus, re-
sorting to the computation of different LVs.

(2) Analyse the dependence of the previous interplay on the
strength of the coupling between the two layers with different
time and spatial scales.

(3) Check whether current operational approaches in ensem-
ble initialization suffer from shortcomings stemming from the
mutual orthogonality constraint.

To achieve our goals, we perform a complete analysis of
the two-scale Lorenz’96 model. After defining the model in
Section 2, we compute the Lyapunov spectrum for different
degrees of coupling in Section 3, and define the LVs to be used.
Section 4 is devoted to the computation of characteristic LVs,
comparing their spatial structure with that of the other dynamic
vectors. In Section 5, we show the spurious effects which appear
in backward and forward LVs due to its orthogonal arrange-
ment. Finally, in Section 6, we make a detailed analysis of the
degree of transversality of characteristic LVs by means of the
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ensemble dimension. We summarize the main conclusions
reached in Section 7.

2. The Lorenz’96 model

2.1. One-scale model

The L96 model (Lorenz, 1996) is the simplest model to simu-
late the chaotic behaviour of the atmosphere. It was originally
introduced to mimic mid-latitude atmospheric dynamics. In its
one-scale version, it is a set of ordinary differential equations
coupled in a ring geometry:

dzi

dt
= zi−1(zi+1 − zi−2) − zi + F i = 1, . . . , m, (1)

where zi represents a scalar meteorological quantity at m equidis-
tant grid points on a latitude circle. The terms on the right-hand
side of this nonlinear equation are, respectively, modeling non-
linear advection, linear damping and constant forcing. A linear
analysis of eq. (1) around the homogeneous solution zi = F in-
dicates instability with respect to perturbations amplifying like
waves with a given length scale and velocity for F > 8/9 (Lorenz
and Emanuel, 1998; Majda and Wang, 2006). Moreover, for
m > 10 the dynamics is generally chaotic above F ≈ 6 (Lorenz,
2006). Lorenz and Emanuel (1998) adjusted the parameters of
the model to optimize the similitude with mid-latitude atmo-
spheric dynamics. With F = 8 and m = 40, we obtain waves
with a length of 6 or 7 grid units, a velocity of 1.4 with arbitrary
time units and a maximum (i.e. leading) LE of about 1.5. Finally,
to reach the expected similitude Lorenz associated one time unit
with 5 d.

2.2. Two-scale model

Following with the same scheme and in order to study the influ-
ence of multiple spatio-temporal scales on the predictability of
atmospheric flows, Lorenz (1996) introduced a two-scale model.
This model consists of m slow variables xi coupled with m ×
n fast variables yj,i (Fig. 1) whose evolution is governed by the
following nonlinear equations:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F − h c

b

n∑
j=1

yj,i (2a)

dyj,i

dt
= c b yj+1,i(yj−1,i − yj+2,i) − c yj,i + h c

b
xi, (2b)

where i = 1, . . . , m, j = 1, . . . , n; h is the coupling constant, b
controls the (inverse) amplitude of the fast variables, c is a time
scaling constant and F is a constant forcing. Here, both the xi’s
and the yj,i’s are assumed to be periodic, that is, xm+1 = x1; x0 =
xm and yn+1,i = y1,i+1; y0,i = yn,i−1.

There are a few important differences between eqs. (2a) and
(2b). The first one is the presence of a constant c in (2b) that
controls the time scale of variable y; in our simulations c = 10.

Fig. 1. Schematic illustration of the L96 system with m = 8 and n = 4;
m × n grid points lay on the inner circle.

This choice makes y the fast-varying small-scale variable. The
second important difference is the absence of a constant forcing
term in (2b). This makes variable x play the role of ‘effective’
F in eq. (2b). Finally, note that the advection term in the (fast)
variables y is reversed with respect to the (slow) variables x.

In this paper, we considered the parameter values F = 8 and
m = 32, and n = 8, b = 10, c = 10, leading to a two-scale model
where the fast variables fluctuate 10 times faster than the slow
ones, but with a smaller amplitude.

The parameter h controls the coupling between the two layers,
and the study of its influence on the results is one of the goals of
this paper. Notice that by setting h = 0, the large-scale variable
of the two-scale system, eq. (2a) falls back to the one-scale
system, eq. (1), and the small-scale variable vanishes after an
initial transient state due to the internal dissipation term and the
absence of external forcing.

2.3. Numerical simulations of the L96 flow

Figure 2(a) shows in grey scale a typical spatio-temporal pattern
obtained by integrating eq. (1) from a random Gaussian initial
condition zi(t = 0). Figures 2(b) and (d) show the spatio-temporal
dynamics of fields x and y, respectively, for the two-scale model
(2) with weak coupling (h = 0.1). The simulation starts with
random initial conditions of amplitude 10 times smaller for the
y’s than for the x’s. The latter variable has been initialized as
the z variable in panel (a): xi(0) = zi(0). It can be seen that the
evolution of x is very similar to that of z due to the weakness
of the coupling in this example. In the case where the coupling
is strong, Fig. 2(c), the large-scale dynamics rapidly deviates
from the one-scale model. The westward propagation of the
large-scale wavy pattern is clearly appreciated in Figs 2(a), (b)
and (c) (Rossby-like wave). Taking the natural time unit, which
is defined by the time relaxation of dissipative effects, and the
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Fig. 2. Spatio-temporal dynamics of (a) the one-scale L96 model (1); (b),(d) slow-fast variables of the L96 model (2) with weak coupling, h = 0.1;
(c),(e) slow-fast variables of the L96 model (2) with strong coupling, h = 1. Both systems were integrated numerically using a fourth-order
Runge–Kutta method with time-step dt = 0.005. The natural time unit is equivalent to five days in an equivalent atmospheric model. Note the
different greyscale level in each panel.

space unit of the fast variable, the velocity of this Rossby-like
wave, as observed in Figs 2(d) and (e), is approximately 12.
The wave propagation of the fast variable is more difficult to
quantify.

Complementing the space–time plots, we show in Fig. 3(a) a
snapshot of the fields x and y for h = 1. In order to improve the
visualization, we use the same representation as in Lorenz and
Emanuel (1998), where each grid point of the slow variable is
‘inflated’ by a factor of n = 8 and represented as a bar of eight
spatial units in the space coordinates of the fast variables (i.e.
Space = (i − 1) × 8 + k, with k = 1, . . . , 8). The slow variable has
a patterned structure consisting of six local maxima (implying a
pseudo-wavelength of nm/6 in the fast-variable space).

The spectral analysis shown in Figs 3(c) and (d) provides more
detailed information of the propagating patterns. To eliminate
spurious effects at high wavenumbers in the spectral density
stemming from inflating the large-scale variable x, we show
only the spectra of this variable for wavenumbers k in the range
2π /(nm) ≤ k < k×

n = π /8. This analysis is performed by av-
eraging 100 single spectral densities, taken at the times when

the system is statistically stationary, that is when the memory
of the initial condition has disappeared (after the final time of
Fig. 2). As expected, the slow variable power spectrum in the
weak coupling (h = 0.1) case, see Fig. 3(c), is very similar to
the spectrum of the single scale model in Fig. 3(b). Both spectra
show a peak at k ≈ 6 2π

nm
, which is the mode of the Rossby-like

wave. These Rossby-like waves are better defined in the strong
coupling case [see the sharp peak in Fig. 3(d)].

For the fast variable, a peak at high wavenumbers correspond-
ing to small-scale eastward-travelling waves can be recognized
only in the strong coupling case (h = 1).

3. Lyapunov spectrum and Lyapunov vectors

Probabilistic predictions are usually carried out by means of
ensembles whose members are suited perturbations in order
to attain a degree of diversity that captures errors in the ini-
tial conditions. For the sake of simplicity, one of the members,
called control, is usually taken as reference, and then, differ-
ences between members and control are finite fluctuations. In
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Fig. 3. (a) Snapshot of the slow (x) and fast (y) variables for h = 1. Spectral density of a stationary state in (b) the one-scale model, (c) two-scale
with weak coupling and (d) two-scale with strong coupling.

general, these fluctuations are not infinitesimal, but as they are
dynamically assimilated they should be well projected on the
most-expanding subspace of the tangent linear space of the con-
trol trajectory. The degree of projection and the diversity of the
ensemble define the quality of the ensemble for a given task.
Hence, the analysis of this tangent space is necessary either to
characterize or to generate ensembles with some physical sound-
ness. Lyapunov methods are the standard tools to perform this
analysis.

Small (ideally infinitesimal) perturbations δxi, δyj,i around
a control trajectory are governed by the tangent linear model,
obtained by linearizing the system (eq. 2)

dδxi

dt
= (xi+1 − xi−2)δxi−1 + xi−1(δxi+1 − δxi−2)

−δxi − h c

b

n∑
j=1

δyj,i (3a)

dδyj,i

dt
= c b δyj+1,i(yj−1,i − yj+2,i)

+ c b yj+1,i(δyj−1,i − δyj+2,i) − c δyj,i + h c

b
δxi .

(3b)

These equations combine the original phenomena of diffu-
sion and dissipation with a kind of forced advection guided by
the control trajectory. Hence, infinitesimal perturbations in this
chaotic system can be seen as a stochastically driven field in

which the (correlated) noise is generated by the control system.
When the system exhibits a spatial pattern (as is the case here
and in the atmosphere), fluctuations may exhibit the same pat-
tern depending on the strength of the coupling. Figures 3(c) and
(d) show the spatial spectral density of the fields x and y for
weak (h = 0.1) and strong (h = 1) coupling, respectively. In the
weak coupling case, as in the one-scale model, the broad peak
indicates that the spatial patterns are only slightly distinguish-
able from the noisy chaotic background, so it is not expected
that the pattern will translate into the dynamics of the linearized
model. On the contrary, in the strong coupling case, the signal to
noise ratio of the power spectrum is very high, suggesting that
the spatial pattern should be an important element of the chaotic
fluctuations as well. Note that this is an unexplored situation in
current studies appearing in more mathematical literature, where
fluctuations originated by chaos are roughly homogeneous (in
the sense of their spatio-temporal spectral properties), see for
example, Pikovsky and Politi (1998) and Szendro et al. (2007).
Then, it is interesting to know the effects induced by spatial
patterns on both the Lyapunov spectrum and the LVs.

3.1. Lyapunov spectrum

The Lyapunov spectrum was computed integrating the tangent
linear model, eq. (3), using the standard method proposed by
Benettin et al. (1980). This method comprises a simultaneous
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Fig. 4. The 36 largest LEs of the two-scale L96 model for different
values of the coupling strength h.

integration of a set of perturbation fields that are periodically
orthonormalized to avoid the collapse of all elements along the
most unstable direction [pointing along the leading Lyapunov
vector (LLV)]. The Lyapunov spectrum for several coupling
coefficients, including the one-scale case (h = 0), is shown in
Fig. 4, where we plot only the 36 largest LEs λq (q = 1, . . . ,
36) ordered in decreasing value. Separation of slow and fast
dynamics is complete for the case h = 0, where from eq. (3b)
one immediately obtains λq>32 = −c = −10. This separation is
very abrupt for weak couplings and becomes almost continuous
from moderated values on (h > 0.26). As the coupling coefficient
h increases, there are two effects that decrease predictability:
(1) the increase of the largest LE—leading to a faster error
growth rate—and (2) the increase in the number and value of
positive exponents—leading to increased Kolmogorov entropy
(Schuster, 1988). In the case of strong coupling (h = 1), a subtle
feature can be observed for the largest LEs, which can be defined
as a kind of packeting: At every sixth LE there is a step in
the spectrum. This is an effect of the wave-like spatial pattern
with wavenumber 6 shown before (Fig. 2). The steps indicate a
tendency of the system to self-split into six chaotic cells.

As already shown by Pazó et al. (2010) with the one-scale
L96 model (1), and shown in the following subsection, a LV of
order q (associated with the qth largest LE) has a characteristic
length scale ∼nm/q. Then, the descending step observed in the
Lyapunov spectrum occurs when the characteristic length of
the LV is a new divisor of the pattern size, as a resonance-like
phenomenon between the intrinsic Rossby-like wavelength and
this characteristic length.

3.2. Lyapunov vectors

LEs inform us about the average exponential growth rate of
infinitesimal perturbations, but they are scalar quantities that

lack any information concerning the directions in tangent phase
space where perturbations are amplified or reduced. This infor-
mation is very relevant in spatially extended systems such as the
atmosphere. In this section, we summarize some of the basic def-
initions and properties of the LVs. We also point the interested
reader to a detailed review by Legras and Vautard (1996).

The term leading Lyapunov vector (LLV)
is usually applied to the direction g1(t) =
(δx1, δx2, . . . , δxm; δy1,1, δy2,1, . . . , δyn,m), which is asymp-
totically approached evolving, via eq. (3), an arbitrary initial
perturbation imposed far enough in the past. Given a certain
realization of the flow, eq. (2), the LLV depends only on t.
Note that the LLV provides only a direction, since the size is
irrelevant due to the linearity of the tangent linear model, eq. (3).
This fact allows us to periodically rescale the perturbation to
avoid numerical overflows in numerical simulations.

The LLV size grows in time as ∼exp (λ1t) and, for long time
averages, the LE λ1 is independent of the definition of the norm.
LEs smaller than the largest one also have associated LVs but
one must be more explicit as several definitions for the LVs exist.
In our case, we followed the definitions by Legras and Vautard
(1996):

(1) ‘Backward’ LVs, {bq (t)}, are the orthogonal set of LVs
that is a byproduct of computing the LEs with the usual method,
which comprises periodic Gram–Schmidt orthonormalization of
the set of perturbations. An infinitesimal perturbation along the
qth backward LV will shrink as ∼exp (− λqt) if integrated back-
wards in time (in practice this will only occur for a time interval
due to numerical roundoff errors). The same experiment but now
integrating forward will yield the same exponential amplifica-
tion rate λ1 for all backward LVs. A feature of backward LVs
usually overlooked is that they depend on the scalar product
used in the orthogonalization. We adopt the usual scalar product
with the identity matrix as metric, and its associated Euclidean
norm. Note that b1 = g1 is the only vector of the set that is not
orthogonalized, and at the same time is the only backward LV
whose forward and backward amplification rates coincide (with
opposite signs).

(2) ‘Forward’ LVs, { f q (t)}, are the time-reversed counterpart
of backward LVs. They form another orthogonal basis and a per-
turbation along one of its members will amplify as ∼exp (λqt).
However, backward dynamics will expand with an exponential
growth rate given by minus the smallest LE: ∼exp ( − λ(n+1)×mt).
To compute forward LVs, one has to evolve the nonlinear system,
eq. (2), backwards in time while remaining inside the attractor.
To prevent the flow from leaving the attractor (now repellor be-
cause of the backward integration), one has to save the state of
the system periodically in the computer (we did it every 0.3).
This allows a reliable traceback of the trajectory. For the pertur-
bations, we have not used the Jacobian matrix but its transpose.
This allows us to obtain the forward LVs from q = 1 up to
qmax = 36 [instead of q = (n + 1)m up to (n + 1)m − 35 if the
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Jacobian matrix were not transposed], see Legras and Vautard
(1996) for details. It is worth noting that forward LVs are the
limiting case of (initial) singular vectors as the optimization time
goes to infinity.

(3) ‘Characteristic’ LVs, {gq (t)}, are a set of LVs that do
not form an orthogonal basis, but instead have remarkable dy-
namical properties: A perturbation along the qth characteristic
LV will grow with exponent λq under forward integration. It
will shrink with exponent −λq under backward integration and,
therefore, they are said to be covariant with the dynamics. The
characteristic LVs are unambiguously defined (up to an irrele-
vant nonzero constant factor), so no conventions like the scalar
product are needed to define them. Computation of character-
istic LVs in high-dimensional systems has been possible only
recently, thanks to a method proposed by Wolfe and Samelson
(2007). The method involves computing the first q backward
LVs and the first q − 1 forward LVs, and solving a linear system
of equations. Backward and forward LVs are needed because the
method searches for a set of coefficients {α(q)

l (t)} measuring the
projection of the qth characteristic LV onto the first q backward
LVs gq = ∑q

l=1 α
(q)
l bl ; with the constraint of a transversality

condition gq ⊥ f l , ∀l = 1, . . . , q − 1.

4. Spatial structure of Lyapunov vectors

4.1. The leading Lyapunov vector

In the one-scale L96 model, the LLV is highly localized (Pazó
et al., 2008). By localization we mean that the vector achieves
the largest magnitude around a few sites of the system. This
is a general phenomenon observed also in other dynamically
generated vectors such as bred vectors (Hallerberg et al., 2010)
or singular vectors (Pazó et al., 2009). Localization arises as a
consequence of the multiplicative character of error growth and,
therefore, is a generic feature of the LLV in extended systems
(Pikovsky and Politi, 1998).

In more quantitative terms, the LLV obeys a log-normal statis-
tics, implying that only after taking the logarithm does the statis-
tics become Gaussian. In particular, spatio-temporal correlations
follow scaling laws only if we consider a ‘surface’ vector of the
form (ln |δz1|, ln |δz2|, . . . , ln |δzm|) (Pikovsky and Politi, 1998;
López et al., 2004). Moreover, there exists universality in the spa-
tial spectral density S(k) of the LLV after this transformation;
S(k) follows a power law ∼1/k2 in one-dimensional systems
(such as the one-scale L96 model).

In the two-scale L96 model, we can expect that a part of the
features observed in the one-scale L96 model remains valid. For
the sake of illustration, we plot in the top panels of Fig. 5 a
snapshot corresponding to the LLV, including both the slow and
fast variables and for weak and strong coupling cases. In the two-
scale L96 model, it is reasonable to work with the two ‘layers’ of
variables x and y separately, and thus, we split the LVs into two
parts: gq (t) = (g(x)

q ; g(y)
q ), likewise for backward and forward

LVs. The phenomenon of localization can be very clearly seen
in Fig. 5, better in the strong coupling case. Logarithmic values of
the LLV are plotted in the second row of Fig. 5. As expected from
the theory (Pikovsky and Politi, 1998), the pattern resembles a
random walk (or a rough surface).

Finally, we plot the spatial spectral density (averaged over
2000 samples) in the bottom panels of Fig. 5. The expected
1/k2 dependence of the spectrum is only observed in the strong
coupling case since the chaos in the weak case is not strong
enough (the largest LE is small). We can see in Fig. 5 that
besides the expected behaviour inherited from the one-scale
model there is a superposed peak due to the inclusion of the
Rossby-like waves in the structure of fluctuations. Again, the
intensity of this effect increases with the coupling. In the case
of strong coupling, we can see how the localization is affected
by the existence of spatial patterns.

4.2. Sub-leading Lyapunov vectors

An analysis of the spatial structure of sub-LLVs (i.e. q > 1 in
the one-scale L96 model can be found in recent works by Pazó
et al. (2008, 2010). After defining associated ‘surfaces’ via a
logarithmic transformation of the sub-LLVs, they observed that
these lower-order LVs are piecewise copies of the LLV ‘surface’.
The typical length of the replication intervals defines an intrinsic
length lq for the qth LV. lq decreases as q grows, and eventually,
beyond a certain value of q, the replication property can be no
longer observed.

Figure 6 shows the spectral density of the fast component of
the LLV and some lower-order backward LVs, {b(y)

q }q=1,2,4,8,16,
in the cases of weak and strong coupling. Given a value of
q, S(k) separates from the reference curve, S(k) for q = 1, at a
certain crossover wavenumber kq that defines the intrinsic length
lq = 2π

kq
mentioned above.

For h = 0.1, the k−2 scaling of the LLV power spectrum is not
apparent, as expected for poorly developed chaos. In contrast, for
strong coupling (h = 1) the LLV power spectrum exhibits a clear
∼k−2 envelope at small wavenumbers (i.e. large spatial scales).
In addition, the Rossby-like wave manifests as a distinctive peak
(plus the harmonics) superposed on the background spectrum.
The background spectra show the aforementioned crossover be-
tween the 1/k2 and 1/k scalings at the characteristic length lq

(cf. Pazó et al., 2008).

5. Localization sites of LVs on large-scale
patterned fields

The instantaneous position of the LVs’ localization site in the
system is completely different for each set (backward, forward
or characteristic). Szendro et al. (2007) compared the relative
position of localization sites for different LVs in a coupled map
lattice, finding that at a given time each backward LV is local-
ized at a different place in the system. This is not surprising due
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Fig. 5. Representation of the leading LLV g1 for weak (h = 0.1) and strong (h = 1) coupling. Each component is split into two panels representing
the slow (x) and fast (y) variables. The different rows represent the LLV (top row), its absolute value in the logarithmic scale (see the text for details,
middle row) and its spatial spectral density (bottom row). A snapshot of the field is depicted for reference on the top row (grey). The power law
∼1/k2 is also depicted for reference in the spectra.

Fig. 6. Power spectra of q = 1, 2, 4, 8, 16 (log-transformed) backward LVs for the weak (left) and strong (right) coupling systems. The power laws
1/k and 1/k2 are depicted for reference.

to their common orthogonality. This has been claimed to be a
consequence of the extensivity of spatio-temporal chaos (see,
e.g. Egolf et al., 2000). However, Szendro et al. (2007) observed
that characteristic LVs have a tendency to cluster their localiza-
tion sites. This is also observed in chaotic Hamiltonian lattices
(Romero-Bastida et al., 2010), and therefore, it is expected to
be a generic situation in spatio-temporal chaotic systems. We

shall see now how these features observed in one-scale systems
translate into the two-scale L96 model where, at least for h = 1,
in which case a strong modulation of the fields exist [recall the
spectral density in Fig. 3(d)].

Figure 7 shows a snapshot of the small-scale (fast) component
of the ten LLVs for different LV types and strong coupling (h =
1). Both backward and forward LVs with q = 1 to 6 have their
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Fig. 7. Absolute value of the y components of the LLVs from q = 1 (bottom) to q = 10 (top): (a) backward LVs, b(y)
q , (b) forward LVs, f (y)

q and (c)

characteristic LVs, g(y)
q . The three panels correspond to the same time (marked by a rectangle in Fig. 8), and the curves have been shifted upwards

+q to improve their visibility.

localization sites roughly uniformly distributed. This reflects
the fact that their localization sites of each LV is at a different
Rossby-like crest. Note also that backward and forward LVs
have little in common in the sense that both sets are apparently
uncorrelated (except indirectly by the Rossby-like waves). This
can be explained by the fact that backward LVs receive informa-
tion only from the past evolution of the system, while forward
LVs contain only information from the future. Under chaotic
dynamics the memory of the system extends of the order of
λ−1

1 (almost insensitive to the system size), while LVs conver-
gence occurs in a much larger temporal scale, of order ∼(size)ζ

with ζ = 3/2 in one-dimensional systems with extensive chaos
(Pikovsky and Politi, 1998). The slow variables show a similar

behaviour, localizing around the same sites as the fast ones in
Fig. 7 (not shown).

The most striking feature of Fig. 7 is the completely differ-
ent relative localization of characteristic LVs in comparison with
backward and forward LVs. Since characteristic LVs are not con-
strained to be orthogonal they can localize about the same sites,
what is not possible for backward and forward LVs. Obviously
this picture is dynamic, as shown in Fig. 8, which depicts the
temporal evolution of localization sites of the six LLVs on top of
the flow. In this figure, we plot the location of the absolute max-
imum of each LV on the corresponding control trajectory. In the
strong coupling case, each maximum follows the motion of the
Rossby-like wave for a given time until a new maximum appears
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Fig. 8. Space–time evolution of the maximum (in absolute value) of the y component of backward, forward and characteristic LVs (q = 1, . . . , 6).
The background represents in gray scale the field y. Top (bottom) panels correspond to h = 0.1 (h = 1). The rectangle on top of the bottom panels
indicates the time corresponding to Fig. 7.

at another node. Note that the LLV follows a path different from
the q = 1 forward LV. For LVs of lower order, each backward
(or forward) LV exhibits its peak in a node different from the
other vectors, as shown in the snapshots of Fig. 7. Contrastingly,
characteristic LVs localize on a few sites with considerable over-
lapping. The situation depicted for h = 1 in Fig. 7 corresponds
to the time where a rectangle is superimposed in Fig. 8, and it is
qualitatively stationary in time. In the next section, we analyse
the statistics of the overlapping in quantitative terms.

In the weak-coupling case (Fig. 8, top row), the flow is still pat-
terned but the wavelength is less clear than in the strong-coupling
case [hence, the broader spectral density peak in Fig. 3(c)].
The paths of the maximum value of each LV cannot be easily
identified since they jump drastically in space as time evolves.

However, the localization sites are still near the ridges of the
pattern at each time, and remarkably the characteristic LVs
again show a much lower diversity than backward or forward
LVs do.

6. Ensemble dimensions

Figure 7 shows that the characteristic LVs have a remarkable
tendency to overlap (i.e. to become almost aligned). For instance,
we can mention that the second characteristic LV is localized
60% of the time in the same crest as the LLV, while 40% of
the time it is localized at the place of the second backward LV.
Moreover, the first forward LV and the second characteristic LV
seldom localize over the same ridge (∼2% of the time). These
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Fig. 9. Average ensemble dimension as a function of q for four different values of h.

facts are interesting but give an incomplete view of what is
occurring. The aim of this section is to quantify the degree of
independence of the LVs and, at the same time, to assess their
dependence on h.

We resort here to a statistic known as ensemble dimension
(Oczkowki et al., 2005) or bred vector dimension (Patil et al.,
2001), that measures the degree of ‘transversality’ of an en-
semble, here composed of the q leading characteristic LVs. The
ensemble dimension measures the number of effective degrees
of freedom that explains most of the total ensemble variance.
The ensemble dimension at a given time is obtained from the set
of eigenvalues {μi(t)}i=1,...,q of the q × q covariance matrix C
with elements

Cij (t) = gi · gj (4)

where the standard scalar product is used. The average ensemble
dimension is

Den(q) =

"(
q∑

i=1

√
μi

)2

q∑
i=1

μi

#
(5)

where the denominator (
∑

iμi) equals q since we take normal-
ized LVs (||gi|| = 1). The statistic (5) typically returns a number
between two limiting values: Den(q) = 1 (if all q vectors are
aligned) and Den = q (if all q vectors are orthogonal, as in the

case of backward and forward LVs). Notice that another similar
measure of effective dimensions has been used in the literature.
Bretherton et al. (1999) use the eigenvalues μi instead of their
square root in eq. (5). This measure assigns different interme-
diate values, but the limiting values and interpretation are the
same as in eq. (5).

Figure 9 shows the dependence of Den(q) on q for four differ-
ent values of h. It is remarkable that the data deviate significantly
from the bisectrix (indicated by a dashed line), which means that
the qth characteristic LV is on average far from being orthog-
onal to the set of q − 1 leading characteristic LVs. This is in
agreement with the results in the bottom panel of Fig. 7, and it
apparently holds for all values of h.

The curves of Den(q) for h = 0.1 and h = 0.26 are quite smooth,
except at q = 11, which is precisely the value of q corresponding
to the null LE, which exists because of the invariance of the flow
under a time shift (because the system is autonomous), see Fig. 4.
The vanishing LE does not fit in the rest of the spectrum because
g11 is a peculiar vector, parallel to the velocity vector of the flow.
Remarkably, there is a low transversality between this vector and
the LLVs as already noticed in other geophysical models with
low-dimensional chaos (Samelson and Wolfe, 2003). For h =
0.6 and h = 1, the vanishing LE is located at a value of q, out of
the range of Fig. 9. The curve for h = 1 exhibits a jump precisely
at the same point as in the Lyapunov spectrum, see Fig. 4. This
is a remarkable result because it shows that the characteristic
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LVs indeed convey a large amount of information of the tangent
dynamics that cannot be recovered from the other vector types:
Forward and backward LVs result in trivial ensemble dimensions
(Den(q) = q, dashed line shown in Fig. 9).

Finally, we note that the jumps observed in Den(q) are located
at the same values of q if the ensemble dimension is computed
only from either the x components of the characteristic LVs, g(x)

q ,
or the y components g(y)

q .

7. Summary and conclusions

We performed an analysis of the spatial dynamics of the am-
plification of perturbations in the Lorenz’96 model. We used
this toy model as a surrogate of the atmosphere in the sense
that this model presents a large-scale variable with a patterned
structure and a small-scale variable coupled to it. The simplicity
of this toy model allowed us to compute different types of LVs,
including the characteristic LVs, which are independent of the
definition of the scalar product and not subject to orthogonality
constraints. These remarkable properties come at the cost of a
larger computational effort.

The configuration (m = 32, n = 8) and parameter values (F =
8) used in the model causes the large-scale variable to develop a
structure consisting of a wave pattern with 6 ridges.1 According
to the spatial spectrum, this wave pattern is reinforced by the
small-scale variable as the coupling increases. The Lyapunov
spectrum also develops, as the coupling strengthens, a packeting
related to wavenumber 6 of the large-scale pattern.

Different centres around the world use EPSs operationally in
order to obtain an upper limit to the spread between members
by perturbing the initial conditions in the fastest-growing di-
rections given by LV-like perturbations. We have shown, using
the L96 model, how different LV types have different properties
regarding their spatial localization and diversity. This localiza-
tion occurs where the large-scale pattern allows it, along the six
ridges of the large-scale flow. Backward and forward LVs show
a spurious localization induced by the orthogonalization. This
spurious effect will propagate to an ensemble made from them
since, without the help of characteristic LVs, spurious and gen-
uine localization peaks are indistinguishable. Hence, in a real
forecast, there can be many sources of uncertainty that, if not
avoidable, should at least be identifiable. Preparation of ensem-
bles with vectors other than the characteristic LVs may lead to
the inclusion of spurious effects. In a system with a large-scale
spatial pattern, the available growth sites are ‘quantized’ by the
patterned structure. A positive outcome of this spatial ‘quantiza-
tion’ is that some information from the future, which is difficult
to obtain, is more easily used than in the case of homogeneous

1 The number of ridges is proportional to the system size m, and grows
monotonically with the forcing term F. Our simulations also indicate
that the number of ridges is not very sensitive to parameter h.

chaos. This is exemplified by the existing anticorrelation be-
tween the first forward LV and second characteristic LV.

The characteristic LVs localize over places where the large-
scale variable allows but, at the same time, they span only a few
of the available large-scale ridges. This is a result of the lack
of any orthogonality constraint, implying that the rest of the lo-
cations where backward and forward LVs localize are in many
cases only mere byproducts of the orthogonality (with a chosen
metric). This also implies that the diversity of LVs other than
the characteristic ones is overestimated and leads to perturba-
tion in directions which do not grow maximally. The unphysical
character of patterns obtained from a procedure imposing or-
thogonality is not new and has been recognized in other vectors
such as the empirical orthogonal functions (Richman, 1986),
which are obtained from an eigenvalue problem from the co-
variance matrix of empirical data. Ensembles initialized with
characteristic LVs do not show spurious effects induced by an
imposed orthogonality. Two issues prevented the use of these
LVs in the initialization of EPS: Their computation has only
been possible recently, and the computational effort is larger
than that required for the backward and forward LVs. With the
method developed by Wolfe and Samelson (2007) and the in-
creasing computer power available, it would be feasible to test in
a realistic model of the atmosphere the ability of the characteris-
tic LVs to capture the spatial locations of interest for perturbing
and initializing an EPS and quantify their improvement over the
current state-of-the-art techniques. These techniques are limited
to the use of methods that take information either from the past
(bred vectors, backward LVs, etc.) or from the future (singular
vectors) but not from both simultaneously. Also, current tech-
niques increase the diversity of the ensemble members by using,
implicit or explicitly, some method of orthogonalization.
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